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We integrate dual-process theories of human cognition with evolutionary game theory to study the

evolution of automatic and controlled decision-making processes. We introduce a model in which

agents who make decisions using either automatic or controlled processing compete with each

other for survival. Agents using automatic processing act quickly and so are more likely to acquire

resources, but agents using controlled processing are better planners and so make more effective

use of the resources they have. Using the replicator equation, we characterize the conditions under

which automatic or controlled agents dominate, when coexistence is possible and when bistability

occurs. We then extend the replicator equation to consider feedback between the state of the popu-

lation and the environment. Under conditions in which having a greater proportion of controlled

agents either enriches the environment or enhances the competitive advantage of automatic agents,

we find that limit cycles can occur, leading to persistent oscillations in the population dynamics.

Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long

time scale. Our results shed light on the connection between evolution and human cognition and

suggest necessary conditions for the rise and fall of rationality. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927488]

Dual-process theories of human cognition play a central

role in the behavioral sciences. According to these theories,

decisions are often made using either automatic processes

that are fast and effortless but focused on the present or

controlled processes that are slow and effortful but can

plan for the future. Evolutionary game theory models,

however, almost never consider these distinctions.

Therefore, little is known about the evolutionary dynamics

of automatic versus controlled processing. Here, we

address this gap by introducing an analytically tractable

model for the evolution of agents that use automatic or

controlled processing. The agents both compete with each

other and alter their shared environment. We show that

under certain circumstances, automatic and controlled

processing can stably coexist within the population. We

also identify conditions under which limit cycles occur. In

such cases, the success of controlled agents alters the envi-

ronment in a way that allows automatic agents to invade

and vice versa. Our results help to explain why human

evolution may not necessarily be characterized by ever-

increasing levels of rationality and forward-thinkingness

but instead may recurrently fall prey to periods of myopia.

I. INTRODUCTION

Dual-process theories of human decision-making con-

ceptualize decisions as arising from the interaction of (i)

automatic processes that are “hardwired” and thus computa-

tionally efficient but rigid and (ii) controlled processes that

are effortful but flexible.1–7 Such a perspective has proved

useful for understanding behavior across a wide range of

domains and has been used heavily in fields such as neuro-

science,8,9 cognitive and social psychology,10–16 and behav-

ioral economics.17–19 Yet, despite playing a key role in

human evolution, the interaction (and conflict) between auto-

matic and controlled processing has been almost entirely

overlooked by evolutionary game theorists.

Controlled processing is a defining feature of human

cognition, thought to underlie virtually all higher level, char-

acteristically human cognitive functions, such as planning,

problem-solving reasoning, and symbolic language—func-

tions that, at least under some conditions, are capable of

identifying and flexibly executing rational and even optimal

behavior. This might be taken to suggest that evolution

should favor controlled processing and that given sufficient

time, control should prevail as the dominant mode of cogni-

tion. However, there is evidence that human history is char-

acterized by cyclical dynamics that suggest a proliferation of

behaviors and social structures reflective of controlled proc-

essing, only to be followed by their demise and collapse.20,21

What might explain these historical cycles? Here, we explore

the possibility that they may reflect the dynamics of interac-

tion between automatic and controlled processing at the pop-

ulation level. We do so by integrating dual-process agents

into an evolutionary game-theoretic framework.

We focus our investigation of automatic versus con-

trolled processing on a particular cognitive function: inter-

temporal choice.22–24 Intertemporal choice refers to

decisions between options or behaviors that yield immediate
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reward versus those that are less rewarding in the short run

but have the potential to yield greater reward in the future.

