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thanks are due to my neighbor Aurélie Eisenberg for helping me at the defense of this dissertation
and her continuing patience with my German. The employees at Bar Cheyenne are recognized
for their excellent service at what has become my safe haven in Oerlikon.

v



vi

As with most acknowledgements, the most important ones are saved for last. I would like to
thank my parents and family for their unconditional support. My special thanks goes to Julia,
the only person who managed to read this dissertation more than once. I thank her for her love,
patience and unwavering cheerfulness. Julia, you are my hero!

Bart P.G. Van Parys
Zurich,
November 2015



Abstract

The principal aim of this dissertation is to discuss and advance the use of distributionally robust
constraints for decision-making in an uncertain environment. Distributionally robust constraints
are the robust counterpart of uncertain constraints subject to a random outcome of which the
distribution is only partially known. This dissertation will study in particular control and opti-
mization problems for which these type of constraints constitute sensible design objectives. The
contributions of this thesis fall into three categories each of which support the principal aim
by taking down a hurdle which prevents its attainment. We briefly discuss the aforementioned
categories and the contributions of this dissertation therein.

First, we argue that distributionally robust constraints present sound design objectives which are
often more practically relevant than the classical worst-case or chance constrained alternatives.
Distributionally robust constraints are often less pessimistic and do not require the distribution
of the disturbances involved to be known exactly. In practice distributions are indeed never
observed directly, but rather need to be estimated from noisy historical data. We consider two
types of distributionally robust constraints in this dissertation. In the first type, we require that
constraints hold with a given probability for all disturbance distributions consistent with the
known partial distributional information. These constraints are referred to as distributionally
robust chance constraints. In a second type of constraints, referred to as distributionally robust
CVaR constraints, we additionally require the expected constraint violation to be small for all
relevant disturbance distributions. Either constraint type is discussed and promoted as sound
and sensible design objectives for both static optimization and dynamic control problems.

Second, in many interesting situations distributionally robust constraints are amendable to prac-
tical computation. The need for computational tools applicable to distributionally robust con-
straints naturally leads to the study of uncertainty quantification problems in which a proba-
bilistic question needs to be answered using only limited statistical information. Uncertainty
quantification problems find their roots in the classical univariate probability inequalities ad-
vanced by the Russian school of probability (Chebyshev, Markov, Lyapunov & Bernstein) and
their origins can be traced back to the middle of the 19th century. In this dissertation these
classical Chebyshev type inequalities are generalized to bounds on the probability of events in
arbitrary dimensions based solely on second-order moment information. Instead of a closed form
solution, these bounds are stated in terms of a tractable convex optimization problem. We dis-
cuss why Chebyshev type bound are achieved by pathological discrete distributions which render
the corresponding inequalities overly pessimistic. In an attempt to exclude these practically irrel-
evant distributions, Gauss type probability inequalities and uncertainty quantification problems
will be at the center of attention. In aforementioned Gauss bounds, the considered distributions
are required to enjoy further structural properties which many practical distributions possess
such as unimodality or monotonicity.

We indicate lastly that all discussed problems can be treated in a unified fashion and stated in
the language of convex optimization. This dissertation indeed brings together and merges many
relevant results in probability theory by unveiling their innate convex nature. By presenting
a deep analogy between vectors in Rn and probability distributions on Rn, it will be argued
that the same mathematical tools used in the analysis of classical worst-case robust constraints
can be wielded in our distributionally robust setting equally well. Many results found in this
dissertation concerning probability theory and uncertainty quantification problems have indeed
a direct counterpart in either convex analysis or optimization, respectively.
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Zusammenfassung

Das Hauptziel dieser Dissertation ist das Erörtern und Weiterentwickeln des Gebrauchs von ver-
teilungsrobusten Nebenbedingungen in Hinsicht auf das Fällen von Entscheidungen in einem
ungewissen Umfeld. Verteilungsrobuste Nebenbedingungen sind das robuste Gegenstück zu un-
gewissen Nebenbedingungen, welche entstehen, wenn die Verteilung nur teilweise bekannt ist.
Diese Dissertation behandelt insbesondere Steuerungs- und Optimierungsaufgaben, bei welchen
solide Zielvorgaben fr diese Art von Nebenbedingungen dargestellt werden. Die Beiträge dieser
These fallen in drei Kategorien, jede einzelne mit dem Hintergrund die Hürde zu überwinden,
welche das Ergebnis verhindert. Wir werden die genannten Kategorien folgend kurz erläutern.

Zu Beginn argumentieren wir, dass verteilungsrobuste Nebenbedingungen fundierte Zielvorgaben
präsentieren, die oft praktisch relevanter sind als klassische worst-case- bzw. wahrscheinlichkeits-
bedingte Alternativen. Verteilungsrobuste Nebenbedingungen sind oft weniger pessimistisch und
benötigen keine genaue Strungsverteilung. Exakte Verteilungen werden in der Praxis allerdings
nie direkt observiert, sondern müssen aus korrupten historischen Aufzeichnungen abgeschätzt
werden. In dieser Dissertation untersuchen wir zwei Arten von verteilungsrobusten Nebenbedin-
gungen. In der ersten Art fordern wir, dass die Nebenbedingungen mit einer gewissen Wahrschein-
lichkeit standhalten fr alle Störungsverteilungen, übereinstimmend mit den zum Teil vorhandenen
Informationen. Diese Nebenbedingungen werden bezeichnet als verteilungsrobuste Wahrschein-
lichkeitsbedingungen. In einer zweiten Art, bezeichnet als verteilungsrobuste CVaR-bedingungen,
benötigen wir zusätzlich, dass die voraussehende Nebenbedingungsverletzung gering ist für alle
relevanten Störungsverteilungen. Beide Nebenbedingungen werden erörtert und weiterentwickelt
als solide Zielvorgaben für statische Optimierung, als auch dynamische Steuerungsaufgaben.

Zweitens sind in vielen interessanten Situationen verteilungsrobuste Nebenbedingungen bere-
chenbar. Die Notwendigkeit für Berechnungstools anwendbar für verteilungsrobuste Nebenbe-
dingungen führt gewissermassen zur Studie über Unsicherheitsquantifizierungsaufgaben, in der
eine wahrscheinliche Frage mit Anwendung von Teilinformationen beantwortet werden muss.
Unsicherheitsquantifizierungsaufgaben finden ihre Wurzeln in den univariablen Wahrscheinlich-
keitsungleichheiten, gefördert durch die Russische Schule der Wahrscheinlichkeit ( Chebyshev,
Markov, Lyapunov & Bernstein). In dieser Dissertation werden diese klassischen Wahrschein-
lichkeitsungleichheiten auf Wahrscheinlichkeitsgrenzen in mehreren Dimensionen verallgemei-
nert, basierend auf lediglich zweitrangigen Moment Informationen. Anstelle von analytischen
Lösungen sind diese Grenzen festgelegt in Form einer lenkbaren konvexen Optimierungsaufgabe.
Wir diskutieren, warum Chebyshev-artige Grenzen durch pathologisch diskrete Verteilungen er-
zielt werden, was die dazugehörigen Ungleichheiten übermässig pessimistisch erweisen. In einem
Versuch diese irrelevanten Verteilungen wegzulassen, werden Gauss-artige Wahrscheinlichkeits-
ungleichheiten und Unsicherheitsquantifizierungsaufgaben hier im Mittelpunkt stehen. In diesen
Gauss-artigen Ungleichheiten geniessen die betrachteten Verteilungen weitere strukturelle Eigen-
schaften, welche viele praktische Verteilungen besitzen, darunter Unimodalität oder Monotonie.

Schliesslich deuten wir an, dass alle erörterten Probleme in einer einheitlichen Art und Weise
behandelt, sowie in der Sprache der konvexen Optimierung angegeben werden können. Diese
Dissertation bringt und verschmelzt viele relevante Resultate in der Wahrscheinlichkeitstheorie
zusammen durch das enthüllen ihrer angeborenen konvexen Natur. Durch das Präsentieren einer
tiefen Analogie zwischen Vektoren in Rn und Verteilungen auf Rn, wird argumentiert, dass die-
selben mathematischen Tools, welche auch in der Analyse von klassischen worst-case robusten
Nebenbedingungen eingesetzt werden, im verteilungsrobusten Umfeld gleichermassen gut ge-
handhabt werden können. Viele Resultate in dieser Dissertation betreffend Wahrscheinlichkeits-
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theorie und Unsicherheitsquantifizierungsaufgaben haben ein direktes Spiegelbild in entweder
konvexer Analyse oder Optimierung.



Notation

Scalar Sets

N the natural numbers

R the real numbers

R+ the nonnegative real numbers

R̄ the extended real numbers: R̄ := R ∪ {−∞,∞}

Vectors and Matrices

Rn the space of vectors of length n

Rn
+ the set of element-wise positive vectors in Rn

Sn the canonical simplex in Rn

Rn×m the space of matrices of size n rows by m columns

Sn the space of symmetric matrices in Rn×n

Sn+ the set of symmetric positive definite matrices in Rn×n

〈y, x〉 standard inner product y>x of vectors x and y

Tr {A} trace of the matrix A

A> transpose of the matrix A

A† pseudo-inverse of matrix A

Ai i-th column of the matrix A

A⊗B Kronecker product of matrices A and B

In identity matrix in Rn×n

Distributions and Random Variables

En the space of signed measures on Rn

E?n the space of measurable functions on Rn

Pn the set of probability distributions in En
Uα the set of α-unimodal distributions in Pn
Mγ the set of γ-monotone distributions in Pn
P(B) the probability of the measurable event B

EP[L(ξ)] expectation of a function L with ξ distributed as P:

EP[L(ξ)] :=
∫
L(x) P(dx)

supp P the support of a probability distribution P

Definitions and Inequalities

A :=B A is defined by B

A ≤ B element-wise inequality between A and B

A < B strict element-wise inequality between A and B

A � B matrix inequality between symmetric matrices:
B −A is positive semidefinite

A ≺ B strict matrix inequality between symmetric matrices:
B −A is positive definite
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Topology and Sets

convC convex hull of the set C

exC extreme points of the convex set C

K? dual cone of the set K

intC interior of the set C

rintC relative interior of the set C

cl C closure of the set C

bdC boundary of the set C

dom f effective domain of the function f

epi f epigraph of the convex function f

Set Operations

A ∪B union of sets A and B

A ∩B intersection of sets A and B

A \B difference of the set A with B

Elementary Functions

1 {B} indicator function of the set B

κB gauge function of the set 0 ∈ B
B(u, v) Euler integral of the first kind:

B(u, v) :=
∫ 1

0
λu−1 · (1− λ)v−1 dλ

Γ(t) Euler integral of the second kind:

Γ(t) :=
∫∞

0
λt−1 · e−λ dλ(

n

k

)
binomial coefficient

Acronyms

CVaR Conditional Value-at-Risk

DLTI Discrete Linear Time Invariant

LMI Linear Matrix Inequality

LP Linear Program

LQR Linear Quadratic Regulator

MPC Model Predictive Control

QP Quadratic Program

SDP Semidefinite Program

SOC Second-Order Cone

SOCP Second-Order Cone Program

SOS Sum-Of-Squares

VaR Value-at-Risk
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1 Motivation

1.1 Uncertainty and robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Worst-case constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Distributionally robust constraints . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Classical probability inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization and highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Mathematical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Robust optimization and control . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Uncertainty and robustness

The problem of taking decisions as to optimally influence an outcome of interest, despite the
uncertain nature of the environment in which the decision is taken, is an important and well
studied problem. In many practical problems the influence of exogenous inputs can not simply
be neglected and naturally gives rise to questions concerning safety and robustness of decisions
in the face of extreme events.

This dissertation is concerned with the problem of robust constraint satisfaction when faced with
limited information regarding uncertain input data. The aforementioned problem is motivated
by the fact that in many real-world problems constraint satisfaction is paramount. Constraint
satisfaction might mean keeping budget in planning problems, or ensuring safe operation in
process control. Depending on how critical a constraint is, and the nature of its uncertain
influence, a robust formulation must be chosen. We will briefly discuss here which types of robust
formulations are available and appropriate in what situations. Furthermore, we will motivate the
approach taken in this dissertation which is particularly well suited when faced with ambiguity
regarding the distribution of the uncertain influence. The notation in this chapter is intentionally
informal to start, with a more rigorous treatment deferred to later in the dissertation.

The problem of taking a decision u such that an outcome x(u, ξ) remains within a given constraint
set X, despite an uncertain influence ξ, is a fundamental problem in many research areas and
practical applications. Depending on his or her background, the reader can think of x and
u as the states and inputs of an uncertain control system or alternatively as the returns and
investments in a planning problem. As suggested by the title of this work, the exposition will be
biased towards the optimization and control interpretation although the aforementioned problem
comes about in a much wider variety of research areas.

We will motivate the road taken in this dissertation by focussing on the following canonical
uncertain constraint

x(u, ξ) ∈ X (1.1)

1



2 1. MOTIVATION

influenced by both the decision u and uncertainty ξ, i.e. the outcome should remain in the
constraint set in some sense. Indeed, the uncertain constraint (1.1) is not made mathematically
precise just yet. We first describe two standard methods for modeling such a constraint; the now
classical worst-case formulation and the more recent chance-constrained formulation. We will
discuss the alternative approach taken in this dissertation and argue that it alleviates some of
the shortcomings inherent to the two standard methods. This alternative distributionally robust
formulation will be particularly well suited when faced with only a limited amount of information
regarding the distribution of the exogenous influence ξ.

1.1.1 Worst-case constraints

The worst-case formulation starts by assuming that the support of the uncertain influence ξ is
bounded and known, i.e. that the uncertainty ξ is restricted to realize within a compact set C.
The uncertain constraint (1.1) is then interpreted as a condition that the uncertain outcome
x(u, ξ) should be an element of the constraint set X for all realizations of the uncertain influence
within its support C. The uncertain constraint (1.1) thus translates to

∀ξ ∈ C : x(u, ξ) ∈ X. (1.2)

Taking the decision u such that the uncertain outcome x(u, ξ) remains in the given constraint
set X, for all possible realizations of the uncertain influence ξ, is historically the most prevalent
formulation of the uncertain constraint (1.1).

In the optimization literature the robust formulation considered here goes back to 1973 with
the work of Soyster [120] on robust linear programming. This formulation was however mostly
neglected in the optimization community for several decades thereafter due to a lack of numerical
tools able to deal with the resulting robust constraints. Around the second millennium, the worst-
case formulation has witnessed an explosive interest in both its theory and practical applications
by virtue of the seminal works of Ben-Tal and Nemirovski [7] and El Ghaoui et al. [46] which
provided tractable reformulations for constraint (1.2) for many interesting situations. The reader
is referred to further works of Ben-Tal and Nemirovski [9, 10] and Bertsimas et al. [15] plus the
many references therein to get an idea of the staggering research activity surrounding this worst-
case formulation.

In the field of control, worst-case formulations of the type (1.2) are of long standing interest as
well as illustrated by the early work of Witsenhausen [135] and Bertsekas [14]. With the advent
of optimization based control strategies such as model predictive control (MPC) surveyed by
for instance Garcia et al. [53] and approximate dynamic programming (ADP) for which Powell
[104] is a standard reference, a similar surge of interest in the worst-case reformulation (1.2)
can be noted in the control community as well. As the constraints in control applications are
often safety critical, worst-case constraints of the type (1.2) indeed often present an appropriate
reformulation. Stability constraints match particularly well with the worst-case formulation as
loss of stability should be avoided at all costs. The reader is referred to the small selection of
works by Bertsekas and Rhodes [14], Blanchini [25], Kerrigan [67], De Farias and Van Roy [42]
and Mayne et al. [84] for a necessarily incomplete perspective on the field of worst-case robust
control.

The popularity of the worst-case formulation draws largely from the fact that in many interesting
situations the constraint (1.2) admits an exact and tractable reformulation in terms of a convex
optimization problem as shown by Ben-Tal et al. [6]. The applicability of the powerful results
in convex analysis and optimization to the worst-case constraint (1.2) can in fact be regarded as
the key to its popularity.

The worst-case formulation (1.2) almost invariably requires that the support of the uncertain
influence ξ is completely known and compact. The boundedness assumption may be quite re-
strictive, e.g. in cases where the uncertain influence follows a normal distribution and hence has
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unbounded support. Furthermore, Bertsimas and Sim [19] argued that the worst-case formu-
lation (1.2) is often quite pessimistic and usually comes at the high price of significant loss of
optimality when compared to the nominal problem. Where for safety critical or hard constraints
this optimality loss can be justified, in others we may benefit from a more forgiving formulation.

1.1.2 Chance constraints

Chance constraints require that the uncertain outcome x(u, ξ) realizes within the constraint set
X only up to a specified probability level. The uncertain constraint (1.1) is then modeled as the
requirement

P(x(u, ξ) ∈ X) ≥ 1− ε, (1.3)

with ε ∈ (0, 1) the prescribed safety level and where the distribution P of the uncertain influence
ξ is assumed known. The chance constraint formulation is primarily aimed at soft constraints
for which a small number of violations might be regarded as acceptable. Chance constraints
are in those situations often more practical than their worst-case counterpart (1.2) which can
be seen as a degenerate chance constraint with ε = 0 and which tends to encourage overly
pessimistic decisions. Chance constraints can in sharp contrast to the worst-case formulation
(1.2) furthermore readily deal with unbounded support of the uncertain influence ξ.

The concept of chance constraints was introduced already in 1955 in Dantzig’s original publication
[40] and hence predates the worst-case formulation by almost two decades. Chance constrained
optimization has received significant attention in the optimization community ever since; see for
instance the work by Charnes et al. [35], Miller and Wagner [87] and Prekopa [105]. In control
applications the chance constrained formulation (1.3) has received attention as well in the works
of Schwarm and Nikolaou [114], Cannon et al. [33] and Oldewurtel et al. [93] in particular in the
context of stochastic MPC.

Although no boundedness assumption is required on the support of the probability distribution
P, chance constraints are arguably worse from a practical perspective since they require the
availability of a probability distribution over the disturbances. In practice one usually resorts
to some simplifying assumption regarding the disturbance ξ, e.g. that it is normal distributed
with known mean and variance. Unfortunately, verifying a chance constraint in the form (1.3) is
intractable under generic distributions, i.e. checking (1.3) even for a fixed decision u and given
distribution P is intractable. Indeed, Shapiro and Nemirovski [88] point out that computing the
probability of a weighted sum of uniformly distributed variables being non-positive is already
NP-hard. As a consequence, recently the attention in the works by Calafiore [28, 29] and Campi
[32] has shifted towards stochastic sampling methods, for which only probabilistic guarantees
can typically be provided, e.g. that the chance constraint condition (1.3) holds only with some
level of confidence.

In this dissertation we will take an approach intermediate to the two extremes presented up so
far. Our goal is to provide a framework that addresses the uncertain constraint (1.1) using only
partial information about the distribution P of the uncertain influence ξ, and without recourse
to sampling.

1.1.3 Distributionally robust constraints

In many situations the distribution P of the uncertain influence ξ is unknown and must be
estimated from historical data, and hence is ambiguous. We therefore assume only that the
distribution P belongs to an ambiguity set C of distributions. The ambiguity set C should ideally
be composed of all distributions consistent with the available information regarding the uncertain
influence ξ. The distributionally robust counterpart of the chance constraint (1.3) hence becomes

∀P ∈ C : P (x(u, ξ) ∈ X) ≥ 1− ε. (1.4)
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The constraint (1.4) is referred to as a distributionally robust chance constraint on the uncertain
outcome x(u, ξ) following Calafiore and El Ghaoui [30]. Such a constraint is a robust version of
the classical chance constraint (1.3) in that it is immunized to any distribution P from within
the ambiguity set C.
The classical worst-case (1.2) and chance constrained formulation (1.3) can be seen as special
instances of the distributionally robust chance constraint (1.4) for an ambiguity set C consisting
of all probability distributions supported on the set C or where the ambiguity set C = {P}
reduces to a singleton, respectively. The distributionally robust constraint (1.4) thus covers the
entire spectrum between the two extreme interpretations given to the uncertain constraint (1.1)
in either the classical worst-case or chance constrained formulation.

We will take it as an objective in the remainder of the work to show that this distribution-
ally robust interpretation of the uncertain constraint (1.1) constitutes a mathematically sound
constraint specification amenable to practical computation. We stress that all of the numerical
methods we present for dealing with such constraints are deterministic. This in contrast to the
stochastic methods presented by Calafiore [28, 29] and Campi [32], for which only probabilistic
admissibility guarantees can be provided.

Distributionally robust constraints were considered in the optimization community only recently
by Calafiore et al. [30] and Zymler et al. [142], but have nevertheless already received considerable
interest ever since. One of the main advantages of the distributionally robust formulation over
the classical chance constrained formulation is the fact that only partial information on the
distribution P is required. Furthermore as shown by Zymler et al. [142], the resulting robust
formulation (1.4) is in many interesting situations computationally favorable over its nominal
chance constrained counterpart (1.3). In the control community some early work on chance
constraints with ambiguous distributions has been done by Lagoa and Barmish [3, 73, 72] in
which the ambiguity set C considered consisted of all symmetric distributions sharing a unimodal
structural property with known rectangular support. Despite the aforementioned early work the
distributional robust formulation lay dormant for more than a decade and was only reconsidered
very recently again by this author in [131].

Before we can hope to present any tractable reformulations of distributionally robust chance
constraints, we must first be able to answer more fundamental questions such as the problem
of feasibility in the distributionally robust constraint (1.4). The problem of deciding feasibility
of a fixed decision u in the distributionally robust chance constraint (1.4) is equivalent to the
condition

(1.4) ⇐⇒ sup
P∈C

P (x(u, ξ) /∈ X) ≤ ε. (1.5)

The left hand side of the inequality in equivalence (1.5) consists of the supremum of the probabil-
ity P (x(u, ξ) /∈ X) over an ambiguity set C of the distributions of the uncertain influence ξ. This
type of optimization problem over a set of distributions will be referred to in this dissertation as
an uncertainty quantification problem. Indeed, the optimization problem in (1.5) is recognized
to provide the best upper bound on the probability of the event x(u, ξ) /∈ X given merely partial
information on the distribution of ξ represented through the ambiguity set C. From condition
(1.5) it is clear that if one cherishes any hope of providing tractable reformulations of the distri-
butionally robust chance constraint (1.4) the uncertainty quantification problem (1.5) must be
amendable to tractable computation as well.

Uncertainty quantification problems such as (1.5) are unfortunately not known to admit closed
form expressions in general. An exception worth mentioning are the univariate probability
bounds discussed in the subsequent section. A primary aim of this dissertation is to generalize
these so called classical probability bounds to problems in which the event space is of arbitrary
dimension. We will furthermore indicate that for many interesting uncertainty quantification
problems, the exact same tools used in the reformulation of the classical worst-case formulation
(1.4) are applicable in the context of distributionally robust constraints equally well.
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1.2 Classical probability inequalities

Distributionally robust constraints are thus preceded, by virtue of equivalence (1.5), by uncer-
tainty quantification problems supP∈C P(ξ /∈ Ξ) quantifying the worst-case probability of events
corresponding to those disturbances such that the uncertain outcome x(u, ξ) realizes outside
the constraint set X merely using the fact that the ξ is distributed within the ambiguity set
C. The uncertainty quantification problem supP∈C P(ξ /∈ Ξ) must hence be answered before its
corresponding distributionally robust constraint (1.4) can be approached.

Observe that uncertainty quantification problems are intimately related to probability inequali-
ties. Indeed, based on the partial information ξ distributed in C we can say at most that

P(ξ /∈ Ξ) ≤ p for any p ≥ supP∈C P(ξ /∈ Ξ).

The probability inequality is denoted as tight if p is taken to be supP∈C P(ξ /∈ Ξ). The former type
of tight probability inequalities with univariate uncertainty quantification problems in which ξ
realizes in R have been studied since at least the 19th century and were advanced predominantly
by the Russian school (Chebyshev, Markov, Lyapunov and Bernstein) of probability. We state
these 19th century probability inequalities and bounds here with the promise to generalize them
to events in arbitrary dimensions later on.

The Chebyshev inequality provides an upper bound on the tail probability of a univariate random
variable based on limited moment information. The most common formulation of this inequality
asserts that the probability that a random variable ξ valued in R with distribution P differs from
its mean by more than κ standard deviations is bounded by

sup
P∈H(µ,S)∩P1

P(|ξ − µ| ≥ κσ) =

{
1
κ2 if κ > 1,

1 otherwise,
(1.6)

where κ is a strictly positive constant, while µ and S = µ2 + σ2 denote the mean and second
moment of the random variable ξ distributed as P, respectively. The Chebyshev bound is recog-
nized as the solution to a particular uncertainty quantification problem in which the ambiguity
set H(µ, S) ∩ P1 consists of all univariate distributions P ∈ P1 sharing a given mean µ and
second moment S. In this special case a closed form solution for the optimization problem over
distributions in (1.6) can be found.

The worst-case probability bound (1.6) was discovered by Bienaymé [20] in 1853 and proved by
Chebyshev [36] in 1867. An alternative proof was offered by Chebyshev’s student Markov [82] in
1884. The popularity of the Chebyshev inequality arises largely from its distribution-free nature.
It holds for any distribution P under which ξ has mean µ and variance σ2, and therefore can
be used to construct robust confidence intervals for ξ relying exclusively on first and second-
order moment information. Moreover, the inequality is sharp in the sense that, for any fixed κ,
there exists a distribution P with given mean and variance achieving the worst-case bound (1.6).
Unfortunately, the Chebyshev inequality may be quite pessimistic as the worst-case distributions
achieving the bound (1.6) are of a degenerate nature and thus often practically irrelevant. The
previous statement is best understood with the help of the fictitious example given in Figure
1.1(a).

In order to alleviate the pessimism inherent to the Chebyshev bound (1.6) an attempt can be
made to exclude the pathological degenerate distributions from the ambiguity set C. A property
common to almost all practically relevant distributions is unimodality. Informally, a unimodal
random variable has the intuitive property that small deviations from its mode should occur
more frequently than large ones.

Definition 1.1 (Univariate unimodality [44]). A univariate distribution P is called unimodal
with mode c if the mapping t 7→ P(ξ ≤ t) is convex for t < c and concave for t > c.
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Figure 1.1: Consider a random variable ξ with mean µ = 171.5 and standard deviation σ = 7.5.
The Chebyshev bound (1.6) states that the probability of the event |ξ − µ| ≥ 18.5 is at most
16%. The Chebyshev inequality is tight in that it is achieved by the degenerate distribution
shown in Figure 1.1(a) supported on a finite number of points. When unimodality around the
mean µ is assumed, the Gauss bound (1.7) reduces the probability of the event |ξ− µ| ≥ 18.5 to
at most 7.3%. The Gauss inequality is tight too in that it is achieved by the piece-wise uniform
distribution in Figure 1.1(b). Both classical bounds can be compared to the probability obtained
by assuming ξ to be distributed normally in which case the probability of the event of interest
is 1.4%

In 1821 Gauss [54] proved that the classical Chebyshev bound (1.6) can be improved by a factor
of 4/9 when the considered distributions are restricted to be unimodal P ∈ U1 with mode c = µ,
that is,

sup
P∈H(µ,S)∩U1

P(|ξ − µ| ≥ κσ) =

{
4

9κ2 if κ > 2√
3
,

1− κ√
3

otherwise.
(1.7)

The Gauss bound is thus recognized as the solution to an uncertainty quantification problem in
which the ambiguity set H(µ, S) ∩ U1 consists of all univariate unimodal distributions P ∈ U1

sharing a given mean µ and second moment S. The Gauss bound (1.7) is again sharp and
furthermore provides a much less pessimistic bound on the probability of the tail event |ξ−µ| ≥
κσ than its Chebyshev counterpart (1.6) when the random variable ξ is known to have a unimodal
distribution; see Figure 1.1(b).

Since the 19th century several other probability inequalities have been discovered most of which
try to include information other than merely the mean and standard deviation in an attempt to
reduce the pessimism innate to the classical Chebyshev bound (1.6). The Pearson inequality [98]
for instance states that the Chebyshev inequality can be adapted to include absolute moment
information βr = EP[|ξ − µ|r], that is

P(|ξ − µ| ≥ κσ) ≤ βr
σrκr

. (1.8)

Similarly, the Berge inequality [11] generalizes the Chebyshev inequality to bivariate random
variables and reads

P(|ξ1 − µ1| ≥ κσ1 or |ξ2 − µ2| ≥ κσ2) ≤ 1 +
√

1− ρ2
12

κ2
, (1.9)

where the correlation is in this context defined as ρ12 = σ12/(σ1σ2) for the covariance measure
σ12 = EP[(ξ1 − µ1) (ξ2 − µ2)]. Both probability inequalities (1.8) and (1.9) are tight when the
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right hand side is less than or equal to one in the same sense as discussed before. Some other
probability type inequalities can be found in the literature too. An excellent starting point is a
survey by Savage [112] on inequalities in probability theory in which many more inequalities are
collected than stated here.

In all these exceptional cases a closed form expression for the corresponding uncertainty quan-
tification problem was available. In general an uncertainty quantification problem does unfortu-
nately not admit a closed form expression. Nevertheless, in this dissertation we will generalize
all the aforementioned classical univariate probability bounds to arbitrary dimensions in terms
of a tractable convex optimization problem.

1.3 Organization and highlights

A first important objective of this dissertation is hence to generalize the 19th century probability
bounds of Chebyshev (1.6) and Gauss (1.7) to worst-case probabilities of events in arbitrary
dimensions. The ultimate goal of the previous generalization being to facilitate the tractable
reformulation of distributionally robust constraints of the type (1.4) by virtue of equivalence
(1.5). Lastly, we will try to convince the reader in this dissertation that distributionally robust
constraints and uncertainty quantification problems can be approached using the exact same
tools as those used in case of the classical worst-case formulation (1.2).

