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Trust is a central component of social and economic interactions among humans.

While rational self-interest dictates that “investors” should not be trusting and

“trustees” should not be trustworthy in one-shot anonymous interactions, be-

havioral experiments with the “trust game” have found that people are both.

Here we show how an evolutionary framework can explain this seemingly irra-

tional, altruistic behavior. When individuals’ strategies evolve in a context in

which (1) investors sometimes have knowledge about trustees before transactions

occur and (2) trustees compete with each other for access to investors, natural

selection can favor both trust and trustworthiness, even in the subset of inter-

actions in which individuals interact anonymously. We investigate the effects

of investors having “fuzzy minds” and making irrationally large demands, find-

ing that both improve outcomes for investors but are not evolutionarily stable.

Furthermore, we often find oscillations in trust and trustworthiness instead of

convergence to a socially optimal stable equilibrium, with increasing trustwor-

thiness preceeding trust in these cycles. Finally, we show how “partner choice,”

or competition among trustees in small group settings, can lead to arbitrarily

equitable distributions of the game’s proceeds. To complement our theoretical

analysis, we performed a novel behavioral experiment with a modified version of

the trust game. Our evolutionary framework provides an ultimate mechanism—

A version of this paper has been published in Journal of Economic Behavior and Organization, Vol. 90, Supplement, S57-S75, 
June 2013 and the final version may be viewed at: https://doi.org/10.1016/j.jebo.2012.10.018

https://doi.org/10.1016/j.jebo.2012.10.018


Electronic copy available at: http://ssrn.com/abstract=2102528Electronic copy available at: http://ssrn.com/abstract=2102528

not just a proximate psychological explanation—for the emergence of trusting

behavior and can explain why trust and trustworthiness are sometimes stable

and other times unstable.

Contents

1 Introduction 2

2 Evolutionary process 5

3 Rational investors 8

3.1 Payoff-maximizing investor decision rule . . . . . . . . . . . . . . . . . . . . 8

3.2 Stochastic information diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Irrational investors 11

4.1 Behavioral experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Fuzzy minds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Irrational demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Oscillations when q ≤ t, t ≥ 1/b . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Nash equilibrium analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.6 Optimal trustee strategies when investors have fuzzy minds . . . . . . . . . . 19

4.7 Evolution of the investor decision rule . . . . . . . . . . . . . . . . . . . . . . 22

5 Partner choice 23

6 Discussion 28

7 Conclusion 29

1 Introduction

Trust and trustworthiness are essential characteristics of successful human societies. We can

study these phenomena game-theoretically using the trust game, an interaction between an
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“investor” and a “trustee” (Berg et al., 1995; Glaeser et al., 2000; Bohnet and Zeckhauser,

2004; Bohnet and Huck, 2004; Malhotra, 2004; Cox, 2004; King-Casas et al., 2005). The

investor begins with an initial stake of one monetary unit and can either keep the stake or

transfer it to the trustee. To represent the value created by interactions based on trust, the

stake is multiplied by a factor b > 1 if the transfer is made. The trustee then chooses how

much to return to the investor.

In a one-shot anonymous trust game, there is no reason for a self-interested trustee to

return anything. Hence, there is no reason for a self-interested investor to make the transfer.

The potential gains of trust and exchange are lost. In essentially all behavioral experiments

with the trust game, however, investors make transfers with high probability and trustees

return a substantial amount (Berg et al., 1995; Glaeser et al., 2000; Bohnet and Zeckhauser,

2004; Malhotra, 2004; Kosfeld et al., 2005; Fehr, 2009; Johnson and Mislin, 2011). These

results are inconsistent with the predictions of classical economic theory and have generated

a great deal of interest across numerous fields. Economists have suggested proximate psycho-

logical motivations for such behavior, including preferences for fairness (Fehr and Schmidt,

1999; Bolton and Ockenfels, 2000; Charness and Rabin, 2002) and reciprocity (Rabin, 1993;

Levine, 1998; Sethi and Somanathan, 2001; Cox, 2004; Dufwenberg and Kirchsteiger, 2004;

Falk and Fishbacher, 2006). But such models leave open the question of how these pref-

erences arose and how they are maintained (Wilson and Gowdy, 2012). Our evolutionary

analysis provides an ultimate and not just proximate explanation for trust. Rather than

restating the observed behavior in terms of a utility function with other-regarding prefer-

ences, our evolutionary approach proposes a specific mechanism that could have lead to the

evolution of the observed preferences (Wilson and Gowdy, 2012).

A key aspect of many evolutionary approaches is to realize that behavior observed in a

laboratory experiment reflects strategies that people developed in broader contexts outside

the laboratory (for direct empirical evidence, see Rand et al. (2012)). Here we apply this

perspective to the problem of trust. Our model accounts for the fact that preferences evolved

in the context of daily life in which investors sometimes have foreknowledge of trustee be-

havior because of the existence of reputation systems. We show how this potential access

to information fundamentally changes the nature of the game and leads to the evolution of
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trust and marginal levels of trustworthiness. We then show that competition among trustees

in small group settings, together with this information about trustees, can lead to trust-

worthiness that is more than just marginal. These results help us understand why humans

exhibit the social preferences that promote successful economic exchange—these preferences

are adaptive in the more ecologically valid setting we consider and can lead to trust and

trustworthiness even in one-shot anonymous interactions. Our evolutionary model also gives

insight into how one might design modern-day institutions, such as online markets, to pro-

mote trust and trustworthiness.

We consider an evolving population of investors and trustees. Each investor has a strategy

p0, which is the probability the investor makes the transfer when the interaction is anonymous

and the investor has no information about the trustee. Each trustee has a strategy r, which

is the fraction of the transfer that the trustee returns to the investor (in all settings, as the

trustee does not know whether the investor has information in any particular interaction).

We call p0 the investor’s “trust” and r the trustee’s “return.”

For any interaction, there are two possible scenarios in our model. With probability

1 − q, the investor finds herself in an anonymous interaction where she does not have any

information about the trustee and makes the transfer with probability p0. In this case, the

investor’s expected payoff is 1−p0 +p0br and the trustee’s expected payoff is p0b(1−r). With

probability q, on the other hand, the investor learns information about the trustee before the

interaction occurs and thus knows the fraction r that the trustee will return before deciding

whether to make the transfer (Frank, 1987; Sethi and Somanathan, 2001; Dekel et al., 2007).

The parameter q is thus a measure of the availability of information about trustees as it

spreads in the population of investors (Nowak and Sigmund, 1998; Wedekind and Milinski,

2000; Milinski et al., 2001, 2002; Panchanathan and Boyd, 2004; Nowak and Sigmund, 2005;

Brandt and Sigmund, 2005; Ohtsuki and Iwasa, 2006; Ohtsuki et al., 2009; Pfeiffer et al.,

2012). When an investor has information about the trustee she is facing, she can condition

her behavior on that information. Trustees are not aware if investors have information in

any given interaction and therefore have a fixed strategy across all interactions. Our basic

model of information spread is simple. It assumes that an investor has a uniform probability

q of knowing the trustee’s r. In Section 3.2, we show that a more realistic mechanism for
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the spread of information yields similar results.

Adding information to the trust game fundamentally alters the nature of the interaction.

