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We investigate the dynamics of two-strategy replicator equations in which the fitness of each
strategy is a function of the population frequencies delayed by a time interval 7. We analyze
two models: in the first, all terms in the fitness are delayed, while in the second, only opposite-
strategy terms are delayed. We compare the two models via a linear homotopy. Taking the delay
T as a bifurcation parameter, we demonstrate the existence of (nondegenerate) Hopf bifurcations
in both models, and present an analysis of the resulting limit cycles using Lindstedt’s method.
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1. Introduction

Evolutionary game theory models the evolution of
competing strategies within a population by com-
bining the classical economic tools of game theory
with differential equations [Hofbauer & Sigmund,
1998]. The most common approach focuses on the
relative frequencies of different strategies in a pop-
ulation using the replicator equation,

&y = xi(fi — ),

where z; is the frequency of (fraction of the popu-
lation using) strategy i, fi(x1,...,xy) is the fitness

i=1,...,n (1)

of strategy i, and ¢ = > fix; is the average fitness
across the population.

Hofbauer and Sigmund [1998] have shown that
the replicator equation can be derived from the
Lotka—Volterra equation, the classic predator—prey
model of species abundances (rather than frequen-
cies). The n-strategy replicator equation is equiva-
lent to the Lotka—Volterra system with n—1 species.
The derivation, however, requires a rescaling of
time, and the correspondence between species and
strategies is not one-to-one.

Furthermore, it has been shown [Taylor &
Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1981;
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Weibull, 1995] that the replicator equation can be
derived from the exponential growth model

where &; is the abundance of strategy i, and
gi(&1,...,&,) the fitness of strategy i. The equiv-
alence simply uses the change of variables z; = &;/p
where p is the total population, with the assump-
tion that the fitness functions depend only on the
frequencies, and not on the populations directly.

The game-theoretic component of the replica-
tor equation lies in the choice of fitness functions.
Take the payoff matrix A = (a;;), where a;; is the
expected payoff for strategy ¢« when it interacts with
strategy j. Then the expected total fitness f; is
the expected payoff of strategy ¢ when interacting
with each strategy, weighted by the other strategies’
frequencies:

fi=(A-x);, (3)

where

x = (x1,...,%n), Zazizl. (4)

In the standard replicator equation, therefore,
interactions are assumed to occur instantaneously:
the fitness of a given strategy depends on the fre-
quency of each strategy at the given moment. In
many real-world contexts, however, the fitness con-
sequences of interactions are not immediate, but
instead experience some amount of delay. In this
work, we explore the consequences of such delay.
Specifically, we consider the two-strategy replicator
system, generalized to models in which the fitnesses
are functions of the strategy frequencies delayed by
a time interval T

For ease of notation, write

O I

x = (z1,22) = (2,9) (6)

where z + y = 1.

Two-strategy games with delay have previously
been investigated by Yi and Zuwang [1997]. This
previous work considered cases that have an equi-
librium in which the two strategies coexist, and
obtained conditions for the instability of this inte-
rior equilibrium when all interactions are subject to
delay. It did not, however, analyze the bifurcations
and resulting limit cycles that occur at the change

and

of stability. A nonlinear perturbation analysis of
Hopf bifurcations in three-strategy (Rock-Paper-
Scissors) replicator equations with delay appears in
[Wesson & Rand, 2014], but it only considers a sin-
gle model in which all interactions are delayed.

In the present paper, we extend the previous
work in two ways. First, we go beyond the linear
stability analysis, which predicts the existence of a
Hopf bifurcation, and include the nonlinear terms of
the replicator equation. This allows us to approx-
imate the resulting limit cycles using Lindstedt’s
method. Second, we consider models in which not
all interactions are equally subject to delay: inter-
actions between agents with different strategies
may be more likely to be delayed than interac-
tions between agents with the same strategy. Specif-
ically, we consider a range of models indexed by a
homotopy parameter v that determines the relative
weights of delayed and nondelayed terms in the fit-
ness functions.