This dissertation is consequently divided into three parts, each corresponding to one of the afore-
mentioned points. In brief, the first part of this dissertation provides the necessary mathematical
tools used to approach uncertainty quantification problems such as those appearing in (1.5). It
will be argued that many concepts in probability theory enjoy an underlying convex structure
and are thus amendable to the same tools used in standard robust optimization. The structure
of the first part of the dissertation reflects the fact that uncertainty quantification problems can
be recognized as optimization problems over convex sets of distributions. In Part II we will use
convex analysis and optimization to study uncertainty quantification problems and by doing so
generalize the classical probability inequalities discussed in the preceding section. Finally, in Part
III we direct attention back to distributionally robust constraints and discuss their application in
both optimization and control problems. The overall structure of this dissertation is pictorially
represented in Figure 1.2.

In the remainder of this chapter we outline the structure and main contributions of this disser-
tation in greater detail. We also indicate which parts of the dissertation have been published
before by the author, possibly in collaboration with others. In each of those works this author
was however the principal investigator.

1.3.1 Mathematical tools

Convexity plays the protagonist role throughout the entire dissertation. Many sets of distribu-
tions in probability theory possess an underlying convex structure. However, sets of distributions
reside in vector spaces more general than the finite dimensional space Rn. In the first part of
this dissertation, we intend to show that the same tools can be used as for finite dimensional
spaces nevertheless. Many results found in this dissertation concerning probability theory and
uncertainty quantification problems have indeed a direct counterpart in either convex analysis
or optimization in Rn.

The close similarity between vectors in Rn and distributions on Rn is made explicit by the
intentional analogy between Chapters 2 and 3 dealing with convex analysis and Chapters 4
and 5 on optimization over convex sets of vectors and distributions, respectively. The notation
throughout Chapters 2 to 5 is kept uniform as to facilitate the direct comparison between the
results of convex analysis and convex optimization over either vectors in Rn or measures on Rn;
see also Figure 1.2.
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By doing so we intend to convince the reader that essentially the same mathematical tools used to
reformulate the standard worst-case robust constraint (1.2) apply to the distributionally robust
formulation (1.4) as well. The only difference being that in the former we exploit the convexity
of the set of possible realizations C of ξ in Rn and in the later the convexity of the set of possible
distributions C of ξ on Rn. While this part of the dissertation contains almost no novel results,
it facilitates the exposition of the remaining parts greatly and fixes the main ideas of the novel
results found in all subsequent parts.

Chapter 2 The purpose of this chapter is twofold. We introduce the definitions of convex sets
and functions in Rn both of which are fundamental to the dissertation. Particular emphasis is
put on extreme points and Choquet representations of convex sets which will leave their mark
throughout the remainder of the work. Additionally, this chapter will allude to the results of
convex analysis for sets of distributions as discussed in the subsequent chapter. Indeed, many
results in probability theory shall find their direct finite dimensional counterpart in this chapter.

Chapter 3 Probability distributions and ambiguity sets C are of critical importance to any
discussion concerning distributionally robust constraints. This chapter brings together the nec-
essary material from probability theory as required in the remainder of the dissertation. Many
concepts and results in probability theory are shown to be intimately related to convexity and
thus amendable to the same analysis put forward in Chapter 2. The notation in this chapter is
intentionally chosen to parallel the notation introduced in Chapter 2 in order to emphasize the
similarity between both chapters.

We will come across essentially two types of convex sets of distributions in this dissertation. The
first type of convex sets H consists of measures sharing a finite number of given moments. The
sets of measures H can be thought of as generalized hyperplanes in the space of measures on Rn.
The prototypical moment set considered in this dissertation is the ambiguity set H(µ, S) already
encountered in the classical Chebyshev bound (1.6) consisting of all measures sharing first and
second moments. Secondly, we will consider sets of probability distributions K enjoying a specific
structural property such as unimodality or monotonicity. The set of all unimodal distributions
Un on Rn encountered in the classical Gauss bound (1.7) serves as an illustrative example to the
latter kind of convex sets.

Extreme point or Choquet representations turn out to be of crucial importance in this disser-
tation. The sets K of the structural type are shown to admit explicit Choquet representations
in terms of their radial extreme distributions in Propositions 3.2 and 3.3. Via Choquet star
representable sets defined in Definition 3.14, we are able to put many different types of seem-
ingly distinct structural requirements such as unimodality and monotonicity on an equal footing.
Choquet star representable sets will serve us very well when analyzing uncertainty quantification
problems over structured sets of probability distributions.

Lastly, we also introduce the value-at-risk (VaR) and conditional value-at-risk (CVaR) measure.
The CVaR measure will come into play in the last part of the dissertation when trying to alleviate
some of the problems inherent to the distributionally robust chance constrained formulation (1.4).

Chapter 4 This chapter will serve a dual purpose as well. The current chapter introduces
the hierarchy of optimization problems ranging from linear programs (LPs) to semi-definite
programs (SDPs). We point out that all classes of convex optimization problems within this
optimization hierarchy can be solved efficiently and can thus be considered as de facto closed
form expressions. Indeed, the solution to many problems in this dissertation will be stated in
terms of a tractable convex optimization problem rather than as a closed form expression. This
chapter will furthermore discuss the finite dimensional counterparts of the two central results
discussed in the subsequent chapter dealing with optimization problems over sets of distributions.
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Chapter 5 Uncertainty quantification problems of the type encountered in (1.5) can be re-
garded as specific instances of linear optimization problems over sets of distributions. The last
chapter of this part will culminate in a discussion on how linear optimization problems over
convex sets of distributions can be analyzed. The two main tools put forward in this chapter
are (i) the fundamental theorem of linear programming and (ii) conic duality, both of which will
play a key role in the remainder of this dissertation.

The fundamental theorem of linear programming 5.1 relates the geometry of the optimal dis-
tributions P? ∈ C attaining the worst-case bound in (1.5) to the extreme points of the feasible
set C. The observation made in Figure 1.1 concerning the nature of the worst-case distribution
achieving either the Chebyshev or Gauss bound is argued to be a direct consequence of the
fundamental theorem.

A comprehensive duality theory can be developed based on pairing the space of measures on
Rn with a dual space of measurable functions on Rn. Dual feasibility can be given a nice
interpretation in terms of the positivity of dual functions. Strong duality is guaranteed by
Theorem 5.2 under a very mild constraint qualification condition. To illustrate the power of
the ideas presented in the first part of the dissertation, we show that the classical Gauss and
Chebyshev inequalities can be proven and generalized easily within the presented framework
using merely elementary manipulations.

1.3.2 Uncertainty quantification

In the second part of the dissertation we will, among other things, generalize the classical prob-
ability inequalities of Chebyshev (1.6) and Gauss (1.7) to worst-case probabilities of events in
arbitrary dimensions. The resulting generalized Gauss type inequalities are an original contri-
bution of this thesis. We will do so by considering the uncertainty quantification problem

B(L,K, µ, S) = sup

∫
L(x) P(dx)

s.t. P ∈ H(µ, S),

P ∈ K

(1.10)

for which the feasible set consists of all probability distributions in the structured set of dis-
tributions P ∈ K sharing known second-order moment information P ∈ H(µ, S). The classical
Chebyshev (1.6) and Gauss bound (1.6) can readily be seen to constitute special cases of the
worst-case expectation bound B(L,K, µ, S) for a judicious choice of loss function L and structure
K.

As argued in Part I, the uncertainty quantification problem (1.10) can either be approached in
a primal or an equivalent dual formulation. The structure of this part will follow this difference
in perspective closely as Chapter 6 will take the primal perspective and Chapter 7 considers its
dual. Nevertheless, a result central to both chapters is the fact that an uncertainty quantification
problem over a structured set of distributions K can be transformed to an equivalent uncertainty
quantification problem over the standard probability simplex Pn consisting of all distributions
on Rn, i.e.

B(L,K, µ, S) = B(Ls,Pn, µs, Ss) (1.11)

for a judiciously transformed loss function Ls, mean µs and second moment S. Theorems 6.1
and 7.1 prove the previous equivalence from both a primal and a dual perspective, respectively.
The previous reduction is extremely beneficial to the exposition of both chapters in this part
of the dissertation as only unstructured uncertainty quantification problems need be considered
initially.

Although our interest in uncertainty quantification problems is mainly motivated by their close
connection to distributionally robust constraints, the worst-case expectation bound B(L,K, µ, S)
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is of interest on its own. Recall that the structured set of distributions K can be used to represent
additional structure enjoyed by many distributions in practice. We will illustrate the relevance
of the bound B(L,K, µ, S) to practical applications in the several numerical examples discussed
in Chapters 6 and 7.

Chapter 6 This chapter analyzes the uncertainty quantification problem (1.10) starting from
its primal formulation as a maximization problem over a set of distributions H(µ, S) ∩ K on
Rn. We initially derive exact tractable reformulations for uncertainty quantification problems
when no structural assumptions are made (K = Pn). The central result in this chapter is
stated in Theorem 6.2 which provides an exact tractable reformulation for the worst-case bound
B(L,Pn, µ, S) when the loss function is in the form

L(x) = max
i

`i(x) (1.12)

where the functions `i are understood to be all concave.

The reduction (1.11) can be used to deal with structured distributions (K ⊂ Pn) as well. In fact
the class of worst-case bounds B(L,Pn, µ, S), with L in the form (1.12), is indeed rich enough to
generalize the classical Gauss bound (K = U1) into arbitrary dimensions as shown in Theorem
6.5. Although attempts have been made before by Vandenberghe et al. [133] and Popescu [103],
we are the first to obtain an exact and tractable representation of the Gauss bound in arbitrary
dimensions. Furthermore, using a more flexible notion of unimodality we define in Theorem 6.4
a novel hierarchy of Gauss type bounds, all of which have a tractable representation, in which
the Chebyshev and Gauss bounds are recognized as two extreme entities. This chapter is largely
based on the results which appeared in the publication [128] of this author.

Chapter 7 This chapter approaches the uncertainty quantification problem (1.10) via its dual
formulation as a minimization problem over the coefficients of positive functions on Rn. Again
we initially derive exact tractable reformulations for uncertainty quantification problems when
no structural assumptions are made (K = Pn). The central result in this chapter is found in
Theorem 7.2 which provides a novel advantageous reformulation of the worst-case expectation
bound B(L,Pn, µ, S) when the loss function is in the form

L(x) = max
i

`i(Aix) (1.13)

for arbitrary functions `i : Rd → R in terms of a minimization problem over the coefficients of
positive functions on Rd.

In the first part of the chapter, we indicate that many known worst-case probability and ex-
pectation bounds for unstructured sets of distributions (K = Pn) in the literature can be cast
as corollaries of our Theorem 7.2. We then generalize the aforementioned results to structured
sets of distributions (K ⊂ Pn) using again the reduction (1.11). The results in this chapter are
largely based on the publication [130] by this author.

The main contributions, from a practitioners point of view, which can be found in this part of
the thesis are collected in Table 1.1. We study essentially three types of uncertainty quantifica-
tion problems and their corresponding bounds: (i) worst-case probability bounds, (ii) worst-case
expectation bounds and (iii) worst-case CVaR bounds. Each mentioned problem type is ap-
proached through studying the uncertainty quantification problem (1.10) for a particular class
of loss functions L in conjunction with a distinct structural assumption made through choice of
the ambiguity set K.

In order to examining the relative merits between the primal approach taken in Chapter 6 and
the dual approach followed in this chapter, we could consider the classes of loss functions L
either in the form (1.12) or (1.13) which can be dealt with effectively in the primal or dual
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Structure Worst-case probability Worst-case expectation Worst-case CVaR

Unstructured Vandenberghe et al. [133] Zymler et al. [142] Zymler et al. [142]

Unimodal Theorem 6.4 Corollary 7.4 Corollary 7.4

Montone Corollary 7.3 Corollary 7.5 Corollary 7.5

Table 1.1: Listening of the worst-case bounds discussed in Part II organized by objective and
distribution type. The results indicated in blue are novel contributions found in this dissertation.

approach, respectively. As both classes are non overlapping, no one approach is strictly stronger
than the other. Nevertheless for the practically relevant loss functions we will encounter in this
dissertation, the dual requirement (1.13) seems to offer more flexibility. That being said however,
the dual approach does require technical conditions to guarantee strong duality and does seems
to result in tractable but slightly more involved SDPs than its primal counterpart.

1.3.3 Robust optimization and control

In the final part of this dissertation the discussion turns back to distributionally robust con-
straints of the type (1.4) with the ambiguity set C = H(µ, S) ∩ K consisting of structured
distributions sharing second-order moment information. We discuss their use in the static con-
text of optimization problems in Chapter 8. Optimal control problems which can be regarded
to represent a dynamic counterpart to the optimization problems discussed in Chapter 8 are
considered in Chapter 9.

Chapter 8 Distributionally robust chance constraints (1.4) have the limitation that they are
blind to severe constraint violations in which the uncertain outcome x(u, ξ) strays far outside the
constrained set X. Although the constraint (1.4) guarantees that the uncertain outcome x(u, ξ)
realizes within the constraint set X with probability at least 1 − ε for all distributions within
the ambiguity set C, there is in general no bound on the severity of constraint violation in the
remaining ε fraction of realizations.

In this chapter, we will consider distributionally robust CVaR constraints too as they provide a
mechanism to control the level of constraint violation. We analyze both types of distributionally
robust constraints in the context of polytopic constraint sets

X =
{
x : a>i x < bi, ∀i ∈ [1, . . . , k]

}
.

The chapter is divided into a first part discussing single uncertain constraints (k = 1) and a
second part dealing with the general case (k > 1) of joint uncertain constraints.

In case of single uncertain constraints, both the chance and CVaR formulation are shown in
Propositions 8.1 and 8.2 to admit an exact tractable reformulation in terms of a second-order
cone (SOC) constraint. To the best of our knowledge, both propositions are novel. Joint distri-
butionally robust constraints prove more challenging. In Section 8.3, we will outline when exact
tractable reformulations are available, and when not, what type of approximation can be used
instead.

Chapter 9 Where the previous chapter dealt with static optimization problems in which a
single decision u needs to be taken in the face of a single uncertain realization ξ, this chapter will
deal with control problems in which a sequence of feasible decisions has to be taken over time
in the face of a sequence of disturbances in a causal manner. The main difference between the
static optimization setting discussed in Chapter 8 is that the decisions ut(ξ) need to be taken
adaptively in face of the disturbances ξ to ensure feedback.
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We focus in this chapter on distributionally robust CVaR constraints with second-order moment
information in the context of quadratically representable constraint sets

X =
{
x : x>Eix+ 2e>i x+ e0

i < 0, ∀i ∈ [1, . . . , k]
}
.

The first half of the chapter deals with the finite horizon control of discrete-time linear time-
invariant (DLTI) systems. The control decisions ut(ξ) are taken according to causal affine decision
rules following Goulart et al. [55] and Ben-Tal et al. [6]. Our main contribution here is Theorem
9.1 which establishes that the best affine control policy can be characterized in terms of a tractable
optimization problem. Theorem 9.3 extends this previous observation to infinite horizon control
problems in the second half of the chapter. We furthermore show that for the constraint set
X a single ellipsoid, the best linear control policy separates into a Kalman filter and a state
feedback policy which can be found through the solution of a tractable SDP. The results in
this chapter are illustrated on a wind blade control design case study for which distributionally
robust constraints constitute sensible design objectives. The results in this final chapter are
largely based on this author his publication [128]. The wind blade control design case study is
presented in more detail in a conference contribution [132] again by this author.
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In this chapter we state various results concerning the convexity of both sets and functions in Rn.
The purpose of this section is however twofold. As convexity plays a protagonist role throughout
this dissertation, this section on convex analysis in Rn is meant to make the discussion self-
contained. At the same time however, this section will try to prelude the corresponding analysis
of convexity in more general vector spaces as discussed in Chapter 3.

The presentation of the results in this chapter is by no means exhaustive and entirely determined
by their use in the remainder of this work. All results in this chapter are well known and are
stated without proof. The reader is referred to the excellent works by Rockafellar [109] or Boyd
and Vandenberghe [27] for a more complete treatment of convexity.

2.1 Convex sets and functions

Definition 2.1 (Convex set). A subset C of Rn is convex if it includes for every pair of points
x, y ∈ C the line segment that joins them, i.e.

∀x, y ∈ C : tx+ (1− t)y ∈ C, for all t ∈ [0, 1].

Convex sets play the protagonist role in this dissertation as they are involved in almost all
subsequent results in one form or another. Various convex and non-convex sets are shown in
Figure 2.1.

So many connections between convex sets and convex functions exist that it is best to introduce
both objects at the same time.

Definition 2.2 (Convex function). A function f : Rn → R̄ is convex with respect to the convex
set C in Rn if the following relationship holds for all points x and y in C,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), for all t ∈ [0, 1].

We denote with the set R̄ := R∪{∞,−∞} the extended real numbers on which the usual extended
arithmetic is defined as found in Rockafellar and Wets [109, Section 1.E].

The main advantage of working with the extended real numbers R̄ is that the domain of a convex
function f can be related to those points in Rn having a value which is bounded from above.
The (effective) domain of f is then defined as

dom f := {x ∈ Rn : f(x) <∞} .

17
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(a)

0

(b)

x

y

(c)

Figure 2.1: Various convex and non-convex sets in the plane. All but the set on the right are
convex sets. The set in the middle is a proper convex cone, while the set on the left is a compact
convex set. The open set 2.1(c) is not convex as the line segment [x, y] is not entirely contained
in it.

Note that if a convex function g : C → R is only defined on a convex set C ⊂ Rn then it can be
identified with a convex function f on Rn with dom f = C through

f(x) :=

{
g(x) x ∈ C,
∞ Otherwise.

For most purposes, the study of convex functions can therefore be reduced to the framework of
Definition 2.2 in which functions are defined everywhere but extended valued.

We say that the function f is proper if its effective domain is non-empty, i.e. dom f 6= ∅, and
f(x) > −∞ for all x ∈ Rn. A function f is denoted as concave if its negative −f is a convex
function. Furthermore, a function is called affine if it is both convex and concave.

The epigraph of a convex function f is defined as the set

epi f := {(x, s) ∈ Rn × R : f(x) ≤ s} .

Convex functions are intimately related to convex sets as a function f is convex if and only if
its epigraph epi f is a convex set. As the epigraph of a convex function is a convex set, convex
functions are very well behaved as indicated by the following proposition.

Proposition 2.1 (Continuity of convex functions). A convex function f : Rn → R̄ is continuous
on the interior of its domain int dom f .

Although much of the analysis presented here holds for arbitrary convex sets, some convex sets
will prove to be of particular interest in this dissertation and are discussed here further in more
detail.

Canonical convex sets

Arguable the most primitive convex set is the simplex. Despite its simplicity the canonical
simplex will be of central importance to this dissertation.

Example 2.1 (The canonical simplex). We denote with Sn the canonical simplex in Rn defined
as

Sn := {x ∈ Rn : xi ≥ 0,
∑n
i=1 xi = 1} .

The canonical simplex Sn is a compact convex set.
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The class of convex sets carrying the most historical importance are the polyhedral sets which
are defined through a finite number of linear inequalities.

Example 2.2 (Polyhedral sets). A set C in Rn is said to be a polyhedral set if it can be expressed
as the intersection of k ∈ N linear constraints, i.e.

C =
{
x ∈ Rn : a>i x ≤ bi, ∀i ∈ [1, . . . , k]

}
.

The simplex Sn is a polyhedral set as is clear from its definition.

The sets introduced in the preceding examples can be recognized as convex sets by checking the
condition in Definition 2.2 directly. Direct inspection of the convexity condition in Definition
2.2 can however be quite tedious. Fortunately, convexity can often be established indirectly as
discussed in the following section.

2.2 Operations that preserve convexity

Of interest are those operations which preserve the convexity of convex sets and functions. These
operations are useful to establish the convexity of the various sets introduced throughout this
dissertation without having to resort to the tedious convexity condition in Definition 2.2 directly.
Indeed, an extensive algebra of convex sets and functions exists to verify the convexity of convex
sets. Sets in Rn which can be recognized as convex sets using this convexity algebra are referred
to as disciplined convex sets by Grant et al. [56]. We have listed here those operations most
relevant to this dissertation.

Proposition 2.2 (Intersection). Suppose Ci ⊆ Rn for i ∈ I is an arbitrary collection of convex
sets, then their intersection C :=∩i∈I Ci is a convex set as well.

Proposition 2.3 (Point-wise supremum). Suppose fi : Rn → R̄ for i ∈ I is an arbitrary
collection of convex functions, then their point-wise supremum f(x) := supi∈I fi(x) is a convex
function as well.

Note that Proposition 2.3 can be seen as a corollary of Proposition 2.2 using the fact that
epi f = ∩i∈I epi fi. We remark here that the collection I need not be finite or even countable for
Propositions 2.2 and 2.3 to hold.

Convexity of both sets and functions is preserved under linear, and even more general affine,
transformations.

Proposition 2.4 (Affine transformations of sets). Let C1 ⊆ Rn, C2 ⊆ Rm be convex sets and
L : Rn → Rm an affine transformation. Then both the image set of C1 under L defined as

L(C1) := {y ∈ Rm : ∃x ∈ C1, y = L(x)} ,

and the pre-image set of C2 under L defined as

L−1(C2) := {x ∈ Rn : ∃y ∈ C2, y = L(x)}

are convex sets.

Proposition 2.5 (Affine transformations of functions). Let f : Rm → R̄ be a convex function
and L : Rn → Rm an affine transformation. Then the composition f ◦ L : Rn → R̄ is a convex
function as well.
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Another transformation which preserves convexity is the perspective transformation for which we
refer to Boyd and Vandenberghe [27]. We define the perspective transformation P : Rn+1 → Rn

with domain Rn × R++ as the transformation P (z, t) := z/t. The perspective transformation
scales or normalizes a vector (z, t) ∈ Rn+1 so that its last component is rescaled to one, and then
drops this last component to yield a vector in Rn.

Proposition 2.6 (Perspectives of sets). Let C1 ⊆ Rn+1 and C2 ⊆ Rn be convex sets and
P : Rn+1 → Rn a perspective transformation. Then both the image set of C1 under P and the
pre-image set of C2 under P are convex sets.

Closely related to the perspective transformation for convex sets is the perspective function of
convex functions.

Proposition 2.7 (Perspective functions). Let f : Rn → R̄ be a convex function. Then its cor-
responding perspective function g : Rn+1 → R̄ defined as g(x, t) := tf(x/t) with effective domain

{(x, t) ∈ Rn × R++ : x/t ∈ dom f}

is convex as well.

Notice that Proposition 2.7 can be seen as a corollary of Proposition 2.6 using the fact that epi g
is the pre-image of epi f under a perspective transformation.

2.3 Convex hulls and extreme points

A non-convex set S can be “convexified” by considering its convex hull convS.

Definition 2.3 (Convex hull). The convex hull of a set S ⊆ Rn is defined as the intersection of
all convex sets in Rn containing S.

The convex hull of any set is a convex set because convexity is preserved under arbitrary many
intersection; see Proposition 2.2. The convex hull and convex sets in Rn are closely related
through the notion of convex combination.

Definition 2.4 (Convex combination). We call a point of the form
∑k
i=1 xipi, where

∑k
i=1 pi = 1

and pi ≥ 0 for i ∈ [1, . . . , k], a convex combination of the points x1, . . . , xk. A convex combination∑k
i=1 xipi is called strict if it is a convex combination for which all pi > 0.

It can be shown that a set C ⊆ Rn is convex if and only if it contains all convex combinations
of its own elements. Furthermore, the convex hull of a set S can alternatively, and equivalently,
be defined as

convS :=
⋃
k∈N

{
k∑
i=1

pixi : xi ∈ S, pi ≥ 0, i ∈ [1, . . . , k],

k∑
i=1

pi = 1

}
. (2.1)

as shown by Rockafellar and Wets [109, Theorem 2.27]. Equation (2.1) establishes that the
convex hull of S is the union of all convex combinations of elements in S. A useful result relating
points in convS to points in S is Carathéodory’s Theorem.

Theorem 2.1 (Carathéodory’s Theorem). If a set S in Rn is nonempty, then every point
x ∈ convS can be written as a convex combination of at most n+ 1 points in S.
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(a)

(b)

(c)

Figure 2.2: Closed convex sets with their extreme points shown in red. Observe that the set of
extreme points is not necessarily closed as is the case for the convex set on the left. The convex
set in the middle is not compact, but nevertheless admits a Choquet representation. The set on
the right is polyhedral and hence has only finitely many extreme points.

From Carathéodory’s theorem it must hence follow that k in equation (2.1) can, in fact, be
limited to n+ 1, i.e.

convS =

{
n+1∑
i=1

pixi : xi ∈ S, pi ≥ 0, i ∈ [1, . . . , n+ 1],

n+1∑
i=1

pi = 1

}
.

Definition 2.5 (Extreme points). A point x in a convex set C is said to be an extreme point of
C if it is not representable as a strict convex combination of two distinct points in C.

The set of all extreme points of a convex set C is denoted as exC. In other words, an extreme
point of C is a point that is not an interior point of any line segment contained in C. It is clear
that the inclusion exC ⊆ bdC must hold. The converse is easily shown to be false, and some
counter examples are shown in Figure 2.3.

One of the most important results on convex sets is the Krein-Milman Theorem [69] which takes
on the following form in Rn.

Theorem 2.2 (Krein-Milman). Let C be a compact convex subset of Rn. Then C is the convex
hull of its extreme points exC.

Compactness, although sufficient, is not a necessary condition for a convex set C ⊂ Rn to be the
convex hull of its extreme points, see Figure 2.2(b).

Definition 2.6 (Choquet representation). A convex set C in Rn is said to admit a Choquet
representation if for every x ∈ C there exists a number k ∈ N so that

x =

k∑
i=1

pixi, xi ∈ exC,

with p ∈ Sk.

From Carathéodory’s Theorem, a necessary and sufficient condition for a convex set C in Rn to
admit a Choquet representation is C = conv exC. We emphasize this fact as we will encounter
in the next Chapter convex sets in more general vector spaces for which the previous statement
fails to hold.

We can illustrate the definitions and results stated in this section by revisiting the canonical
simplex Sn introduced in Example 2.1.
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Example 2.3 (Extreme points of Sn.). The extreme points of the canonical simplex Sn are the
canonical vectors in Rn. As all polyhedral sets, the canonical simplex Sn has only finitely many
extreme points. Furthermore, the canonical simplex Sn admits a unique Choquet representation
as

∀x ∈ Sn, ∃!p ∈ Sn : x =

n∑
i=1

eipi.

where ei ∈ exSn is the ith the canonical vector.

2.4 Cones and dual cones

A prominent class of convex sets in this dissertation are the convex cones. Cones are subsets of
Rn which are not necessarily convex although almost all cones encountered in this dissertation
are.

Definition 2.7 (Cone). A set K ⊆ Rn is a cone if 0 ∈ K and tx ∈ K for all x ∈ K and t ≥ 0.

A cone contains rays emanating from the origin, i.e. sets of the particular form {tx : t ≥ 0} for
some x ∈ Rn. We say that the cone K is proper if it does not contain any lines, i.e. a proper
cone satisfies K ∩ −K = {0}. A non-conic set S can be “conified” by considering its conic hull
co S.

Definition 2.8 (Conic hull). The conic hull of a set S ⊆ Rn is defined as the intersection of all
convex conic sets in Rn containing S.

We can relate to any cone K ⊆ Rn a corresponding dual cone K? using a bilinear product
〈·, ·〉 : Rn × Rn → R. Dual cones will plays an important role in developing duality for convex
optimization problems; see Chapters 4 and 5.

Definition 2.9 (Dual cone). The dual cone K? of any set K in Rn is defined as

K? := {y ∈ Rn : 〈y, x〉 ≥ 0, ∀x ∈ K} .

It can immediately be seen from its definition that the dual cone of any set is itself indeed always
a cone in Rn. Furthermore, the dual cone of any set and its conic hull must necessarily coincide,
i.e. K? = (co K)?. A more significant observation is that the dual cone of any, potentially non-
convex, cone K is a closed convex cone. The most important properties concerning dual cones
relevant to this dissertation are stated in the following proposition.

Proposition 2.8 (Properties of dual cones). Given a cone K in Rn, then the following properties
hold:

1. The dual cone K? is a closed convex cone in Rn.

2. If the cone K is closed and convex then K = K??.

3. Given two cones K1 ⊆ K2 then K?
2 ⊆ K?

1 .

From Definition 2.9 it can be remarked that the dual cone K? depends on the bilinear product
〈·, ·〉 considered. Throughout the dissertation, we will take the standard inner product as our
bilinear product, i.e. 〈x, y〉 :=x>y. In Figure 2.3 we have depicted a cone and dual cone pair in
R3 for the standard inner product 〈a, b〉 = a>b.

In the remainder of this section we consider cones which are of particular interest in subsequent
chapters of this dissertation.
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Figure 2.3: A convex cone K =
{
x ∈ R3 : ‖(x1, x2)‖1 ≤ x3

}
and its dual K? ={

x ∈ R3 : ‖(x1, x2)‖∞ ≤ x3

}
for the standard inner product 〈a, b〉 = a>b.

Example 2.4 (Positive orthant). The positive orthant Rn
+ defined as the set of vectors in Rn

which are component-wise positive, i.e.

Rn
+ = {x ∈ Rn : xi ≥ 0, ∀i ∈ [1, . . . , n]} ,

is a proper convex cone.