In the fraction q of instances in which the investor has information about the trustee, players

are no longer in the domain of trust. Instead, they are bargaining as in the ultimatum game

(Güth et al., 1982): the trustee is effectively offering a split of the pot b, and the investor

can accept the split by making the transfer or reject it by withholding. The trustee thus

becomes the “ultimatum game proposer” and the investor the “ultimatum game responder.”

Adding information effectively reverses the order of play (Nowak et al., 2000; McNamara

and Houston, 2002). Here we study how this linking of trust and bargaining leads to the

evolution of pro-social behavior in both domains.

We will see that information leads to the evolution of fully trusting and marginally

trustworthy behavior. But for true trustworthiness to evolve, something more is needed.

To this end, we introduce “partner choice,” a mechanism in which an investor uses limited

information about trustees to make a semi-informed decision about the trustee with whom

she should interact. We find that partner choice can lead to the robust evolution of trust and

trustworthiness. Thus, because humans developed in contexts in which information about

partners was available and, importantly, partner choice was possible, our evolved intuitions

about whether to trust and to be trustworthy—even in situations in which information is

not present—induce us to act in a pro-social way.

2 Evolutionary process

To explore the evolution of trust, we allow the strategies of investors and trustees to change

through an evolutionary process. This process can be interpreted as genetic evolution or as

social learning (Nowak and Sigmund, 2004). In either case, higher payoff strategies become

more common while lower payoff strategies die out. In every round, each investor interacts

once with each trustee. Players accumulate payoffs across interactions. Investors can learn

from other investors, and trustees can learn from other trustees. Mutation is also possible.

The fidelity of learning (intensity of selection) and the mutation rate are parameters of the

process. We now discuss the details of this model when investors are rational and payoff-
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maximizing in the fraction q of cases in which they have information about the trustee. Later

we will relax this assumption, but changes to the investors’ decision rule do not affect the

nature of the evolutionary process.

We begin with a well-mixed population split evenly between investors and trustees. Each

investor has her own p0, the probability that she makes the transfer when she has no infor-

mation about the trustee. When she does know the trustee’s return fraction r, she always

makes the transfer if r > 1/b and never makes the transfer if r ≤ 1/b. Each trustee has his

own r, the fraction of what he receives that he returns to the investor.

Suppose that an investor with strategy p0 and a trustee with strategy r play the game a

large number of times (without changing their strategies). Let p∗(r) be the transfer proba-

bility when the investor knows the trustee’s r, so

p∗(r) =

0, if r ≤ 1/b,

1, if r > 1/b.

(1)

With probability 1 − q, the investor does not know the trustee’s r. In those cases, she

transfers 0 with probability 1 − p0 and 1 with probability p0. Thus, the average payoff to

the investor is

(1− p0) + p0br (2)

and the average payoff to the trustee is

p0b(1− r). (3)

With probability q, the investor knows the trustee’s r. In those cases, she transfers 0 with

probability 1− p∗(r) and 1 with probability p∗(r). Thus, the average payoff to the investor

is

(1− p∗(r)) + p∗(r)br (4)

and the average payoff to the trustee is

p∗(r)b(1− r). (5)
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We compute the payoff for the investor and trustee by assigning weights of 1 − q and q

(respectively) to the payoffs described above.

Initially, each p0 and r is selected uniformly from the interval [0, 1]. In each round of the

evolutionary simulation, every investor “plays” every trustee, and the payoffs are computed

as above. (Put another way, each “interaction” can be thought of as a very large number of

games with the interaction payoff computed as the average payoff over all of those games).

After this round-robin tournament, both populations evolve as follows. Two investors, call

them A and B, are selected uniformly at random. Let π̄A be the average per-game payoff of

A, π̄B the average per-game payoff of B, and

ρ =
1

1 + e−β(π̄A−π̄B)
. (6)

B is replaced by a copy of A with probability ρ(1 − µ) and by a random mutant (with

a strategy chosen uniformly at random from [0, 1]) with probability µ. With probability

(1 − ρ)(1 − µ) no one changes his or her strategy. The same strategy update then occurs

for the trustees. This evolutionary process is known as the “pairwise comparison process”

(Traulsen et al., 2007). The parameter µ is the mutation rate. The parameter β is the

intensity of selection. The larger β is, the more likely it is that a player will imitate the

strategy of someone doing better (and not imitate the strategy of someone doing worse).

This process is repeated for a large number of rounds, and the stationary values of the

strategy parameters are found by averaging over the last 80% of rounds. Evolutionary

processes such as this one result in feedback between the individual and the population: as

the distribution of strategies in the population changes, so too do the strategies chosen by

individuals in that population. Thus, causality in economic change occurs both upwards from

the individual to the super-indiviudal level and downwards from the super-individual level

to the individual. This bidirectional causality is not usually a feature of classical economic

theory (Gowdy et al., 2012). Furthermore, instead of just being a “marginal analysis of self-

regarding individuals in a near-to-equilibrium system” (Gowdy et al., 2012), the evolutionary

approach gives us insight into the full history of the development of the traits being studied,

and that history can have significant economic and public policy implications (Wilson and
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Gowdy, 2012).

Later, we will model investor “irrationality” by having the transfer probabilities p∗(r) in

the presence of information be either translated step functions or sigmoids. The simulations

in those cases proceed exactly as described above except that p∗ is replaced with one of these

other functions.

3 Rational investors

3.1 Payoff-maximizing investor decision rule

Suppose first that, as described in the previous section, investors are perfectly rational and

always act to capture any profit. When such an investor is aware of the trustee’s r, she

makes the transfer if r > 1/b and obtains a payoff of rb > 1. Conversely, she does not make

the transfer if r < 1/b. When investors have no information at all, q = 0, then evolution

leads to the classical trust game Nash equilibrium: investors never transfer, p0 = 0, and

trustees return nothing, r = 0. The situation changes markedly, however, when investors

sometimes have information about trustees, q > 0. To explore the effect of information, we

begin by using agent based simulations, studying stochastic evolutionary game dynamics in

finite populations (Nowak et al., 2004; Fudenberg and Imhof, 2006; Manapat et al., 2012).

Figure 1(a) shows the investor’s trust p0 and trustee’s return r for different values of q.

When the probability that an investor knows the trustee’s return is sufficiently large,

q ≥ 1/b, the benefits of trust are realized. Trustees return a fraction just slightly greater

than 1/b on average. Thus, investors almost always make the transfer when they have

information. Even when they do not have information, they usually trust and make the

transfer (i.e., p0 is large). Interestingly, the average trust p0 does not increase to 1 even

though p0 = 1 and r = 1/b + ε1 is a Nash equilibrium for q ≥ 1/b (see Section 4.5). If q

is close to 1, investors usually know trustees’ return values and rarely have to make blind

decisions. Hence, their values of p0 are largely irrelevant. As q increases, the selection

pressure on p0 becomes weaker. Ultimately, for q = 1, investors always have information

about trustees and p0 has no bearing on their payoffs whatsoever, resulting in neutral drift

1Henceforth, v+ ε will represent the smallest possible amount, in monetary units, strictly greater than v.
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around the average value p0 = 1/2. If there is a non-zero but small probability of information,

0 < q < 1/b, the population oscillates between p0 = 0, r = 0 and p0 = 1, r = 1/b + ε. A

formal analysis of both the equilibrium and non-equilibrium cases in a more general scenario

is presented in Sections 4.4 and 4.5.