At one extreme is the case considered previ-
ously [Yi & Zuwang, 1997; Alboszta & Miekisz,
2004; Wesson & Rand, 2014], in which all interac-
tions are delayed by T time units. We refer to this
as the full delay model: If we write 7; = x;(t — T)
and define

X = (7,9) (7)

then the total expected payoff — i.e. the fitness —
for strategy ¢ is given by

fi=(A-X)i. (8)
That is,

fi=aZ +by, fo=cT+dy. 9)

Thus each agent’s payoff at the current moment
depends on the frequencies of each strategy 1" time
units ago (i.e. the expected payoff of that agent’s
strategy 7' time units ago). This could represent
a situation in which human learners preferentially
imitate those with higher payoffs, but information
about the payoff of each strategy is delayed by T
or a situation in which organisms evolving in a
well-mixed population consume resources produced
by other organisms to determine their fitness, and
resources take 7' time use to diffuse between one
organism and the next.

At the other end of the spectrum, only inter-
actions between agents with different strategies are
delayed, while interactions between agents with the
same strategy are instantaneous. We refer to this

1650006-2



as the off-diagonal delay model. In this case, if we
define

x'=(2,7), X*=(T.y) (10)
then the fitness for strategy 7 is given by
fi=(A-%");. (11)
That is,
fi=azx+by, fo=cT+dy. (12)

Note that in this model, the fitness cannot be
considered an expected payoff, as X’ is not a unit
vector. This model may be interpreted as the result
of a certain form of assortment. For example, human
learners have immediate information about the pay-
off consequences of interactions with those having
their own strategy, but information about the out-
come of interactions with people using the other
strategy is delayed by 7. Alternatively, nonhuman
organisms might interact (e.g. affect each other’s fit-
nesses) by exchanging resources such as nutrients or
toxins; and the resources produced by organisms of
one’s own type may be immediately available (per-
haps because of spatial colocalization of agents of
the same type) while it takes 7' time units for the
resources produced by the other type of organism
to reach one via diffusion.

In general, we can bridge the two extreme mod-
els by introducing a linear homotopy (i.e. a convex
combination) between them: we define

% =% + (1 -7)% (13)
and consider the fitness functions
fi=(A-%);. (14)
That is,
fr=alyz + (1 —)T) + b7,
fa=cz+d(yy + (1 —-7)y).

When v = 0, we are in the full-delay case; when
v = 1, we are in the off-diagonal delay case. For
values of 7 between 0 and 1, the system may be
considered as a stochastic combination of the two:
interactions with agents using the other strategy are
always delayed by T, but interactions with agents
using one’s own strategy are instanteous with prob-
ability v and delayed with probability 1 — ~.

For any value of v, the use of delayed frequen-
cies in the fitness functions makes the replicator

(15)

Hopf Bifurcations in Two-Strategy Delayed Replicator Dynamics

equation into the delay differential equation (DDE)

i = xi(fi — @) (16)
where f; is given in Eq. (15), and
=Y wifi=xfi+yf (17)

As a system of ODEs, the standard replica-
tor equation is an (n — 1)-dimensional problem,
because Y x; = 1. This means n — 1 of the z; are
required to specify a point in phase space. In partic-
ular, the nondelayed two-strategy replicator system
reduces to a single autonomous ODE. The delayed
two-strategy replicator equation reduces to a single
autonomous DDE which, by contrast, is an infinite-
dimensional system [Erneux, 2009] whose solution
is a flow on the space of functions on the interval
[-T,0).

2. Derivation

We will analyze the replicator equation Eq. (16)
without specifying the homotopy parameter v —
that is, the fitness is given by Eq. (15). The full
delay and off-diagonal delay models correspond to
the special cases v = 0 and v = 1, respectively.
Then

t=z(fi—¢) and y=vy(fa—¢) (18)

where

fi=a(yr+ (1 —~)Z) +by and

(19)
fo=cZ +d(yy + (1 =7)7),
which means
¢=zf1+yf
= zla(yz + (1 —)Z) + bY]
+ylez +d(vy + (1 —7)7)]- (20)

Substituting in these values, and writing y = 1 — z,
the system is reduced to the single delay differential
equation

t=z(1-2)b—d+(a—b—c+d)ZT
+(a+ d)(x — Z)v]. (21)

At this point, we note that the number of
parameters may be reduced by defining p,q,r as
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follows:
p=a-—c (22)
g=d—b (23)
r=a+d=trA. (24)
Then Eq. (21) becomes
& =z(1-z)(pT +q(T - 1) +yr(z —7)). (25

3. Analysis

The equilibrium points of Eq. (25) satisfy # = 0 and
T = x. There are three equilibria:

q

ptaq
The first two are the endpoints of the interval of
physical relevance, since we require that = € [0, 1].
The third lies in the interval (0,1) if and only if
p and ¢ have the same sign. We will assume that
this is the case. Notice that the equilibria do no‘cI

(26)

r=1, =x

depend on the homotopy parameter v. We examine
the stability of the three points.