We choose to focus on intertemporal choice for three

reasons. First, the prevalence of short-sighted behavior has

been identified as an important contributory factor to the de-

mise of advanced civilizations20 and is a topic of modern

concern (e.g., failures to save for retirement, over-

consumption of environmental resources, and abuse of anti-

biotics). Second, immediacy-biased behaviors have been

linked to automatic processing, while future-oriented behav-

iors have been linked to the engagement of controlled proc-

essing, both at the behavioral and neural levels of

analysis.8,9,17,19,25 Thus, intertemporal choice may be a use-

ful probe for studying the consequences of interactions

between automatic and controlled processing at the popula-

tion level. Third, we have performed preliminary computer

simulations that support this suggestion.26 In these simula-

tions, agents foraged for resources (e.g., food) in an environ-

ment, and either consumed found resources immediately

(when using automatic processing) or according to an opti-

mal consumption plan calculated using a complex algorithm

based on past experience. Intriguingly, these simulations

sometimes gave rise to evolutionary cycles in which the pro-

portion of controlled agents in the population waxed and

waned periodically. However, the complexity of the model

led to analytical intractability, making it hard to understand

what conditions gave rise to these cyclical dynamics and

what factors were responsible for the oscillations.

A desire to understand these issues led us to the simplified

model proposed in this paper. Using the replicator equation, a

nonlinear dynamical system studied in evolutionary game

theory,27,28 we introduce a minimal model of dual-process

agents engaged in intertemporal choice that captures the critical

features of the scenario above while remaining sufficiently sim-

ple to be mathematically tractable. In doing so, we provide a

formal characterization of the conditions under which cyclical

dynamics emerge and the forces that drive such cycles.

II. THE MODEL

We model a world in which agents forage for goods, com-

pete for access to these goods, and choose how to consume

goods they acquire to generate fitness, with fitness being subject

to diminishing marginal returns on consumption. Agents are

then subject to natural selection based on their resulting fitnesses.

For simplicity, we assume there are only two types of

agents, fully controlled and fully automatic, and we explore

the evolution of the fraction of controlled agents, denoted as

x. Automatic agents differ from controlled agents in two

ways: how likely they are to acquire goods (where the speed

and efficiency of automaticity is advantageous) and how

they choose to consume those resources (where the rational-

ity and planning ability of control is advantageous).

The world is parametrized by the probability q of find-

ing a good (all goods are of equal size, normalized to 1

energy unit), and the competitive advantage b that automatic

agents have over controlled agents in acquiring goods (where

b¼ 0 means that both types of agents have an equal proba-

bility of acquiring goods).

A. Competitive advantage

Because automatic processing is assumed to be faster

and less taxing than controlled processing, automatic agents

have a competitive advantage over controlled agents when

seeking to acquire goods. For example, it could be that when

agents of both types simultaneously encounter a good, the

automatic agent acts more quickly and snatches the good

before the controlled agent can respond. Or it could be that

the ponderous deliberation engaged in by controlled agents

sometimes causes them to miss opportunities that an auto-

matic agent would be more likely to exploit.

As a result, automatic agents are more likely to acquire a

good in any given time period, and so the two types of agents dif-

fer in their expected waiting time between acquiring goods (i.e.,

the average number of time steps between acquiring one good

and the next). We define the probability of acquiring a good as

pA for automatic agents and pC for controlled agents. Thus, the

average waiting time for an automatic agent sA is given by

sA ¼
1

pA
; with pA ¼ q 1þ bxð Þ; (1)

while the average waiting time for a controlled agent sC is

given by

sC ¼
1

pC
; with pC ¼ q 1� b 1� xð Þ

� �
: (2)

For q> 0 and b> 0, it is the case that sA< sC: automatic

agents acquire goods more frequently than controlled agents

(again, because automatic processing is faster and more effi-

cient). Furthermore, while both pA and pC are increasing in x, the

population average probability of finding a resource is always

constant, xpCþ (1� x)pA¼q. This is because as x increases, a

greater fraction of the population is made up of controlled agents

(who have a lower probability of acquiring goods than automatic

agents), and this reduction in average probability exactly balan-

ces out the increase in likelihood of any individual agent acquir-

ing a resource. Thus in the baseline model, overall resource

abundance does not vary with the make-up of the population.

B. Consumption

To implement diminishing marginal returns on resource

consumption, we define the fitness gained from consuming a

fraction z of a good as z/(a þ z), where a determines the

extent of diminishing marginal returns, with lower a leading

to more steeply diminishing returns. Recall that goods are

normalized to have size 1 when acquired.