These results offer a straightforward explanation for the trust and trustworthiness ob-

served in experiments. Information about others has generally been available over the course

of human evolution as well as in most interactions in modern life (Nowak and Sigmund, 2005).

Our model shows that such information can make it adaptive for trustees to return large

fractions of what they receive. Trustees who return little are caught sufficiently often that

those who are trustworthy out-earn the stingy (Kandori, 1992). As a result, trustees have

an incentive to be trustworthy and investors have an incentive to be trusting, i.e., to make

transfers even when they do not know the trustee’s r. As the value created by trust (the

multiplier b) increases, less monitoring, just q ≥ 1/b, is required to enforce trustworthiness.

In a world of highly beneficial interactions, b� 1, even a small chance of having information

about trustees is enough to generate trusting and trustworthy behavior.

Figure 1(b) shows the payoffs corresponding to the scenarios in Figure 1(a). As q in-

creases, the average investor payoff increases only slightly. The average trustee payoff, on

the other hand, increases dramatically. Trustees capture almost all the benefit created by

the exchange. Trustees need only return a small fraction of their profits to ensure a trans-

fer from a rational self-interested investor. Thus, trustee accountability actually benefits

trustees more than it benefits investors.

3.2 Stochastic information diffusion

We have heretofore abstracted away the details of how information about trustees spreads

among investors. In particular, we posited that investors have a probability q of knowing

the trustee’s r before the transaction begins, where q is fixed, and that information spreads

much faster than the players change their strategies. The latter assumption means that

when a trustee updates his or her strategy at the end of a round, investors still have the

same probability q of knowing that trustee’s new r at the beginning of the next round.

While these assumptions simplify the technical analysis, they are not essential for our
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results. In this section, we describe a particular concrete mechanism for the spread of

information and show that the results are qualitatively the same as those for our simplified

model.

As in Section 2, we begin with a population evenly split between investors and trustees.

Each round consists of a fixed number of games, and each player has a strategy that is fixed

for the entirety of the round. At the beginning of the round, investors do not know anything

about trustees. An investor and a trustee are chosen uniformly at random to play the game.

Since the investor does not know the trustee’s r, she makes the transfer with probability

p0. If the transfer is made, the investor informs a fraction q′ of investors about the r of the

trustee with whom she just interacted. If one of these investors plays the trustee later in the

generation, then she will be able to condition how much she transfers on the trustee’s r, just

as in Section 2. Thus, after each game in which the investor does make the transfer (and

regardless of whether or not she had information about the trustee prior to the interaction),

a fraction q′ of investors are informed of the r of the trustee involved in the game. We call q′

the “stochastic information.” When an investor and a trustee meet, the investor’s strategy

depends on whether she has received information about the trustee in the past. If she has,

she makes the transfer according to her conditional strategy. If not, she makes the transfer

with probability p0. As more and more games are played, the probability that an investor

knows the r of any given trustee increases. The rate at which this probability increases is

controlled by q′. We assume that information does not persist between generations, so this

process of information-gathering begins anew each round.

Figure 2 is the analogue of Figure 1 but with stochastic information. We see that our

concrete mechanism produces results very similar to those of the simplified system analyzed

in the paper. For a more detailed study of how stochasticity affects the spread of information–

in particular, how finite investor memories and conflicting information about trustees can

affect outcomes–see Manapat and Rand (2012).
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4 Irrational investors

4.1 Behavioral experiments

Thus far we have assumed that investors use information in a payoff-maximizing manner.

When they have knowledge of the fraction r the trustee will return, they act to maximize

their payoff and transfer with probability 1 if r > 1/b and with probability 0 if r < 1/b.

But how do investors, when probabilistically given information about trustees, behave in

practice?

To gain insight into this question, we performed an experiment in which 175 subjects

played a modified trust game with information. We allowed investors to condition their

decision on the amount returned by the trustee. Specifically, investors indicated the minimum

amount a trustee must return for the investor to make the transfer. If the trustee chose to

return less than this amount, no transaction occurred and the investor kept his or her initial

stake. Trustees knew that investors could decide whether to make the transfer based on how

much the trustee returned but did not know the specific amount demanded. (See below for

details of the experimental design.)

The distribution of the minimum return fractions acceptable to investors is given in

Figure 3(a) and the corresponding cumulative distribution function (CDF) in Figure 3(b).

The CDF gives the fraction of investors that make the transfer for a given return fraction r.

Thus, it represents the investor decision rule in the presence of information. For example, if

all investors were perfectly rational and self-interested, this CDF would be a step function

with a transition from 0 to 1 at r = 1/b.

The investor decision rule in the experiment deviates from this step function in two ways.

First, the transition from low to high transfer probability occurs gradually as r increases.

This means that investors’ sensitivity to changes in the trustees’ r’s is dulled. Because of

their “fuzzy minds,” investors sometimes make the transfer even when the trustee’s r is below

what the investor wants and sometimes do not make the transfer even when the trustee’s r

is above the desired level. Second, the point at which the transfer probability is increasing

fastest occurs at a value of r larger than 1/b. This means that investors demand more than

just a tiny profit from trustees. The CDF in Figure 3(b) is fit well by a sigmoid of the form
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1/(1 + e−(r−t)/f ), where f represents the “fuzziness” of investors’ minds and t represents the

return fraction that investors “demand” from trustees. From our data, we estimated values

of f = 0.11 and t = 0.39 for b = 3.

Experimental design We measured how people behave as investors and trustees with

a behavioral experiment in December 2010. Subjects were recruited using the online la-

bor market Amazon Mechanical Turk (“Mturk,” https://www.mturk.com/mturk/welcome)

(Horton et al., 2011; Rand, 2012). Subjects received a $0.40 show-up fee for participating

and were able to earn bonuses of up to $1.20 depending on how they played, consistent

with the usual compensation levels in this market. The relatively low stakes on Mturk have

been shown in general not to affect the play of individuals when compared to how they act

in higher-stakes laboratory experiments. Indeed, a number of standard results in behav-

ioral economics have been replicated on Mturk with these lower stakes (Horton et al., 2011;

Paolacci et al., 2010). For instance, there has been a recent demonstration of quantitative

agreement between higher-stakes games in traditional laboratories and low-stakes games run

on Mturk using the trust game, public goods game, ultimatum game, dictator game, and

prisoner’s dilemma (Suri and Watts, 2011; Horton et al., 2011; Amir et al., 2012). This

relative insensitivity to stake size in social dilemmas is consistent with previous research in

the laboratory (see Camerer and Hogarth (1999) for a review).

We sought to determine how investors would use information about trustees’ return

fractions when making the decision to transfer or not. We recruited 175 individuals, each of

whom first acted as the “investor” and was asked to indicate an amount such that

• If Player 2 choses to return less than the amount you indicate, you keep the 20 cents,

and

• If Player 2 choses to return the amount you indicate or more, then you will make the

transfer and earn whatever amount Player 2 returns.