Taylor expanding about z = 0 and =z = 1,
respectively, we obtain the linearized systems

d

d—f = —qx aboutz =0 (27)
d
E(x —1)=—p(z—1) aboutz=1. (28)

These two linearizations do not depend on Z, so
the stability of the endpoints depends only on the
payoff coefficients and not on the delay. The two
endpoints have the same stability, since by assump-
tion p and ¢ have the same sign. If p,q > 0, we
find that both endpoints are stable; if p, g < 0, then
both endpoints are unstable.

Now consider the third equilibrium. To deter-
mine its stability, we set

z=x— ——. (29)
P+q
In terms of z, Eq. (25) is
(p(z = 1) +42)(z(p +9) + Q) Z(p + g —77) +yr2) (30)

Z=—
We linearize about z = 0 to get

pq(Z(p+q—r) +yrz)
(p+q)?

i= (31)

First, note that if delay T" = 0, the linearization
reduces to

(p+q)?

|
Under the assumption that p and ¢ have the same
sign, we see that the stability of the point z = 0
is opposite to that of the endpoints. If p,q > 0, we
find that the point z = 0 is unstable when T" = 0; if
p,q < 0, then it is stable. See Fig. 1.

In general, however, the linearization of

_ _pgz (32) Eq. (31) has a nonzero z term, so it is reasonable to
p+q
x(1)
x(t L
107 1o
08} 081
0.6 0.6 1
04 047
: : : : =t \'g ‘ : —
0 5 10 15 20 25 5 10 15 20 25
(a)pzfl,q:71/2,7':2 (b)p:17q:1/2,7':2
Fig. 1. The stability of the endpoints depends on the sign of p and ¢. For T' < T¢, including T' = 0, the stability of the interior

equilibrium is opposite to that of the endpoints. Shown: plots of z(t) versus ¢ where 7' = 1, v = 1/3. Numerical solutions

generated by NDSOLVE in Mathematica.
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expect that the stability will depend on the delay 7.
Given that, we analyze the system for a Hopf bifur-
cation, taking 71" as the bifurcation parameter.

Set z = ™ (and z = 1)) in Eq. (31) to
obtain the characteristic equation

pge M (p+q+yr(e! —1))
(p+ q)?

At the critical value of delay for a Hopf bifurca-
tion, the eigenvalues corresponding to the subspace
in which the Hopf occurs are pure imaginary, so we
take T = T, and A = dw. Substituting this into
the characteristic equation and taking the real and
imaginary parts, we obtain

A= (33)

W+ a—r)
(ypar)? + w?(p + q)*
paw(p+q)*(p+q— 1)

(ypar)? + w?(p+ q)*

Squaring these equations and adding them, we can
solve for the critical frequency w:

(34)

coswl, =

sinwT, =

(35)

p+q—2yr

w:
PN T+

. (36)
It can be shown that the frequency is real and
nonzero if and only if (in addition to p and ¢ hav-
ing the same sign) p + ¢ — 2yr has the same sign
as p+ q. That is,

r=1tr A

Fig. 2.
and (b) above the curve p+ ¢ =2yr if p+¢ < 0.
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{p,g<0,p+qg<2yr} or 7
37
{p.q>0,p+q>2yr}.

Thus Eq. (37) is a necessary condition for a Hopf
bifurcation to exist. See Fig. 2. We will assume that
this condition is satisfied.

Notice that in the full delay case v = 0, Eq. (37)
is trivially satisfied whenever p and ¢ have the same
sign. That is, the Hopf occurs for any payoff matrix
such that the equilibrium point lies in the interval
of relevance. If p and ¢ are both negative, the equi-
librium is stable and the limit cycle resulting from
the Hopf is stable. However, if p and ¢ are both
positive, the equilibrium is unstable and the limit
cycle resulting from the Hopf is unstable. In either
case, the Hopf occurs and a limit cycle is born with
frequency given by Eq. (36) as:

w= 24
lp+4|
For any nonzero value of «, however, there exist
payoff matrices for which the equilibrium point lies
in the interval of relevance, but |r| is large enough
that Eq. (37) does not hold and the Hopf does not
exist.