Example 2.5 (Norm cones). Any norm ‖·‖ : Rn → R is a convex function and its epigraph a
proper convex cone. For the p-norms with 1 ≤ p ≤ ∞, we define the norm cones Lnp as follows

Lnp := epi ‖·‖p =
{

(x, s) ∈ Rn × R : ‖x‖p ≤ s
}
.

The norm cone Ln2 is sometimes referred to as the Lorentz cone. The cones Lnp and Lnq are dual
pairs whenever 1/p+ 1/q = 1. In Figure 2.3 the cone L2

1 and its dual L2
∞ are depicted.

Example 2.6 (The positive definite cone). The set of symmetric positive definite matrices in
Rn×n {

Q ∈ Sn : x>Qx ≥ 0, ∀x ∈ Rn
}

is denoted as the positive semidefinite cone Sn+.

Lastly, a cone K is referred to as self-dual if it coincides with its dual cone, i.e. we have that
K = K?. The positive orthant Rn

+, the Lorentz cone Ln2 and the semi-definite cone Sn+ are
all known to be self dual cones. Self dual cones play a prominent role in the development of
computational methods for convex optimization problems as discussed in Chapter 4.
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In this chapter we try to communicate the fact that the concepts introduced in Chapter 2
concerning convex sets in Rn are relevant to many structures encountered in probability theory
as well.

However the convex structures encountered in this chapter will reside in vector spaces more
general then Rn. Many of the results stated in Chapter 2 can be extended directly to more
general vector spaces; see for instance Zalinescu [140]. We chose to stick to a finite-dimensional
analysis so as not to cloud the picture with the many complications that a treatment in general
vector spaces inevitably would bring. Instead, we treat here convex sets in measure spaces on
Rn and use the finite dimensional case discussed in Chapter 2 as a useful metaphor. Many
of the results stated here can indeed be recognized as generalizations or direct counterparts of
statements made in Chapter 2. Nevertheless, great care must be taken when working in vector
spaces more general than Rn. We refer to Barvinok [5, Chapter 4] for an excellent discussion on
what can go wrong when working in infinitely dimensional vector spaces.

Readers who are unacquainted with measure spaces and probability theory are referred to Ap-
pendix A.1 in which we discuss the measure space (Rn,B(Rn)) and random vectors valued in Rn

to the extent relevant to this work. The standard reference by Billengsley [22] can be consulted
for a more comprehensive treatment of general measure spaces and probability theory.

3.1 Convexity in measure spaces

As mentioned earlier, one might generalize the convex analysis of Chapter 2 almost directly to
more general vector spaces as for instance done by Zalinescu [140] or Barvinok [5]. In doing
so convex sets are required to be subsets of a locally convex topological vector space instead
of Rn. The more general vector space should be topological as to have appropriately defined
open and closed sets. Local convexity of the more general vector space ensures a comprehensive
duality theory. In this dissertation we will mainly deal with probabilistic problems on Rn.
The aforementioned generalization is thus wholly unnecessary for our purposes and would yield
certain mathematical difficulties which could complicate the exposition considerably.

In the sequel therefore we will consider exclusively the measure space (Rn,B(Rn)) and the vector
space of signed measures thereupon. The reader who is not familiar with measure spaces and
signed measures is referred to Appendix A.1 for a terse, but self-contained, treatment of both
concepts. Denote with En the vector space of finite signed measures on Rn. It is indeed a vector
space for the vector addition and scalar multiplication defined in the natural way. We further
assume that En is endowed with the topology of weak convergence of measures.

25
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Definition 3.1 (Convex set). A subset C of En is convex if it includes for every pair of measures
x, y ∈ C the line segment that joins them, i.e.

∀x, y ∈ C : tx + (1− t)y ∈ C, for all t ∈ [0, 1].

Previous definition extends its counterpart 2.1 in Chapter 2 concerning convex sets residing in
Rn in a natural way. Some convex sets will proof to be of particular interest in this dissertation
and are discussed here further in more detail. We let E+

n represent the convex cone of all positive
measures in En. A measure m is denoted as positive if it assigns a positive measure to all
measurable sets. We say m ≥ 0 using shorthand notation.

Definition 3.2 (Probability simplex). The set of all probability distributions in En, i.e. all
positive measures P for which P(Rn) = 1, shall be denoted as Pn. It is conventional to refer to
the convex set Pn as the standard probability simplex on Rn.

It will proof convenient to refer to a subset of the probability simplex Pn as an ambiguity set. Any
ambiguity set hence consists of measures in En, but not every subset of En is an ambiguity set.
Furthermore, we will use P(B) to refer to the convex set of probability distributions supported
on a measurable subset B of Rn, i.e.

P(B) := {m ∈ En : m ≥ 0, m(B) = 1} .

Using previous notation it can be seen that Pn = P(Rn). In what follows we discuss various types
of convex sets which will be used frequently throughout the dissertation. Particular emphasis
will be put on convex ambiguity sets as they form the backbone of this dissertation.

Hyperplanes and moment sets

We say that a subset H of the measure space En is a hyperplane of codimension k if it is in the
canonical form

H :=

{
m ∈ En :

∫
gi(x) m(dx) = mi, ∀i ∈ [0, . . . , k − 1]

}
, (3.1)

where the moment functions g0, . . . , gk−1 are real valued measurable functions on Rn. The vector
m ∈ Rk will be referred to as the moment vector. The subset H is an affine subset of the measure
space En. We remark that the moment set C can be interpreted as a generalized hyperplane in
Pn. Likewise, a subset C of the standard probability simplex Pn is a moment set if it is the
intersection of a hyperplane with the standard probability simplex, i.e.

C :=

{
P ∈ E+

n :

∫
gi(x) P(dx) = mi, ∀i ∈ [0, . . . , k − 1]

}
, (3.2)

where it is assumed that g0 = 1 and m0 = 1 as to guarantee that the moment set C contains
exclusively probability distributions P. The moment set C is thus a convex subset of the standard
probability simplex Pn as can be seen directly from its definition. We remark that the moment
set C can be interpreted as a generalized polytope in Pn.

Unlike hyperplanes in Rn, the affine set H in (3.1) is not necessarily a closed set. A similar
remark can be made concerning the generalized polytope C in (3.2) of probability distributions
in Pn. When the moment functions gi are bounded and continuous the related hyperplane H
and moment set C are closed as seen immediately from Definition A.4. However, in this thesis
we shall be primarily interested in moment functions which are neither bounded nor continuous
and thus both sets H and C are not required to be closed.

The classical moment problem discussed by for instance Landau [75] occupies itself with deter-
mining whether the ambiguity set C is non-empty for a given moment function g : Rn → Rk
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and moment vector m. Most of the literature on moment problems is concerned with univariate
problems and thus focusses on the existence of probability distributions with specific moments
on the real line. Historically, the Hamburger moment problem with polynomial power moment
functions gi(x) = xi has attracted the most attention. A brief history of the classical moment
problem is given in Section 3.3. Nevertheless, there is a significant body of work that concerns
itself with the multivariate setting n 6= 1, see for instance Karlin and Studden [65], Krein and
Nudelmann [70] or Gantmacher and Krein [52] plus the various references therein.

Moment sets as defined in (3.2) are immediately seen as convex sets as they are the finite
intersection of k affine sets in the standard probability simplex Pn. On the other hand various well
known and common sets of probability distributions are convex as well, but are not immediately
recognized to be so. We now introduce the concepts of unimodal and monotone distributions
and indicate that both concepts lead in fact to convex sets.

Unimodal distributions

A common structural property enjoyed by many probability distributions encountered in practi-
cal situations is unimodality. Informally, a continuous probability distribution is unimodal if it
has a centre c, referred to as the mode, such that its density function is non-increasing with in-
creasing distance from the mode. Note that most probability distributions commonly studied in
probability theory are unimodal. A huge variety of named and popular probability distributions
are indeed unimodal. Even when sticking to the first few letters of the alphabet, we have that
the Bates, Beta (α, β > 1), Birnbaum-Saunders, Burr, Cauchy, Chi and Chi-squared probability
distributions are all unimodal. So, too, are all stable probability distributions, which are ubiqui-
tous in statistics as they represent the attractors for properly normed sums of independent and
identically distributed random variables.

Definition 3.3 (Star-shaped sets). A set B ⊆ Rn is said to be star-shaped with center 0 if for
every x ∈ B the line segment [0, x] is a subset of B.

Definition 3.4 (Star unimodal distributions [44]). A probability distribution P ∈ Pn is called
star-unimodal if it belongs to the weak closure of the convex hull of all uniform probability distri-
butions on star-shaped sets with center 0. The set of all star-unimodal distributions is denoted
as Un.

Definition 3.4 assumes without loss of generality that the mode of a star-unimodal distribution is
located at the origin, which can always be enforced by applying a suitable coordinate translation.
We remark that for multivariate probability distributions there exist several other notions of
unimodality such as linear, convex or log-concave unimodality etc. While not equivalent for
n > 1, all customary notions of unimodality, including the star unimodality of Definition 3.4,
coincide with Definition 1.1 in the univariate case; see for instance Dharmadhikari and Joag-Dev
[44]. We also remark that the definition of star-unimodality is in line with our intuitive idea of
unimodality when P has a continuous density function f . In this case Dharmadhikari and Joag-
Dev [44] prove that P is star-unimodal if and only if f(tx) is non-increasing in t ∈ (0,∞) for all
x 6= 0, which means that the density function is non-increasing along any ray emanating from the
origin. Definition 3.4 extends this intuitive idea to a broader class of probability distributions
that may have no density functions.

We remark that the definition of star unimodality 3.4 is quite rigid as it provides no indication
on how unimodal a probability distribution exactly is. In this dissertation we will consider the
slightly more flexible notion of α-unimodality first introduced by Olshen and Savage [94]. An
excellent treatment of the theory concerning α-unimodal distributions and their application in a
wide range of problems is given by Dharmadhikari and Joag-Dev [44].
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Figure 3.1: Univariate α-unimodal distributions and their density functions. We remark that in
case α = n, the notion of α-unimodality coincides with the intuitive notion of star unimodality
where a probability distribution is unimodal if its density function is decreasing or at worst
non-increasing.

Definition 3.5 (α-Unimodal distributions [94, 44]). For any fixed α ∈ R+, a probability distri-
bution P ∈ Pn is called α-unimodal with mode 0 if tαP(B/t) is non-decreasing in t ∈ R++ for
every measurable set B. The set of all α-unimodal distributions with mode 0 is denoted as Uα.

To develop an intuitive understanding of Definition 3.5, it is instructive to study again the special
case of continuous probability distributions. We have that a continuous probability distribution
P ∈ Pn with a continuous density function f(x) is α-unimodal about 0 iff tn−αf(tx) is non-
increasing in t ∈ R++ for every fixed x 6= 0. This implies that if an α-unimodal distribution
on Rn has a continuous density function f , then f(x) does not grow faster than ‖x‖α−n2 . In
particular, for α equal to the dimension n the density is non-increasing along rays emanating
from the origin. In this case, the notion of α-unimodality coincides with the notion of star
unimodality defined in 3.4.

The density function of a continuous α-unimodal distribution may in fact increase along rays,
but the rate of increase is controlled by the parameter α. Hence, the parameter α can be seen
as a characterization of how unimodal a probability distribution is; see also Figure 3.1.

The sets Uα enjoy the nesting property Uα ⊆ Uβ whenever α ≤ β. It can be shown that the
ambiguity sets Uα are closed convex sets and that the closure of U∞ :=∪α≥0 Uα coincides with
the standard probability simplex Pn. Hence although Uα ⊂ Pn for all α, the standard simplex
Pn is included in the limit of the hierarchy of α-unimodal ambiguity sets Uα for the unimodality
parameter α tending to infinity. At the other end of the spectrum, we have that U0 = {δ0}
reduces to a singleton containing exclusively the Dirac distribution in the origin. The Dirac
distribution in the origin can thus be regarded as the most unimodal distribution. On the other
hand, it can be seen that δx /∈ Uα for any α if x 6= 0. We can thus claim that a Dirac distribution
at a point distinct from the mode is completely not unimodal. Hence as the closure of U∞
coincides with the standard probability simplex Pn the Dirac distributions δx must be boundary
elements of Pn. The present discussion is visually illustrated in Figure 3.2.

We remark here that it is not so clear from Definition 3.5 that the sets of α-unimodal distribu-
tions Uα are convex. In this chapter we will argue that in fact the set of star and α-unimodal
distributions are convex sets admitting a so called Choquet representation; see Section 3.2.

Monotone distributions

A property which is closely related to unimodality is monotonicity. Where unimodality requires
intuitively that the density function of a continuous probability distribution should be decreasing
with increasing distance from its mode, monotonicity additionally requires that this decrease is
smooth; see Figure 3.3. Citing Pestana and Mendonça [99], monotonicity is indeed often used in
mathematics to express the vague notion of smoothness of a probability distribution. Similar to
unimodality, monotonicity is a reoccurring property of probability distributions in both theory
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U∞

Un

Uα<n

δ0

δ 6=0

Figure 3.2: The hierarchy of the ambiguity sets Uα. The Dirac distribution δ0 is contained in Uα
for all α. The set Un consists of all star unimodal distributions. The sets Uα are closed convex
sets in Pn. The closure of the set U∞ coincides with the standard probability simplex Pn. All
Dirac distributions δx are boundary elements of the standard probability simplex and, with the
exception of δ0, are not in any set Uα.

and practice. Lifetime distributions, hazard rates and network performance are all commonly
modeled using monotone distributions as done for instance in Jewell [64], Harris and Singpurwalla
[60] and Feldmann and Whitt [49], respectively. Furthermore, monotonicity has deep connections
to infinite divisibility as expressed in the celebrated Lévy-Kinchine transformation as outlined in
Barndorff-Nielsen et al. [4]. In the remainder we adopt the standard definition of monotonicity
of probability distributions found in for instance Pestana and Mendonça [99]. The definition of
a monotone distribution is inspired on the notion of monotone functions as originally discussed
by Lévy [77].

Definition 3.6 (γ-monotone functions). A univariate function f : R+ → R is denoted as γ-
monotone if it is γ times differentiable and

(−1)kf (k)(t) ≥ 0, ∀t > 0, k ∈ {1, . . . , γ}.

Definition 3.7 (γ-monotone distributions [13]). For any 1 ≤ γ ∈ N, a probability distribution
P is called γ-monotone with mode 0 if tγ+n−1P(B/t) is γ-monotone in t ∈ (0,∞) for every
measurable set B. The set of all γ-monotone distributions with mode 0 is denoted as Mγ .

The class of γ-monotone distributions defined here can be identified with the class of (n, γ)-
unimodal distributions discussed by Bertin et al. [13, Theorem 3.1.14]. Again it is instructive to
consider the case of continuous probability distributions. We have that a continuous probability
distribution P is γ-monotone if its continuous density function f(tξ) is γ-monotone in t ∈ [0,∞)
for every fixed ξ. This means that if a γ-monotone distribution P admits a continuous density
f , then f is γ-monotone along rays emanating from the mode. Hence γ can be seen as a
characterization of how monotone a probability distribution is.

The ambiguity sets Mγ enjoy the nesting property Mδ ⊆ Mγ whenever γ ≤ δ. It can be seen
that the sets Mγ are convex and closed subsets of Pn. Historically, a probability distribution
in M∞ :=∩γ≥1Mγ has been denoted as a completely monotone distribution by Bernstein [12];
see also Figure 3.4. We remark here that M∞ is a closed and convex subset of Pn as it is the
intersection of a collection of closed sets. At the other end of the extreme, we have that the set
of all 1-monotone distributions reduces to the set of star unimodal distributions Un.
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Figure 3.3: Comparison between unimodality and monotonicity. Where unimodality requires
that the density function of a continuous probability distribution should be non-increasing with
increasing distance from the mode, monotonicity additionally requires that the density function
is smooth.

Un = M1

Mγ>1

M∞

δ0

Figure 3.4: The hierarchy of the ambiguity setsMγ in Un. The ambiguity setM1 coincides with
the set of all star unimodal distributions Un. The Bernstein [12] or completely monotone distri-
butions are included in the limit of the hierarchy for γ tending to infinity as M∞ :=∩γ≥1Mγ .

We remark here that it is not so clear from Definition 3.7 that the sets of γ-monotone distributions
Mγ are convex. In this chapter we will argue that, in fact, the set completely and γ-monotone
distributions are convex sets admitting a so called Choquet representation; see Section 3.2.

Jensen’s inequality

The first part of this section dealt mainly with convex sets of probability distributions in the
vector space of measures En. In the last part of the section we will discuss integration and
expectation with respect to probability distributions. Emphasis is put on the intimate relation
between integration and convex functions known as Jensen’s inequality.

Integration and expectation are well known to represent linear functionals of probability distribu-
tions and random variables, respectively, having deep links with convexity. A rigorous definition
of the integral of a function or the expectation of a random variable requires a certain familiarity
with measure theory. The unacquainted reader is referred to the standard reference by Billings-
ley [22] for a comprehensive treatment of the topic. For the sake of the exposition we intend to
keep the measure theoretical technicalities to a minimum here.

Given a measurable function f : Rn → R and probability distribution P, we denote the integral
of f with respect to P as ∫

f(x) P(dx) ∈ R.
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The function f is denoted as integrable with respect to P if the integral of |f | with respect to
P is well defined and finite. It can be remarked that integration is well known to be a linear
operation as for any two integrable functions f1 and f2 we have the relation∫

f1(x) + f2(x) P(dx) =

∫
f1(x) P(dx) +

∫
f2(x) P(dx).

In fact we will discuss in Section 3.3 how a comprehensive duality theory between functions
and probability distributions can be developed using the bilinear pairing 〈f,P〉 :=

∫
f(x) P(dx)

defined through integration.

The expectation of a random variable ξ valued in Rn can be defined with the help of integration
as

EP[ξ] :=

∫
xP(dx),

where P is the distribution of ξ. It can be remarked that the expectation EP[ξ] of a random
variable ξ does not depend on the random variable directly but rather on its distribution. The
expectation of the random variable f(ξ) with f a measurable function is well known to be given
as the integral EP[f(ξ)] =

∫
f(x) P(dx). A very important connection between integration and

convex functions is expressed in Jensen’s inequality.

Theorem 3.1 (Jensen’s inequality). Given a convex function f and a random variable ξ dis-
tributed as P then the following relation always holds

f (EP[ξ]) ≤ EP[f (ξ)] .

Jensen’s inequality can be seen as a generalization of the secant condition in Definition 2.1 for
convex functions. By virtue of its generality Jensen’s inequality will appear throughout the
remainder of this work.

3.2 Extreme point representations

This section mirrors the corresponding discussion held in Section 2.3 concerning extreme points
of convex sets in Rn. There are however some important differences that need to be addressed
when working in the more general vector space En of signed measures on (Rn,B(Rn)). Extreme
points of convex sets in more general vector spaces are characterized in the same fashion as in
Definition 2.5.

Definition 3.8 (Extreme points). A measure m in a convex set C in En is said to be an extreme
measure of C if m is not representable as a strict convex combination of two distinct measures in
C.

The extreme measures of a convex set C are those measures which can not be represented as
the convex combination of other measures in C. We would like to recover a direct counterpart
of Theorem 2.2 (Krein-Milman) and the closely related Choquet representation of convex sets.
There are however a number of caveats present in vector spaces more general than Rn which
prevent a verbatim restatement of Theorem 2.2 in the current setting. The following theorem
states the classic counterpart to Theorem 2.2 in general topological vector spaces.

Theorem 3.2 (Krein-Milman). Let C be a compact convex subset of En. Then C is the closed
convex hull of ex C.

Compared to Theorem 2.2, the Krein-Milman Theorem 3.2 must be adapted slightly to include
the closure of the convex hull of the extreme measures of C. To show that this closure is indeed
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necessary, let us consider the probability simplex P(B) on a compact set B in Rn. The set P(B)
is a compact subset of En as can be established with the help of Prokhorov’s Theorem A.1. The
set of all Dirac distributions supported on a measurable set B is denoted as D(B). It can be seen
that the Dirac distributions δx with x ∈ B are all extreme in P(B). The following proposition
considering the extreme points of P(B) is well known.

Definition 3.9 (The Dirac measure δx). We define the Dirac distribution δx : B(Rn) → [0, 1]
as the probability distribution which assigns one to any measurable set B containing x ∈ Rn and
zero otherwise.

Proposition 3.1 (Phelps [101]). The extreme points of P(B) are given as

exP(B) = {δx : x ∈ B} = D(B)

for any measurable set B.

The convex hull of all Dirac distributions D(B) is nevertheless not the standard probability
simplex P(B). Indeed, the convex hull of D(B) is the set of all probability distributions in P(B)
having a countable support on B which we denote as F(B). It is not difficult to show that F(B)
is dense in P(B) under the weak topology. We thus obtain that the standard probability simplex
is the closed convex hull of its extreme distributions, i.e. P(B) = cl convD(B), and that the
closure in Theorem 3.2 is necessary.

Compactness, although sufficient, is not a necessary condition for a convex set C to be the closed
convex hull of its extreme measures. Indeed, while Pn is not compact it still is the closed convex
hull of its extreme distributions D(Rn).

It remains to develop a counterpart to the Choquet representation discussed for convex sets in
Rn in Definition 2.6. In order to arrive at a natural counterpart of Choquet representable sets
in En, we must extend Definition 2.4 of convex combinations to include a continuum of points.

Definition 3.10 (Mixing combination). We call a point
∫

x m(dx), with mixing distribution
m : B(S)→ [0, 1], a mixing combination of the set S.

It can be shown that all mixing combinations of a set S are elements of its closed convex hull
cl convS. Furthermore, the mixing hull of a set S can be defined as

mixS :=

{∫
x m(dx) : m : B(En)→ [0, 1], m(S) = 1

}
. (3.3)

Using the notion of mixing combination, we can define in a similar fashion as in Definition 2.6
Choquet representable sets in En.

Definition 3.11 (Choquet representation). A convex set C in En is said to admit a Choquet
representation if for every measure P ∈ C there exists a mixing distribution m : B(C) → [0, 1]
supported on ex C such that

P =

∫
x m(dx) . (3.4)

We remark here that the mixing distribution m in equation (3.3) and Definition 3.11 is not a
measure on Rn. Rather, the probability distribution m is an element of the vector space of
measures on the space of measures En. Unfortunately as shown by Bishop and De Leeuw [24],
the extreme measures of a set of measures C need not form a measurable set. Thus, the statement
that the probability distribution m is supported by the extreme points of C in Definition 3.11 is
in that case meaningless under our present definitions.
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The existence of a Choquet representation for a convex set C in a general topological vector space
is the topic of Choquet theory. A standard reference on Choquet theory are the lecture notes of
Phelps [101]. It can be shown that under the relatively mild assumption that ex C is metrizable,
convex and compact such Choquet representation is always well posed and exists. In this work
however, we will take the simplifying assumption that the set of extreme measures ex C admits
a spatial parametrization and circumvent many technicalities by doing so.

Definition 3.12 (Spatial parameterization [103]). We say that the set of extreme measures of
a convex set C admits a spatial parameterization if

ex C = {ex : x ∈ X} ,

where x ∈ R` parameterizes the extreme measures of C and ranges over a closed convex set
X ⊆ R`, while the mapping x 7→ ex(B) is a measurable function for any fixed measurable set B.

The spatial parametrization has as a main benefit that it eliminates the need of having to deal
with a mixing distribution m in a space more general then En as discussed in the previous
paragraph. Indeed using the spatial parametrization, the integral (3.4) can be written as

P =

∫
x m(dx) =

∫
ex m̃(dx),

with m̃ a mixing distribution in P`(X). As we only deal with spatial parametrizable extreme
point sets ex C in the remainder of this work, we do not have to deal with the more general
mixing distribution m but deal with the mixing distribution m̃ ∈ P`(X) instead.

The next theorem unveils a deep connection between Choquet representations and the set of
extreme distributions. We will indicate that a Choquet representation can be used to argue that
a certain set ∂K of distributions contains all extreme distributions of a given set K.

Theorem 3.3 (Extreme representations). Suppose we have a set of probability distributions K in
En and a set ∂K = {ex : x ∈ Rn} ⊆ K that satisfies the condition mix ∂K ⊇ K, then ∂K ⊇ exK.

Proof. For the sake of contradiction, assume that there exists a probability distribution P ∈
exK \ ∂K. The probability distribution P is hence extreme in the set K, but not contained in
the set ∂K. From the premise mix ∂K ⊇ K it follows that there exists a probability distribution
m such that

P =

∫
ex m(dx). (3.5)

Observe that the condition P /∈ ∂K implies that the probability distribution m /∈ D(Rn) can
not be a Dirac distribution. Therefore there exists a measurable set B such that m(B) /∈ {0, 1}.
Consider now the restricted distributions m[B] and m[Rn \ B] defined through m[X] : B 7→
m(B ∩X)/m(X). It is clear that we have the following chain of equalities from equation (3.5)

P =

∫
B

ex m(dx) +

∫
Rn\B

ex m(dx)

= m(B)

∫
B

ex
m(B)

m(dx) + m(Rn \B)

∫
Rn\B

ex
m(Rn \B)

m(dx)

= m(B)

∫
ex m[B](dx) + (1− m(B))

∫
ex m[Rn \B](dx)

which contradicts the fact that P is extreme in K. Indeed, the preceding equality reads that P is
the strict convex combination of two distinct probability distributions m[B] and m[Rn \B]. We
must thus conclude that exK ⊆ ∂K.
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The previous theorem thus guarantees that if a set of distributions K can be represented as the
mixing combination of another set ∂K, then the set of distributions ∂K necessarily contains all
the extreme points of the set K. The reverse statement does obviously not hold.

We will show in what remains of this section that both the set of all α-unimodal distributions
Uα and the set of all γ-monotone distributions Mγ admit Choquet representations despite not
being compact. We first discuss what the extreme distributions of Uα andMγ look like. In order
to do so we start with defining radial probability distributions.

Definition 3.13 (Radial probability distributions). We will refer to a probability distribu-
tion P supported on a ray emanating from the origin as a radial probability distribution, i.e.
P({λx : λ ≥ 0}) = 1 for some x ∈ Rn.

Where the Dirac distributions D(Rn) were the extreme distributions of the standard probability
simplex Pn, both sets Uα andMγ have (distinct) sets of radial probability distributions as their
extreme distributions. The fact that both sets of structured probability distributions have known
extreme distributions will be instrumental in Chapters 6 and 7. In the last part of this section
we indicate that both the set of α-unimodal and γ-monotone distributions can be put on the
same footing and even generalized further.

Unimodal distributions

For any α > 0 and x ∈ Rn we denote by uαx the radial distribution supported on the line segment
[0, x] in Rn with the property that

uαx ([0, tx]) = α ·
∫ t

0

λα−1 dλ ∀t ∈ [0, 1]. (3.6)

The next proposition establishes that the probability distributions uαx are extreme in Uα.

Proposition 3.2 (Extreme distributions of Uα [44]). The set of all α-unimodal distributions Uα
has as extreme distributions exUα = {uαx : x ∈ Rn} and admits a Choquet representation of the
form

∀P ∈ Uα, ∃!m ∈ Pn : P =

∫
uαx m(dx).

One can confirm that the radial probability distribution uαx is an element of Uα by direct appli-
cation of Definition 3.5. Indeed, we have

tαuαx(B/t) = tα
∫

Rn
1B(yt) uαx(dy)

= tα
∫ 1

0

1B(xtλ)αλα−1dλ

=

∫ t

0

1B(xλ)αλα−1dλ ,

and the last expression is manifestly non-decreasing in t ∈ R++. Alternatively, one can express
the radial probability distributions uαx as weak limits of continuous probability distributions that
are readily identified as members of Uα. As Uα is closed under weak convergence, one can again
conclude that uαx ∈ Uα. For example, denote by Pθ the uniform probability distribution on the
intersection of the closed ball B(‖x‖2) = {y ∈ Rn : ‖y‖2 ≤ ‖x‖2} and the second-order cone

K(x, θ) =

{
y ∈ Rn :

x>y
‖x‖ ≤ tan(θ)

∥∥∥∥(I− xx>

‖x‖2
)
y

∥∥∥∥}
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Figure 3.5: The radial measure unx ∈ Un depicted on the right can be seen as the limit of uniform
probability distributions on the wedge K(x, θ) for θ tending to zero. Remark that unx is not a
continuous probability distribution and hence admits no density function on Rn. The density of
unx depicted is with respect to the Lebesque measure on the affine hull of its support; see also
Example A.1.

with principal axis x and opening angle θ ∈ (0, π/2). As both B(‖x‖2) and K(x, θ) are star-
shaped, Pθ is star-unimodal. Using standard arguments, one can show that Pθ converges weakly
to unx as θ tends to 0. This confirms the (maybe surprising) result that unx is star-unimodal as
Un is closed. The weak convergence of Pθ to unx for θ tending to zero is depicted in Figure 3.5.

Monotone distributions

For any natural number γ ≥ 1 and x ∈ Rn we denote by mγx the unique radial distribution
supported on the line segment [0, x] ⊂ Rn with the property that

mγx ([0, tx]) =
1

B(n, γ)
·
∫ t

0

λn−1 · (1− λ)γ−1 dλ ∀t ∈ [0, 1], (3.7)

using the beta function or Euler integral of the first kind B : R2
++ → R++. The next proposition

establishes that the probability distributions mγx are extreme in Mγ .

Proposition 3.3 (Extreme distributions of Mγ [13]). The set of all γ-monotone distributions
Mγ has as extreme distributions exMγ = {mγx : x ∈ Rn} and admits a Choquet representation
of the form

∀P ∈Mγ , ∃!m ∈ Pn : P =

∫
mγx m(dx).