Participants could “demand” any integral amount between 0 and 60 cents (inclusive). The

most common demand was 30 cents, or a trustee return fraction of 1/2. The second most

common demand was 20 cents, or a trustee return fraction of 1/3, which guarantees that the
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investor does not incur a loss from making the transfer. The full distribution of investor re-

sponses to this question (after normalization) and the corresponding cumulative distribution

function are shown in Figures 3(a) and 3(b).

Next, the participants were asked to act as trustees and told, “Player 1’s decision of

whether to transfer is based on the amount you choose to return. If you return more than

Player 1’s specified minimum amount, the transfer happens; if not, you receive nothing.”

The 175 individuals returned on average 29.97 cents, just under 50% of what they received.

This is slightly higher than in the situation in which investors do not get to condition their

transfer on the trustee return fraction (Johnson and Mislin, 2011), which is reasonable as

trustees might raise their return fractions when they know investors can have information

about them. Note that subjects were not aware that they would subsequently act as Player

2 while making their decisions as Player 1.

The 175 investor demands were randomly matched with the 175 trustee responses to

determine the actual payoffs for the participants, each of whom could earn up to 60 cents

from his or her play as the investor and up to 60 cents from his or her play as the trustee.

The instructions provided in the experiment are available from the authors.

When a perfectly rational investor knows a trustee’s r, the probability that the investor

makes the transfer is given by a step function of r, the probability being 1 if r > 1/b

and 0 otherwise. But we have seen that investors are not perfectly rational and that their

irrationality can manifest itself in two ways. First, they can have “fuzzy minds.” This means

that investors might make errors when interpreting information about trustees. As a result,

they sometimes make the transfer even if r < 1/b, and they sometimes do not make the

transfer even if r > 1/b. Second, investors can have unreasonable demands—they make

the transfer if and only if r > t, where t > 1/b. As we saw in the previous section, we can

capture both types of “irrationality” by letting the investor’s transfer probability be given by

a sigmoidal function, 1/(1 + e−(r−t)/f ). The parameter f is the “fuzziness” of the investor’s

mind. As f → 0, the sigmoid approaches a step function. The parameter t is the demand.

For the perfectly rational investor, f = 0 and t = 1/b. We now explore the consequences of

each of these two forms of irrationality.
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4.2 Fuzzy minds

First, suppose investors demand the rational amount, t = 1/b, but have fuzzy minds, f > 0.

We begin by assigning all investors the same fixed f . Figure 4(a) shows the average investor

payoff as a function of f . Initially, the payoff for investors increases as their minds become

collectively clouded. Confusion benefits the investors: trustees must return larger amounts

to ensure that fuzzy-minded investors make transfers. But it is not good for investors if they

become too confused, for if they are they do not use information sufficiently wisely and thus

cannot exert pressure on trustees. There is an optimal value of f that is payoff-maximizing

for investors (see Section 4.6).

Figure 4, which shows the average investor payoff as a function of the collective f (and

t), has the interesting property that there are reversals in the payoff orderings. When f = 0,

for example, investor payoffs are highest when q = 1. When f is large, on the other hand,

investor payoffs are highest when q = 0.5. What causes this reversal? When f = 0, investors

are perfectly rational in their use of information. They act to capture any profit, however

small. The more information they have, the better it is for them as they are acting as

intelligently as possible. When f → ∞, on the other hand, investors make the transfer

at random when they have information. If q = 1, this means that investors always make

the transfer at random (as they always have information). Hence, there is no incentive for

trustees to return anything and the investor payoff goes to zero. When q < 1, on the other

hand, investors sometimes have no information about trustees and make the transfer with

probability p0. But p0 ≈ 0 on average: investor behavior when investors have information

does not promote trustworthiness because the behavior is random. Thus, with probability

1−q investors withhold the endowment from the exploitative trustees, increasing the average

investor payoff. The larger 1− q is (i.e., the smaller q is), the greater the retained payoff.

Collective investor irrationality benefits investors more than it benefits trustees. If all

investors make the transfer according to a sigmoid with f > 0, then the average investor

payoff can be higher than it is when all investors are perfectly rational. For the parameter

values we have chosen, our model predicts an optimal f between 0.06 and 0.1, close to the

value of f = 0.11 observed experimentally.
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4.3 Irrational demands

Now suppose that investors are perfectly sharp in their decisions, f = 0, but demand a

return t > 1/b. Again we initially assign all investors the same fixed demand, t. Figure 4(b)

shows the average investor payoff as a function of t. When investors always have information,

q = 1, trustees have no choice but to satisfy investors’ demands. Thus, investors’ payoffs

increase linearly with t. When information is not always available, q < 1, there is an optimal

demand. If t < q, trustees do best by complying with investor demands, so investors should

uniformly increase t. If t > q, there are oscillations between two states: one with neither

investor trust nor trustee returns (p0 = 0, r = 0) and the other with full trust and the

demanded return (p0 = 1, r = t + ε). The larger the difference t − q, the more time the

population spends in the former state. Investors thus maximize their payoffs by demanding

t = q.

Figure 5 shows the oscillations in trust, p0, and return, r, when the collective investor

demand t exceeds the information level q (in this case, q = 1/3 whereas t = 2/3). It also

provides insight into the question of which arises first, trust or trustworthiness. When both

the average p0 and the average r are close to zero, r increases first and then p0 follows: trust-

worthiness leads to trusting behavior. When trustees are not trustworthy, an investor who

experiments by trying a larger p0 will be exploited. Selection thus keeps the average p0 close

to 0. However, a mutant trustee with r > 1/b has an advantage: when the investor knows

the trustee’s r, the mutant trustee will get the transfer. Therefore mutation and selection

together lead to increasing trustee return fractions. Selection then pushes p0 upwards in

response.

4.4 Oscillations when q ≤ t, t ≥ 1/b

In this section, we study in detail the oscillations in strategies that occur when q ≤ t and

t ≥ 1/b. In Figure 1(a), the values of p0 and r when 0 < q ≤ 1/b are in fact the results

of averaging over cycles in which p0 and r are oscillating between the p0 = 0, r = 0 state

and the p0 = 1, r = 1/b + ε state. There are no equilibrium strategies here because t = 1/b

but q ≤ t. Similarly, in Figure 4(b), r increases linearly with t for t between 0 and q since
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r = t + ε is the equilibrium strategy for the trustee when t < q (see Section 4.5 below).

However, once t ≥ q, the system degenerates into cycles and the decreasing q is the result of

averaging over those cycles.

Let us obtain a more precise understanding of this phenomenon. Consider a game between

a single investor and a single trustee in which the investor’s demand t ≥ 1/b is larger than

the information q but the investor’s mind is not at all “fuzzy” (f = 0). If the trustee’s r

is less than 1/b, p0 = 0 is optimal for the investor. If the trustee’s r is greater than 1/b,

p0 = 1 is optimal for the investor. Generically, only p0 = 0 and p0 = 1 are rational investor

strategies.

Suppose first that p0 = 1. Among all the trustee return fractions that satisfy the investor’s

demand, clearly the optimal one for the trustee is r = t + ε. But when t ≥ q, the trustee is

indifferent between r = t+ ε and

r =
t− q
1− q

+ ε′, (7)

where ε′ = ε/(1− q). This follows immediately from the trustee’s payoff function:

πT =

b(1− r)(p0 − p0q), if r ≤ t,

b(1− r)(p0 − p0q + q), if r > t.