Now, substituting Eq. (36) back into Eq. (34),

we obtain the critical delay T:

T. = cos™! <

(38)

(p+q)?

—~ T (39
p+q—2yr (39)

—r )1
p+q—7r) pq

r=tr A

0.2 0.4 0.6 0.8 1.0

(b)

The Hopf bifurcation occurs in systems lying in the shaded regions, i.e. (a) below the curve p4+¢=2yrifp+¢ >0
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This result agrees with the values of T and w given by Rand and Verdugo [2007]. We also apply the results
of [Rand & Verdugo, 2007] to obtain an approximation for the amplitude of the limit cycle generated by

the Hopf bifurcation. See Appendix A.

If T'=1T.+ p, the amplitude R of the limit cycle produced by the Hopf bifurcation is given by

P
R= H- (40)
Q
where
p_ WBE+D-N)P+a—2)p+q—r)’° (41)
(p+ "
10 [PHa—2r 3
P g (pta—r
Q= (»+q)? ( :
(»+q)®
2 22 pP+q—2yr 2 2
x|(p° =) (p+q=3v)\ | —F———5 + =32 —pg+2¢°)(p+ q)
(p+4q)
_ yr
+ (3p* — pq + 3¢* p+q2+3’y2r2p—q2(zos 1<7> . 42
( )(p+4q) (p—a)7] P —— (42)
When ~ = 0, this reduces to
_ 20p7q" (43)
P+a)"
g (n (32 — pa + 3¢° 20+ )(p — 0)°)
Q= P arBr —pa+3¢)p+a +2p+ap—q)7) (44)
2(p + q)°
Since R is real, ;4 must have the same sign as |
P/@. This determines whether the Hopf bifurcation
is sub- or supercritical. In particular, if the point b—c b
z = 0 is stable for delay T" < T, and g > 0, then A 2 (45)
the limit cycle is stable and the bifurcation is super- b
critical. We will treat an example of this type in the 0 B

next section.

4. Example: Hawk—Dove Games

As an example, consider the Hawk-Dove system
described by Nowak [2006]. There are two strategies
competing for a resource with benefit b: “hawks,”
who will escalate fights against other players, and
“doves,” who will retreat from fights. So, if a hawk
meets a dove, the hawk always wins, receiving ben-
efit b, while the dove receives nothing. If two doves
meet, each is equally likely to win the resource, so
the expected payoff is b/2. If two hawks meet, they
fight over the resource; each expects to gain benefit
b/2 and incur a cost of injury ¢/2, for an expected
payoff of %. Therefore the game is represented by
the payoff matrix

where b and ¢ are positive numbers. (Note that b, ¢
in Eq. (45) are not the same as b, ¢ in Eq. (5).)
In this case, we have

b—c b c
= -, r=b—= 4
p=—5— 4=-5 r=b-3 (46)
and Eq. (25) becomes
1
T = §x(az7 1)(ecz —b+~(2b—c)(T —x)). (47)
The equilibria of the system are
b
r=0, x=1, z=-. (48)

The condition for the third equilibrium to lie in the
interval of physical relevance (0, 1), which is that p
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and g must have the same sign, reduces to
0<b<e (49)

Notice that this means there is an equilibrium point
where both x and y are nonzero (i.e. both strategies
coexist), if and only if the expected payoff (b — c)
for a hawk versus another hawk is negative.

If we let
b
g=r— (50)
then the linearization about z = 0 is
_ b(b—c)(cz — (¢ —2b)(z — z)’y) (51)

2c2

In the case of no delay (7" = 0 and z = 2) this
becomes
b(b—c)z

;= - 52

‘ 2c (52)
Therefore, if Eq. (49) holds — that is, if the third
equilibrium lies in the interval of relevance — then
the point z = 0 is stable for T = 0, for any value
of ~.