When automatic agents acquire a good, they consume

all of it immediately; hence z¼ 1, yielding a fitness benefit

of 1/(aþ 1). They then spend, on average, the next sA � 1

time steps consuming nothing, until they again acquire a

good. Therefore, the expected fitness per time step of an

automatic agent is given by

fA ¼

1

1þ a
sA
¼ qþ bqx

aþ 1
; (3)

from Eq. (1).
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In contrast, controlled agents consume acquired resour-

ces more carefully: they pace their consumption, spreading it

out evenly so as to obtain the maximum possible amount of

fitness gain from it (because of the diminishing marginal

returns on consumption, it is wasteful to consume the entire

resource immediately; evenly spaced consumption results in

greater fitness yield). Thus, the prudent planning of con-

trolled agents leads them to consume z¼ 1/sC units of good

in each of the sC time steps and thereby to gain a fitness

benefit per time step of

fC ¼

1

sC

aþ 1

sC

¼ q b x� 1ð Þ þ 1
� �

aþ q b x� 1ð Þ þ 1
� � ; (4)

from Eq. (2).

III. EVOLUTIONARY DYNAMICS IN A CONSTANT
ENVIRONMENT

Having defined the fitness of the two types of agents, we

turn to evolutionary dynamics. Specifically, we ask which

strategy (or combination of the two) will be favored by natu-

ral selection for different fixed values of resource availability

q and competitive advantage of automatic agents b. We do

so using the replicator equation from evolutionary game

theory27,28 to characterize how the relative fractions of con-

trolled and automatic agents, x and 1 � x, respectively, vary

over time. The replicator equation compares the fitness of

controlled agents to the population average fitness. It

increases the frequency of controlled agents over time if they

have higher fitness than automatic agents and decreases it if

the opposite is true.

The replicator equation for our system, using (3) and

(4), is given by

_x ¼ x fC � xfC þ 1� xð ÞfA

� �� �

¼ x� 1ð Þx a

a� bqþ qþ bqx
þ qþ bqx

aþ 1
� 1

� �
: (5)

Note that we do not need a separate equation for the fraction

of automatic agents because that quantity is given by 1 � x.

The long-term dynamics of (5) are characterized in Fig. 1(a),

where for the sake of illustration we fix a¼ 0.15 and vary b
and q. We see that the (b, q) space is subdivided into five

distinct regions. We describe the dynamics within each

region below.

The endpoint solutions of x¼ 0 (all automatic agents)

and x¼ 1 (all controlled agents) are always fixed points

regardless of b and q. In regions 2 and 4, these are the only

fixed points. When resources are scarce and the competitive

advantage of automatics is low (region 2), x¼ 1 is the global

attractor and control dominates automatic processing.

Conversely, when resources are plentiful and the competitive

advantage of automatics is high (region 4), x¼ 0 is the global

attractor and automatic processing dominates control. This is

because on the one hand, automatic agents always consume

qb more goods on average than controlled agents in each

time step (given (1) and (2)); but on the other hand,

controlled agents make more judicious use of those resources

(as controlled by a). Therefore, for a given value of a, con-

trol wins when qb is sufficiently small and automaticity wins

when qb is large. The smaller a is (i.e., the greater the dimin-

ishing marginal returns on consumption), the larger region 2

is and the smaller region 4 is.

In the other regions, however, there can be up to two in-

terior fixed points, in addition to these endpoint solutions.

The first results from having a relatively resource-rich world

with relatively little competitive advantage of automatics

(regions 2 and 5). This interior fixed point is always stable

and leads to coexistence of automatic and controlled process-

ing. The second results from a relatively resource poor world

in which the competitive advantage of automatics is rela-

tively large (regions 3 and 5). This interior fixed point, by

contrast, is always unstable and leads to bistability between

automatic and controlled processing.