(8)

Thus, when the investor demands more than the information q, the trustee has a strategy

that does not satisfy the investor’s demand but has a payoff as high as the optimal demand-

satisfying strategy. In fact, the trustee’s payoff is a decreasing function of r between r = 0

and

r =
t− q
1− q

+ ε′, (9)

so the trustee maximizes his payoff by switching to r = 0.

Once r = 0, the investor should switch to p0 = 0. But once p0 = 0, the trustee increases

his payoff by switching to r = t + ε. The investor follows by switching to p0 = 1 (since

r = t+ ε > 1/b), and the cycle repeats. Figure 5 shows the oscillations in the average p0 and

r over time. The waves are phase-shifted as expected.

The oscillations in trust and trustworthiness are inconsistent with the notion that a
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socially optimal general equilibrium always exists (Gowdy et al., 2012). Knowing that a

particular socially optimal situation is not stable, however, is important for public policy

reasons. Just as an understanding of the business cycle and the role of proper fiscal and mon-

etary policy allows governments and central banks to take countercyclical action—employing

loose fiscal and monetary policy in times of economic distress—so too can an understanding

of the oscillations in social behavior allow institutions to apply policies that reduce the fre-

quency (and amplitude) of the oscillations in an attempt to keep society closer to the social

optimum.

4.5 Nash equilibrium analysis

Here we determine explicitly which (pure) strategies are equilibria when investors do not have

fuzzy minds (f = 0) but may have irrational demands (t 6= 1/b). As in the previous section,

we consider a game between a single investor and a single trustee. When the investor knows

the trustee’s r, she makes the transfer if and only if r > t. The demand t is exogenously

fixed, and strategies for the investor and trustee consist of a choice of p0 and r (respectively)

given this fixed t. We assume that all individuals are risk-neutral and seek to maximize their

expected payoffs.

Theorem 1. The following are all the pure Nash equilibria of the trust game with informa-

tion:

• p0 = 0 and r ≤ 1/b when q = 0,

• p0 ∈ [0, 1] and r = t+ ε when q = 1,

• p0 = 1 and r = t+ ε when 1/b ≤ t < q < 1.

• p0 = 0 and r = t+ ε when t < 1/b and 0 < q < 1.

Proof. The investor’s payoff is given by

πI =

1− (1− br)(p0 − p0q), if r ≤ t,

1− (1− br)(p0 − p0q + q), if r > t,

(10)
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and the trustee’s payoff by

πT =

b(1− r)(p0 − p0q), if r ≤ t,

b(1− r)(p0 − p0q + q), if r > t.

(11)

If r > 1/b, the investor maximizes her payoff by choosing p0 = 1. If r < 1/b, the investor

maximizes her payoff by choosing p0 = 0. Generically, only p0 = 0 and p0 = 1 can be

equilibrium strategies for the investor.

Suppose first that q = 0, so

πI = 1− (1− br)p0, (12)

πT = b(1− r)p0. (13)

If p0 = 1, then clearly the trustee should choose r = 0. But if r = 0, the investor should

choose p0 = 0. Thus, there are no equilibria with p0 = 1. If p0 = 0 and r > 1/b, the investor

increases her payoff by switching to p0 = 1. Thus, the only Nash equilibria when q = 0 are

p0 = 0, r ≤ 1/b.

Now suppose that q = 1, so

πI =

1, if r ≤ t,

br, if r > t

(14)

and

πT =

0, if r ≤ t,

b(1− r), if r > t.

(15)

Then clearly the trustee always has an incentive to switch to r = t+ ε. An investor’s p0 does

not affect her payoff, so any p0 ∈ [0, 1], with r = t+ ε, is a Nash equilibrium. (As we saw in

Figure 1(a), when q ≈ 1, there is neutral drift around p0 = 1.)

Next, suppose that 1/b ≤ t ≤ q < 1. To see that p0 = 1 and r = t + ε is a Nash

equilibrium, we argue as follows. First, the investor has no incentive to lower her p0 since

r = t + ε > 1/b, and an investor maximizes her payoff by choosing p0 = 1 when a trustee

returns r > 1/b. Similarly, the trustee has no incentive to increase his r since doing so would
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just reduce the fraction of the transfer he retains for himself.

For the trustee to have no incentive to choose a lower r, the following inequality must

hold:

b(1− t− ε)(p0 − p0q + q) ≥ b(1− r)(p0 − p0q). (16)

The left side is the trustee’s payoff when he returns a fraction t+ ε of what he receives and

the right side is his payoff when he returns a fraction r ≤ t. Since p0 = 1, we obtain the

inequality

q ≥ t+ ε− r
1− r

, (17)

which in the limit ε→ 0 we can write as

q >
t− r
1− r

. (18)

We want this inequality to hold for all r such that 0 ≤ r ≤ t.

Now
d

dr

(
t− r
1− r

)
=

t− 1

(1− r)2
< 0, (19)

so (t − r)/(1 − r) is maximized at r = 0, where it equals t. Thus, q > t ensures that

p0 = 1, r = t + ε is an equilibrium. In Section 4.4, we saw that there are oscillations when

t ≥ 1/b and 0 < q ≤ t.

Finally, suppose t < 1/b and 0 < q < 1. We claim p0 = 0 and r = t+ ε is an equilibrium.

Certainly the investor has no incentive to increase her p0 since r < 1/b. The trustee is

getting the maximum possible transfer when the investor has information and would not get

more by increasing his r. Conversely, the trustee would lose the transfer (in the presence of

information) by decreasing his r. Since neither the investor nor the trustee has an incentive

to change strategies, p0 = 0, r = t + ε is an equilibrium. It is straightforward to see that

there are no other equilibria when t < 1/b, so we omit the argument.

4.6 Optimal trustee strategies when investors have fuzzy minds

In this section, we determine the optimal collective fuzziness f for investors. Recall that when

the investor knows the trustee’s r, she makes the transfer with probability 1/(1 + e−s(r−t)),
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where we have set s = 1/f for notational convenience (s can be thought of as the “sharpness”

of the investor). When r is small, the investor transfers essentially nothing in expectation.

When r is large, the investor transfers essentially 1 in expectation. There is a steep transition

in the expected amount transferred at r = t. The parameter s controls how steep this

transition is. The larger s is (the smaller f is), the steeper the transition. The constant

response of an individual who ignores the available information is obtained by taking s = 0

(f → ∞). The “binary” response of the perfectly rational individual is obtained by taking

the limit s→∞ (f = 0). If the investor does not know the trustee’s r, then she makes the

transfer with probability p0 (i.e., she transfers the amount p0 average). Hence, the expected

amount transferred by the investor is

q
1

1 + e−s(r−t)
+ (1− q)p0. (20)

We have considered “deviations from rationality” in which s varied but the return fraction

t “demanded” by investors was the rational 1/b. Here we will consider the general case in

which t might not be 1/b.

To see why the payoff to investors is maximized at an intermediate value of f , we argue

as follows. When investors are perfectly sharp (f = 0, or s → ∞), there is no incentive

for trustees to be more than just marginally trustworthy. An informed investor with f = 0

will make the transfer as long as a trustee’s r is greater than 1/b. When f > 0 (s is finite),

however, an increase in r always leads to an increase in the transfer probability. Thus,

trustees have an incentive to increase their r’s above 1/b. At the same time, a larger r

means more of the transfer is sent back to the investor. These two forces balance each other

out at some intermediate value of r > 1/b. We now formalize this argument.