If there is a Hopf bifurcation, its critical fre-

quency Eq. (36) is

_ ble—b) \/—

From Eq. (37), we see that the condition for w to
be real — i.e. for the point z = 0 to have a Hopf
bifurcation — is

(27 — 1)c < 4yb. (54)

If v < 1/2, then Eq. (54) is trivially true, so w is
real for all Hawk-Dove games such that Eq. (49)
|
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holds. If v > 1/2, however, w is real only if

: 55
o (55)

It is instructive to define a new parameter k,
such that

¢ = kb. (56)

Intuitively, & is the cost per unit of benefit that the
hawks are willing to incur. We can enforce condi-
tions Egs. (49) and (54) by stipulating that k& > 1,
and if v > 1/2,

4y

k .
< 51 (57)
Then in terms of b and k, the frequency w is
bk — 1)v/Ay — 29k + k
w = TETE i (58)
The critical delay Eq. (39) is
263/2

T. =

b(c — b)\/4by —2yc+ ¢
x cos ! <1 - ;> (59)

20y —yc+c

2]{73/2
bk — 1)v/Ay — 29k 1 F
x cos ! (A + 1) (60)
(v =Dk =2y

and the amplitude of the limit cycle that is born in
this bifurcation is given by Eqs. (40)—(42):

R:,/% (61)

where = T — T,. The ratio P/Q can be written
in terms of b and k as

g = [20k7°2(k = 1)*(29(k — 2) — k)(97(k — 2) — 5k)] /
VE(k = 2)2(=k* — 652 (k — 2)% + 5v(k — 2)k) + /47 — 27k + k(K> (k(3k — T) +7)
+ 372 (k — 2)* = 3yk(k(2k — 5) + 5)(k — 2)) cos " ((’r—l)%?y + 1)] . (62)

In the full delay case (v = 0), the critical frequency and delay become

w =

b(k — 1)
ok
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and
wk
T.= —— 4
and the ratio P/Q reduces to
P 20b(k — 1)3 (65)
Q  K(r(k(Bk—-T7)+7) —2(k—2)2)
In the off-diagonal case (7 = 1), these values are
bv4d — k(k —1)
and
2k3/2 cos™1 <1 — g)
bv4d —k(k —1)
and
P —2bv/4 — k(k — 1)3(2k — 9)k—>/?
0= (68)

Note that in terms of b and k, for all values of ~

T 1 P
e X 5 @ x b.
Therefore, we can divide each of these quantities
by the appropriate power of b to obtain normalized
versions that depend only on the parameter k.
Observe (Figs. 3-5) that when k£ = 2, w, T, and
P/Q do not change as ~ varies. In fact, for k = 2
they reduce to

w x b, (69)

b T 2r P b (70)
w = — = — _— = —.
) C b ) Q 27T
w/b
041 r=0
03+ 13
02
y=2/3
0.1 y=1
. . . . . X
2 3 4 5 6 7 8
Fig. 3. Normalized frequency w/b, at the Hopf bifurcation

in the Hawk-Dove system, as a function of k = ¢/b. Red: full
type delay (v = 0). Blue: off-diagonal delay (y = 1). Orange:
v =1/3. Green: v = 2/3.

(k — 3) (k4%®%%(%%@M%HMmAGE>

2

|
This is to be expected, since for this value of k
the Hawk-Dove replicator equation (47) does not
depend on ~. It reduces to
iz%Mm—lﬂ@i—l} (71)
We see by plotting the normalized version of
Eq. (62) (Fig. 5) that P/Q > 0, so for the ampli-
tude R to be real, u must also be positive. Thus the
Hopf bifurcation is supercritical, and the limit cycle
is stable. Numerical simulation using NDSOLVE
in Mathematica confirms the stability of the limit

b T,
25
1

20 ]

15¢

10

Fig. 4. Normalized critical delay b7, for the Hopf, as a
function of k = ¢/b. Red: full type delay (v = 0). Blue:
off-diagonal delay (y = 1). Orange: v = 1/3. Green: v = 2/3.
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P/(bQ)
015
0.10 |
7=0
0.05 y=1/3
y=l_ r=2/3 \

2 3 4 5 6 7 8

Fig. 5. Normalized growth coefficient %, for the Hopf, as

a function of k = ¢/b. Red: full type delay (y = 0). Blue:
off-diagonal delay (v = 1). Orange: v = 1/3. Green: v = 2/3.

x(1)
1.0
0.8
0.6 1

04r

02r

0 50 100 150 200 250
(a)
Fig. 6.
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cycle. See Figs. 6 and 7, in which we show numer-
ical solutions for the particular case b = 1 and
¢ =k = 3, corresponding to the payoff matrix

-1 1
A= 1 72
o1 (72)

2

for values of T" above and below T..