It is not very hard to verify that the sequence mγxγ of radial monotone distributions converges
weakly, when γ tends to infinity, to a radial probability distribution m∞x supported on the ray
{λx : λ ∈ R+} with the property

m∞x ([0, tx]) =
1

Γ(n)

∫ t

0

λn−1e−λ dλ ∀t ∈ [0,∞),

using the gamma function or Euler integral of the second kind Γ : R→ R. Note that for positive
integers, the gamma function reduces to Γ(n) = (n− 1)!.

Proposition 3.4 (Bernstein’s theorem). The set of all completely monotone distributions M∞
has as extreme distributions exM∞ = {m∞x : x ∈ Rn} and admits a Choquet representation of
the form

∀P ∈M∞, ∃!m ∈ Pn : P =

∫
m∞x m(dx).

In view of the Proposition 3.4, the set of completely monotone distributions is included as the
limit of the hierarchy of γ-monotone ambiguity sets Mγ for γ tending to infinity.
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f

R1

(a) Generating distribution T

x

(b) Radial distributions Tx

Figure 3.6: Visual illustration of Definition 3.14. Consider the univariate distribution T which
generates a family of distributions {Tx : x ∈ Rn} as illustrated in the two figures above. The
univariate distribution T dictates the shape of Tx along any direction x in Rn. A convex set
K is a Choquet star simplex if there exists a distribution T such that all extreme distributions
exK = {Tx : x ∈ Rn} are generated by T.

Choquet star simplices

Propositions 3.2 and 3.3 indicate that both the set of α-unimodal distributions Uα and γ-
monotone distributions Mγ admit unique Choquet representations in terms of radial extreme
distributions. As the Choquet representation is unique in either case, the sets Uα and Mγ can
thus be regarded as simplicial sets in En. Indeed, a characteristic property of simplices in Rn is
that any element can be expressed as a unique convex combination of its (finitely many) extreme
points.

It will proof advantageous to the exposition of this dissertation to put the sets of α-unimodal
and γ-monotone distributions on equal footing via the notion of Choquet star representable set.

Definition 3.14 (Choquet star representation). Suppose that T is a univariate measure on R+,
and define a derived family of radial measures Tx on Rn such that, for every x ∈ Rn and every
set B,

Tx(C) = T({λ ≥ 0 : λx ∈ B}).
We say that the a closed convex set of measures K admits a Choquet star representation if it
admits a unique Choquet representation over

exK = {Tx : ∀x ∈ Rn} . (3.8)

In this case we say that K is generated by the univariate measure T.

A Choquet star simplex K is hence a convex set of measures for which the extreme measures
exK = {Tx : x ∈ Rn} are radially scaled versions of a unique generating measure T on R+.
In Figure 3.6 the previous statement is visually illustrated. We will now make Definition 3.14
concrete by showing that many convex sets encountered up to this point are, in fact, Choquet
star simplices. The results are condensed in Table 3.1.

Example 3.1 (The standard probability simplex Pn). As stated in Proposition 3.1, the ex-
treme distributions of the standard probability simplex are the Dirac distributions, i.e. exPn =
{δx : x ∈ Rn}. The set of all Dirac distributions is recognized to be generated by the univariate
Dirac distribution at unity δ1. The standard probability simplex Pn is thus a Choquet star simplex
generated by T = δ1.
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Choquet simplex K Generator T
∫∞

0
tT(dt)

∫∞
0
t2 T(dt) supp T ⊆ R+

Standard simplex Pn δ1 1 1 {1}
α-Unimodal Uα uα1

α
α+1

α
α+2 [0, 1]

γ-Monotone Mγ mγ1
n

n+γ
n

n+γ
n+1

n+γ+1 [0, 1]

Completely monotone M∞ m∞1 n! (n+ 1)! R+

Table 3.1: The generating distributions T and their properties for the Choquet simplices most
relevant to this dissertation.

Example 3.2 (The α-unimodal distributions Uα). The extreme distributions of the set of all
α-unimodal distributions exUα = {uαx : x ∈ Rn} are given in Proposition 3.2. The set of all
radial unimodal distributions uαx is recognized to be generated by the univariate extreme radial
distribution

uα1 (B) = α

∫
B

tα−1dt, ∀B ⊆ [0, 1].

The set of all α-unimodal distributions Uα is a Choquet star simplex generated by T = uα1 .

Example 3.3 (The γ-monotone distributions Mγ). The extreme distributions of the set of all
γ-monotone distributions exMγ = {mγx : x ∈ Rn} are given in Proposition 3.3. The set of all
radial monotone distributions mγx is recognized to be generated by the univariate extreme radial
distribution

mγ1(B) =
1

B(n, γ)

∫
B

tn−1(1− t)γ−1dt, ∀B ⊆ [0, 1].

The set of all γ-monotone distributions Mγ is a Choquet star simplex generated by T = mγ1 .

Example 3.4 (The completely monotone distributions M∞). The extreme distributions of the
set of all completely monotone distributions exMγ = {m∞x : x ∈ Rn} are given in Proposition
3.4. The set of all radial completely monotone distributions m∞x is recognized to be generated by
the univariate extreme radial distribution

m∞1 (B) =
1

Γ(n)

∫
B

tn−1e−t dt, ∀B ⊆ R+.

The set of all completely monotone distributions M∞ is a Choquet star simplex generated by
T = m∞1 .

From Definition 3.14 it is evident that if a convex set C admits a Choquet star representation,
then it is isomorphic to the standard probability simplex Pn. We might therefore also refer
to a Choquet star representable set as a Choquet star simplex. The power of Choquet star
representable sets will become clear already in subsequent section. Choquet star representable
sets are of particular importance when we will discuss optimization over convex ambiguity sets.

In what remains of this section, we will indicate that Choquet star simplices are preserved under
linear projection. Define the projection operator PA as the function which maps a probability
distribution P in Pn to a probability distribution Q in Pm in accordance to

Q(B) = P({x ∈ Rn : Ax ∈ B}), ∀B ∈ B(Rm)

where A ∈ Rm×n. The projection operator PA is best understood by considering its relation with
the projection of random variables. Indeed if a random variable ξ valued in Rn is distributed as
P then its projection Aξ will be distributed as PA(P). Slightly abusing notation, we will further
denote with PA(C) the projection of an ambiguity set C, i.e.

PA(C) = {Q ∈ Pm : ∃P ∈ C, Q = PA(P)} .
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The following theorem indicates that Choquet star simplices are preserved under linear projection
and will find its application in Chapters 8 and 9.

Theorem 3.4 (Projection theorem). Consider two Choquet star simplices generated by the same
generating measure T, i.e. Kn = mix {Tx : x ∈ Rn} and Km = mix {Tx : x ∈ Rm}, then we
have that

Km = PA(Kn)

for any full row rank matrix A in Rm×n.

Proof. We need only consider the extreme points exKn = {Tx : x ∈ Rn} as the projection
operator is linear and thus PA(Kn) = mixPA(exKn). For any set B we have PA(Tx)(B) =
Tx({y ∈ Rn : Ay ∈ B}) = T({λ ≥ 0 : Aλx ∈ B}) = TAx(B). Hence, PA(Tx) = TAx for all
x ∈ Rn and thus PA({Tx : x ∈ Rn}) = {TAx : x ∈ Rn} = {Tx : x ∈ Rm}, where the last
equality requires A to be of full row rank.

3.3 Moment problems

In 1884 Stieltjes published his now classical paper [122] containing a wealth of new ideas. In
this paper Stieltjes introduced what is now known as the problem of moments already briefly
referred to in Section 3.1. In its most classical form the problem of moments can be stated as
finding a probability distribution P element of the moment set

C(m) :=

{
P ∈ E+

n :

∫
gi(x) P(dx) = mi, i ∈ [0, . . . , k − 1]

}
,

and thus is recognized as a feasibility problem. In the original investigations made by Stieltjes
concerning the problem of moments [122] continuous fractions play the predominant role. Modern
approaches as in Isii [63] or Lasserre [76] however all draw from the intimate relationship between
the problem of moments and positive functions. In this section we will show how Section 2.4 on
cones and dual cones resonates to more general vector spaces as well.

The problem of moments concerns itself with the question whether or not we can find a probability
distribution P in the moment set C(m) and hence whether it is non-empty. In this section we
will indicate how the moment problem can be posed in terms of dual cones. Denote with K the
cone of moments m in Rk for which the moment set C(m) is non-empty, i.e.

K :=
{
m ∈ Rk : ∃P ∈ E+

n s.t. P ∈ C(m)
}
. (3.9)

The set K identifies those moments m for which the moment set C(m) is non-empty and hence
the moment problem admits a solution. As the first moment function is taken to be g0(x) = 1,
the set M = K ∩

{
m ∈ Rk : m0 = 1

}
then represents all moments for which a probability

distribution can be found in C(m). The dual cone K? can be determined explicitly and has
a nice geometrical interpretation. From Proposition 2.8 it follows that both cones K and K?

determine each other up to a closure operation uniquely, i.e. cl K = K??, and thus both can
essentially be regarded as a solution to the moment problem.

Proposition 3.5 (Dual positive functions). The dual cone K? of the cone K defined in equation
(3.9) is

K? =

{
a ∈ Rk :

k−1∑
i=0

aigi(x) ≥ 0, ∀x ∈ Rn

}
,

and can be stated in terms a semi-infinite constraint.
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The cone K? admits a nice geometrical interpretation. Indeed, the cone K? consists of all linear
combinations ai of the moment functions gi for which the function

∑k−1
i=0 aigi is positive. We

remark that the cone K? is given in terms of a semi-infinite constraint discussed further in
Chapter 4.

Proof. The following identities are all standard and are included merely for the sake of complete-
ness.

K? :=
{
a ∈ Rk : a>m ≥ 0, ∀m ∈ K

}
,

=
{
a ∈ Rk : a>m ≥ 0, ∃P ∈ E+

n s.t.
∫
gi(x) P(dx) = mi ∀i

}
.

We can now restate the inner product as the sum
∑
i aimi where mi =

∫
gi(x) P(dx) after which

we obtain

K? =
{
a ∈ Rk :

∫
[
∑
i aigi(x)] P(dx) ≥ 0, ∀P ∈ E+

n

}
As the integral of

∑
i aigi needs to be non-negative with respect to all measures P in E+

n the
integrand must be a positive function.

Second-order moment problems

In what remains of this section we will illustrate the power of previous analysis for the moment
set C(µ, S) :=H(µ, S)∩Pn defined as the collection of all probability distributions in Pn sharing
a known mean vector µ ∈ Rn and second moment matrix S ∈ Sn, i.e.

H(µ, S) :=

{
P ∈ En :

∫
P(dx) = 1,

∫
xP(dx) = µ,

∫
xx> P(dx) = S

}
.

The ambiguity set C(µ, S) will play a protagonist role throughout the entire dissertation. The
ambiguity set C(µ, S) is recognized immediately as a moment set in the form (3.2) for (n+1)(n+
2)/2 unique quadratic moment functions.

The following well known proposition solves the moment problem related to the ambiguity set
C(µ, S) with the help of Proposition 3.5 and will be of interest in Chapters 6 and 7. As we only
have that cl K = K??, we will only proof the following proposition up to a closure. The proof
of the complete proposition can be found for instance in other work of this author [128] and is
quite standard.

Proposition 3.6 (Second-moment information). The set of all means µ and second moments
S for which C(µ, S) is non-empty can be represented as

Mδ := {(1, µ, S) : ∃P ∈ C(µ, S)} =

{
(1, µ, S) ∈ R× Rn × Sn :

(
S µ
µ> 1

)
� 0

}
which is a linear matrix inequality (LMI).

Proof. The proposition is an almost immediate corollary of Proposition 3.5 and the S-Lemma.
Indeed Proposition 3.5 states that the dual cone K?

δ of C(µ, S) can be found as

K?
δ =

{
(a0, a1, A2) ∈ R× Rn × Sn : a0 + a>1 x+ Tr

{
A2 · xx>

}
≥ 0, ∀x ∈ Rn

}
for the particular moment functions g0(x) = 1 ∈ R, g1(x) = x ∈ Rn and g2(x) = xx> ∈ Sn with
corresponding moments m0 = 1, m1 = µ and M2 = S. With the help of the S-Lemma we can
reexpress the previous semi-infinite constraint as an LMI yielding

K?
δ =

{
(a0, a1, A2) ∈ R× Rn × Sn :

(
A2

1
2a1

1
2a
>
1 a0

)
� 0

}
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The dual cone of K?
δ can be explicitly calculated and is given as the cone

K??
δ =

{
(m0,m1,M2) :

(
M2 m1

m>1 m0

)
� 0

}
.

The proposition then follows from the observation that the set Mδ is determined up to a closure
operation as cl Mδ = K??

δ ∩
{
m ∈ Rk : m0 = 1

}
.

In the Chapters 6 and 7 we will come across sets of probability distributions which, besides
sharing a mean vector and second moment matrix, are more richly structured. More specifically,
we will frequently encounter sets of probability distributions in the general form

H(µ, S) ∩ K,

where the ambiguity set K admits a Choquet star representation with generating measure T.
The set H(µ, S) ∩ K of probability distributions is not a moment set unless K is taken to be
the standard probability simplex Pn. Nevertheless, Proposition 3.6 can be used to derive the
following proposition.

Proposition 3.7 (Second-moment information). The set of all means µ and second moments S
for which H(µ, S)∩K is non-empty can be represented as MT = {(1, µ, S) : ∃P ∈ H(µ, S) ∩ K} ={

(1, µ, S) :

(
Ss µs
µ>s 1

)
� 0, Ss ·

∫ ∞
0

t2 T(dt) = S, µs ·
∫ ∞

0

tT(dt) = µ

}
which is an LMI.

Proof. As the set K admits a Choquet representation in terms of the generating distribution T,
we have

MT =

{
(1, µ, S) : ∃m ∈ Pn,

∫
Tx m(dx) ∈ H(µ, S)

}
.

With the help of the substitution P =
∫

Tx m(dx) we obtain the following two identities concern-
ing the moment functions∫

y P(dy) =

∫ [∫
yTx(dy)

]
m(dx) and

∫
y · y> P(dy) =

∫ [∫
y · y>Tx(dy)

]
m(dx)

=

∫
tT(dt) ·

∫
xm(dx) =

∫
t2 T(dt) ·

∫
xx>m(dx)

The final result is obtained with Proposition 3.6 by taking µs =
∫
xm(dx) and Ss =

∫
xx>m(dx)

with which we arrive at MT = {(1, µ, S) : ∃m ∈ C(µs, Ss)}.

3.4 Risk measures

In many applications it is of interest to quantify the risk carried by a real random variable ξ
representing an unknown outcome. Depending on the application the random variable ξ may
express an economic loss or simply quantify how undesirable the outcomes of ξ are. A risk
measure ρ assigns to random variables a number in R̄ and satisfies certain properties:

Definition 3.15 (Risk measure [2]). A function ρ mapping a random variable ξ to R̄ which
satisfies

1. Normalized
ρ(0) = 0.
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VaR CVaR

1 − ε

Figure 3.7: The VaR measure VaRε(ξ) of the random variable ξ at risk level ε ∈ (0, 1) quantifies
the largest value of ξ which occurs with frequency at least ε. The CVaR measure CVaRε(ξ) at
level ε coincides for continuous probability distributions with the conditional expectation of the
distribution of ξ above VaRε(ξ).

2. Translative

If a ∈ R then ρ(ξ + a) = ρ(ξ) + a

3. Monotone

If ξ1 ≤ ξ2 then ρ(Z2) ≤ ρ(Z1)

is denoted as a risk measure.

In this work we will only consider law invariant risk measures. A risk measure ρ is said to be law
invariant if ρ(ξ) depends only on the distribution of ξ; i.e. if ξ and ξ′ are two random variables
sharing the same distribution, then ρ(ξ) = ρ(ξ′). Informally, the law invariant assumption on the
risk measure ρ has the benefit that all necessary information of a random variable ξ to compute
its risk is subsumed in its distribution. We discuss in what remains of this chapter the three risk
measures which are of relevance to this dissertation.

Value-at-Risk measure The value-at-risk (VaR) measure of a random variable ξ quantifies
the largest loss occurring with odds at least ε ∈ (0, 1); see Figure 3.7.

Definition 3.16 (Value-at-Risk). The value-at-risk of a univariate random variable ξ distributed
as P is defined as

VaRε(ξ) := inf {β ∈ R : P(ξ ≥ β) ≤ ε} . (3.10)

The VaR measure is the predominant risk measure in for instance the financial and insurance risk
quantification literature. The VaR is easily recognized as a quantile function of the distribution
of random variable ξ and its use is encouragement in the Basel II banking accords, see Danielsson
et al. [39], which most banks abide by. While the VaR is likely the most commonly used measure
to quantify the risk carried by the random outcomes ξ in the literature, it comes with a few
shortcomings. Indeed, the VaR measure is blind to the severity of the risk taken and hence
encourages large but remote risks to be taken.

Conditional Value-at-Risk measure A risk measure which has been proposed as an alter-
native to the VaR measure, is its convex counterpart; the CVaR measure.
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Definition 3.17 (Conditional Value-at-Risk). The conditional value-at-risk of a univariate ran-
dom variable ξ distributed as P is defined as

CVaRε(ξ) := inf
β∈R

{
β +

1

ε
EP

[
(ξ − β)

+
]}

. (3.11)

Rockafellar and Uryasev [108] have shown that the set of optimal solutions for β in (3.11) is
a closed interval whose left endpoint is given by VaRε (ξ). Moreover, it can be shown that if
the random variable ξ follows a continuous probability distribution, then its CVaR at risk level
ε coincides with the conditional expectation above the VaRε (ξ)-quantile; see Figure 3.7. This
observation originally motivated the term conditional value-at-risk.

The CVaR measure enjoys a number of practical advantages over VaR measure since it is mono-
tone, homogeneous and convex in the sense that:

tCVaRε (L1(ξ)) + (1− t)CVaRε (L2(ξ)) ≥ CVaRε ([tL1 + (1− t)L2](ξ))

for all measurable real functions L1 and L2 as shown in Pflug [100]. The CVaR measure assigns
a higher risk to larger realizations of ξ. In contrast, the VaR measure assigns a uniform risk to
all realizations irrespective of their size above a given quantile.

Expectation The most elementary but nevertheless versatile risk measure is the expectation
of ξ as measured by a to be chosen loss function L,

ρ(ξ) := EP[L(ξ)] (3.12)

The measurable function L is most often referred to as a loss function as it quantifies the severity
of the realized outcome of the random variable ξ. The risk measure ρ as defined in equation
(3.12) assigns the expected severity L(ξ) as risk to the random variable ξ. As the loss function
L can be chosen in accordance to the severity quantification most suitable to the practitioner,
the expectation risk measure ρ as presented in equation (3.12) is quite flexible. In Chapter 5 we
will indicate that many risk quantification problems with VaR or CVaR measure can in fact be
reduced to the expectation risk measure defined in (3.12) for a judiciously chosen loss function
L.
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In this chapter we state various results concerning convex optimization problems which are used
throughout this dissertation. Yet again the purpose of the current chapter is twofold. Firstly, it
is meant to state a selection of results concerning convex optimization problems based on their
relevance to this dissertation. Yet at the same time this chapter will also provide an analogue to
the corresponding results in more general vector spaces as discussed in Chapter 5.

A convex optimization program in Rn is a problem in the canonical form

sup f0(x)

s.t. fi(x) ≥ 0, ∀i ∈ [1, . . . , k]

gj(x) = 0, ∀j ∈ [1, . . . , `]

(4.1)

where any of the functions fi : Rn → R̄ is concave and the functions gj : Rn → R are all affine.
The function f0 is denoted as the objective function, while the functions fi and gj are referred to
as the inequality and equality constraint functions, respectively. The feasible set of the convex
optimization problem (4.1)

C := {x ∈ Rn : fi(x) ≥ 0, ∀i ∈ [1, . . . , k] and gi(x) = 0, ∀j ∈ [1, . . . , `]}
is always a convex set.

The canonical form (4.1) is slightly unorthodox in that it defines a convex optimization problem
in terms of the supremum of a concave objective function, instead of the more customary infimum
of a convex objective function. Please note that any infimum of a convex function can be recast
as the supremum of a concave objective function with the help of a sign change. We justify our
use of the slightly unorthodox canonical form (4.1) so that the current chapter bears a closer
resemblance to Chapter 5 in which the supremum is the more conventional form.

We remark that a huge variety of optimization problems in practice can be phrased in the
canonical form offered in (4.1). During the last decade, a wide spectrum of problems from
different fields have been recognized as convex optimization problems. An excellent selection
of these problems can be found in Boyd and Vandenberghe [27]. The selection of the results
presented here is entirely based on their further relevance to the dissertation. The reader may
be referred again to the standard work by Boyd and Vandenberghe [27] for a more complete
treatment of convex optimization.

4.1 The optimization hierarchy

In this section we discuss the classes of convex optimization problems most relevant for our
purpose. These classes of optimization problems will be recognized as particular instances of

43
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the general class of convex optimization problems of the type (4.1) and will be introduced in
order of increasing descriptive power. For historical reasons these classes of convex optimization
problems are referred to alternatively as convex programming problems too.

Linear programming A linear program (LP) is a convex optimization problem which can be
brought in the canonical form

sup c>x

s.t. a>i x ≤ bi, i ∈ [1, . . . , k].
(4.2)

The feasible set of an LP is a polyhedral set as defined in Example 2.2. Linear programs are the
most classical examples of convex optimization problems and have been studied since at least
the 1930s. Much of the theory on linear programming and many ideas in convex optimization
in general were put forward by Kantorovich in 1939 motivated by his interest in transportation
problems. Nowadays, the applications of linear programming to practice are so many and diverse
that it would be impossible to list them here.

Quadratic programming A quadratic program (QP) is a convex optimization problem, see
Lobo et al. [79], which can be brought in the canonical form

sup x>Qx+ c>x

s.t. a>i x ≤ bi, i ∈ [1, . . . , k].
(4.3)

where Q ∈ Sn+ is a positive definite matrix. Quadratic programming can be seen as a general-
ization of the classical least-square problem as discussed by Stigler [123]. It should hence not
come as a surprise that quadratic programming is an indispensable tool in regression analysis;
see for instance Suykens and Vandewalle [125]. Research on quadratic programming took off
in the 1950th and was partially motivated by the portfolio optimization problem first posed by
Markowitz [83]. Quadratic programming is also frequently encountered in optimization driven
solution strategies to constrained control problems such as model predictive control (MPC). Note
that when the matrix Q is zero then the QP (4.3) reduces to the LP (4.2).

Second-order cone programming A second-order cone program (SOCP) is a convex opti-
mization problem, see again Lobo et al. [79], which can be brought in the canonical form

sup c>x

s.t. ‖Cix+ di‖2 ≤ a>i x+ bi, i ∈ [1, . . . , k].
(4.4)

Second-order cone programming is intimately related to robust optimization. Worst-case robust
optimization problems with linear constraints indeed do give rise to second-order cone (SOC)
constraints. Furthermore, in Chapter 8 it will be argued that many stochastic robust optimization
problems share a similar affinity to second-order cone programming as well. Note that if the
matrices Ci are chosen to be zero in (4.4) then the SOCP reduces to an LP. It can be shown
that SOCP problems are more expressive than QPs too. For a more exhaustive discussion on
second-order cone programming and its applications the reader is referred to Lobo et al. [79].

Semi-definite programming A semi-definite program (SDP) is a convex optimization prob-
lem, see Boyd and Vandenberghe [27], which can be brought in the canonical form

sup c>x

s.t. F0 +
∑n
i=1 Fixi � 0.

(4.5)

The generalized conic inequality in the optimization problem (4.5) is referred to as a LMI.
For any two symmetric matrices X,Y ∈ Sd the relation X � Y (X � Y ) is short hand for
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X − Y ∈ Sd+ (Y − X ∈ Sd+). The LMI in the optimization problem (4.5) hence represents a
convex feasible set. Semidefinite programming had a tremendous impact on a wide range of
disciplines as illustrated by the explosive growth of publications on the topic. The expressive
power of SDP has for instance enabled the unified treatment of many problems and methods in
linear control as pioneered by Boyd et al. [26]. Many results in this dissertation will involve LMI
inequalities or will be stated in terms of an SDP. Please note that any SOCP can be rephrased
as an SDP with an appropriate choice for the matrices Fi.

Semi-infinite programming A semi-infinite program is a convex optimization problem, see
Hettich and Kortanek [61], which can be brought in the canonical form

sup c>x

s.t. h0(y) +
∑n
i=1 hi(y)xi ≥ 0, ∀y ∈ Y.

(4.6)

with the help of the dual functions hi : Rd → R for all i ∈ [0, . . . , n]. Note that the feasible set
of the semi-infinite program

C = {x ∈ Rn : h0(y) +
∑n
i=1 hi(y)xi ≥ 0, ∀y ∈ Y } (4.7)

is indeed a convex set as it is the intersection of possibly infinitely many half-spaces. Indeed,
the feasible set C is represented through the intersection of as many half-spaces as there are
elements in the set Y in Rd. For certain choices of the set Y and dual functions hi the semi-
infinite constraint (4.7) can be recast as an LMI. Two particular cases are of importance in the
remainder of the work and are stated here for the sake of completeness.

Theorem 4.1 (The S-Lemma [102]). Assume that the dual functions hi for i ∈ [0, . . . , n] and
the set Y are all quadratically representable, i.e. the functions hi and set Y are in the form

hi(y) = y>Eiy + 2e>i y + e0
i , ∀i ∈ [0, . . . , n]

Y =
{
y ∈ Rd : y>Fy + 2f>y + f0 ≥ 0

}
If there exists now a Slater point ȳ ∈ intY , then the feasible set (4.7) can be represented as an
LMI.

We remark that the Slater condition ȳ ∈ intY =
{
y ∈ Rd : y>Fiy + 2f>i y + f0

i > 0
}

is essential
for Theorem 4.1 to hold. The Slater condition ȳ ∈ intY is a constraint qualification condition
on the set Y of a type which we shall encounter frequently throughout this dissertation.

Theorem 4.2 (Sum-of-squares representation [89]). Assume that the dual functions hi for i ∈
[0, . . . , n] are univariate polynomials, i.e. the functions hi : R→ R are in the form

hi(y) =

d∑
r=0

ci,ry
r, ∀i ∈ [0, . . . , n],

and the set Y is a (possibly infinite) closed interval, then the feasible set (4.7) can be represented
as an LMI.

Conic programming The convex optimization problems discussed up to this point can be
recast as linear optimization problems over the semi-definite cone. We can take this observation
one step further. It is well known that any convex optimization problem can be recast into a
linear optimization problem over a convex cone K. An optimization problem over a general
convex cone is denoted here as a conic optimization problem or conic program.
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A conic program is a convex optimization problem in the canonical form

sup c>x

s.t. Ax = b,

x ∈ K,
(4.8)

where we assume K ⊆ Rn to be a convex cone. As mentioned any convex optimization problem
can be brought in the conic form (4.8). In what remains of this chapter we will deal with all
encountered convex optimization problems directly in their corresponding conic programming
canonical forms (4.8). This will allow us to keep the exposition uncluttered and in line with
the presentation of the results in the subsequent Chapter 5 on optimization problems in more
general vector spaces.

4.2 Computational aspects

The main reason for the focus on the specific classes of convex optimization problems introduced
in Section 4.1 stems from the fact that they all admit, with the exception of the class of semi-
infinite programs, efficient solution methods in both theory and practice. In this section we briefly
discuss the computational aspects of the aforementioned classes of optimization problems. The
interested reader can be referred to the lectures of Ben-Tal and Nemirovski [8, Chapter 5] for a
more in depth discussion on the efficient solvability of convex optimization problems.

A solution method for a class of optimization problems is an algorithm that computes the op-
timum and a feasible solution achieving that optimum (up to some given accuracy), for a given
particular problem instance from that class. Hence whether the supremum in (4.8) is attained
or not shall not be of major concern in this dissertation as only approximate solutions are of
interest here.

Where it is hard to solve convex optimization problems (4.1) in general, the classes of convex
optimization problems discussed in Section 4.1 have the major advantage of being tractable in
theory. Recent decades have seen a large effort in developing algorithms to solve convex opti-
mization problems efficiently with spectacular success. Indeed, modern interior point methods
as discussed by Ye [138] can be proven to solve SDPs problems in polynomial time.

In practice, mature software exists that implements modern convex optimization methods effi-
ciently. So much so that although SDPs do not admit a closed form solution, stating a problem
in the form (4.5) is for many practical purposes excepted as a de facto closed form solution.
Many of the central results in this work will in fact be stated as an SDP.

We remark here that although any LP can be formulated as an SOCP and any SOCP can fur-
ther be recast as a SDP it might not be advisable to do so from a practical perspective. Indeed,
the convex optimization algorithms dealing specifically with SOCPs come with better complexity
certificates and their software implementation may be more mature than the corresponding algo-
rithms for SDPs. Analogous remarks can be made between the other classes in the optimization
hierarchy discussed in Section 4.1. Fortunately, software such as YALMIP made available to the
public by Löfberg [80] nowadays makes the previously mentioned issue mostly transparent to the
optimization practitioner.

4.3 The fundamental theorem

One of the most important results concerning convex optimization is the fundamental theo-
rem. The fundamental theorem relates convex optimization problems of the type (4.8) with the
extreme points of their respective feasible sets.
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C

x?

c>x = cnst

c

Figure 4.1: Geometric visualization of the fundamental Theorem 4.1. The compact feasible set
C is a polyhedral set. The objective function c>x is linear, so its level curves are hyperplanes
orthogonal to c (depicted as dotted lines). The point x? is optimal; it can always be found as an
extreme point of C.