Suppose the investor transfers with probability p and the trustee returns a fraction r.

The (expected) payoff to the trustee is pb(1− r). Now let r change to r + ∆r and p change

to p+ ∆p. Then the new payoff to the trustee is

b(p+ ∆p)(1− r −∆r). (21)
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After some arithmetic, we find that the new payoff will be larger than the old payoff when

(1− r)∆p

∆r
> p+ ∆p. (22)

Letting ∆r → 0, we obtain
dp

dr
>

p

1− r
. (23)

When the inequality (23) holds, trustees should increase the fraction r that they return.

We take p to be the function of r given by

p(r) =
1

1 + e−s(r−t)
. (24)

Now
dp

dr
=

se−s(r−t)

(1 + e−s(r−t))2
(25)

and so the condition dp/dr > p/(1− r) becomes

(s(1− r)− 1)e−s(r−t) > 1. (26)

Taking the logarithm of both sides and assuming s� 0, we obtain

r <
log s+ st

s+ 1
. (27)

Thus, as long as r satisfies (27), rational trustees will have an incentive to increase their r’s.

The estimate for r given by (27) is a one-humped function of S, consistent with simulation

results (and explaining why the average investor payoff is a one-humped function of f). In

the limit of perfect rationality, S → ∞, (27) reduces to r < t. We thus obtain in another

way our earlier result that r evolves to approximately t. Note that the foregoing analysis

only applies when q ≈ 1.

For all but the smallest values of s, we have

log s+ st

s+ 1
> t. (28)
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Hence, when investors are not perfectly rational, the average r is larger than t. This effect is

dampened by the fact that q is generally less than 1, but it provides an explanation for why

there is a general increase in how much trustees return when investors have fuzzy minds.

A straightforward calculation (after more approximations) shows that the s that maxi-

mizes r is given approximately by

sopt ≈ e1+t + 1. (29)

Collectively “fuzzy” investor minds are advantageous to investors, but it is not the case that

investor payoffs always increase as f = 1/s increases: there is an optimal level of fuzziness

given by

fopt =
1

e1+t + 1
. (30)

This approximate formula is consistent with our simulation results up to an order of magni-

tude.

4.7 Evolution of the investor decision rule

Thus far, we have been assigning all investors the same fuzziness f and demand t. What

happens if the fuzziness and demand parameters are subject to evolution? We find that

evolution favors rational self-interest, f → 0, and demands that ensure just an ε > 0 profit,

t → 1/b. Hence, the investor trust p0 stays high, but the trustee return r evolves back

to just slightly more than 1/b. Collective irrationality can be seen as a public good for

investors. It is best for all investors to coordinate and demand a large return fraction t. Yet

a mutant investor who demands t − ε earns more: she engages in more transactions with

trustees, who are returning large fractions because of the demands of other investors. The

same logic applies to f . A collectively confused investor population results in higher investor

payoffs. But a mutant with a sharper mind (smaller f) makes more deals and performs

better. Evolution thus leads to a “tragedy of the commons” in which investors become more

and more perceptive as their decision rules converge to the perfectly rational step function,

resulting in ever lower investor payoffs. While there is an optimal level of irrationality for

the investor population as a whole, selection works against collusion.
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To gain further intuition regarding these results, we again consider our game as a hybrid

of trust and bargaining. We saw that the average payoff of a rational, self-interested investor

increases only slightly as q increases. This makes sense because, in the bargaining situation,

the responder (the investor) should accept any positive offer, however small. This is the

unique subgame perfect Nash equilibrium in the ultimatum game. Second, we saw that

fuzzy minds and unreasonable demands lead to higher investor payoffs. This makes sense

because responders in the ultimatum game can improve their payoffs by making “threats”

(i.e., by deviating from the equilibrium).

Given that both forms of irrationality are not evolutionarily stable, the presence of these

effects in our behavioral experiment is surprising. Explaining the maintenance of these

behavioral characteristics is an important direction for future study.

5 Partner choice

So far we have been considering interactions involving a single investor and a single trustee.

What happens if investors can choose among multiple trustees? Partner choice, and the

related phenomena of dynamic interaction networks, are mechanisms for promoting prosocial

behavior that have received considerable attention in both experimental (Barclay, 2004;

Barclay and Willer, 2007; Rand et al., 2011; Wang et al., 2012) and theoretical (Santos

et al., 2006; Pacheco et al., 2006; Fu et al., 2008; Skyrms and Pemantle, 2000) studies in

recent years. Here we study the effects that partner choice has on the evolution of trust.

Suppose that when an investor wants to make an “investment,” she begins by selecting

k trustees uniformly at random. The investor knows a given trustee’s return fraction with

probability q, and her knowledge of any one trustee’s return fraction is independent of her

knowledge of those of other trustees. We then assume that the probability that a particular

trustee (out of the k) gets the transfer is proportional to his return fraction if it is known

to the investor and to an imputed return fraction if it is not known (see below for details).

As Figure 6 shows, if k > 1, then the average investor payoff increases significantly with

the information q. Furthermore, the critical information level q∗ to achieve maximum trust

is a decreasing function of k. We will see that the investor must have a probability 1/b of
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knowing the actual r of at least one trustee in the comparison set for selection to favor trust.

Thus, q∗k = 1− (1− 1/b)1/k.

We now make this analysis precise. Earlier, we captured the notion of “irrationality” by

allowing the investor’s transfer probability to be a sigmoidal function of r. More precisely,

in the fraction q of cases in which the investor knows the trustee’s r, she makes the transfer

with probability
1

1 + e−(r−1/b)/f
. (31)

We called f the “fuzziness” of the investor’s mind. When f → 0, the investor always makes

the transfer if r > 1/b and never makes it if r < 1/b. When f →∞, or when r = 1/b and f

is arbitrary, the investor makes the transfer with probability 1/2.

We will reformulate this decision rule slightly (without changing its essence) so that we

can extend it to the case of multiple trustees. An investor of “fuzziness” f makes the transfer

to an investor with known return fraction r with probability

r1/f

r1/f + (1/b)1/f
. (32)

In general, (32) is a sigmoidal function of r. The sigmoid is steepest when r = 1/b. The

smaller f is, the sharper the transition (i.e., the less fuzzy the investor’s mind). We note

that the f of (32) is not precisely the same as the f of (31), though they are functionally

equivalent. As f → 0,

r1/f

r1/f + (1/b)1/f
→


0, if r < 1/b,

1
2
, if r = 1/b,

1, if r > 1/b.

(33)

Thus, the limit f → 0 yields the behavior of the perfectly rational investor.