Finally, we compare the results of this pertur-
bation method to those obtained by continuation
in DDE-BIFTOOL. (The latter method is outlined
by Heckman [2012].) As in Figs. 6 and 7, we take
b =1, c = k = 3. We have plotted the results for
v=0,v=1/3,v=2/3, and v = 1. See Fig. 8.

x(1)
1L0g

0.8
0.6
0.4

0.2

0 50 100 150 200 250

(b)

Numerical solutions of the Hawk—Dove system with b = 1, ¢ = k = 3 and v = 1/3 for values of T above and below

Te. (a) Delay 5 =T < Te. Interior equilibrium is stable and (b) delay 7 =T > Te. Limit cycle is stable.

x'(t)

0.05

0.00 C X (1)

1.0
—-0.05
-0.10

-0.15

-0.20

(a)

Fig. 7.

x'(t)
0.10

0.05

0.00 ‘ ‘ ‘ ‘ 5 x(t)
0.2 0.4 0.6 0.8 1.0

-0.05
-0.10 |

-0.15 |

-0.20 1

(b)

Parametric (& versus z) representation of numerical solutions of Hawk-Dove system with b = 1, ¢ = k = 3 and

~v = 1/3 for values of T" above and below Te. (a) Delay 5 = T' < Te. Interior equilibrium is stable and (b) delay 7 =T > T.

Limit cycle is stable.
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0.7

0.6

o I o
&) > 0
T T T

Amplitude 2R (max-min)

o
N

0 L L L L L L L )
4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

Delay T

(a) Full delay (y = 0)

0.6

0.5

Amplitude 2R (max-min)
o o
w IS
T T

o
)
T

0.5r

© I
w IS
T T

Amplitude 2R (max-min)

o
)

0.1

0.4-

0.35-

0.3-

0.25-

0.15-

Amplitude 2R (max-min)
o
N
'

0.1-

01f
0.05-
. 0. . , . . , . , . .
0 75 76 77 78 79 8 81 82 83 108 109 11 111 112 113 114 115 116 117
Delay T Delay T
(¢)y=2/3 (d) Off-diagonal delay (y =1)
Fig. 8. Amplitude of limit cycle versus T in the Hawk-Dove system with b = 1, ¢ = k = 3 given by Lindstedt (upper curve,

red) and continuation in DDE-BIFTOOL (lower curve, blue), for various values of ~.

Note that the amplitude given by DDE-
BIFTOOQOL is the full width of the limit cycle, twice
the amplitude predicted by Lindstedt’s method,
which is the average displacement from the equi-
librium point. We observe from Fig. 8 that for all
tested values of v the results of the two methods are
in good agreement for values of 1" reasonably close
to 1.

5. Conclusion

We have investigated the dynamics of two-strategy
replicator systems with delay. We have consid-
ered a range of models indexed by a homotopy

parameter v, which determines the relative weights
of delayed and nondelayed terms when determin-
ing the fitness arising from interactions with agents
having the same strategy. (Interactions between
agents with different strategies are always delayed.)
At one extreme (y = 0) the model describes a full-
type delay in which the fitness of each strategy is
the delayed expected payoff of that strategy. At the
other extreme (7 = 1) only the opposite-strategy
terms in each fitness function are delayed.

It is well known that periodic motions can-
not occur in nondelayed two-strategy replicator
systems, since the phase space is one-dimensional.
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The introduction of delay makes the system into a
DDE, so the phase space is infinite-dimensional.

In this work, we have shown that, for all values
of v, there exist two-strategy games for which non-
degenerate Hopf bifurcations and limit cycles occur.
In the full delay case (v = 0), Hopf bifurcations
occur for all two-strategy games. For v > 0, there
exist two-strategy games for which there is no Hopf
bifurcation.

In particular, we have demonstrated a range
of parameters for which Hawk—Dove systems with
delayed competition exhibit stable limit cycles
which are born in Hopf bifurcations. That is, for
such systems, the population dynamics converge to
a periodic oscillation in the proportions of hawks
versus doves. We have used Lindstedt’s method to
approximate the amplitude of the limit cycles, and
we have shown that this approximation agrees with
the results of numerical continuation.