Theorem 4.3 (Fundamental theorem). Let C be a compact convex set in Rn, then we have the
equivalence sup

{
c>x : x ∈ C

}
= sup

{
c>x : x ∈ exC

}
.

Proof. The proof of this theorem is well known and hence omitted. See for instance Barvinok
[5, Corollary II.3.4] for a proof.

The fundamental theorem can be read informally as the guarantee that the minimum over the
extreme points of the compact feasible set C coincides with the minimum over the set C itself.
The fundamental theorem can be understood in a geometrical fashion; see also Figure 4.1.

Despite its conceptual simplicity the fundamental theorem carries a great historical importance
in particular to linear programming. When the set C is polyhedral the optimization problem

sup
{
c>x : x ∈ exC

}
reduces to a maximization problem over its finitely many extreme points. This observation
inspired the development of the simplex method contributed to Dantzig [41]. Direct maximization
over the extreme points of C to solve a convex optimization problem sup

{
c>x : x ∈ C

}
might

not always be a good idea as the number of extreme points may be vast even when the convex
set C is a polyhedral set.

In the remainder of this section we state a theorem which is specific to LPs. The following
proposition characterizes the sparseness properties of maximizers of linear optimization problems
over the intersection of a hyperplane with a compact convex set. This proposition will be of great
importance in the next chapter which will deal with convex optimization problems in more general
vector spaces.

Proposition 4.1 ([5, Theorem III.9.2]). Let C = H ∩S be the intersection of an affine subspace
of codimension k, i.e. H :=

{
x : a>i x = bi, ∀i ∈ [1, . . . , k]

}
, and a compact convex set S, then

sup
{
c>x : x ∈ C

}
= sup

{
c>x : x ∈ convk+1{exS}

}
,

where convk+1{S} :=
{∑k

i=0 pixi : xi ∈ exS, pi ≥ 0,
∑k
i=0 pi = 1

}
.
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C

(a) Codimension k = 1

C

(b) Codimension k = 2

Figure 4.2: Visual illustration of Proposition 4.1. Let C the intersection of an affine subspace of
codimension k and a compact convex set S. The extreme points of the convex set C indicated
in blue are recognized as the linear combination of at most k + 1 extreme points of the convex
set S shown in red.

The previous proposition, informally stated, guarantees that the optimal solutions x? of the con-
vex optimization problem sup

{
c>x : x ∈ C = H ∩ S

}
can be found as the convex combination

of at most k+ 1 extreme points of the compact convex set S. Proposition 4.1 can be understood
in a geometrical fashion as well; see Figure 4.2.

4.4 Duality

From its earliest beginnings duality theory has played a preeminent role in the theory of con-
vex optimization. Duality theory can indeed be traced back all the way to the early work by
Kantorovich and von Neumann on linear programming.

There are many ways in which a comprehensive duality theory for convex optimization problems
can be developed. Lagrangian duality is for instance used by Boyd and Vandenberghe [27] to
establish a duality theory for convex optimization problems in the form (4.1). Alternatively, the
Fenchel duality discussed in Rockafellar [107] provides a means to the same end as well.

We will state in this dissertation the conic duality theory as presented by Shapiro [116] for
the convex conic optimization problem (4.8). Conic duality has the benefit that it is ideally
suited to provide a duality theory for convex conic optimization problems in the form (4.8) and
can furthermore be extended without much effort to the convex optimization problems in more
general vector spaces encountered in Chapter 5.

With every primal conic program (4.8) we will associate a conic dual optimization problem, i.e.

inf λ>b

s.t. A>λ− c ∈ K?,
(4.9)

where the dual cone K? is defined as in Definition 2.9. The dual problem (4.9) can thus be
recognized as a convex optimization problem as well. Both convex optimization problems satisfy
the classical weak duality relationship

λ>b ≥ c>x
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for every feasible x and y in the primal problem (4.8) and dual problem (4.9), respectively.
Hence, the dual problem bounds the primal from above. In fact, under a very mild constraint
qualification condition both problems share the same optimal value.

Theorem 4.4 (Strong duality). If K is a closed convex cone and there exists a point x̄ ∈ rintK
such that Ax̄ = b, then strong duality holds, i.e.

sup c>x = inf λ>b

s.t. Ax = b, s.t. A>λ− c ∈ K?.

x ∈ K.

The existence of a point x̄ such that x̄ ∈ rintK and Ax̄ = b is commonly referred to as Slater’s
constraint qualification condition [118]. The point x̄ itself is referred to as a Slater point of the
feasible set. Slater’s condition is a specific example of a constraint qualification condition to
establish strong duality between the primal problem (4.8) and its dual problem (4.9). While
weaker type of constraint qualification conditions exists, Slater’s constraint qualification con-
dition will proof sufficient for the discussion in this work. In fact, Slater’s condition will be
encountered again in a slightly modified shape in the subsequent Chapter 5 when discussing
convex optimization problems in more general vector spaces.

If strong duality holds the convex optimization problem (4.8) can alternatively be approached
via its dual formulation (4.9). The dual of a convex optimization problem belonging to one of
the classes discussed in Section 4.1 belongs again to that same class of optimization problems.
That means that solving either primal or dual formulation in case of LPs, SOCPs or SDPs can
be regarded as equally difficult.

Nevertheless, in many applications one is interested in what the primal maximizer x? looks like,
rather then the maximum itself. When instead the maximum was determined using a dual
approach, the relationship between primal maximizers x? and dual minimizers λ? is of interest.
Because of strong duality it follows that the primal maximizer x? and dual minimizer λ? are
related as λ?>b = c>x?. As the primal maximizer x? is feasible we have by definition that
b = Ax?. The primal and dual extrema are thus related as

(A>λ? − c)>x? = 0. (4.10)

Condition (4.10) is commonly referred to as a complementarity condition between the primal
maximum x? and dual minimum λ?. Indeed, when the cone K is taken to be the positive orthant
Rn

+, the complementarity condition (4.10) implies the standard relationships

A>i λ
?
i − ci > 0 =⇒ x?i = 0 or equivalently x?i > 0 =⇒ A>i λ

?
i − ci = 0

between primal and dual slack. The previous complementarity slackness implications will be
given a nice geometrical interpretation in the convex optimization problems discussed in the
subsequent chapter.
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In this chapter, we will consider the following class of optimization problems over convex sets of
probability distributions in the following canonical form

sup

∫
L(x) P(dx)

s.t.

∫
gi(x) P(dx) = mi, i ∈ [0, . . . , k − 1]

P ∈ K

(5.1)

with L, gi : Rn → R+ measurable functions and K a closed convex set of probability distributions.
The function L will be called the loss function and the functions gi will be denoted further as
moment functions. We will further refer to the set of measures

C :=H ∩K (5.2)

as the feasible set of problem (5.1) where the hyperplane H is defined as in (3.1). For the
sake of exposition, assume that g0(x) = 1 and the corresponding moment m0 = 1. Note that
the previous assumption is indeed redundant as K is assumed to be a subset of Pn and hence∫
g0(x) P(dx) = 1 is automatically satisfied.

Observe that the optimization problem (5.1) is a linear optimization problem over the convex
set of probability distributions C. The optimization problem (5.1) bears close resemblance to the
convex optimization problems (4.8) in Rn discussed in Chapter 4. Many of the corresponding
results from Chapter 4 on convex optimization in Rn will carry over immediately to the more
general optimization problem (5.1) in the vector space of measures En. We will seek to show
in this chapter that the fundamental theorem of linear programming can be generalized and
has something to say about the properties of the maximizers of the optimization problem (5.1).
Furthermore, a comprehensive duality theory for the optimization problem (5.1) can be developed
based on pairing the primal space of measures En with the space of positive functions E?n.

5.1 The fundamental theorem

We would like to recover a direct counterpart to the fundamental theorem stated in Theorem 4.3
of convex optimization in Rn. There are however a number of caveats present in vector spaces

51
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more general than Rn which prevent a verbatim restatement of Theorem 4.3 in the current
setting.

Theorem 5.1 (Fundamental theorem). Let C be a compact convex set of probability distri-
butions and L a bounded and continuous measurable function, then we have the equivalence
sup

{∫
L(x) P(dx) : P ∈ C

}
= sup

{∫
L(x) P(dx) : P ∈ ex C

}
.

Proof. The proof of this theorem is well known and analogous to the proof of its counterpart
Theorem 4.3. A proof can be found in for instance Barvinok [5, Corollary III.4.2].

The difference with the finite dimensional setting of Chapter 4 is that in general a linear cost
function

∫
L(x) P(dx) need not be a continuous function in P. The proof of Theorem 5.1 never-

theless requires the affine contours
{

P ∈ En :
∫
L(x) P(dx) = α

}
to be closed sets or equivalently∫

L(x) P(dx) to be continuous. The requirement on the loss function L in Theorem 5.1 can thus
be explained immediately in view of Definition A.4.

We have that the minimum of a continuous linear function over the extreme distributions of a
compact convex set C recovers the minimum over the set C itself. We would like to apply Theorem
5.1 in order to derive geometric properties of the extrema of the convex optimization problem
(5.1) in case C is the intersection of a hyperplane and a closed convex ambiguity set. However,
in the remainder of the work we will consider in many instances loss functions L and moment
functions gi which are neither bounded nor continuous resulting in a non-compact feasible set
C and non-continuous linear function

∫
L(x) P(dx). Nevertheless, we can present the following

counterpart to Proposition 4.1.

Proposition 5.1 ([110]). Let C = H ∩ K be the intersection of a hyperplane H of codimension
k and a closed convex set K of probability distributions, then

sup

{∫
L(x) P(dx) : P ∈ C

}
= sup

{∫
L(x) P(dx) : P ∈ convk+1{exK}

}
.

Proof. It is remarked that the ambiguity set K ⊆ Pn can not contain any lines. Indeed, suppose
P1 and P2 are distinct elements in K. As P1 and P2 are distinct, there exists a measurable set
B such that P1(B) 6= P2(B). The line {tP1 + (1− t)P2 : t ∈ R} can not be contained in Pn as
follows immediately from the contradiction

0 ≤ tP1(B) + (1− t)P2(B) ≤ 1, ∀t ∈ R.

A modern proof of the proposition for closed convex sets K not containing lines is provided by
Barvinok [5, Theorem III.9.2].

The previous proposition, informally stated, guarantees that the optimal solutions P? of the con-
vex optimization problem (5.1) can be found as the convex combination of at most k+1 extreme
distributions of the convex set K. Please note that no further assumptions on the loss function
L and moment functions gi are required in Proposition 5.1 besides of course measurability.

When the ambiguity set K in the convex optimization problem (5.1) admits a Choquet star
representation generated by the univariate probability distribution T, i.e.

exK = {Tx : x ∈ Rn} ,

then Proposition 5.1 provides directly the general structure of worst-case distributions P? in
optimization problem (5.1). As discussed in Chapter 3, both the set of α-unimodal distribu-
tions Uα and the set of γ-monotone distributions Mγ admit such Choquet star representations.
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Figure 5.1: A worst-case distribution P? in the plane R2 of the uncertainty quantification prob-
lem (5.1) for α-unimodal distributions (K = Uα) can always be found as the convex combination
of at most k extreme distributions uαx by merit of Proposition 5.1.

Proposition 5.1 now guarantees that the worst-case probability distributions P? in optimization
problem (5.1) will be of the general form

P? =

k−1∑
i=0

piTxi .

A worst-case distribution P? can thus be found as the convex combination of at most k extreme
distributions Tx in the Choquet star simplex K. This previous observation is made visual in
Figure 5.1.

5.2 Duality

A comprehensive duality theory for the convex optimization problem (5.1) can be developed akin
to the duality theory discussed in Section 4.4 for optimization problems in Rn. A duality theory
for the optimization problem (5.1) was already developed in the early work of Isii [63]. In this
dissertation however, we will present the modern duality theory outlined by Shapiro [116] which
nicely mirrors its counterpart discussed in Section 4.4. The reader interested in the technicalities
of the results stated in this section is hence referred to the work of Shapiro [116], or references
therein, for a more in depth discussion on duality in En.

Let E?n be the vector space of real measurable functions f on Rn. The space En and E?n are paired
by a bilinear product 〈·, ·〉 : E?n × En → R defined through the integral

〈f,m〉 :=
∫
f(x) m(dx). (5.3)

More information on the pairing between both spaces is provided in Appendix A.2. The bilinear
product in equation (5.3) will serve the same role in this chapter as the standard inner product
between vectors in Rn in the development of the duality theory between the vector spaces of
measures En and positive functions E?n as can be seen from the next definition.

Definition 5.1 (Dual cone). The dual cone of functions K? in E?n of any set of measures K is
defined as

K? := {f ∈ E?n : 〈f,m〉 ≥ 0, ∀m ∈ K} .

It can immediately be seen from its definition that the dual cone of any set of measures is itself
indeed always a convex cone of functions in E?n.
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As in the finite dimensional case, we can relate to the primal optimization problem (5.1) over
measures in the vector space En a dual optimization problem over measurable functions in the
dual space E?n of functions, i.e.

inf

k−1∑
i=0

λi ·mi

s.t.

k−1∑
i=0

λi · gi − L ∈ K?
(5.4)

were K? is the dual cone of the convex set of distributions K. We remark that the dual problem
is always convex and is recognized as the counterpart of the dual (4.9) for convex optimization
problems in Rn. At the end of this section we discuss several interesting sets of probability
distributions K of particular interest to this dissertation for which the dual cone K? is known
explicitly and comes with a nice geometrical interpretation.

The primal optimization problem over probability distributions (5.1) and the dual optimization
problem over functions (5.4) satisfy the weak duality relationship

k−1∑
i=0

λi ·mi ≥
∫
L(x) P(dx)

for every feasible probability distribution P and dual vector λ in the primal problem (5.1) and
dual problem (5.4), respectively. The dual problem (5.4) thus bounds the primal problem (5.1)
from above. Under a mild constraint qualification condition both problems in fact share the
same optimal value.

Theorem 5.2 (Strong duality [116]). Denote with M the set of moments for which the feasible set
is non-empty, i.e. M :=

{
m ∈ Rk : ∃P ∈ K :

∫
gi(x) P(dx) = mi, ∀i ∈ [0, . . . , k − 1]

}
. If m ∈

rintM then strong duality holds, i.e.

sup
P∈K

∫
L(x) P(dx) = inf

∑
i

λi ·mi

s.t.

∫
gi(x) P(dx) = mi, ∀i s.t.

∑
i

λi · gi − L ∈ K?
(5.5)

Proof. The theorem is proven in a slightly different form by Shapiro [116, Proposition 3.4].

The condition m ∈ rintM can be seen as a generalized Slater condition. The previous generalized
Slater constraint qualification condition is relatively mild as illustrated by the following example.

Example 5.1 (Constraint qualification). In Chapters 6 and 7 the set H(µ, S) ∩ K of all distri-
butions sharing a mean µ and second moment S in a Choquet star simplex K ⊆ Pn will be of
particular interest. As stated in Proposition 3.6 the ambiguity set H(µ, S) ∩ Pn is non-empty
when S � µµ>. In that case, the Slater constraint qualification condition is fulfilled when the
given moments satisfy S � µµ>. Because of Proposition 3.7, the ambiguity set H(µ, S) ∩ K is
non-empty when Ss � µsµ

>
s for Ss ·

∫∞
0
t2 T(dt) = S and µs ·

∫∞
0
tT(dt) = µ with T the gen-

erator of the Choquet star simplex K. The set H(µ, S) ∩ K thus satisfies the Slater constraint
qualification condition if Ss � µsµ>s .

In the last part of the section we make the dual optimization problem (5.4) concrete in case the
set of probability distributions K admits a Choquet star representation in terms of a generating
univariate probability distribution T. The case in which the set of probability distributions K
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Figure 5.2: A feasible dual solution λ ∈ Rk in the dual constraint set (5.7) results in a linear
combination of moment functions

∑
i λi·gi which majorizes the function L. The complementarity

condition (5.8) guarantees further that the worst-case distributions P? of the primal problem (5.1)
are supported on those points where the optimal dual function

∑
i λ

?
i · gi in the dual constraint

(5.7) kisses the function L.

coincides with the standard probability simplex Pn will proof of particular interest and admits
a nice geometric interpretation of the dual constraint in problem (5.4).

Recall that the dual cone K? is defined as in Definition 5.1 and hence the dual constraint in
problem (5.4) can be stated as

k−1∑
i=0

λi · gi − L ∈ K? ⇐⇒
∫ ∑k−1

i=0 λi · gi(x)− L(x) m(dx) ≥ 0, ∀m ∈ K.

The previous constraint does not immediately admit a favorable representation as it consists of
as many linear constraints as there are probability distributions in K which may be formidable.
However, when the set of probability distributions K admits a Choquet star representation the
dual set K? can be represented as a standard semi-infinite constraint over Rn instead.

Proposition 5.2 (Semi-infinite representation [103]). If the set of probability distributions K
admits a Choquet star representation with generating distribution T then the dual constraint in
(5.4) can be represented as the semi-infinite constraint

∫ ∞
0

[
k−1∑
i=0

λi · gi(tx)− L(tx)

]
T(dt) ≥ 0, ∀x ∈ Rn. (5.6)

When in the primal optimization problem the set of probability distributions K is taken to be
the standard probability simplex, then the corresponding dual cone K? consists of all measurable
positive functions. Indeed, in this case K = Pn = mix {δx : x ∈ Rn} which admits a Choquet
star representation with generating probability distribution given in Example 3.1. As the partic-
ular case K = Pn will occur frequently in the remainder of this work, we make the dual constraint
(5.6) explicit for this situation:

k−1∑
i=0

λi · gi(x)− L(x) ≥ 0, ∀x ∈ Rn. (5.7)

The previous dual set (5.7) admits a nice geometrical interpretation. Indeed, the dual set (5.7)
consists of all linear combinations λi of the moment functions gi majorizing the loss function L
in Rn; see also Figure 5.2.
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5.3 Worst-case probability distributions

As discussed in the previous section the convex optimization problem over probability distribu-
tions (5.1) can be approached via its dual formulation (5.4) under the mild constraint qualification
conditions mentioned in Theorem 5.2. Instead of maximizing over a convex set of probability
distributions, the dual characterization consists of minimizing over a set of functions.

Be this as it may, in some cases it might be of interest to know what the distributions P? ∈ C
achieving the supremum

∫
L(x) dP? looks like. In view of subsequent Chapters 8 and 9 we will

also refer to the optima P? of the optimization problem (5.1) as worst-case distributions. As we
approached the convex optimization problem (5.1) here via its dual characterization (5.4), we
are now interested in the relation between the worst-case probability distributions P? ∈ C for the
primal problem (5.1) and the optimal solutions λ? in its dual characterization (5.4).

Because of strong duality it follows that the primal maximizer P? and dual minimizer λ? are
related as

∫
L(x) dP? =

∑k
i=0 λ

?
imi. As the primal maximizer P? is feasible we have by definition

that mi =
∫
gi dP?. The primal and dual extrema are thus related as∫

L(x) dP? =

∫ ∑k−1
i=0 λ

?
i
>gi(x) dP? (5.8)

making use of the linearity of integration. Condition (5.8) is commonly referred to as a comple-
mentarity condition between the primal maximum P? and dual minimum λ?. In what remains
of this section we will show that when the set of probability distributions K coincides with the
standard probability simplex Pn then we can again provide a nice geometric interpretation to
the complementarity condition (5.8).

When K = Pn we must have according to (5.7) that
∑k−1
i=0 λ

?
i
>gi(x)−L(x) ≥ 0 point-wise in Rn.

A direct consequence of previous inequality in combination with the complementarity condition
(5.8) is that the optimal probability distribution P? must be supported on the points at which

the dual function
∑k−1
i=0 λ

?
i
>gi(x) kisses the loss function L(x), i.e.

supp P? ⊆ S? =

{
x ∈ Rn :

k−1∑
i=0

λ?i
>gi(x) = L(x)

}
. (5.9)

The previous statement is illustrated visually in Figure 5.2.

It is clear that the worst-case distribution P? is not uniquely characterized by condition (7.14).
In fact, any feasible probability distribution P supported on the set S? is necessarily optimal in
the convex optimization problem (5.1). The set S? has in many interesting situations a finite
cardinality. Indeed, if the functions gi and L are (piece-wise) polynomial then the fundamental
theorem of algebra guarantees that S? has finite cardinality. For S? a finite set of points x?j
constructing a worst-case probability distribution

P? =
∑
j p

?
jδx?j , with x?j ∈ S?

requires only the solution of the following system of linear inequalities∑
j pjgi(x

?
j ) = mi, ∀i ∈ [0, . . . , k − 1]

pj ≥ 0, ∀j

When S? has finite cardinality, the condition (7.14) thus allows for the efficient extraction of a
worst-case probability distribution P? from a dual optimal solution λ? at virtually no additional
computation cost.
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Properties of P P (|ξ − µ| ≥ κσ) P (ξ − µ ≥ κσ)

None, P ∈ P1 Chebyshev [36] Cantelli [34]
Unimodal, P ∈ U1 Gauss [54] Proposition 5.6

Table 5.1: Table organizing the probability inequalities presented in Section 5.4.1.

5.4 Optimal expectation inequalities

We will first indicate how the convex optimization problem (5.1) can be related to optimal in-
equalities in probability theory such as the classical Chebyshev (1.6) and Gauss (1.7) inequalities
discussed in the introduction of this dissertation. In the second part of this section we will show
that the convex optimization problem (5.1) is very relevant to optimal CVaR inequalities as well.

5.4.1 Classical probability inequalities

The classical Chebyshev inequality (1.6) discussed in the introduction presents a tight upper
bound on the probability

P (|ξ − µ| ≥ κσ)

for κ > 0 given only the mean µ and standard deviation σ > 0 of the univariate random variable
ξ. The Chebyshev inequality is denoted as a bilateral inequality as it bounds the probability of
a two-sided tail event |ξ−µ| ≥ κσ. A unilateral inequality bounds the probability of a single tail
event ξ − µ ≥ κσ. The unilateral counterpart to the Chebyshev inequality (1.6) was discovered
by Cantelli [34] in 1910. The classical Cantelli inequality presents a tight upper bound on the
probability

P (ξ − µ ≥ κσ)

for κ > 0 given only the mean µ and standard deviation σ > 0 of the univariate random variable
ξ. On the other hand, the classical Gauss inequality (1.7) gives a counterpart to the classical
Chebyshev inequality (1.6) for unimodal distributions. This naturally begs the question whether
also a unimodal counterpart to the unilateral Cantelli inequality can be found. Somewhat sur-
prisingly, no such probability inequality can be found in the literature.

The convex optimization problem (5.1) is ideally suited to discuss and generalize the classical
Chebyshev and Gauss inequalities in the direction hinted upon. We will show that using only
the results stated so far in this dissertation, we are already in a position to put many classical
probability inequalities on an equal footing. In doing so, we will provide a unimodal counterpart
to the Cantelli inequality which we believe is novel. The results found in this section are organized
in the Table 5.1.

What distinguishes the probability inequalities from one another is the additional structure
assumed, e.g. unimodality or monotonicity, on the probability distribution P. Hence, the convex
optimization problems

sup P (|ξ − µ| ≥ κσ)

s.t.

∫
xP(dx) = µ,∫
x2 P(dx) = µ2 + σ2

P ∈ K

(5.10)

sup P (ξ − µ ≥ κσ)

s.t.

∫
xP(dx) = µ,∫
x2 P(dx) = µ2 + σ2

P ∈ K

(5.11)

can be recognized to generalize the classical probability bounds for a judicious choice of ambiguity
set K. The classical Gauss bound for instance can be related to the optimization problem (5.10)
in which the distribution P ∈ U1 is required to be unimodal. Similarly, the classical Cantelli
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bound can be related to the convex optimization problem (5.11) where K imposes no additional
structure.

As we have the equivalences P (|ξ − µ| ≥ κσ) = P (|z| ≥ κ) and P (ξ − µ ≥ κσ) = P (z ≥ κ) with
z = (ξ−µ)/σ a univariate standardized random variable, we need only to consider the situation
µ = 0 and σ = 1. A random variable z is denoted as standardized if it has zero mean and
unit variance. In what follows we will show that for unimodal (K = U1) and for unstructured
probability distributions (K = P1), the convex optimization problems (5.10) and (5.11) can be
solved in closed form. Before we make our results specific though, we will indicate first that
most of the analysis can be done merely by assuming that the ambiguity set K admits a Choquet
star representation in terms of the generating univariate distribution T. The set K has then as
extreme distributions the following set of radial probability distributions exK = {Tx : x ∈ R} .
Proposition 5.1 as applied to the particular convex optimization problems (5.10) and (5.11) guar-
antees now that we can restrict attention to probability distributions P? ∈ conv3 {Tx : x ∈ R}
consisting of the convex combination of at most three extreme distributions. From the symmetry
of the problem (5.10) with µ = 0, it follows that P? must be symmetric around the origin. That
is ξ and −ξ have the same variance and assign the same probability to the event of interest.
Attention can thus be restricted to probability distributions in the canonical form

P? = (1− p)T0 +
1

2
pTx +

1

2
pT−x, (5.12)

for some x ∈ R+ and p ∈ [0, 1]. Similarly, a moment of reflexion learns that in the optimization
problem (5.11) attention can be restricted to probability distributions in the canonical form

P? = (1− p)T−px/(1−p) + pTx, (5.13)

for some x ∈ R+ and p ∈ [0, 1]. The previous results are extremely powerful as they reduce the
convex optimization problems (5.10) and (5.11) over probability distributions with zero mean
µ = 0 and unit variance σ = 1 to standard (non-convex) optimization problem in only two
variables

(5.10) =
max pTx ([κ,∞))

s.t. p ∈ [0, 1], x ∈ R+∫∞
0
t2 T(dt) · px2 = 1.

(5.14)

(5.11) =
max pTx ([κ,∞))

s.t. p ∈ [0, 1], x ∈ R+∫∞
0
t2 T(dt) · px2 = 1− p.

(5.15)

The non-convex optimization problems (5.14) and (5.15) admit in many interesting situations
explicit solutions. In what follows we will illustrate the previous statement for both bilateral and
unilateral probability inequalities thereby completing Table 5.1.

Bilateral inequalities

Proposition 5.3 (Classical Chebyshev inequality [36]). Let ξ be a real random variable, then
we have the bilateral probability inequality

P(|ξ − µ| ≥ κσ) ≤
{

1
κ2 if κ > 1,
1 otherwise.

(5.16)

Proof. The quantity pT?x([κ,∞)) for Tx = δx can be explicitly calculated to be p1 {x ≥ κ}. The
variable x can be eliminated from problem (5.14) yielding the equivalent problem

pcheb(κ) = max

{
p : 0 ≤ p ≤ 1, p ≤ 1

κ2

}
. (5.17)

The result in (5.16) follows now from standard manipulations of (5.17).
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(a) 0 ≤ κ < 1
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(b) κ ≥ 1

Figure 5.3: Worst-case unimodal probability distributions achieving the bound in the probability
inequality (5.16) for µ = 0 and σ = 1. The colored part depicts the size of the event corresponding
to the Chebyshev inequality (5.16).

The worst-case distributions attaining the classical Chebyshev inequality (5.16) can be explicitly
constructed as well. The density fcheb(κ) of the worst-case distribution P? attaining the bound
(5.16) for µ = 0 and σ = 1 is given in closed form as

fcheb(κ) =

{
(1− 1

κ2 )δ0 + 1
2κ2 δκ + 1

2κ2 δ−κ if κ ≥ 1,

1
2δ1 + 1

2δ−1 otherwise.

The distribution fcheb(κ) is graphically depicted in Figure 5.3.

Proposition 5.4 (Classical Gauss inequality [54]). Let ξ be a real unimodal random variable
with centre c = µ, then we have the tight bilateral probability inequality

P(|ξ − µ| ≥ κσ) ≤
{

4
9κ2 if κ > 2√

3
,

1− κ√
3

otherwise.
(5.18)

Proof. The quantity pT?x([κ,∞)) for Tx = u1
x can be explicitly calculated to be p

(
1− κ

x

)
1 {x ≥ κ}.

The variable x can be eliminated from problem (5.14) yielding the equivalent problem

pgauss(κ) = max

{
p

(
1− κ

√
p√

3

)
: 0 ≤ p ≤ 1, p ≤ 3

κ2

}
. (5.19)

Using standard arguments, the maximum must be attained at a critical point of the objective
function or at the boundary of the feasible domain of the non-convex optimization problem
(5.19). The boundary points p? = 0 and p? = 3

κ2 establish that (5.14) is bounded from below by
zero. The last boundary point p? = 1 yields pgauss(κ) ≥ 1− κ√

3
. The critical points are located

at
d

dp

[
p

(
1− κ

√
p√

3

)]
= 0 ⇐⇒ p =

4

3κ2

and belong to the feasible region whenever κ ≥ 2√
3

which results in pgauss(κ) ≥ 4/(9κ2).

The worst-case distributions attaining the classical Gauss inequality (5.18) can be explicitly
constructed as well. The density fgauss(κ) of the worst-case distribution P? attaining the bound
(5.18) for µ = 0 and σ = 1 is given in closed form as

fgauss(κ) =

{
(1− 4

3κ2 )δ0 + 4
9κ3 1

{
− 3

2κ ≤ t ≤ 3
2κ
}

if κ ≥ 2√
3
,

1
2
√

3
1
{
−
√

3 ≤ t ≤
√

3
}

if 0 ≤ κ < 2√
3
.

The distribution fgauss(κ) is graphically depicted in Figure 5.4.
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Figure 5.4: Worst-case unimodal probability distributions achieving the bound in the Gauss
inequality (5.18) for µ = 0 and σ = 1. The colored part depicts the size of the event corresponding
to the Gauss inequality (5.18).
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(a) The classical Cantelli inequality
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(b) The unimodal Cantelli inequality

Figure 5.5: Worst-case probability distributions achieving the bounds in the Cantelli inequality
(5.20) and the probability inequality (5.22) and for µ = 0 and σ = 1. The colored part depicts
the size of the event corresponding to the probability inequalities.