To understand why a rich world with little competitive

advantage for automatics leads to coexistence while a poor

world with high competitive advantage for automatics leads to

bistability, we must consider how selection pressure varies

based on the makeup of the population. In general, coexis-

tence occurs when each strategy is at an advantage when it is

FIG. 1. Bifurcation analysis of Eq. (5). (a) Stability diagram (left) and phase

portraits (right) for Eq. (5) with a¼ 0.15. Transcritical bifurcation, green

curves; Saddle-node bifurcation, red curve. (b) Fitnesses fC and fA as func-

tions of pA and pC, for a¼ 0.15. (c) Areas of regions (1)–(5) in the stability

diagram, as function of a.
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rare, whereas bistability occurs when each strategy is at a dis-

advantage when it is rare. From (1) and (2), we see that

increasing the fraction of controlled agents x by a given

amount also increases the probability of finding a resource for

both types of agents (pA and pC) equally, regardless of q and b
(although not the population-average probability of finding a

resource). Therefore, what determines the dynamics when x is

small versus large is how x (and the resulting increase in the

probability of finding a good) translates into fitness for auto-

matic versus controlled agents (which does depend on q and

b). From (3) and (4), we see that fA is linear in pA, whereas fC
is a nonlinear function of pC (see Fig. 1(b)). Thus, because of

the concavity of fC, an increase in the fraction of controlled

agents can have different effects on the relative fitness of auto-

matic versus controlled processing depending on q and b.

In a rich world (q large) with relatively weak competitive

advantage for automatics (b small), as found in region 1,

resources are common and pC and pA are relatively close to 1.

Thus, the dynamics sit in a region where the fC curve in Fig.

1(b) has a shallower slope than that of the linear fA curve.

Consequently, going from x¼ 0 to x¼ 1 leads to a bigger

increase in fitness for automatic agents than controlled agents.

As a result, this produces a situation in which (with the right q
and b) control outperforms automatic near x¼ 0 (when con-

trol is rare), but as x increases, the advantage of control dissi-

pates and reverses such that automatic outperforms control

near x¼ 1. Thus, neither endpoint is stable, leading to

coexistence.

Different dynamics occur in a poor world (q small) where

the competitive advantage for automatics is high and b is

large (region 3). Here, pC and pA are relatively close to 0. In

this case, the slope of fC is larger than that of fA, and thus

going from x¼ 0 to x¼ 1 leads to a greater increase in fitness

for controlled agents than automatic agents. This produces a

situation in which automatic agents outperform controlled

agents near x¼ 0, whereas controlled agents outperform auto-

matic agents near x¼ 1. Thus, both endpoints are stable, lead-

ing to bistability.

Finally, when both q and b are moderately high (region 5),

the resulting long-term dynamics are a mix of regions 1 and 2,

with bistability occurring between x¼ 0 and a stable interior

fixed point (i.e., coexistence).

Fig. 1(c) shows the areas of the five regions in Fig. 1(a)

as the parameter a increases. Increasing a increases the size

of the region in (b, q) space where automatic agents domi-

nate (region 4) and drastically decreases the regions corre-

sponding to bistability, coexistence, or dominance of

controlled agents (regions 1, 2, 3, and 5).

IV. FEEDBACK BETWEEN THE POPULATION AND THE
ENVIRONMENT

In Section III, we assumed that the environment is con-

stant, such that the parameters q and b are fixed. There are

many situations, however, in which the current makeup of the

population can influence the environment, often with some

lag.20,21,29 Thus, in this section, we extend the model from

Section III to incorporate such feedback effects. To do so, we

introduce a modified version of the replicator equation that

includes additional differential equations describing how the

environmental parameters b and q vary with x, the fraction of

controlled agents in the population. In Section IV A, we ana-

lyze a system in which an increase in controlled processing

increases b, thus augmenting the competitive advantage of

automatic agents (for example, by increasing population den-

sity). In Section IV B, we analyze a system in which an

increase in controlled processing increases q. This scenario

models a situation in which greater use of controlled processing

enriches the environment and enhances resource availability for

everyone, thanks (for example) to increased technological inno-

vation leading to greater agricultural output. In Section IV C,

we analyze a system with both of these features.