Suppose now that when an investor wants to make an “investment,” she begins by select-

ing k trustees uniformly at random. The trustees return fractions r1, r2, . . . , rk of what they

receive. The investor knows trustee i’s return fraction ri with probability q, and her knowl-

edge of any one trustee’s return fraction is independent of her knowledge of other trustees’

fractions.
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Without loss of generality, suppose the investor knows r1, . . . , rj but does not know

rj+1, . . . , rk. Her decision rule is as follows. She chooses to make the transfer to trustee i,

1 ≤ i ≤ j, with probability

r
1/f
i

r
1/f
1 + · · ·+ r

1/f
j + k(1/b)1/f

. (34)

She chooses to make the transfer to trustee i, j < i ≤ k, with probability

p0(1/b)1/f

r
1/f
1 + · · ·+ r

1/f
j + k(1/b)1/f

. (35)

And she chooses to withhold the transfer with probability

(k − p0k + p0j)(1/b)
1/f

r
1/f
1 + · · ·+ r

1/f
j + k(1/b)1/f

. (36)

Suppose k = 1. If the investor does not know the trustee’s return fraction, she makes the

transfer with probability
p0(1/b)1/f

(1/b)1/f
= p0 (37)

and does not make the transfer with probability

(1− p0 + p0 · 0)(1/b)1/f

(1/b)1/f
= 1− p0. (38)

If she does know the trustee’s return fraction r1, she makes the transfer with probability

r
1/f
1

r
1/f
1 + (1/b)1/f

, (39)

which is precisely (32), and does not make the transfer with probability

(1/b)1/f

r
1/f
1 + (1/b)1/f

. (40)

Thus, our generalized rule (34) agrees with the original one when k = 1.

To motivate the form of the rule when k > 1, suppose that a risk-neutral investor is
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generally very trusting, p0 � 0, and suppose that she is comparing a trustee whose r she

knows to a trustee whose r she does not know. The investor would prefer a trustee who is

known to return r > 1/b to one about whom she has no information, and she would prefer

a trustee about whom she has no information to one who is known to return r < 1/b. Thus,

a trustee of unknown r is effectively the same as one whose r is known to be 1/b, at least as

far as the investor’s decision process is concerned. However, the less trusting an investor is,

the less weight she will assign to a trustee of unknown r. Thus, we scale the imputed return

of 1/b by the level of trust p0, leading to (34).

Figure 7(a) shows the average investor trust, p0, as the number of trustees compared, k,

and the information, q, vary. We assume all investors are perfectly rational, f → 0, and that

the multiplier b is 3. When k = 1, p0 at first increases with q, reaching its maximum value

when q = 1/b. The decrease in p0 for q > 1/b is a result of the decreasing selection pressure

on p0. When investors often know the return fractions of trustees, the investors’ p0’s have

little bearing on their payoffs. Ultimately, when q = 1, investors always have information

about trustees and never use their p0’s, resulting in neutral drift around the average p0 = 1/2

as in our analysis without partner choice (see Section 3.1 and Figure 1).

When k > 1, p0 reaches its maximum value at some q∗k < 1/b. The larger k is, the smaller

q∗k is. From Theorem 1, we know that the probability q that an investor knows a trustee’s

r must satisfy q ≥ 1/b for p0 = 1 to be an equilibrium. Hence, q∗1 = 1/b. When partner

choice is possible, the generalization of this condition is the following: the probability that

the investor knows the return fraction of at least one of the k trustees must be at least 1/b.

We can write this as

1− (1− q)k ≥ 1

b
, (41)

and so

q∗k = 1−
(

1− 1

b

)1/k

. (42)

The dashed line in Figure 7(a) is the curve (42). Thus, the more potential partners an

investor considers before engaging in a transaction, the less information she needs (about

any one of them) for trusting behavior to be selected.

Figure 7(b) is the analogous plot for the average return, r. When k = 1, the average r
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attains its maximum value of 1/b + ε at all q ≥ 1/b. Trustees are capturing essentially all

the profits, leaving investors with just a minimal positive return. When k > 1, on the other

hand, the average r has a maximum value (achieved at some q > 1/b) significantly greater

than 1/b+ ε.

We can understand this intuitively as follows. When k = 1, all a trustee must do to

satisfy a perfectly rational investor is return a positive amount, however small. When k > 1,

on the other hand, a trustee who increases his return fraction r beyond 1/b+ ε increases his

probability of being chosen by the investor (see (34)). At the same time, a larger r means

that the trustee is returning more of what he receives to the investor when he does receive

the transfer. A trustee should keep increasing his r until these two forces balance out, i.e.,

until his marginal payoff is zero. This optimizing behavior results in return fractions that

are significantly greater than 1/b. And the larger k is, the more intense the competition

and the larger the average r. Partner choice, even when the choice is just between k = 2

possible trustees, therefore results in the selection of return fractions significantly greater

than 1/b+ ε.

If humans evolved in situations in which individuals had a choice as to whom deserved

their trust, the levels of trustworthiness observed in laboratory experiments would then be

favored by natural selection. Indeed, small, face-to-face groups—which are able to enforce

norms at low cost through mechanisms such as gossip—were “the human social environment

for many thousands of generations, prior to the advent of agriculture only about 13,000 years

ago,” and it has been argued that “economic assumptions about human social preferences

should be based upon the psychological traits that evolved to enable human groups to func-

tion adaptively at this scale” (Gowdy et al., 2012). Partner choice in such small groups is

thus a plausible explanation for the evolution of more than just marginal trustworthiness.

Furthermore, this logic need not rest on assumptions about how the environment of ancestral

humans shaped genetic evolution. Partner choice is also a powerful factor in many modern

day social interactions, such as the choice of friends or business partners. Thus, the devel-

opment of strategies through social learning over the course of a single lifetime could also

lead to the same trusting and trustworthy outcomes.
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6 Discussion

We have studied how information fundamentally changes the trust game and transforms it

into something akin to an ultimatum game. The resulting amalgam of trust and bargaining

leads to the evolution of prosocial behavior. In a related study, McNamara et al. added

information in a different way to a discrete version of the trust game (McNamara et al.,

2009). In their model, trustees who received the transfer faced a binary choice—they could

keep everything or return a fair amount to the investor. Investors facing a particular trustee

could pay a cost to learn how that trustee acted in n random previous interactions, where

n is an exogenously fixed parameter of the world in which that game occurs. Investors

were characterized by a strategy parameter l indicating the number of times (out of the n)

that the trustee must have chosen to make the fair return in order for the investor to be

willing to make the transfer. McNamara et al. found that when n > 1 (or when n = 1 and

the mutation rate is sufficiently high to maintain a significant amount of diversity among

trustees), trust and trustworthiness can arise. The most salient difference between their

setup and ours is that in their model information about trustees is always available, such

that the decision to trust involves choosing not to pay to access that information; whereas

in our model, information is sometimes available (at not cost) and other times unavailable,

such that the decision to trust involves transferring “blind” in anonymous games where

nothing is known about the trustee. Thus our model helps to explain behavior in laboratory

experiments, where investors have no option of buying information about their trustees. We

have shown that even a relatively small probability of knowing a trustee’s return fraction is

sufficient to lead to trust and trustworthiness, a condition which is likely fulfilled in a wide

range of real-world scenarios. We also make the interesting observation that if the level of

trustworthiness demanded by investors—our t, comparable to the fraction l/n in McNamara

et al.’s model—exceeds the information q, then investors and trustees are locked into cycles

in which trust and trustworthiness emerge and then collapse in never-ending oscillations.
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7 Conclusion

Information and the investor response to information have surprising implications for the

payoffs of investors and trustees. Counter-intuitively, giving investors information about

trustees benefits trustees more than investors. This is a general phenomenon that is true

across a wide range of situations: when one player knows the other’s decision, the first player

is constrained (if rational) to play a best response, and this can improve payoffs for the second

player (Maynard Smith, 1982). For example, Pen and Taylor (Pen and Taylor, 2005) show

that giving workers information about the queen’s decision in a sex allocation game can

benefit the queen more than the workers. But when the player with the information has a

fuzzy mind, this effect is dampened and the payoff for the “confused player” can increase.