If v < 1/2, ie. closer to full delay than off-
diagonal delay, the Hopf bifurcation occurs for all
Hawk—Dove systems in which the cost ¢ of fighting
is greater than the benefit b attained. If v > 1/2,
i.e. closer to off-diagonal delay, there is a maximum
cost-benefit ratio above which the bifurcation does
not occur, and limit cycles in the population fre-
quencies are not observed.

This generalization of the replicator equation
may be useful in modeling a range of scenarios,
given the ubiquity and heterogeneity of delay in
real-world applications. It is often the case that peo-
ple have more accurate and up-to-date information
about those who are more similar to themselves,
and that organisms which have the same pheno-
type are located closer to each other. Thus it may
well be that delay plays a bigger role in interac-
tions between agents with different strategies than
agents with the same strategy. The framework we
introduce here demonstrates the important conse-
quences such heterogeneous delays can have on the
system’s evolutionary dynamics.

References

Alboszta, J. & Miekisz, J. [2004] “Stability of evolution-
arily stable strategies in discrete replicator dynamics
with time delay,” J. Theor. Biol. 231, 175-179.

Erneux, T. [2009] Applied Differential Delay Equations
(Springer Science+Business Media, NY).

Heckman, C. [2012] “Numerical continuation using
DDE-BIFTOOL,” Retrieved from http://www.math.
cornell.edu/rand /randdocs/Heckman DDEBiftool/.

Hopf Bifurcations in Two-Strategy Delayed Replicator Dynamics

Hofbauer, J., Shuster, P. & Sigmund, K. [1979] “A note
on evolutionarily stable strategies and game dynam-
ics,” J. Theor. Biol. 81, 609-612.

Hofbauer, J. & Sigmund, K. [1998] Evolutionary Games
and Population Dynamics (Cambridge University
Press, Cambridge).

Nowak, M. [2006] FEwvolutionary Dynamics (Belk-
nap Press of Harvard Univ. Press, Cambridge,
MA).

Rand, R. & Verdugo, A. [2007] “Hopf bifurcation formula
for first order differential-delay equations,” Commun.
Nonlin. Sci. Numer. Simul. 12, 859-864.

Taylor, P. & Jonker, L. [1978] “Evolutionarily stable
strategies and game dynamics,” Math. Biosci. 40,
145-156.

Weibull, J. [1995] Ewvolutionary Game Theory (MIT
Press, Cambridge, MA).

Wesson, E. & Rand, R. [2014] “Hopf bifurcations
in delayed rock-paper-scissors replicator dynamics,”
Dynamic Games and Applications, doi: 10.1007/
$13235-015-0138-2.

Yi, T. & Zuwang, W. [1997] “Effect of time delay and
evolutionarily stable strategy,” J. Theor. Biol. 187,
111-116.

Zeeman, E. [1981] “Dynamics of the evolution of animal
conflicts,” J. Theor. Biol. 89, 249-270.

Appendix A

Hopf Bifurcation Formula
for First-Order DDEs

We present the formula for the radius of a limit
cycle that is born in a Hopf bifurcation in a first-
order constant-coefficient differential delay equa-
tion, derived by Rand and Verdugo [2007].
Consider a differential delay equation (DDE)

d
d_:: =ax+ 0T + a1x2 + asxx + a3E2 + b1$3

+ by’ T + byaT? + byT> (A1)
where x = z(t) and T = z(t — T'). The associated
linear DDE is

d
—x:aa:—i-ﬂi.

= (A.2)

Assume that Eq. (A.1) has a critical delay T, for
which it has a pair of pure imaginary eigenvalues
+iw,. and the linearized problem Eq. (A.2) has the
general solution

T = €1 oS wet + ¢o8in wet. (A.3)
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Since the system is autonomous, we can without
loss of generality choose the initial conditions so
that the periodic solution has only one term,

(A4)

The goal of Lindstedt’s method is to find a peri-
odic solution of the full nonlinear DDE Eq. (A.1) for
values of T close to T, by detuning the frequency
off w.. First, we introduce a small parameter € via
the scaling

T = c] COS W,l.