A. Scenario 1: Controlled processing increases
competitive advantage of automaticity

Here, we consider the consequences of allowing b to

positively co-vary with x. This implements a scenario in

which having more controlled agents leads to greater popula-

tion density and thus a larger b. The increase in population

density could reflect larger population size, which results

directly from the fact that populations with more controlled

agents have higher average fitness. Alternatively, it could

reflect an externality such as cognitive control allowing peo-

ple to live more densely without violent conflict.

To link b and x, we introduce a differential equation on

b that pulls its value towards the current value of x. We also

incorporate the possibility of lag, specified by a parameter

sb. This lag captures the fact that an increase in x at time t
does not always have an immediate impact on b. For exam-

ple, increased birth rates do not immediately lead to larger

numbers of competing adults.

The new system is given by

_x ¼ x fC � xfC þ 1� xð ÞfA

� �� �
;

_b ¼ x� b
sb

:
(6)

After insertion of (3) and (4), (6) becomes

_x ¼ x� 1ð Þx a

a� bqþ qþ bqx
þ qþ bqx

aþ 1
� 1

� �
;

_b ¼ x� b
sb

: (7)

Note that the _x replicator equation is the same as it was

previously, except that now b is also a variable. Also note

that in equilibrium, b¼ x.

To illustrate how this addition of feedback between the

population and the environment affects the dynamics, we

begin by fixing a¼ 0.8 and examining the effect of q and sb

(Figs. 2(a) and 3). We find three possible types of long-term

dynamics: dominance of controlled agents (region 1, no inte-

rior fixed point); coexistence of automatic and controlled

agents (region 3, stable interior fixed point); and limit cycles

in which both types of agents are present but their relative

abundances oscillate (region 2, unstable interior fixed point).
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The parameter regime in Fig. 2(a) for which limit cycles

exist is bounded by two vertical asymptotes, and within that

strip, sb must be sufficiently large. In Fig. 2(a), a¼ 0.8 and

limit cycles exist if 0.1< q< 0.52 and sb> 104.47.

Specifically, the limit cycles are born in a supercritical Hopf

bifurcation. The equation of the Hopf bifurcation curve has

been computed analytically and is too complicated to show.

We conclude this section by asking how a, the extent of

diminishing marginal returns on consumption, changes the

dynamics of Eq. (5) (Fig. 3). We find that only the three

types of dynamics observed in Figs. 3 and 2(b)–2(d) are pos-

sible: if q< (aþ 1)/2, the long-term behavior is dominance

of controlled agents (no interior fixed point); if q> (a þ 1)/2

and q>q*, the long-term behavior will be coexistence; and

if q> (a þ 1)/2 and q< q*, limit cycles are possible if sb is

sufficiently large, otherwise there will be coexistence. The

curve bounding the region in (a, q) space where limit cycles

are possible has been computed numerically.

In sum, we see that limit cycles can arise from feedback

between the overall population density and the fraction of

controlled agents in the population. Critically, these oscilla-

tions emerge only when the feedback is sufficiently delayed,

in which case they occur over a wide range of q and a
values.

B. Scenario 2: Controlled processing increases
resource availability

Here, we leave b fixed and instead link q to x, using the

same formulation for q here as for b in Scenario 1. This

models a scenario in which controlled agents enrich the envi-

ronment, say by creating technologies that increase resource

abundance for everybody. Again, we add a lag that repre-

sents the time required for the development of such technolo-

gies and their impact on the environment to occur. This

gives rise to the following system:

_x ¼ x fC � xfC þ 1� xð ÞfA

� �� �
;

_q ¼ x� q
sq

:
(8)

After insertion of (3) and (4), Eq. (8) becomes

_x ¼ x� 1ð Þx a

a� bqþ qþ bqx
þ qþ bqx

aþ 1
� 1

� �
;

_q ¼ x� q
sq

:
(9)

Again, _x is the same in the system without feedback, and

in equilibrium q¼ x. For the sake of illustration, we fix

a¼ 1.5 and examine the dynamics as a function of b and sq

(Fig. 4(a)). We find three possible types of long-term dynam-

ics: coexistence of automatic and controlled agents (region 1,

stable interior fixed point); limit cycles in which both types of

FIG. 2. Bifurcation analysis of Eq. (7) with a¼ 0.8 and sb¼ 400. (a)

Stability diagram. Hopf bifurcation, blue curve. (b) Time series of a typical

solution in region 1 with q¼ 0.1. (c) Time series of a typical solution in

region 2 with q¼ 0.2. (d) Time series of region 3 with q¼ 0.65.