This paradoxical situation is in contrast with results showing that errors generally decrease

payoffs.

While investors do better if they are collective irrational, such coordination is not evolu-

tionarily stable. Using (limited) information to choose between several trustees provides a

way for investors to improve their payoffs in a stable manner. Thus, information (or “reputa-

tion”) effects together with “partner choice” explain, both qualitatively and quantitatively,

the high degrees of trust and trustworthiness exhibited by humans in one-shot anonymous

interactions. Our results elucidate the mechanism that lead to the evolution of trust and are

more than just a reformulation of the proximate causes of this altruistic behavior (Wilson and

Gowdy, 2012). In related work, we have similarly shown have an evolutionary approach can

explain experimentally observed behavior in the context of the centipede game (Rand and

Nowak, 2012), the traveler’s dilemma (Manapat et al., 2012), and anti-social punishment of

cooperators (Rand et al., 2010; Rand and Nowak, 2011). Furthermore, in the present study,

an emphasis on the evolutionary dynamics and not just on stable equlibria—which often do

not exist, as we have seen—provides a more complete understanding of the forces shaping

trust and trustworthiness. An awareness of these dynamical issues makes the formulation

of pro-social public policy more plausible, an advantage that the evolutionary approach has

over standard (and static) economic analysis.
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Figures

Figure 1. Giving investors information about trustees benefits trustees. (a) The

average investor trust p0 and trustee return r as functions of the information q when

b = 3. When q is 0, p0 and r are both 0. Once q ≥ 1/b (dashed line), p0 is large (and

in fact would be constantly 1 in the limit of infinite selection intensity) and r is just

slightly more than 1/b. (b) Average payoffs of investors and trustees as functions of

q. When information is present, trustees capture almost all the profits. Giving infor-

mation about trustees to investors benefits trustees more than investors. We use the

following parameters: the total population size N = 100, the mutation rate µ = 0.01,

and the selection intensity β = 20. Results are averaged over 50 simulation runs, each

run consisting of 50, 000 rounds.

Figure 2. Stochastic information spread The analogues of Figures 1(a) and (b) when

information about trustees spreads “stochastically.” After each game in which the

investor makes the transfer, a fraction q′ of the investor population is informed of the r

of the trustee involved in the interaction. When an investor and a trustee meet, either

the investor has at some point in the past been informed of the trustee’s r, in which

case she makes the transfer according to her conditional strategy, or she has not been,

in which case she makes the transfer with probability p0. The results are qualitatively

similar to those in Figure 1. We use the following parameters: the total population

size N = 100, the mutation rate µ = 0.01, the selection intensity β = 20, and the

multiplier b = 3. Results are averaged over 10 simulation runs, each run consisting of

50, 000 rounds and each round consisting of 500 random games.

Figure 3. Behavior in a trust game experiment with information (a) We conducted

a behavioral experiment (with b = 3) to determine how much investors demand from

trustees when investors have information about the trustees’ return fractions. The

distribution of demands (N = 175) is shown in (a) and the corresponding cumula-

tive distribution function (CDF) in (b). The CDF represents the average probability

that an investor makes the transfer for a given amount returned by the trustee. The

empirical data is fit well by a sigmoid (dotted line) that deviates from the payoff-
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maximizing step function in two ways: it is smooth rather than sharp (investors have

“fuzzy minds”), and it is shifted to the right (investors demand more than just an

ε-profit).

Figure 4. Fuzzy minds and unreasonable demands benefit investors. (a) The av-

erage investor payoff when all investors have the same (exogenously fixed) “fuzziness”

of mind. There is an optimal value for f . If investors are too “sharp,” then they are

satisfied by small profits, giving trustees little incentive to return substantially more

than just 1/b. If they are too “fuzzy,” they fail to use information about trustees ade-

quately. (b) The average investor payoff when all investors have the same (exogenously

fixed) demand t for the trustees’ return fraction. When q = 1, the investor payoff in-

creases linearly with t: trustees have no choice but to comply with investor demands.

But when q < 1, there is an optimal, payoff-maximizing value of t (= q) for investors.

We see that “fuzzy minds” (a) and “unreasonable demands” (b) benefit investors more

than trustees. We use the following parameters: the total population size N = 100,

the mutation rate µ = 0.01, the selection intensity β = 20, and the multiplier b = 3.

Results are averaged over 50 simulation runs, each run consisting of 50, 000 rounds.

Figure 5. Oscillations in trust and trustworthiness. (a) An example of how the aver-

age investor trust p0 and the average trustee return r evolve over time when t = 2/3 >

1/3 = q. When the collective investor demand t is larger than the information q, there

are no equilibria and both investors and trustees oscillate between strategies. (b) The

average p0 is peaking while the average r is decreasing. Investors eventually adapt to

lower trustee r’s by reducing their p0’s. (c) Both the average p0 and the average r are

close to zero. Trustees who return more do better when investors have information, so

the average r begins to increase. Trustworthiness arises first, then trust follows. (d)

The average p0 is low while the average r is high. Since trustees are returning a large

fraction of what they receive, investors evolve to make the transfer even when they

have no information. (e) Both the average p0 and the average r are high. Trustees

with lower r’s profit more by “cheating” the mostly trusting investors, so the average

r decreases. We use the following parameters: the total population size N = 100, the
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mutation rate µ = 0.01, the selection intensity β = 20, and the multiplier b = 3.

Figure 6. Investor payoffs and partner choice. The average investor payoff as the in-

formation, q, and the number of trustees compared, k, vary. When k > 1, investors do

better when more information is available. We use the following parameters: the total

population size N = 100, the mutation rate µ = 0.01, the selection intensity β = 20,

and the multiplier b = 3. Results are averaged over 50 simulation runs, each run con-

sisting of 50, 000 rounds and each round consisting of 500 games between randomly

chosen investors and trustees.

Figure 7. Partner choice (a) The average trust, p0, as the information, q, and the number

of trustees compared, k, vary. Investors are perfectly rational. As k increases, the level

of information, q, needed to achieve trusting behavior decreases. When the investor

compares k trustees, the probability that she knows the return fraction of at least

one of them must be at least 1/b for trusting behavior to be selected (dashed line).

The decrease in p0 for fixed k as q → 1 is a result of decreasing selection pressure

on p0. (b) The analogous plot for the average return, r. When k = 1, the average

r plateaus at a value of 1/b + ε once q ≥ 1/b. When k > 1, on the other hand,

competition between trustees results in the selection of higher return fractions. We

use the following parameters: the total population size N = 100, the mutation rate

µ = 0.01, the selection intensity β = 20, and the multiplier b = 3. Results are averaged

over 50 simulation runs, each run consisting of 50, 000 rounds and each round consisting

of 500 games between randomly chosen investors and trustees.
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