Unilateral inequalities

Proposition 5.5 (Classical Cantelli inequality [34]). Let ξ be a real random variable, then we
have the tight unilateral probability inequality

P(ξ − µ ≥ κσ) ≤ 1

1 + κ2
. (5.20)

Proof. The quantity pT?x([κ,∞)) for Tx = δx can be explicitly calculated to be p1 {x ≥ κ}. The
variable x can be eliminated from problem (5.15) yielding the equivalent problem

pcant(κ) = max

{
p : 0 ≤ p ≤ 1

κ2 + 1

}
. (5.21)

The result in (5.20) follows now from standard manipulations of (5.21).

The worst-case distributions attaining the classical Cantelli inequality (5.18) can be explicitly
constructed as well. The density fcant(κ) of the worst-case distribution P? attaining the bound
(5.18) for µ = 0 and σ = 1 is given in closed form as

fcant(κ) =
κ2

κ2 + 1
δ− 1

κ
+

1

κ2 + 1
δκ

The distribution fcant(κ) is graphically depicted in Figure 5.5(a).
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Proposition 5.6 (Unimodal Cantelli inequality). Let ξ be a real unimodal random variable with
centre c = µ, then we have the tight unilateral probability inequality

P(ξ − µ ≥ κσ) ≤ 1

2

 3κ2

3

√
3κ2

(
3 +

√
3(3 + κ2)

) − 3

√
3κ2

(
3 +

√
3(3 + κ2)

)
+ 2

 (5.22)

Proof. The quantity pTx([κ,∞)) for Tx = u1
x can be explicitly calculated to be p

(
1− κ

x

)
1 {x ≥ κ}.

The variable x can be eliminated from problem (5.15) yielding the equivalent problem

pucant(κ) = max

{
p

(
1− κ

√
p√

3(1− p)

)
: 0 ≤ p ≤ 3

3 + κ2

}
. (5.23)

Using standard arguments, the maximum must be attained at a critical point of the objective
function or at the boundary of the feasible domain of the non-convex optimization problem
(5.23). The boundary points p? = 0 and p? = 3

3+κ2 establish that (5.15) is bounded from below
by zero. The critical points are located at

d

dp

[
p

(
1− κ

√
p√

3(1− p)

)]
= 0 ⇐⇒

√
3p · κ(3− 2p)− 6(1− p)3/2 = 0.

The previous equation has only one real root, i.e.

p = − −36κ4 − 108κ2

72(κ2 + 3)
3
√
−κ6 − 6κ4 − 9κ2 +

√
3
√
κ10 + 9κ8 + 27κ6 + 27κ4

+

3
√
−κ6 − 6κ4 − 9κ2 +

√
3
√
κ10 + 9κ8 + 27κ6 + 27κ4

2(κ2 + 3)
+ 1.

Elementary manipulations now lead to the desired result.

The worst-case distributions attaining the unimodal Cantelli inequality (5.22) can be explicitly
constructed as well using the characterization of P? in equation (5.12) where x =

√
3(1− p)/√p

and p is given in the last equation in the proof of Proposition 5.6. Their explicit expression
is however quite complex and is therefore omitted. Nevertheless, the worst-case distribution is
graphically depicted in Figure 5.5(b).

5.4.2 Conditional value-at-risk inequalities

As in the worst-case expectation problem (5.1), we also want to consider the following worst-case
CVaR problem:

BCVaR := sup P-CVaRα (L(ξ))

s.t. P ∈ C.

Unfortunately, the previous worst-case CVaR problem is in general not a convex optimization
problem in the form (5.1) discussed throughout this chapter. However, from a computational
point of view the CVaR problem can be reduced to a worst-case expectation problem. Defining

L(β,P) :=β +
1

ε
EP

[
(L(ξ)− β)

+
]
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and recalling the definition (3.11), our worst-case CVaR problem becomes

BCVaR = sup
P∈C

inf
β
L(β,P) = inf

β
sup
P∈C

L(β,P)

= inf
β

{
β + sup

P∈C

1

ε
EP

[
(L(ξ)− β)

+
]}

.

Since L(β,P) is convex in β and linear in P, the interchange of the supremum and infimum
operations is justified by virtue of a stochastic saddle point theorem due to Shapiro [117]. The
worst-case expectation problem (5.1) can now be seen to constitute an inner problem in the
worst-case CVaR problem. Since the optimal β? is shown to lie in a closed interval by Rockafellar
[108] and supP∈C L(β,P) is convex in β, computing a solution to the worst-case CVaR problem
reduces to solving a sequence of worst-case expectation problems. For instance, the golden
section search discussed in Kiefer [68] can be used to optimize supP∈C L(β,P) only requiring a
polynomial number of evaluations of supP∈C EP[(L(ξ)− β)+].

Hence in this dissertation we will deal with the more general worst-case expectation problem (5.1)
directly. Nevertheless, we will make our results for worst-case CVaR bounds explicit at various
places in this dissertation using the results derived for the worst-case expectation problem (5.1)
and the discussion presented above.
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In a wide range of applications, one is faced with the problem of quantifying the expected cost
L(ξ) of a random variable ξ with distribution P. Common problems include determining the
expected profit of a stock portfolio with uncertain stock returns as in Lo [78] or Bertsimas and
Popescu [17], or quantifying the symbol error rate in a noisy communication channel as discussed
by Vandenberghe et al. [133]. When the probability distribution P of the random vector ξ is
known, computing EP[L(ξ)] typically reduces to the evaluation of a (high dimensional) integral.
The evaluation of a high dimensional integral is shown by Nemirovski and Shapiro [88] to be in
general however a computationally formidable task.

Furthermore, in practice it is often the case that the information available concerning the prob-
ability distribution P is limited. This means that the distribution of ξ is ambiguous and only
known to belong to some ambiguity set C containing all probability distributions consistent with
the known partial information concerning the distribution P. We are thus limited to providing
an upper bound on the expected cost EP[L(ξ)] holding uniformly for all probability distributions
P in the ambiguity set C. Hence when faced with limited information on the distribution of ξ,
the least upper bound on the expected cost is given as

sup

∫
L(x) P(dx)

s.t. P ∈ C
(6.1)

Unfortunately, such worst-case expectation bounds or inequalities are generally unavailable in
closed form, except in special cases where one can resort to classical bounds such as the Chebyshev
or Gauss bounds discussed in Chapter 1.

Recently several scientific communities have however made a renewed effort to develop worst-case
expectation bounds using a computational approach. Depending on the community, the problem

65
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(6.1) is either referred to as an uncertainty quantification problem as in the work of Owhadi and
Han [95, 59] or as a generalized moment problem by Bertsimas and Popescu [18, 103]. To avoid
confusion, we will from here on always refer to optimization problems over ambiguity sets, i.e.
sets of probability distributions, as uncertainty quantification problems. As indicated in Chapter
3, we reserve the name generalized moment problem to denote the problem of deciding feasibility
of a distribution P in an ambiguity set C defined through moment conditions.

It can be remarked that for convex ambiguity sets C the problem (6.1) can be recognized as a
convex optimization problem over probability distributions which were discussed at length in the
previous chapter. For convex ambiguity sets C, the uncertainty quantification problem can be
approached via either its primal formulation (6.1) or its corresponding dual characterization as
discussed in Chapter 5. It is of interest to remark that the literature in which problem (6.1) is de-
noted as an “uncertainty quantification problem” usually focusses on the primal characterization.
At the same time, the corresponding dual characterization is the starting point in the literature
referring to problem (6.1) as a “generalized moment problem”. This difference in perspective
between both approaches is reflected in this dissertation as well. The current chapter will present
the primal approach to the uncertainty quantification problem (6.1), while the next chapter will
approach the problem via its dual characterization. Despite this difference in perspective, both
approaches ultimately start from the characterization of the uncertainty quantification problem
(6.1) as an optimization problem over probability distributions as discussed in Chapter 5.

6.1 Second-moment information and Choquet simplices

Unfortunately, uncertainty quantification problems such as (6.1) are shown by Bertsimas and
Popescu [18] to be in general NP-hard to solve. On the other hand, several tractable reformula-
tions based on convex programming are given by Vandenberghe et al. [133] and Zymler et al. [142]
for the case where the ambiguity set C = C(µ, S) consists of all probability distributions sharing
a known mean and second moment. Thanks to modern interior point algorithms, these convex
programming reformulations provide a de facto closed form solution to the resulting worst-case
expectation bounds. The resulting bounds are widely used across many different disciplines such
as in distributionally robust optimization by Delage and Ye [43] and in control by Van Parys et
al. [131, 132] or portfolio selection and hedging as done by Yamada and Primbs [137] or Zymler
et al. [143].

The main downside of these inequalities stems from the fact that the ambiguity set C(µ, S) con-
tains probability distributions that are not realistic in many applications and that consequently
render the inequalities overly pessimistic. As a direct consequence of Proposition 5.1 the proba-
bility distributions achieving the worst-case expectation bound generically have discrete support
with a finite number of discretization points. Vandenberghe et al. [133] describe this shortcoming
as follows: “In practical applications, the worst-case probability distribution will often be unreal-
istic, and the corresponding bound overly conservative.” The same adverse effect is also reported
in Section 1.2 in case of the classical Chebyshev bound (1.6).

In this chapter we will therefore consider uncertainty quantification problems in which the am-
biguity set C consists of structured probability distributions sharing a known mean and second
moment. We will from hereon now consider the following uncertainty quantification problem
with second-order moment information:

B(L,K, µ, S) = sup

∫
L(x) P(dx)

s.t. P ∈ H(µ, S)

P ∈ K,

(6.2)

where the hyperplane H(µ, S) is defined as the collection of all measures sharing a known mean
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µ and second moment S, i.e.

H(µ, S) :=

{
P ∈ En :

∫
P(dx) = 1,

∫
xP(dx) = µ,

∫
xx> P(dx) = S

}
.

Apart from mean and second moment, we will enforce the ambiguity set C to only contain
probability distributions enjoying additional structure. The set K will be used to characterize any
further structural information about the probability distributions P considered, e.g. unimodality
or monotonicity. When K is taken to be the standard probability simplex Pn, then problem (6.2)
reduces to a standard uncertainty quantification problem as discussed by for instance Bertsimas
and Popescu [18], Zymler et al. [142] and Vandenberghe et al. [133].

The principal aim of this and the subsequent chapter is to provide a unified computational
approach to the situations under which problem (6.2) admits a tractable reformulation in terms
of a convex optimization problem. As mentioned already, we are primarily interested in the
situation in which the ambiguity set in richly structured K ⊂ Pn so as to exclude pathological
distributions which can make the corresponding bound overly pessimistic. In the remainder
of this section we will assume that the ambiguity set K admits a Choquet star representation
in terms of the generating distribution T. As argued in Section 3.2, many type of structures
commonly imposed on distributions in practice such as unimodality and monotonicity in fact
admit a Choquet star representation. The domain of the worst-case bound B(L,K, µ, S) can
now be determined explicitly using Proposition 3.7 as an LMI.

Fact 6.1 (Domain of B(L,K, µ, S)). The domain of the worst-case bound B(L,K, µ, S) with
respect to its last two variables is given as{

(µ, S) ∈ Rn × Sn :

(
Ss µs
µ>s 1

)
� 0, Ss ·

∫ ∞
0

t2 T(dt) = S, µs ·
∫ ∞

0

tT(dt) = µ

}
.

The first and second moment of the generating distribution T in case of α-unimodal and γ-
monotone distributions are given explicitly in Table 3.1.

The worst-case expectation bound B(L,K, µ, S) over K a choquet star representable set can be
reduced to a related worst-case expectation bound over the standard probability simplex Pn, i.e.

B(L,K, µ, S) = B(Ls,Pn, µs, Ss)

for judiciously chosen loss function Ls mean µs and second moment Ss. With this in mind, the
power of Choquet star representable ambiguity sets becomes clear. Indeed, the Choquet star
structure of the set K allows us to restrict attention to uncertainty quantification problems over
the standard probability simplex. This reduction will greatly benefit the unified presentation
of the computational results on the worst-case expectation bound B(L,K, µ, S) in this and the
subsequent Chapter.

We now state how a Choquet star representation of K can be utilized to remodel a structured
problem in the form (6.2) as an equivalent unstructured problem (i.e. one with ambiguity set
K = Pn) via an appropriate transformation of the loss function and moments.

Theorem 6.1 (Reduction to the standard simplex Pn). Assume that the ambiguity set K admits
a Choquet star representation with generating distribution T, then

B (L,K, µ, S) = B (Ls,Pn, µs, Ss) (6.3)

for Ls(x) :=
∫∞

0
L(tx) T(dt), Ss ·

∫∞
0
t2 T(dt) = S and µs ·

∫∞
0
tT(dt) = µ.
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Proof. Since the ambiguity set K admits a Choquet star representation, we can optimize over the
mixture representations m instead of P. Using the reparametrization P =

∫
Ty m(dy) we obtain

sup
P

∫
L(x) P(dx) = sup

m

∫ [∫
L(x) Ty(dx)

]
m(dy)

s.t. P ∈ K ∩H(µ, S) s.t.

∫
Ty m(dy) ∈ H(µ, S).

Indeed, we have that the condition P =
∫

Ty m(dy) ∈ K∩H(µ, S) is equivalent to the requirement
that

∫
Ty m(dy) ∈ C(µ, S). Furthermore, we have the identity∫

[x>, 1]> · [x>, 1] P(dx) =

∫ [∫
[x>, 1]> · [x>, 1] Ty(dx)

]
m(dy),

which equals using Fubini’s Theorem and the Choquet star property of Ty∫
[x>, 1]> · [x>, 1] P(dx) =

∫ (∫∞
0
t2 T(dt) y · y>

∫∞
0
tT(dt) y∫∞

0
t T (dt) y> 1

)
m(dy).

Hence the condition P =
∫

Ty m(dy) ∈ C(µ, S) is equivalently stated as the requirement m ∈
C(µs, Ss). We have because of Fubini’s Theorem that the integral

∫
L(x) P(dx) for P =

∫
Ty m(dy)

equals the integral
∫
Ls(x) m(dx) where both loss functions are related via the transformation

Ls(y) =
∫∞

0
L(ty) T(dt).

Hence, an uncertainty quantification problem over a Choquet star simplex K can be reduced
to an equivalent problem over the standard probability simplex Pn; see also Figure 6.1. Both
uncertainty quantification problems are related in terms of their loss functions as

Ls(y) =

∫
L(x) Ty(dx) (6.4)

according to the result presented in Theorem 6.1. The equivalent problems B (L,K, µ, S) =∫
L(x) P?(dx) and B (Ls,Pn, µs, Ss) =

∫
Ls(x) m?(dx) are not only related in terms of the worst-

case expectation bound but also in terms of the distributions in their corresponding convex
optimization problems. As indicated in the proof of Theorem 6.1, the relationship

P =

∫
Tx m(dx)

always holds. Because of the fundamental theorem stated in Chapter 5, the worst-case distri-
butions P? and m? can always be found as a convex combination of at most (n + 1)(n + 2)/2
extreme distributions of K or Pn, respectively. We thus have that the worst-case distributions
attaining either B (L,K, µ, S) or B (Ls,Pn, µs, Ss) are in the canonical forms

P? =
∑
i

pi · Txi and m? =
∑
i

pi · δxi .

Both in the current chapter and in subsequent Chapter 7, we will derive computational reformu-
lations for uncertainty quantification problems over the standard probability simplex Pn. As the
previous discussion indicated taking K = Pn is without loss of generality when the ambiguity
set K admits a Choquet star representation. In a next step we will then show how uncertainty
quantification problems over a more richly structured Choquet star simplex K can be treated
equally well via the transformation (6.4) and the reduction Theorem 6.1.
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x1

p1Tx1

x2

p2Tx2

P ∈ H(µ, S) ∩ K

Rn

L

(a) B(L,K, µ, S)

x1

p1δx1

x2

p2δx2

m ∈ H(µs, Ss) ∩ Pn

Rn

Ls

(b) B(Ls,Pn, µs, Ss)

Figure 6.1: The uncertainty quantification problem (6.2) for mean µ and second moment S
over the Choquet star simplex K is equivalent to an uncertainty quantification problem over
the standard probability simplex for judiciously chosen loss function Ls, mean µs, and second
moment Ss. The fundamental theorem guarantees that the worst-case distribution P? or m? is a
convex combination of a finite number of extreme distributions in either K or Pn, respectively.
Furthermore, these worst-case distributions are in both situations related according to P =∫

Tx m(dx) as depicted in blue for star unimodal distributions (K = Un).

6.2 Primal uncertainty quantification via perspective functions

In this chapter we will approach the uncertainty quantification problem (6.2) via its primal
reformulation. Initially, we will only consider unstructured probability distributions K = Pn. We
focus on the uncertainty quantification problem (6.2) for unstructured probability distributions

B(maxi∈I0 `i(x),Pn, µ, S) = sup
P

∫
[maxi∈I0 `i(x)] P(dx)

s.t. P ∈ H(µ, S) ∩ Pn,
(6.5)

where the functions `i are understood to be concave for all i in the index set I0 = I ∪ {0} =
[0, . . . , k]. We assume further that the loss function L is positive. Previous assumption is without
loss of generality when L is bounded from below and is enforced by taking `0(x) = 0. In Section
6.3, we will then illustrate that the uncertainty quantification problem (6.5) is in fact rich enough
to handle several interesting uncertainty quantification problems (6.2) in which K ⊂ Pn, following
the discussion at the end of the preceding section.

Under aforementioned conditions, an uncertainty quantification problem is most naturally treated
in its primal form. Indeed, we will show that problem (6.5) can be restated as a convex opti-
mization problem in terms of perspective functions of the functions `i. Subsequently, we will
discuss in Section 6.2.1 how the variables of this optimization problem can be related to the
worst-case probability distribution in the uncertainty quantification problem (6.2). It will be
shown in Section 6.2.2 that the generalized Chebyshev bound discovered by Vandenberghe et al.
[133] can be recognized as a corollary of Theorem 6.2.

Theorem 6.2 (Perspective functions). The bound B(maxi∈I0 `i(x),Pn, µ, S) for concave func-
tions `i can be reformulated as

sup
∑
i∈I

pi `i

(
zi
pi

)
s.t. pi ∈ R, zi ∈ Rn, Zi ∈ Rn×n, ∀i ∈ I∑

i∈I

(
Zi zi
z>i pi

)
�
(
S µ
µ> 1

)
(
Zi zi
z>i pi

)
� 0, ∀i ∈ I

(6.6)
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which is a convex optimization problem.

Proof. We first show that any feasible solution for the optimization problem (6.6) can be used
to construct a feasible probability distribution P ∈ C(µ, S) achieving the same objective value
in (6.5). Let {pi, zi, Zi, }i∈I be feasible in (6.6) and set xi = zi/pi if pi > 0; = 0 otherwise.
Moreover, assume without loss of generality that Zi = ziz

>
i /pi if pi > 0; = 0 if pi = 0. This

choice preserves feasibility of {pi, zi, Zi}i∈I and has no effect on its objective value in (6.6). Next,
define (

Z0 z0

z>0 p0

)
:=

(
S µ
µ> 1

)
−
∑
i∈I

(
Zi zi
z>i pi

)
� 0 , (6.7)

which is positive semidefinite due to the first constraint in (6.6). Assume now that p0 > 0 and
define µ0 = z0/p0 and S0 = Z0/p0. Proposition 3.6 then guarantees the existence of a probability
distribution P0 ∈ C(µ0, S0), which allows us to construct

P = p0 P0 +
∑
i∈I

pi δxi .

The first and second moments of P are given by∫ (
x
1

)(
x
1

)>
P(dx) = p0

(
S0 µ0

µ>0 1

)
+
∑
i∈I

pi

(
xix
>
i xi

x>i 1

)
=

(
S µ
µ> 1

)
,

where the second equation follows from equation (6.7). We hence conclude that P ∈ C(µ, S).
Moreover, elementary calculation shows that∫

max
i∈I0

`i(x) P(dx) = p0

∫
max
i∈I0

`i(x) P0(dx) +
∑
j∈I

max
i∈I0

`i(xj)pj ,

≥
∑
i∈I

`i(xi)pi =
∑
i∈I

pi`i

(
zi
pi

)
In summary, P is feasible in the worst-case expectation problem (6.5) with an objective value
that is at least as large as that of {pi, zi, Zi}i∈I in (6.6). If p0 = 0, we can set ẑi = (1 − ε)zi,
Ẑi = (1 − ε)Zi and p̂i = (1 − ε)pi for some ε ∈ (0, 1). By repeating the above arguments for
p0 > 0, we can use {p̂i, ẑi, Ẑi}i∈I to construct a feasible probability distribution of (6.5) with an
objective value of at least (1 − ε)∑i∈I pi`i (zi/pi). As ε tends to zero, we obtain a sequence of
probability distributions feasible in (6.5) whose objective values asymptotically approach that of
{pi, zi, Zi}i∈I in (6.6). We conclude that (6.6) provides a lower bound on (6.5).

Next, we prove that (6.5) also provides a lower bound on (6.6) and that any feasible solution
for (6.5) gives rise to a feasible solution for (6.6) with the same objective value. To this end, we
define for all i in I0 the set

Ξi = {x ∈ Rn : `i(x) ≥ `j(x), ∀j < i and `i(x) > `j(x), ∀j > i} .

Note that the sets Ξi form a partition of Rn. Consider now a probability distribution P that is
feasible in (6.5). Next, define(

Zi zi
z>i pi

)
=

∫
Ξi

(
x
1

)(
x
1

)>
P(dx) � 0 (6.8)
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for all i in I. By construction, we have

∑
i∈I0

(
Zi zi
z>i pi

)
=
∑
i∈I0

∫
Ξi

(
x
1

)(
x
1

)>
P(dx) =

∫ (
x
1

)(
x
1

)>
P(dx)

=

(
S µ
µ> 1

)
.

Thus, the {pi, zi, Zi}i∈I constructed in (6.8) are feasible in (6.6). Their objective value in (6.6)
can be represented as∑

i∈I
pi`i

(
zi
pi

)
=
∑
i∈I

pi`i(xi)

≥
∑
i∈I0

∫
Ξi

`i(x) P(dx) =

∫ [
max
i∈I0

`i(x)

]
P(dx)

where the second line follows from Jensen’s inequality and the last equality is a direct consequence
of the definition of the sets Ξi. The objective value of {pi, zi, Zi}i∈I thus coincides with the
objective value of P in (6.5).

6.2.1 Worst-case probability distributions

In addition to identifying a tractable reformulation of the uncertainty quantification problem
(6.5), it is also of interest to identify a worst-case probability distribution P? ∈ C(µ, S), i.e.∫

[maxi∈I0 `i(x)] P?(dx) = B(maxi∈I0 `i(x),Pn, µ, S),

should it exist. The fundamental theorem of linear programming 5.1 states that if the supremum
in problem (6.5) is attained, then it is attained in particular by a probability distribution P?

consisting of at most (n + 2)(n + 1)/2 Dirac distributions. Indeed, the number of unique half-
space constraints or co-dimension of the set H(µ, S) is exactly n for the mean µ on top of the
(n+ 1)n/2 constraints related to the second moment S.

The proof of Theorem 6.2 suggests an explicit construction of a worst-case probability distribution
as the convex combination of at most 2n + k extreme distributions. With the help of any
maximizer {p?i , z?i }i∈I of the convex optimization problem (6.6) satisfying 0 < p?0 = 1−∑i∈I p

?
i ,

a worst-case probability distribution in the form

P? = p?0P0 +
∑
i∈I

p?i δx?i

can be constructed where x?i = z?i /p
?
i if p?i > 0; = 0 otherwise, and where the probability

distribution P0 ∈ C(µ0, S0) with

p?0

(
S0 µ0

µ>0 1

)
=

(
S µ
µ> 1

)
−
∑
i∈I

p?i

(
x?i x

?
i
> x?i

x?i
> 1

)
� 0.

Such a probability distribution P0 can always be found as the convex combination of at most 2n
extreme distributions of Pn. Indeed, the positive semidefinite variance matrix Σ0 :=S0 − µ0µ

>
0

can be factored as Σ0 =
∑r
i=1 wiw

>
i where r ≤ n is the rank of the variance matrix Σ0. It can

now be readily verified that the probability distribution

P0 =

r∑
i=1

1

2r
δµ0+

√
rwi +

r∑
i=1

1

2r
δαµ0−

√
rwi

,
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satisfies P0 ∈ C(µ0, S0). When compared to the fundamental theorem, it is clear that the worst-
case probability distribution P? constructed from a maximizer of the optimization problem (6.6)
is not necessarily maximally sparse.

We remark that the reformulation offered in Theorem 6.2 is exact even though no worst-case
probability distribution P may exist. The nonexistence of a worst-case probability distribution
in problem (6.2) occurs only when p?0 = 0 in its reformulation (6.6). In that case, any maximizer
of (6.6) can be used to construct a sequence of probability distributions {Pt}, Pt ∈ C(µ, S) with
the property

lim
t→∞

Pt(ξ /∈ Ξ) = B(maxi∈I0 `i(x),Pn, µ, S).

6.2.2 Generalized Chebyshev inequalities

Recent generalizations of the classical Chebyshev inequality (1.6) provide upper bounds on the
probability of a multivariate random vector ξ ∈ Rn falling outside a prescribed confidence region
Ξ ⊆ Rn if only the mean and second moment of ξ are known. The best upper bound of this kind
is given by the optimal value of the worst-case probability problem

G∞(µ, S) := sup
P∈C(µ,S)

P (ξ /∈ Ξ) . (6.9)

The problem (6.9) has a natural interpretation as an uncertainty quantification problem using
the standard identity

P(Rn \ Ξ) =

∫
1 {Rn \ Ξ} (x) P(dx)

between measure and expectation of indicator functions. Vandenberghe et al. [133] showed that
(6.9) admits an exact reformulation as a single SDP whenever Ξ is polytopic and described
through finitely many half-space constraints. The resulting generalized Chebyshev bounds are
widely used across many different application domains, ranging from distributionally robust
optimization in Delage and Ye [43] to chance-constrained programming by Zymler et al. [142]
and Xu et al. [136] and Cheng et al. [38], stochastic control applications by this author [131],
machine learning techniques by Lanckriet et al. [74], for signal processing in Vorobyov et al.
[134], in Lo [78] and Grundy [57] and Bertsimas and Popescu [17] for option pricing, portfolio
selection and hedging applications are found in Yamada and Primbs [137], or finally in decision
theory by Smith [119] etc.

Consider an open polytope Ξ representable as a finite intersection of open half spaces,

Ξ =
{
x ∈ Rn : a>i x < bi, ∀i ∈ I

}
, (6.10)

where ai ∈ Rn, ai 6= 0, and bi ∈ R for all i ∈ I. The corresponding generalized Chebyshev bound
(6.9) can be reformulated as an SDP as shown for instance by Vandenberghe et al. [133]. We
now indicate that this result is readily obtained as a corollary of our Theorem 6.2.

Theorem 6.3 (Generalized Chebyshev bounds [133]). If Ξ is a polytope of the form (6.10), the
worst-case probability problem (6.9) with ambiguity set C(µ, S) is equivalent to a tractable SDP:

sup
P∈C(µ,S)

P(ξ /∈ Ξ) = max
∑
i∈I

pi

s.t. zi ∈ Rn, Zi ∈ Sn, pi ∈ R ∀i ∈ I
a>i zi ≥ bipi ∀i ∈ I∑
i∈I

(
Zi zi
z>i pi

)
�
(
S µ
µ> 1

)
(
Zi zi
z>i pi

)
� 0 ∀i ∈ I.

(6.11)
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Proof. It is clear that the uncertainty quantification problem (6.9) is equivalent to the bound
B(1 {Rn \ Ξ} ,Pn, µ, S) defined by (6.5). The loss function L = 1 {Rn \ Ξ} can be written in the
form required by Theorem 6.2, i.e. L(x) = maxi∈I0 `i(x) where the functions

`i(x) =

{
1 if a>i x ≥ bi,
−∞ Otherwise

are concave for all i ∈ I. The corresponding perspective functions are in this case given as
pi`(zi/pi) = pi if a>i zi ≥ bipi; −∞ otherwise.

As illustrated in the preceding section, the solution of the convex optimization problem (6.11) by
Vandenberghe et al. [133] can be used to construct a discrete worst-case probability distribution
for the uncertainty quantification problem (6.9). The existence of optimal discrete distributions
has distinct computational benefits and can be viewed as the key enabling property that facilitates
the SDP reformulation of the uncertainty quantification problem (6.9). However, it also renders
the corresponding Chebyshev bound rather pessimistic. Indeed, uncertainties encountered in
real physical, technical or economic systems are unlikely to follow discrete distributions with few
atoms. By accounting for such pathological distributions, problem (6.9) tends to overestimate
the probability of the event ξ /∈ Ξ significantly as already remarked upon by Vandenberghe et
al. [133].

6.3 Generalized Gauss inequalities

In order to mitigate the pessimism innate to the Chebyshev bound, one could impose additional
restrictions on the ambiguity set C that complement the given moment information. A minimal
structural property commonly encountered in practical situations is unimodality. Note that
most probability distributions commonly studied in probability theory are unimodal. So too are
all stable distributions, which are ubiquitous in statistics as they represent the attractors for
properly normed sums of independent and identically distributed random variables.