T = eu. (A.5)
We detune T by a term of order €?:
T=T.4p=T.+ € po. (A.6)

Next we stretch time by the change of variables

u=u(t —wT)
= u(r — (we+ kg + - ) (Te 4 €€p2))  (A.10)
= u(t — weT, — (koT, 4 powe) +---)  (A.11)
= u(T — w.T.) — € (kT + powe)u!
X (T —weTy) + -+ (A.12)
Finally, we expand u as a series in e:
u(t) = up(7) + eur (1) + Eus(t) + -+, (A.13)

Collecting similar orders of ¢, we find that the
lowest-order equation has the solution

(A.14)

By substituting this into the next higher-order
equation and eliminating secular terms, we can find

ug(7) = AcosT.

= wt (A.7) A as a function of p. Multiplying through by €2, we
thus find that the limit cycle solution of Eq. (A.1)
where w is detuned from w,: can be approximated by
Ww=we+ kg - (A.8) x = Rcoswt (A.15)
This gives us where the amplitude R = ¢2A as a function of
i i i 1= €211y is given by
u u 9 u
— =w— = ko+--)— A9
Gy~ wetehte)gs (A9) p2- 1P (A.16)
Q
and
where
P =4p*(da = 508)(8 — ) (o + B)° (A.17)
Q = 5boT.3% + 15b4T. 3% + 1501 8% + 5b3/3° — 4a3T.3° — 3a3T.3° — 22a3T.53°
— 7&1(LQTC,B5 — 14a1a3Tcﬂ5 — 7a2a3Tcﬁ5 — 15Oébch,35 + Oéb2TC/B5 — 15Oéb3Tc,35
+ 3ab4Tcﬁ5 — 18a%ﬂ4 — a%ﬂ4 — 4a§ﬁ4 — 9a1a2ﬁ4 — 18a1a3ﬂ4 — 9a2a3ﬁ4
+ 3ab B* — 15aby 8% + absB* — 15abs3* + 1803 T, 3% + T3 T3
+ 12aa§Tcﬁ4 + 19aa;asT.5* + 30aaiasT.B* + 37aasasT.B* — 3620, 1,6
+60%bo T, 31 — 3a%b3T,. 3% — 12020,T.6% + 12063 52 + 1103 + 2600333
+ 33aa1a2ﬁ3 + 30aa1a3ﬂ3 + 19aa2a3ﬂ3 — 12a2b1ﬂ3 — 3a2b2ﬂ3 + 6a2b3ﬁ3
—3a%by3° — 8a2a3T.0° — 1202a3T.3% + 40%a3T.0° — 260%a1a0T,3° — 1602 a3T,3°
—20a%asas T2 + 12030, T.0% — 1202 a1a33% — 3202 asas3? + 12039 3% + 2030332
+ 2a3b2Tcﬁ3 + 12a3b3Tcﬂ3 — 14a2a§ﬁ2 — 8a2a§ﬁ2 — 18a2a1a2ﬂ2
+ 12a3b4ﬂ2 + 8a3a%Tcﬂ2 + 8a3a1a2Tcﬁ2 — 4a3a2a3Tcﬂ2 — 80441)2Tcﬂ2
+403a3f — 8a3a§ﬁ + 8aasasf — 8atbs 3 + 8atasas. (A.18)
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The critical delay T, and frequency w. may be  where

expressed in terms of « and [ by considering the ~pgr
linear equation (A.2). Substituting Eq. (A.4) into o= D+ 92 (A.23)
Eq. (A.2) and setting the coefficients of sinw.t and
cosw¢t equal to zero give 5= pg(p+q—~r) (A.24)
Bsinw. T, = —w., LeoswI,=—a. (A.19) (p+ q)? .
Squaring and adding these, and substituting the yr(p —q)
result back in, yields ar = ptq (A.25)
_ 2 _ 2
we= V3 -a (A-20) _(—ap+qg—1r)
a9 = (A.QG)
and P+q
cos™ (%) by = —1r7, (A.27)
T, = ——————. A.21
‘ 32— a? (4.21) by=—p—q+r (A.28)
The system in question, the two-strategy repli- as =bs = by = 0. (A.29)

cator equation (30), can be written as

We substitute these values into Egs. (A.16)—
(A.18) to obtain the amplitude of the limit cycle,
+b12% 4 022%% + b3222 + b42° (A22)  Egs. (40)-(42).

3 =az+ 0z + a12® + a22Z + asz>
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