FIG. 3. Characterization of the (x, b) system from Eq. (7).
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agents are present but their relative abundances oscillate

(region 2, unstable interior fixed point); and dominance of

automatic agents (region 3, no interior fixed point). As Fig.

4(a) indicates, limit cycles exist only if 0.249< q< 0.4 and

sq> 446.3. The Hopf bifurcation curve bounding the limit

cycle region has been calculated analytically but is too com-

plicated to show here. Figures 4(b)–4(d) show time series for

sample trajectories from within each region.

There is an important difference between these dynam-

ics, and the dynamics studied in Scenario 1 when x and b
were positively correlated: in Scenario 1, dominance of

controlled but not automatic agents was possible, whereas

here in Scenario 2, the opposite is true. Only automatic

agents can dominate. Moreover, this dominance by auto-

matic agents occurs only if a> 1.

Next, we ask how the dynamics of (9) depend on the pa-

rameter a, which reflects the strength of diminishing returns.

We find that only the three types of long-term dynamics

observed in Fig. 4(a) are possible if a> 1, but that more

complex dynamics emerge when a< 1 (Figs. 5 and 6).

Figure 6 characterizes the dynamics as a function of b and sq

for a¼ 1/2. The long-term dynamics of (9) for a< 1 some-

times depend on the initial conditions, in a manner that can

be summarized as follows:

• Regions 3 and 5: dominance of automatic agents.
• Region 2: either limit cycle oscillations of the two strat-

egies or dominance of automatic agents, depending on the

initial conditions.
• Region 4: either oscillations or coexistence, depending on

the initial conditions.
• Regions 6 and 7: either dominance of automatic agents or

coexistence, depending on the initial conditions.
• Region 8: oscillation of the two strategies, dominance of

automatic agents, or coexistence, depending on the initial

conditions.

In summary, adding feedback between the fraction of

the population that uses controlled processing and the avail-

ability of resources can also give rise to limit cycles when

the feedback is sufficiently delayed. Compared to the (x, b)

system discussed in Scenario 1 (Section IV A), however,

limit cycles occur over a smaller range of (b, a) combina-

tions. Furthermore, the dynamics of the (x, q) system of

Scenario 2 are substantially more complex than those of the

(x, b) system of Scenario 1.

C. Scenario 3: Controlled processing increases both
competition and resource availability

Finally, we consider the case in which x influences both

b and q. To do so, we use a three differential equation sys-

tem that includes the original replicator equation for _x, as

well as the _b equation from (6) and the _q equation from (9),

with the use of two different time-constants, sq and sb, for

the two different environmental feedback equations. Thus,

our system is given by

FIG. 4. Bifurcation analysis of Eq. (9) with a¼ 1.5 and sq¼ 1000. (a)

Stability diagram. Hopf bifurcation, blue curve. (b) Time series of region 1

with b¼ 0.2. (c) Time series of region 2 with b¼ 0.3. (d) Time series of

region 3 with b¼ 0.45.

FIG. 5. Characterization of (9) with a¼ 1.5.
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_x ¼ x fC � xfC þ 1� xð Þ
� �� �

;

_b ¼ x� b
sb

;

_q ¼ x� q
sq

:

(10)

After insertion of (3) and (4), Eq. (10) becomes

_x ¼ x� 1ð Þx a

a� bqþ qþ bqx
þ qþ bqx

aþ 1
� 1

� �
;

_b ¼ x� b
sb

;

_q ¼ x� q
sq

:

(11)

We perform numerical simulations to demonstrate that

limit cycles can also arise in the 3D system, as shown in Fig. 7

with a¼ 1.5. We see that limit cycles are possible as long as

neither sb nor sq are too small.