The purpose of this section is to generalize the classical Gauss inequality (1.7) to multivariate
probability distributions, providing a counterpart to the generalized Chebyshev inequality (6.11).
Extensions of the univariate Gauss inequality involving generalized moments have previously
been proposed by Sellke [115], while multivariate extensions have been investigated by Meaux et
al. [85]. Popescu [103] uses ideas from Choquet theory similar to ours in conjunction with sums-
of-squares polynomial techniques to derive approximate multivariate Gauss-type inequalities.
However, to the best of our knowledge, until now no efficient algorithm is known to compute the
underlying worst-case probabilities exactly.

6.3.1 The α-unimodal bound

We will now investigate the worst-case probability of the event ξ /∈ Ξ over all probability distri-
butions from within Cα(µ, S) :=H(µ, S) ∩ Uα,

Gα(µ, S) = sup
P∈Cα(µ,S)

P(ξ /∈ Ξ), (6.12)

and we will prove that the worst-case probability Gα(µ, S) can be computed efficiently by solving
a tractable SDP. Following the discussion in Section 3.1, we will indicate afterwards that the
classical Gauss bound is seen to constitute a special case of the hierarchy of bounds Gα(µ, S)
by letting α = n. Furthermore, the generalized Chebyshev bound G∞(µ, S) will be proved to
present the limit of Gα(µ, S) for α tending to infinity. This should not come as a surprise as we
have that Pn = cl ∪α≥0 Uα.
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It is clear that the worst-case probability bound Gα(µ, S) is equivalent to the worst-case bound
B(1 {Rn \ Ξ} ,Uα, µ, S). For completeness we make Fact 6.1 explicit in case of α-unimodal
distributions using the appropriate result in Table 3.1.

Fact 6.2 (Domain of Gα(µ, S)). The domain of the worst-case probability bound Gα(µ, S) is
given as

domGα =

{
(µ, S) :

(
α+2
α S α+1

α µ
α+1
α µ> 1

)
� 0

}
.

As stressed repeatedly, Theorem 6.2 deals only with uncertainty quantification problems over the
standard probability simplex Pn. Nevertheless, using the reduction Theorem 6.1 we will show
that we can handle the uncertainty quantification problem (6.12) for α-unimodal probability
distributions as well. The following theorem establishes that the uncertainty quantification
problem (6.12) admits a convex reformulation and can be recognized as a corollary of Theorem
6.2 via the reduction Theorem 6.1.

Theorem 6.4 (α-Unimodal bound). For 0 ∈ Ξ the problem (6.12) is equivalent to the convex
optimization problem

Gα(µ, S) = max
∑
i∈I

(pi − τi)

s.t. zi ∈ Rn, Zi ∈ Sn, pi ∈ R, τi ∈ R ∀i ∈ I∑
i∈I

(
Zi zi

z>i pi

)
�
( α+2

α S α+1
α µ

α+1
α µ> 1

)
(
Zi zi
z>i pi

)
� 0 ∀i ∈ I

a>zi ≥ 0, τi ≥ 0, τi(a
>
i zi)

α ≥ pα+1
i bαi ∀i ∈ I.

(6.13)

Proof. The proof is very similar to the proof of Theorem 6.3. From the reduction Theorem
6.1 it follows that we have B(1 {Rn \ Ξ} ,Uα, µ, S) = B(Ls,Pn, µs, Ss) where Ls is defined by
transformation (6.4). In case of α-unimodal distributions, the generating probability distribution
T is given in Example 3.2.

Ls(x) =

∫ 1

0

1 {Rn \ Ξ}(tx)αtα−1dt

= max
i∈I

∫ 1

0

1
{
a>i x ≥ bi

}
(tx)αtα−1dt

= max
i∈I0

`i(x)

where the functions `i are for all i ∈ I given as

`i(x) =

{
1−

(
bi
a>i x

)α
if a>i x ≥ 0

−∞ Otherwise

and are all concave because bi > 0 as 0 ∈ Ξ. The corresponding perspective functions are in
this case given as pi`(zi/pi) = pi − bαi pα+1

i /(a>i zi)
α if a>i z ≥ 0; −∞ otherwise. The concave

perspective function can be represented in epigraph form using an auxiliary variable τi and a
convex constraint τi ≥ bαi pα+1

i /(a>i zi)
α as suggested in (6.13).

Note that problem (6.13) fails to be an SDP in standard form due to the nonlinearity of its last
constraint. It is hence unclear whether the convex reformulation (6.13) of the uncertainty quan-
tification problem (6.12) is tractable. However, in Lemmas 6.1 and 6.2 below we will show that
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this constraint is in fact second-order cone representable under the mild additional assumption
that α is rational and not smaller than 1. In this case, (6.13) is thus equivalent to a tractable
SDP. We start with the case that the unimodality parameter α is a rational number not smaller
than 1.

Lemma 6.1 (Second-order cone representation for rational α). Suppose that b > 0 and α = v/w
for (v, w) ∈ N with v ≥ w. If the linear constraints p ≥ 0, τ ≥ 0 and a>z ≥ 0 hold, then
the nonlinear constraint (a>z)α τ ≥ pα+1 bα has an equivalent representation in terms of O(v)
second-order constraints involving z, τ , p and O(v) auxiliary variables.

Proof. We have

(a>z)
v
w τ ≥ p v+ww b

v
w ⇐⇒ (a>z)v τw ≥ pv+w bv

⇐⇒ ∃t ≥ 0 : (a>z)v tv ≥ p2v bv, τw pv−w ≥ tv

⇐⇒ ∃t ≥ 0 : (a>z) t ≥ p2 b, τw pv−w t2
`−v ≥ t2` ,

where ` = dlog2 ve. Both constraints in the last line of the above expression are second-order
cone representable. Indeed, the first (hyperbolic) constraint is equivalent to∥∥∥∥( 2pb

tb− a>z

)∥∥∥∥
2

≤ tb+ a>z ,

while the second constraint can be reformulated as (τw pv−w t2
`−v)1/2` ≥ t and thus requires the

geometric mean of 2` nonnegative variables to be non-inferior to t. Using a result of Nesterov
and Nemirovski [90, Section 6.2.3.5], this requirement can be re-expressed in terms of O(2`)
second-order cone constraints involving O(2`) auxiliary variables.

Lemma 6.1 establishes that (6.13) has a tractable reformulation for any rational α ≥ 1 by
exploiting a well-known second-order cone representation for geometric means. When α is integer,
one can construct a more efficient reformulation involving far fewer second-order cone constraints
and auxiliary variables. The following lemma derives this reformulation explicitly.

Lemma 6.2 (Second-order cone representation for integer α). Suppose that b > 0 and α ∈ N. If
the linear constraints p ≥ 0, τ ≥ 0 and a>z ≥ 0 hold, then the nonlinear constraint (a>z)α τ ≥
pα+1 bα is equivalent to

∃t ∈ R`+1 :


t ≥ 0, t0 = τ,

∥∥∥∥( 2pb
t`b− a>z

)∥∥∥∥
2

≤ t`b+ a>z,∥∥∥( 2tj+1

tj−p

)∥∥∥
2
≤ tj + p ∀j ∈ E,

∥∥∥( 2tj+1

tj−t`

)∥∥∥
2
≤ tj + t` ∀j ∈ O,

where ` = dlog2(α)e, E = {j ∈ [0, . . . , ` − 1] : dα/2je is even} and O = {j ∈ [0, . . . , ` − 1] :
dα/2je is odd}.

Proof. We have

(a>z)α τ ≥ pα+1 bα ⇐⇒ ∃s ≥ 0 : (a>z)α sα ≥ (p2 b)α, τ pα−1 ≥ sα,
⇐⇒ ∃s ≥ 0 : a>z s ≥ p2 b, τ pα−1 ≥ sα . (6.14)

The first inequality in (6.14) is a hyperbolic constraint equivalent to∥∥∥∥( 2pb
s b− a>z

)∥∥∥∥
2

≤ s b+ a>z
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and implies that p = 0 whenever s = 0. Next, we show that the second inequality in (6.14) can
be decomposed into ` hyperbolic constraints. To this end, we observe that

tj p
dα/2je−1 ≥ sdα/2je ⇐⇒ ∃tj+1 ≥ 0 : pdα/2

je−2 t2j+1 ≥ sdα/2
je, tj p ≥ t2j+1

⇐⇒ ∃tj+1 ≥ 0 : pdα/2
j+1e−1 tj+1 ≥ sdα/2

j+1e, tj p ≥ t2j+1

for all j ∈ E and tj ≥ 0, while

tj p
dα/2je−1 ≥ sdα/2je ⇐⇒ ∃tj+1 ≥ 0 : pdα/2

je−1 t2j+1 ≥ sdα/2
je+1, tj s ≥ t2j+1

⇐⇒ ∃tj+1 ≥ 0 : pdα/2
j+1e−1 tj+1 ≥ sdα/2

j+1e, tj s ≥ t2j+1

for all j ∈ O and tj ≥ 0. Applying the above equivalences iteratively for j = 0, . . . , `− 1, we find

τ pα−1 ≥ sα ⇐⇒ ∃t ∈ R`+1 : t ≥ 0, t0 = τ, tj p ≥ t2j+1 ∀j ∈ E, tj s ≥ t2j+1 ∀j ∈ O
⇐⇒ ∃t ∈ R`+1 : t ≥ 0, t0 = τ,∥∥∥∥(2tj+1

tj − p

)∥∥∥∥
2

≤ tj + p ∀j ∈ E,
∥∥∥∥(2tj+1

tj − s

)∥∥∥∥
2

≤ tj + s ∀j ∈ O.

The claim now follows as we can set s = t` without loss of generality.

Theorem 6.4 in combination with Lemma 6.1 or 6.2 establish that the worst-case probability
bound Gα(µ, S) for α-unimodal probability distributions is equivalent to a tractable SDP. As
discussed at the end of Section 6.1 a worst-case probability distribution P? of Gα(µ, S) = P?(ξ /∈
Ξ) can be found as

P? =
∑
i

p?i · uαx?i

where (x?i , p
?
i ) can be derived from the solution of the tractable reformulation (6.13) with the help

of the procedure discussed in Section 6.2.1. The worst-case distribution P? is hence recognized
as the finite convex combination of extreme α-unimodal distributions.

In order for the worst-case probability problem (6.12) to be of practical value we need to establish
that its optimal value depends continuously on the distributional parameters µ and S.

Proposition 6.1 (Well-posedness of problem (6.12)). The optimal value function Gα(µ, S) of
problem (6.12) is concave and continuous on the set of all µ ∈ Rn and S ∈ Sn with(

α+2
α S α+1

α µ
α+1
α µ> 1

)
� 0 .

Proof. Concavity of Gα(µ, S) is a direct consequence of Rockafellar [109, Proposition 2.22] and
Theorem 6.4. Because of Proposition 2.1 the bound Gα(µ, S) is thus continuous on the interior
of its domain. The claim now follows from the characterization of the domain of Gα(µ, S) in
Fact 6.2.

6.3.2 The Chebyshev bound

To derive the classical Chebyshev bound (1.6), assume without loss of generality that µ = 0, and
define the confidence region Ξ as

Ξ = {x ∈ R : −x < κσ, x < κσ} .
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The worst-case probability of the event ξ /∈ Ξ then coincides with the optimal value of the SDP
of Theorem 6.3 and its dual, which are given by

max

2∑
i=1

pi = min Tr
{(

S µ

µ> 1

)(
P q

q> r

)}
s.t. pi, zi, Zi ∈ R ∀i ∈ {1, 2} s.t. P, q, r ∈ R, τi ∈ R ∀i ∈ {1, 2}

a>i zi ≥ bipi ∀i ∈ {1, 2} τi ≥ 0 ∀i ∈ {1, 2}
2∑
i=1

(
Zi zi
z>i pi

)
�
(
S µ
µ> 1

) (
P q
q> r − 1

)
� τi

(
0 ai

2
a>i
2 −bi

)
∀i ∈ {1, 2}(

Zi zi
z>i pi

)
� 0 ∀i ∈ {1, 2}

(
P q
q> r

)
� 0.

A pair of optimal primal and dual solutions is provided in the following table. Note that the
dual solution serves as a certificate of optimality for the primal solution.

Primal solution Dual solution

p1 = p2 =

{
1

2κ2 if κ > 1

1
2 otherwise

z1 = −z2 =

{
σ
2 if κ > 1

κσ
2 otherwise

Z1 = Z2 =

{
σ2

2 if κ > 1

κ2σ2

2 otherwise

P =

{
1

σ2κ2 if κ > 1

0 otherwise

q = 0

r =

{
0 if κ > 1

1 otherwise

τ1 = τ2 =

{
2
σκ if κ > 1

0 otherwise

The worst-case probability is thus given by p1 + p2 = min
(

1
κ2 , 1

)
. Hence, Theorem 6.3 is a

generalization of the classical Chebyshev bound (1.6).

In the remainder of this section we will formalize our intuition that the generalized Chebyshev
bound G∞(µ, S) constitutes a special case of the α-unimodal bound Gα(µ, S) when α tends
to infinity. The next proposition establishes well-posedness of the Chebyshev bound, which is
needed to prove this asymptotic result.

Proposition 6.2 (Well-posedness of the generalized Chebyshev bound). The value function
G∞(µ, S) of problem (6.9) is concave and continuous on the set of all µ ∈ Rn and S ∈ Sn with(

S µ
µ> 1

)
� 0 .

Proof. The proof largely parallels that of Proposition 6.1 and is omitted.

Note that the function G∞(µ, S) can be discontinuous on the boundary of its domain when the
variance matrix S − µµ> is positive semidefinite but has at least one zero eigenvalue. Since the
confidence region Ξ constitutes an open polytope, there exists a converging sequence (xi)i∈N

in Ξ whose limit x = limi→∞ xi is not contained in Ξ. Defining µi = xi and Si = xix
>
i for

all i ∈ N, it is clear that limi→∞(µi, Si) = (x, xx>). Since C(µi, Si) = {δxi} and xi ∈ Ξ for all
i ∈ N, we conclude that limi→∞G∞(µi, Si) = 0. However, we also have G∞(x, xx>) = 1 because
C(µ, S) = {δx} and x /∈ Ξ. Thus, G∞(µ, S) is discontinuous at (x, xx>).

We are now ready to prove that the Chebyshev bound G∞(µ, S) is de facto embedded into the
family of all α-unimodal bounds Gα(µ, S) for α > 0.
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Proposition 6.3 (Embedding of the Chebyshev bound). For any µ ∈ Rn and S ∈ Sn with
S � µµ> we have limα→∞Gα(µ, S) = G∞(µ, S).

Proof. Select any µ ∈ Rn and S ∈ Sn with S � µµ>. It is clear that limα→∞Gα(µ, S) ≤
G∞(µ, S) as (6.12) constitutes a restriction of (6.9) for all α > 0. In order to prove the converse
inequality, we need the following relation between the extreme distributions of Uα and Pn:(

1− 1
α

)
δ
x/α

1
α

(ξ /∈ Ξ) ≤ uαx(ξ /∈ Ξ) (6.15)

For x/α
1
α ∈ Ξ the left hand side vanishes and (6.15) is trivially satisfied. For x/α

1
α /∈ Ξ and

Ξ star-shaped, an elementary calculation shows that uαx(ξ /∈ Ξ) ≥ uαx([x/α
1
α , x]) = 1− 1

α for all
α ≥ 1. Thus, (6.15) holds because δ

x/α
1
α

(ξ /∈ Ξ) ≤ 1. Taking mixtures with m ∈ C
(
α+1
α µ, α+2

α S
)

on both sides of (6.15) yields(
1− 1

α

)∫
δ
x/α

1
α

(ξ /∈ Ξ) m(dx) ≤
∫

uαx(ξ /∈ Ξ) m(dx) . (6.16)

By using elementary manipulations one can show that∫
δ
x/α

1
α

(·) m(dx) ∈ C
(
α−

1
α
α+1
α µ, α−

2
α
α+2
α S

)
and

∫
uαx(·) m(dx) ∈ Uα(µ, S) .

Maximizing both sides of (6.16) over all mixture distributions m ∈ C
(
α+1
α µ, α+2

α S
)

thus yields

(
1− 1

α

)
G∞

(
α−

1
α
α+1
α µ, α−

2
α
α+2
α S

)
≤ Gα(µ, S) .

Since limα→∞ α−
1
α
α+1
α = limα→∞ α−

2
α
α+1
α = 1 and G∞(µ, S) is continuous whenever S � µµ>

(see Proposition 6.2), we conclude that G∞(µ, S) ≤ limα→∞Gα(µ, S).

In addition to generalizing the univariate Chebyshev bound (1.6), the multivariate Cheby-
shev bound G∞(µ, S) also generalizes Cantelli’s classical one sided inequality and the bivari-
ate Birnbaum-Raymond-Zuckerman inequality [23]. By virtue of Proposition 6.3, all of these
classical inequalities can now be seen as special instances of the general problem (6.12).

6.3.3 The Gauss bound

Following the discussion in Section 3.1, the generalized Gauss bound for star-unimodal distribu-
tions can be defined as

Gn(µ, S) = sup
P∈Cn(µ,S)

P(ξ /∈ Ξ) . (6.17)

From Definition 3.5 and the subsequent discussion we indeed know that the set of n-unimodal
distributions Un coincides with the set of star unimodal distributions; see also Dharmadhikari and
Joag-Dev [44]. Theorem 6.5 is actually a straightforward corollary of Theorem 6.4 in conjunction
with Lemma 6.2.
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Theorem 6.5 (Generalized Gauss bounds). If Ξ is a polytope of the form (6.10) with 0 ∈ Ξ,
the worst-case probability problem (6.17) is equivalent to a tractable SDP,

sup
P∈Cn(µ,S)

P(ξ /∈ Ξ) = max
∑
i∈I

(pi − ti,0)

s.t. zi ∈ Rn, Zi ∈ Sn, pi ∈ R, ti ∈ R`+1 ∀i ∈ I(
Zi zi
z>i pi

)
� 0, a>i zi ≥ 0, ti ≥ 0 ∀i ∈ I∑

i∈I

(
Zi zi

z>i pi

)
�
( n+2

n S n+1
n µ

n+1
n µ> 1

)
∥∥∥∥( 2pibi

ti,`bi − a>i zi

)∥∥∥∥
2

≤ ti,`bi + a>i zi ∀i ∈ I∥∥∥∥( 2ti,j+1

ti,j − pi

)∥∥∥∥
2

≤ ti,j + pi ∀j ∈ E, ∀i ∈ I∥∥∥∥( 2ti,j+1

ti,j − ti,`

)∥∥∥∥
2

≤ ti,j + ti,` ∀j ∈ O, ∀i ∈ I,

(6.18)

where ` = dlog2 ne, E = {j ∈ [0, . . . , ` − 1] : dn/2je is even} and O = {j ∈ [0, . . . , ` − 1] :
dn/2je is odd}.

Theorem 6.5 establishes that the Gauss bound Gn(µ, S) for star unimodal probability distri-
butions is equivalent to a tractable SDP. As discussed at the end of Section 6.1, a worst-case
probability distribution P? of Gn(µ, S) = P?(ξ /∈ Ξ) can be found as

P? =
∑
i

p?i · unx?i

where (x?i , p
?
i ) can be derived from the solution of the tractable reformulation (6.18) at no

additional computational cost with the help of the procedure discussed in Section 6.2.1. The
worst-case distribution P? is hence recognized as the finite convex combination of extreme star
unimodal distributions.

We demonstrate now that the classical Gauss bound (1.7) arises indeed as a special case of
Theorem 6.5.

Example 6.1 (Classical Gauss bound). To derive the classical Gauss bound (1.7), assume
without loss of generality that µ = 0, and define the confidence region Ξ as

Ξ = {x ∈ R : −x < κσ, x < κσ} .

The worst-case probability of the event ξ /∈ Ξ then coincides with the optimal value of the SDP
of Theorem 6.5 and its dual, which are given by

max

2∑
i=1

pi − τi = min Tr
{(

3S 2µ

2µ> 1

)(
P q

q> r

)}
s.t. pi, τi, zi, Zi ∈ R ∀i ∈ {1, 2} s.t. P, q, r ∈ R, Λi ∈ S2 ∀i ∈ {1, 2}(

τibi pibi
pibi a>i zi

)
� 0 ∀i ∈ {1, 2}

(
P q
q> r − 1

)
�
(

0 ai
2 Λi,2,2

a>i
2 Λi,2,2 2biΛi,1,2

)
2∑
i=1

(
Zi zi
z>i pi

)
�
(

3S 2µ
2µ> 1

) (
P q
q> r

)
� 0(

Zi zi
z>i pi

)
� 0 ∀i ∈ {1, 2} biΛi,1,1 ≤ 1, Λi � 0 ∀i ∈ {1, 2}.
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A pair of optimal primal and dual solutions is provided in the following table. Note that the dual
solution serves as a certificate of optimality for the primal solution.

Primal Solution Dual Solution

p1 = p2 =

{
2

3κ2 if κ > 2√
3

1
2 otherwise

τ1 = τ2 =


4

9κ2 if κ > 2√
3

κ
2
√

3
otherwise

z1 = −z2 =


σ
κ if κ > 2√

3√
3σ
2 otherwise

Z1 = Z2 = 3σ2

2

P =

{
4

27σ2κ2 if κ > 2√
3

κ
6
√

3σ2
otherwise

q = 0

r =

0 if κ > 2√
3

1−
√

3κ
2 otherwise

Λ1 = Λ2 =


1
σκ

(
1 − 2

3

− 2
3

4
9

)
if κ > 2√

3

1
σκ

(
1 − κ√

3

− κ√
3

κ2

3

)
otherwise

The worst-case probability is thus given by (p1 − τ1) + (p2 − τ2) = 4
9κ2 when κ > 2√

3
; = 1− κ√

3

otherwise. Hence, Theorem 6.5 is a generalization of the classical Gauss bound (1.7).

In the univariate case, the Gauss bound tightens the Chebyshev bound by a factor of 4/9.
However, the tightening offered by unimodality is less pronounced in higher dimensions since
Gn(µ, S) converges to the Chebyshev bound G∞(µ, S) when n tends to infinity. To make this
point more concrete, we now provide analytic probability inequalities for the quantity of in-
terest P(maxi |ξi − µi| ≥ κσ), where it is only known that P ∈ Uα, EP[ξ] = µ = c and
EP

[
ξξ>

]
= σ2/n In +µµ>. This problem can be seen to constitute a multivariate generalization

of the classical Chebyshev (1.6) and Gauss (1.7) inequalities, but is itself a particular case of
the general problem (6.12). We have indeed the tight inequality P(maxi |ξi − µi| ≥ κσ) ≤
supP∈Uα(0,In/n) P(maxi |ξi| ≥ κ). This last particular instance of the problem (6.12) however
admits an analytic solution which can be proven analogously to the results in Section 5.4.1 as
done by Stellato [121].

Lemma 6.3. Let ξ be an α-unimodal random variable with centre c = µ, then we have the tight
bilateral probability inequality

P(max
i
|ξi − µi| ≥ κσ) ≤


(

2
α+2

) 2
α 1
κ2 if κ >

(
2

α+2

) 1
α (α+2

α

) 1
2 ,

1−
(

α
α+2

)α
2

κα otherwise.

The corresponding Chebyshev bound can be obtained by letting α→∞ and yields P(maxi |ξi−
µi| ≥ κσ) ≤ 1/κ2 if κ > 1; = 1 otherwise. When compared to the corresponding Gauss bound
found as a particular case α = n of Lemma 6.3, we see that the factor by which the Chebyshev

bound is improved upon is indeed 4/9 = (2/(n+ 2))
2/n

, n = 1 for univariate problems. However,
for higher dimensional problems the returns diminish as(

2

n+ 2

) 2
n

= 1− 2 log
(
n
2

)
n

+O
(

1

n2

)
, and lim

n→∞

(
2

n+ 2

) 2
n

= 1.

An intuitive explanation for this seemingly surprising result follows from the observation that
most of the volume of a high-dimensional star-shaped set is concentrated in a thin layer near
its surface. Thus, the radial distributions unx converge weakly to the Dirac distributions δx as n
grows, which implies that all probability distributions are approximately star-unimodal in high
dimensions.
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6.4 Immediate extensions

We now demonstrate that the results presented in this chapter can be used to solve a wider range
of diverse worst-case probability problems as well. The corresponding ambiguity sets are more
general than Cα(µ, S), which contains merely α-unimodal distributions with precisely known first
and second-order moments.

Moment ambiguity The worst-case probability bound Gα(µ, S) requires full and accurate
information about the mean and second moment matrix of the random vector ξ. In practice,
however, these statistics must typically be estimated from noisy historical data and are therefore
themselves subject to ambiguity. Assume therefore that the first and second-order moments are
known only to belong to an SDP-representable confidence set M , that is as in Nesterov and
Nemirovski [90] we assume, (

S µ
µ> 1

)
∈M ⊆ Sn+1

+ . (6.19)

Then, the worst-case probability problem with ambiguity set C = ∪(µ,S) Cα(µ, S), where the
union is taken over all µ and S satisfying condition (6.19) can be reformulated as a tractable
SDP. This is an immediate consequence of the identity

sup
P∈C

P(ξ /∈ Ξ) = max
µ,S

Gα(µ, S)

s.t.
(
S µ

µ> 1

)
∈M.

Theorem 6.4 and its corollaries imply that the optimization problem on the right hand side of the
above expression admits a tractable SDP reformulation. Hence, the α-unimodal bound Gα(µ, S)
can be generalized to handle ambiguity in both mean and the second-moment matrix.

Support information Suppose that, in addition to being α-unimodal, the distribution of ξ is
known to be supported on a convex closed polytope representable as

B =
{
x ∈ Rn : c>i x− di ≤ 0 ∀j ∈ J

}
. (6.20)

In this case we could use an ambiguity set of the form C = Cα(µ, S) ∩ P(B), where P(B) =
{P ∈ Pn : P(B) = 1}. Unfortunately, even checking whether the ambiguity set C is non-empty
is NP-hard in general. Indeed, if S is given by the nonnegative orthant Rn

+, it can be seen from
the Choquet representation of Uα that checking whether C is non-empty is equivalent to checking
whether the matrix (

α+2
α S α+1

α µ
α+1
α µ> 1

)
is completely positive, which is hard for any α > 0. A tractable alternative ambiguity set is
given by C = ∪S′�S Cα(µ, S′) ∩ P (B). The resulting generalized moment problem treats S as
an upper bound (in the positive semidefinite sense) on the second-order moment matrix of ξ,
as suggested by Delage and Ye [43]. This relaxation is justified by the observation that the
worst-case distribution in (6.9) tends to be maximally spread out and thus typically attains the
upper bound imposed on its second-order moments. In all other cases, the relaxation results
in a conservative estimate for the worst-case probability of the event ξ /∈ Ξ. However, the
relaxed problem always admits an exact reformulation as an SDP. This result is formalized in
the following proposition. The proof is omitted because it requires no new ideas.

Proposition 6.4 (Support information). The worst-case probability problem (6.9) with ambi-
guity set C = ∪S′�S Cα(µ, S′) ∩ P(B), where and Ξ and B are defined as in (6.10) and (6.20),
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respectively, can be reformulated as

max
∑
i∈I

(pi − τi)

s.t. zi ∈ Rn, Zi ∈ Sn, pi ∈ R, τi ∈ R ∀i ∈ I(
Zi zi
z>i pi

)
� 0 ∀i ∈ I

c>j zi ≤ djpi ∀i ∈ I, ∀j ∈ J∑
i∈I

(
Zi zi

z>i pi

)
�
( α+2

α S α+1
α µ

α+1
α µ> 1

)
(
a>i zi

)α
τi ≥ pα+1

i bαi , a>i zi ≥ 0, τi ≥ 0 ∀i ∈ I,

which is equivalent to a tractable SDP for any rational α ≥ 1.

We remark that our techniques can be used to derive many other worst-case probability bounds
involving α-unimodal distributions for instance by combining the results discussed in this section.
These further generalizations are omitted for the sake of brevity, and we consider instead a
practical application of the new worst-case probability bounds derived in this chapter.

6.5 Digital communication example

We use the generalized Gauss bounds presented in this chapter to estimate the probability of
correct signal detection in a digital communication example inspired by Boyd and Vandenberghe
[27]. All SDP problems are implemented in Matlab via the YALMIP interface and solved using
SDPT3.

Consider a set of c possible symbols or signals S = {s1, . . . , sc} ⊆ R2, which is termed the signal
constellation. The signals are transmitted over a noisy communication channel and perturbed by
additive noise. A transmitted signal st thus results in an output so = st + ξ, where ξ valued in
R2 follows a star-unimodal distribution with zero mean and variance matrix σ2 I2. A minimum
distance detector1 then decodes the output, that is, it determines the symbol sr ∈ S that is
closest in Euclidian distance to the output so. Note that the detector is uniquely defined by the
Voronoi diagram implied by the signal constellation S as shown in Figure 6.3(a).

The quantity of interest is the average probability of correct symbol transmission

p =
1

c

c∑
i=1

P(si + ξ ∈ Ci) = 1− 1

c

c∑
i=1

P(si + ξ /∈ Ci),

where Ci is the (polytopic) set of outputs that are decoded as si. The generalized Chebyshev
bound of Theorem 6.3 and the generalized Gauss bound of Theorem 6.5 both provide efficiently
computable lower bounds on p, which are plotted in Figure 6.3(b) as a function of the Chan-
nel noise power σ. Note that the generalized Gauss bound is substantially tighter because the
Chebyshev bound disregards the star-unimodality of the channel noise. For the sake of compar-
ison, Figure 6.3(b) also shows the probability of correct detection when the noise ξ is assumed
to be normal or block uniformly distributed. We say that a random variable is block uniformly
distributed if it is distributed uniformly on a square in Rn. The both reference probabilities were
computed using numerical integration. Using the procedure described in Section 6.2.1, we are
able to explicitly construct a worst-case probability distribution for P(s1 + ξ /∈ C1). In Figures
6.4(a) and 6.4(b) the support of these worst-case probability distributions for respectively the

1If the noise is Gaussian, then minimum distance decoding is the same as maximum likelihood decoding.