V. DISCUSSION

Here, we have introduced an analytically tractable

model of the evolution of dual-process agents. Our model

focuses on intertemporal choice, with agents foraging for,

and competing over, goods that they consume to generate fit-

ness. Agents that use automatic processing are at an

advantage when acquiring goods because of their speed and

efficiency but immediately consume any goods they acquire

in short-sighted fashion. Controlled agents, conversely,

engage in long-term planning and make better use of the

goods they manage to acquire.

Within this framework, the agents’ world is parame-

trized by q, the availability of resources (defined as the aver-

age probability of finding a good per unit time), and b, the

competitive advantage of automatic agents (the increased

likelihood of automatic agents acquiring a good over con-

trolled agents). Our analysis allows us to characterize which

parts of the (q, b) parameter space lead to dominance of

automatic or controlled processing, bistability, or coexis-

tence, as well as the conditions under which limit cycles

arise.

In particular, we find that natural selection favors con-

trolled agents when q and b are both small (poor worlds with

little competition), automatic agents when q and b are both

large (rich worlds with substantial competition), coexistence

when q is large and b small (rich worlds with little competi-

tion), and bistability when q is small and b large (poor

worlds with substantial competition). Furthermore, we find

that limit cycles are a robust feature of adding environmental

feedback whereby a greater frequency of controlled agents

leads to either higher b, higher q, or both. Critically, how-

ever, the feedback must be sufficiently lagged in order for

limit cycles to emerge.

Thus, our analyses demonstrate the key role that feed-

back between the population and the environment plays in

population (and ecological) dynamics. Such feedback can

lead to cyclical dynamics that are otherwise impossible in a

two-species competition model. Critically, environmental

feedback is absent from typical evolutionary game-theoretic

models, in which the game parameters are fixed, and only

the population make-up varies over time.27,28 By extending

the replicator equation to include linkage between the popu-

lation and one or more of the game parameters, we allow a

richer range of dynamics that help to explain cyclical dy-

namics observed in human history.

In the interest of analytical tractability, our model makes

a number of simplifying assumptions. Most importantly, we

consider the limiting case of entirely automatic agents com-

peting with entirely controlled agents. In reality, agents exist

on a continuum of inclination towards automaticity versus

control. We also consider a highly simplified foraging envi-

ronment and a simple decision rule for controlled agents

(spread consumption out evenly over the expected waiting

period until the next good is acquired). We are confident,

however, that these particular simplifications did not distort

our results, based on our prior computer simulation work.26

These simulations had agents that could engage in both auto-

matic and controlled processing and examined a much more

complex foraging environment. Nonetheless, our simplified

model recreates the same kinds of dynamics as the more

complex simulations.

The framework we introduce here can be extended in

many ways to assess the impact of other simplifications and

to explore other questions. For example, spatial structure

could be added,30–32 agents could differ in the extent to

FIG. 6. Bifurcation diagram of (9) with a¼ 0.5. Hopf bifurcation, blue

curve; fold bifurcation (saddle-node coalescence) of cycles, purple curve;

Homoclinic bifurcation, orange curve.

FIG. 7. Analysis of (11) with a¼ 1.5, sq¼ 1500, sb¼ 1000. (a) Parametric

plot. (b) Time series.
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which they impact the game parameters, or the game param-

eters could vary cyclically over time (instead of, or in addi-

tion to, variation caused by the population).33,34 Our basic

framework could also be applied to study dual-process cog-

nition in domains beyond intertemporal choice, such as risky

choice17,35 or cooperation in social dilemmas.14,36,37 In sum-

mary, we have introduced an evolutionary game-theoretic

model of dual-process agents who make decisions using

either automatic or controlled cognitive processing and who

not only compete with each other but also affect their envi-

ronment. Our model demonstrates how the tendency for con-

trolled processing to enrich the environment or grow the

population undermines the advantages of controlled cogni-

tion, leading to the eventual invasion of automaticity and

short-sightedness. Thus, our model may shed light on histori-

cal cycles through which controlled processing, and associ-

ated phenomena such as careful planning and technological

innovation, may rise and fall. The success of controlled cog-

nition naturally leads to its own demise.
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