6.5. DIGITAL COMMUNICATION EXAMPLE 83

channel

+ Dec

ξ

st so sr

Figure 6.2: Upon transmitting the symbol st, a noisy output so = st + ξ is received and decoded
using a maximum likelihood decoder into the symbol sr.

s1

s2

s3

s4

s5

s6

s7

−5 −3 −1 1 3 5
−5

−3

−1

1

3

5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channel noise σ

P
ro
b
ab

il
it
y
o
f
co
rr
ec
t
d
et
ec
ti
on

p

Chebyshev
Gauss
Normal
Uniform

(b)

Figure 6.3: Figure 6.3(a) depicts the signal constellation S. The probability distribution of
the outputs is visualized by the dashed circles, while the detector is visualized by its Voronoi
diagram. For example, the green polytope represents the set of outputs so which are decoded
as s1. Figure 6.3(b) shows the lower bounds on the correct detection probabilities as predicted
by the Chebyshev and Gauss inequalities. The exact detection probability for normal and block
uniform distributed noise is shown for the sake of comparison.

Chebyshev and Gauss bound are shown in case the channel noise is σ = 1. We used Matlab on
a PC2 operated by Debian GNU/Linux 7 (wheezy) in combination with the software YALMIP

made available by Löfberg [80] and SDPT3 described in Tütüncü [127] to solve the resulting
convex SDPs. The Chebyshev and Gauss bounds depicted in Figure 6.3(b) each required the
solution of 700 SDPs, with seven SDPs per channel noise level. On our computing hardware
it took on average 1.0 s and 2.0 s to solve each of the 700 SDPs for the Chebyshev and Gauss
bounds, respectively, to an accuracy of six significant digits.

2An Intel(R) Core(TM) Xeon(R) CPU E5540 @ 2.53GHz machine.
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Figure 6.4: Figures 6.4(a) and 6.4(b) depict in red the support of the worst-case probability
distributions for P(s1 + ξ /∈ C1) for the Chebyshev and Gauss bounds, respectively, in case of
the channel noise power σ = 1.
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This chapter will deal with uncertainty quantification problems with second-order moment infor-
mation of the type (6.2) as discussed in the previous chapter but now from the dual perspective.
Instead of maximizing over probability distributions in an ambiguity set C, the dual is stated in
terms of minimization over dual functions.

We remark that the dual approach described in this chapter is the predominant approach in the
literature concerned with the uncertainty quantification problem (6.2). Indeed, the early work
by Isii [63] on uncertainty quantification problems already emphasizes the dual perspective.
Furthermore, the recent pioneering results of Bertsimas and Popescu [18, 103] which spurred a
renewed interest in the uncertainty quantification problem (6.2) are essentially all dual based.
The problem (6.2) is in the aforementioned literature also referred to as a generalized moment
problem. As discussed in the previous chapter we will not follow this convention and refer to
problem (6.2) as an uncertainty quantification problem with second-order moment information.

The dual of the uncertainty quantification problem (6.2) defining the worst-case expectation
bound B(L,K, µ, S) is described in Chapter 5. In case of second-order moment information the
dual (5.4) specializes to a minimization problem over the coefficients of quadratic dual functions,
i.e.

inf Tr

{(
Y y
y> y0

)
·
(
S µ
µ> 1

)}
s.t. Y ∈ Sn, y ∈ Rn, y0 ∈ R∫ [

x>Y x+ 2x>y + y0 − L(x)
]

P(dx) ≥ 0, ∀P ∈ K.

(7.1)

Note that the convex optimization problem (7.1) has finitely many dual variables (Y, y, y0) but
infinitely many constraints parameterized in the universal quantifier P in the ambiguity set K.
As in the previous chapter, we will show that if the ambiguity set K admits a Choquet star
representation then the dual (7.1) can often be solved exactly.
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7.1 Second-moment information and Choquet simplices

If the ambiguity set K admits a Choquet star representation generated by the univariate proba-
bility distribution T, then the constraint of the dual problem (7.1) reduces to∫ ∞

0

[
t2x>Y x+ 2tx>y + y0 − L(xt)

]
T(dt) ≥ 0 ∀x ∈ Rn (7.2)

as shown in Proposition 5.2. Notice that the constraint (7.2) is a semi-infinite constraint in the
universal quantifier x in Rn. The representation (7.2) of the dual constraint is favorable over its
counterpart in (7.1) which is parametrized in the probability distributions P in the ambiguity
set K. Indeed, in general there can be many more probability distributions in the ambiguity set
K than that there are points in Rn.

It turns out that the parametric integral in (7.2) evaluates to a piecewise polynomial in x for
many natural choices of the loss function L and the ambiguity set K. In this case the constraint
of the dual problem (7.1) requires a piecewise polynomial to be non-negative on Rn and can
thus be reformulated as an LMI or approximated by a hierarchy of increasingly tight LMIs by
using sum-of-squares techniques discussed by Lasserre [76]. The dual problem (7.1) can thus be
approximated systematically with tractable SDPs. Popescu [103] has used this general approach
to derive efficiently computable, albeit approximate, Chebyshev and Gauss-type bounds for
several structured classes of probability distributions. In this work however, we will indicate
that in many situations an exact reformulation can be obtained too.

It is worth mentioning that in case no additional structure is imposed (K = Pn), the constraint
(7.2) reduces to the standard semi-infinite constraint

x>Y x+ 2x>y + y0 − L(x) ≥ 0 ∀x ∈ Rn (7.3)

as discussed before in Section 5.2. This observation was used by Vandenberghe et al. [133] and
Zymler et al. [143] to derive exact and tractable reformulations of Chebyshev type bounds based
on the S-Lemma 4.1. As Vandenberghe et al. [133] remarked themselves, the resulting bounds are
rather pessimistic as many distributions in practice do enjoy additional structure. As mentioned
already, we are primarily interested in the situation in which the ambiguity set K is more richly
structured K ⊂ Pn so as to exclude pathological distributions which can make the corresponding
bound overly pessimistic.

In order to equate the worst-case expectation bound B(L,K, µ, S) with its dual characterization
(7.1), strong duality needs to hold. As discussed in Theorem 5.2, strong duality requires that the
feasible set H(µ, S) ∩ K satisfies a Slater constraint qualification condition. In view of Example
5.1, we make the following standing assumption in this chapter.

Assumption 7.1 (Strong duality). To guarantee strong duality between the optimization prob-
lems (6.2) and (7.1), we assume that the mean vector µ ∈ Rn and second moment matrix S ∈ Sn+
satisfy (

Ss µs
µ>s 1

)
� 0 ⇐⇒ Ss � µsµ>s

for Ss ·
∫∞

0
t2 T(dt) = S and µs ·

∫∞
0
tT(dt) = µ.

Fact 6.1 indicates that the feasible set H(µ, S) ∩ K is non-trivial if Ss � µsµ
>
s . Strong duality

thus holds on the entire interior of the domain of the worst-case expectation bound B(L,K, µ, S).
Assumption 7.1 can hence be regarded as very mild.

We will argue now from a dual perspective that if the ambiguity set K admits a Choquet star
representation then the worst-case expectation bound B(L,K, µ, S) over the Choquet star sim-
plex K can be reduced to a related worst-case expectation bound this time over the standard
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probability simplex Pn, i.e.

B(L,K, µ, S) = B(Ls,Pn, µs, Ss)
for judiciously chosen loss function Ls, mean µs, and second moment Ss. The power of Choquet
star representable ambiguity setsK lies hence in the previous statement. Indeed, the Choquet star
structure of the ambiguity set K will allow us to restrict attention to uncertainty quantification
problems over the standard probability simplex Pn. This reduction from an arbitrary Choquet
star representable ambiguity set K to the standard probability simplex Pn greatly benefits the
unified exposition of the computational results on the worst-case expectation bound B(L,K, µ, S)
as already pointed out in the previous chapter. In this chapter however, the resulting worst-case
expectation bounds over the standard probability simplex Pn will be approached via their dual
characterization (7.1).

The representation (7.2) of the dual constraint in the uncertainty quantification problem (7.1)
implies the following Theorem which is in fact the dual counterpart of Theorem 6.1:

Theorem 7.1 (Reduction to the standard simplex Pn). Assume that the ambiguity set K ad-
mits a Choquet star representation with generating distribution T, with Assumption 7.1 we have
B(L,K, µ, S) = B(Ls,Pn, µs, Ss) =

inf Tr

{(
Ys ys
y>s ys0

)
·
(
Ss µs
µ>s 1

)}
s.t. Ys ∈ Sn, ys ∈ Rn, ys0 ∈ R

x>Ysx+ 2x>ys + ys0 − Ls(x) ≥ 0, ∀x ∈ Rn

(7.4)

for Ls(x) :=
∫∞

0
L(tx) T(dt), Ss ·

∫∞
0
t2 T(dt) = S and µs ·

∫∞
0
tT(dt) = µ.

Proof. With Assumption 7.1 strong duality holds and we can equate B(L,K, µ, S) with its dual
representation (7.1). We now exploit the Choquet star property of the ambiguity set K to restate
the constraint (7.2) as∫ ∞

0

t2 T(dt) · x>Y x+

∫ ∞
0

tT(dt) · 2x>y + y0 −
∫ ∞

0

L(xt) T(dt), ∀x ∈ Rn.

With Ys = Y ·
∫
t2 T(dt), ys = y

∫
tT(dt) and ys0 = y0 the theorem follows immediately after

reorganizing the terms in the dual (7.1) and comparing them term by term with constraint
(7.3).

The worst-case expectation bound B(L,K, µ, S) over the ambiguity set K can thus be reduced
to the dual of the worst-case expectation bound B(Ls,Pn, µs, Ss) over the standard probability
simplex Pn. Theorem 7.1 can hence be seen to provide a dual counterpart to Theorem 6.1. As
Theorem 7.1 derives the equivalence between the worst-case expectation bounds B(L,K, µ, S)
and B(Ls,Pn, µs, Ss) via a dual perspective, the condition Ss � µsµ

>
s in Assumption 7.1 is

necessary to establish strong duality. Hence Theorem 7.1 is slightly weaker than its counterpart
Theorem 6.1 and only establishes

B(L,K, µ, S) = B(Ls,Pn, µs, Ss)
on the interior of the domain of both functions.

In what follows, we will derive computational reformulations only for uncertainty quantification
problems over the standard probability simplex Pn. As the previous discussion indicated taking
K = Pn is without loss of generality when the ambiguity set K admits a Choquet star represen-
tation. In a next step we will then show how many uncertainty quantification problems over a
more richly structured Choquet star simplex K can be treated equally well.
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7.2 Dual representation via moment functions

Similar as in Chapter 6 we will start the discussion with assuming that the ambiguity set K is
taken to be the standard probability simplex Pn. As explained before, this is without loss of
generality in virtue of the reduction Theorems 6.1 or its dual counterpart 7.1 when K admits a
Choquet star representation. Subsequently, in Section 7.3 this will be made concrete in case of
both α-unimodal and γ-monotone distributions.

The loss functions we will consider for the worst-case expectation bound B(L,Pn, µ, S) will be
in the following form

L(x) = max
i∈I0

`i(Aix). (7.5)

where each `i : Rd → R and Ai ∈ Rd×n for all i ∈ I0 := I ∪ {0} = [0, . . . , k]. We assume further
that the loss function L is positive, which is enforced by taking `0(x) = 0 as in the preceding
chapter. Please note that unlike in the preceding chapter, the functions `i are not required to be
concave. By the end of this section we will have indicated that many interesting loss functions
can be brought in the form (7.5).

Under aforementioned conditions, an uncertainty quantification problem is most naturally treated
in its dual form. Indeed, we will show in this chapter that the dual problem (7.4) can be re-
stated as a tractable convex optimization problem with semi-infinite constraints. The following
theorem which does not provide a tractable reformulation of the worst-case expectation bound
B(L,Pn, µ, S) just yet, will be at the basis of many results found in this chapter.

Theorem 7.2. The worst-case expectation problem with second-order moment information (6.2)
can be reformulated as B (maxi∈I0 `i(Aix),Pn, µ, S) =

inf Tr

{(
Y y
y> y0

)
·
(
S µ
µ> 1

)}
s.t.

(
Y y
y> y0

)
∈ Sn+1

+ ,

(
T1,i T2,i

T>2,i T3,i

)
∈ Sd+1

+ , Λ1,i ∈ Rd×d, Λ2,i ∈ Rd

Λ1,i + Λ>1,i − T1,i Λ2,i − T2,i −Λ>1,iAi
Λ>2,i − T>2,i y0 − T3,i y> − Λ>2,iAi
−A>i Λ1,i y −A>i Λ2,i Y

 � 0, ∀i ∈ I


(C1)

T3,i + 2q>T2,i + q>T1,iq ≥ `i(q), ∀q ∈ Rd, ∀i ∈ I (C2)

when Assumption 7.1 holds.

Proof. The constraint in the dual problem (7.4) can be reformulated as

∀i ∈ I0, ∀q ∈ Rd : inf
Aix=q

x>Y x+ 2x>y + y0 ≥ `i(q).

As we assume that the loss function L is positive, it must hence follow that the matrix (Y, y; y>, y0)
is positive semidefinite. The claim now follows immediately from Theorem A.2 applied to the
parametric optimization problem infAix=q x

>Y x+ 2x>y + y0.

Note that this reformulation of the standard dual problem (7.4) into the more unconventional
form in Theorem 7.2 is motivated by a desire to replace the semi-infinite constraint over Rn

with one over Rd. Hence when d� n, the reformulation offered by Theorem 7.2 is preferable to
the standard dual (7.4). Observe that bar for the semi-infinite constraint (C2), the reformula-
tion offered in Theorem 7.2 for the worst-case expectation bound B (maxi∈I0 `i(Aix),Pn, µ, S)
is tractable. Hence the remainder of this chapter, we can focus on providing tractable reformu-
lations of the semi-infinite constraint (C2) for various functions `i.
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The semi-infinite constraint (C2) in Rd of Theorem 7.2 for piece-wise polynomial `i admits a
tractable reformulation in the univariate case when d = 1 using sum-of-squares reformulations as
indicated in Theorem 4.2. Similarly, when the functions `i are quadratically representable The-
orem 7.2 provides a tractable reformulation of the worst-case expectation bound B(L,Pn, µ, S)
with help of the S-Lemma 4.1. In either case, the semi-infinite constraint (C2) is represented
through a tractable LMI and evaluating the worst-case expectation bound B(L,Pn, µ, S) reduces
to solving an SDP.

7.2.1 Unstructured uncertainty inequalities

Before considering structured classes of probability distributions, it is instructive to apply The-
orem 7.2 to the unstructured case K = Pn, and to restate some well-known tractable reformula-
tions of uncertainty quantification problems. The purpose of this section is thus not so much as
to present novel results, but rather to indicate that many results in the literature can be recog-
nized as corollaries of Theorem 7.2 for an appropriate choice of loss function L in the worst-case
expectation bound

B(L,Pn, µ, S).

We reconsider the generalized Chebyshev bound G∞(µ, S) discussed in Chapter 6 on the worst-
case probability of the event ξ /∈ Ξ based solely on second-moment information by letting L =
1 {Rn \ Ξ}. We will indicate here how Theorem 7.2 then provides a dual counterpart to the
tractable reformulation (6.11). Additionally, we present tractable reformulations of worst-case
CVaR and expectation problems which will come to fruition in Chapters 8 and 9. The main
results presented in this section, from a practitioners point of view, are summarized in the
table below. In Section 7.3 we will then present counterparts to the result presented here when
considering more richly structured ambiguity sets K ⊂ Pn.

Structure Probability inequalities Expectation & CVaR inequalities

Unstructured Pn Example 7.1 Theorem 7.3

Probability inequalities

We revisit here the generalized Chebyshev inequalities as introduced in Section 6.2.2 of the
previous chapter. Recall that we are interested in computing the worst-case probability of an
event P(ξ /∈ Ξ), merely using the fact that ξ has mean µ and second moment S. In Section 6.2.2
a primal reformulation was offered in terms of the tractable convex optimization problem (6.11)
for polytopic event sets Ξ.

In light of Theorem 7.2, we can approach the generalized Chebyshev bound G∞(µ, S) alterna-
tively via its dual characterization. There are in fact two ways in which we can apply Theorem
7.2 so as to obtain a tractable reformulation of the generalized Chebyshev bound

G∞(µ, S) = B(1 {Rn \ Ξ} ,Pn, µ, S)

using once more the equivalence between measure and expectation of indicator functions. We
will present both approaches and indicate that a slight generalization of the results in Section
6.2.2 can be achieved.

(i) In a first approach, we again assume that the set Ξ is polytopic and represented as the finite
intersection of half-spaces Ξ =

{
x ∈ Rn : a>i x < bi, ∀i ∈ I

}
. The indicator function of the set

of interest Rn \ Ξ can be brought in the form required by Theorem 7.2 using the equivalence

1 {Rn \ Ξ} = max
i∈I

`i
(
a>i x

)
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where each of the functions `i(q) = 1 {q ≥ bi} for all i ∈ I is an indicator function. Each of the
functions `i

(
a>i x

)
thus represents the indicator function of the half-space

{
x ∈ Rn : a>i x ≥ bi

}
.

The Chebyshev bound G∞(µ, S) can now be reformulated via Theorem 7.2 using the previous
observation, i.e.

G∞(µ, S) = B

(
max
i∈I

`i(a
>
i x),Pn, µ, S

)
.

The following example makes the last remaining problematic constraint (C2) in the reformulation
offered in Theorem 7.2 explicit in terms of an LMI thus providing a tractable reformulation to
the Chebyshev bound G∞(µ, S) for polytopic event sets Ξ.

Example 7.1 (Polytopes). The worst-case probability bound G∞(µ, S) for the event ξ /∈ Ξ as
defined before can be modeled as in Theorem 7.2. The constraint (C2) specializes to

T3,i − 1 + 2q>T2,i + q>T1,iq ≥ 0, ∀q ≥ bi, ∀i ∈ I,

which can be rewritten as an LMI by virtue of the S-Lemma 4.1. The generalized Chebyshev
bound G∞(µ, S) for polytopic sets Ξ is therefore equivalent to the following tractable SDP

G∞(µ, S) = inf Tr {Y S}+ 2y>µ+ y0

s.t. (C1),

∃τi ∈ R+,

(
T1,i T2,i

T2,i T3,i − 1

)
� τi

(
0 1
1 −2bi

)
, ∀i ∈ I.

(7.6)

It can be remarked that the tractable reformulation (7.6) represents a dual counterpart to The-
orem 6.3.

(ii) An alternative approach to the generalized Chebyshev bound G∞(µ, S) based directly on
the S-Lemma 4.1 can be found in the works of Vandenberghe et al. [133] or Zymler et al. [142]
and in fact allows for a slight generalization of the result discussed in Example 7.1.

Let the set of interest Ξ = ∩i∈I Ξi be for the moment the intersection of finitely many generalized
ellipsoids Ξi, i.e. Ξi :=

{
x ∈ Rn : x>Eix+ 2e>i x+ e0

i < 0
}

with Ei ∈ Sn not necessarily positive
definite matrices. The indicator function of the set of interest Rn \ Ξ can be brought again in
the form required by Theorem 7.2 using

1 {Rn \ Ξ} = max
i∈I

`i (x)

where each of the functions `i(q) := 1
{
q>Eiq + 2e>i q + e0

i ≥ 0
}

is the indicator function corre-
sponding to the complement of a single generalized ellipsoid Ξi.

An exact tractable reformulation of the corresponding Chebyshev bound G∞(µ, S) based directly
on the S-Lemma 4.1 seems to have been found first by Vandenberghe et al. [133] and was later
independently rediscovered by Zymler et al. [142]. We will now indicate that the Chebyshev
bound G∞(µ, S) for generalized ellipsoids can again be reformulated immediately via Theorem
7.2 based on the observation that

G∞(µ, S) = B

(
max
i∈I

`i(x),Pn, µ, S
)
.

The following example reformulates the last remaining problematic constraint (C2) in the refor-
mulation offered in Theorem 7.2 via the S-Lemma 4.1, thereby providing a tractable reformula-
tion to the Chebyshev bound G∞(µ, S) for quadratically representable event sets Ξ.
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Example 7.2 (Ellipsoids [133, 142]). The worst-case probability G∞(µ, S) for the event ξ /∈ Ξ
as defined before can be modeled as in Theorem 7.2. The constraint (C2) becomes

T3,i + 2q>T2,i + q>T1,iq ≥ `i(q), ∀q ∈ Rn, ∀i ∈ I,

which can be rewritten with the help of the S-Lemma 4.1 as an LMI. The generalized Chebyshev
bound G∞(µ, S) for ellipsoidal sets Ξ is therefore equivalent to the following tractable SDP

G∞(µ, S) = inf Tr {Y S}+ 2y>µ+ y0

s.t. (C1),

∃τi ∈ R+,

(
T1,i T2,i

T2,i T3,i − 1

)
� τi

(
Ei ei
e>i e0

i

)
, ∀i ∈ I.

(7.7)

Expectation inequalities

We have indicated in Section 5.4.2 that any worst-case CVaR problem can be reduced to standard
worst-case expectation problems. In this part we will make the previous claim concrete for worst-
case CVaR problems of the general form

BCVaR(L,Pn, µ, S) := sup P-CVaRε (L(ξ))

s.t. P ∈ H(µ, S)

P ∈ Pn.
(7.8)

where the loss function is in the form L = maxi∈I `i(x) for quadratic functions `i(x) = x>Eix+
2e>i x + e0

i . Recall that the worst-case CVaR problem can be reduced to a standard worst-case
expectation problem using

BCVaR(L,K, µ, S) = min
β

β +
1

ε
B((L− β)+,K, µ, S). (7.9)

In what follows, we will present a tractable reformulation of the worst-case CVaR problem (7.8)
for quadratically representable loss functions based on Theorem 7.2 and the reducation (7.9).

The following example reformulates the last remaining problematic constraint (C2) in the re-
formulation offered in Theorem 7.2 via the S-Lemma 4.1, thereby providing a tractable refor-
mulation to the worst-case expectation bound B((L − β)+,Pn, µ, S) for quadratically repre-
sentable loss functions L and by virtue of the reduction (7.9) to the worst-case CVaR problem
BCVaR(L,K, µ, S) as well.

Example 7.3 (Zymler et al. [142]). For a piecewise quadratic loss function L(x) = maxi∈I `i(x),
the constraint (C2) in Theorem 7.2 for the worst-case expectation bound B((L − β)+,Pn, µ, S)
becomes

T3,i + 2q>T2,i + q>T1,iq ≥ q>Eiq + 2e>i q + e0
i − β, ∀q ∈ Rn, ∀i ∈ I,

which can be rewritten as an LMI using the S-Lemma 4.1. From equivalence (7.9) it follows that
the worst-case CVaR problem for the quadratic loss function L is therefore equivalent to the SDP

BCVaR(L,Pn, µ, S) = inf β + 1
ε

[
Tr {Y S}+ 2y>µ+ y0

]
s.t. (C1),(

T1,i T2,i

T2,i T3,i

)
�
(
Ei ei
e>i e0 − β

)
, ∀i ∈ I.

(7.10)

It is shown by Zymler et al. [142] that the tractable reformulation (7.10) offered in Example 7.3
for the worst-case CVaR bound BCVaR(L,Pn, µ, S) can in fact be written more concisely as done
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in Theorem 7.3. The worst-case CVaR bound BCVaR(L,Pn, 0,Σ), where the loss function L is
a single centralized quadratic (k = 1), for a zero mean random variable ξ with given variance
matrix Σ ∈ Sn+ can be even further simplified and admits the closed form expression stated in
Corollary 7.1.

Theorem 7.3 (Zymler et al. [142]). For a piecewise quadratic loss function L(x) = maxi∈I x>Eix+
2e>i x+ e0

i the worst-case CVaR bound BCVaR(L,Pn, µ, S) reduces to the tractable SDP

BCVaR(L,Pn, µ, S) = inf β + 1
ε

[
Tr {Y S}+ 2y>µ+ y0

]
s.t.

(
Y y
y> y0

)
� 0(

Y y
y> y0

)
�
(
Ei ei
e>i e0

i − β

)
, ∀i ∈ I

(7.11)

when Assumption 7.1 holds.

Theorem 7.3 will come to use in the subsequent Chapters 8 and 9. The following corollary of
Theorem 7.3 will play an important role in Chapter 9.

Corollary 7.1 (Concentric distributions and loss functions). If L(x) = x>E1x+ e0
1 constitutes

a single quadratic function centered at the origin, while the random vector ξ has mean µ = 0 and
variance Σ, then the worst-case CVaR bound

BCVaR(L,Pn, 0,Σ) = e0
1 +

1

ε
Tr {ΣE1} (7.12)

admits a closed form exact reformulation.

Proof. For the loss function L(x) = x>E1x+ e0
1 the previous Theorem 7.3 implies

BCVaR(L,Pn, 0,Σ) = inf β +
1

ε
(Tr {ΣY }+ y0)

s.t. Y ∈ Sn+, y ∈ Rn, y0 ∈ R+, β ∈ R(
Y y
y> y0

)
� 0,

(
Y − E1 y
y> y0 − e0

1 + β

)
� 0.

(7.13)

As Y = E1, y = 0, y0 = 0 and β = e0
1 is feasible in (7.13), it is clear that the worst-case CVaR is

bounded above by e0
1 + 1

εTr {ΣE1}. To prove the converse inequality, we let (Y ?, y?, y?0 , β
?) be

an optimal solution of (7.13). Then, we find

BCVaR(L,Pn, 0,Σ) = β? +
1

ε
(Tr {ΣY ?}+ y?0)

≥ β? +
1

ε

(
Tr {ΣE1}+ (e0

1 − β?)+
)
≥ e0

1 +
1

ε
Tr {ΣE1} ,

where the first inequality exploits the feasibility of (Y ?, y?, y?0 , β
?) in (7.13), and the second

inequality exploits the fact that y?0 ≥ (e0
1 − β?)+ and ε ∈ (0, 1).

7.2.2 Worst-case probability distributions

In many situations it is desirable to know what the worst-case probability distributions P? ∈
H(µ, S) ∩ Pn achieving the bound B(L,K, µ, S) =

∫
L(x) P?(dx) look like. As we approach the

uncertainty quantification problem (7.4) via its dual characterization, the dual variables do not
relate directly to a worst-case probability distribution. As described in Section 5.2, we can nev-
ertheless extract a worst-case probability distribution using the complementarity condition (5.8)
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between primal worst-case probability distribution P? and dual optima (Y ?, y?, y?0) at virtually
no additional cost.

We will illustrate the previous statement for the generalized Chebyshev bound G∞(µ, S) dis-
cussed in Sections 6.2.2 and 7.2.1. The complementarity condition (5.8) between the optima in
the uncertainty quantification problem (6.2) and its dual (7.4) can be specialized to∫

1 {R \ Ξ} (x) P?(dx) =

∫
x>Y ?x+ 2x>y? + y?0 P?(dx).

A direct consequence of dual feasibility in combination with the previous complementarity con-
dition is that P? must be supported on the points at which the dual function kisses the indicator
function 1 {R \ Ξ}, i.e.

supp P? ⊆ S? =
{
x ∈ Rn : x>Y ?x+ 2y?>x+ y?0 = 1 {R \ Ξ} (x)

}
. (7.14)

⊆
{
x ∈ Rn : x>Y ?x+ 2y?>x+ y?0 = 0

}
∪{

x ∈ Rn : x>Y ?x+ 2y?>x+ y?0 = 1
}

The set S? for the generalized Chebyshev bound G∞(µ, S) is hence recognized as a subset of
the roots of two quadratic equations in Rn and can be computed at virtually no additional
computational cost. This intimate relationship between worst-case probability distribution and
dual optimal solution is visually illustrated in Figure 7.1. We remark that the same relationship
between primal and dual optima P? and (Y ?, y?, y?0) has been made by Vandenberghe et al.
[133]. They obtained the support condition (7.14) however via direct complementarity between
the tractable reformulations (6.11) and (7.6) instead of between the worst-case probability bound
G∞(µ, S) and its dual formulation as done here.

It is of interest to remind the reader here that the previous discussion extends to more richly struc-
tured ambiguity sets K ⊂ Pn as well. Indeed, with the help of the equivalence B(L,K, µ, S) =
B(Ls,Pn, µs, Ss) put forward in both Theorems 6.1 and its dual counterpart 7.1 we can determine
the worst-case distribution P? ∈ H(µ, S)∩K achieving the bound B(L,K, µ, S) =

∫
L(x) P?(dx)

as

P? =

∫
Tx m?(dx),

where m? ∈ H(µs, Ss) ∩Pn is the worst-case distribution achieving the bound B(Ls,Pn, µs, Ss).
From the previous discussion it must now follow that P? is supported on the rays {txk : t ∈ R+}
where xk ∈ Rn are those points at which the optimal dual function in the dual characterization
of B(Ls,Pn, µs, Ss) kisses the transformed loss function Ls. The previous statement is visually
illustrated in Figure 7.1.

7.3 Structured uncertainty inequalities

We have thus far described expectation bounds B(L,Pn, µ, S) over the standard probability
simplex Pn. The principal aim of this work, however, is to describe uncertainty quantification
problems over more richly structured ambiguity sets K ⊂ Pn. In the current section, we will use
the dual approach offered in Theorem 7.2 to tackle structured uncertainty problems as well.

The approach described here is similar to the one taken to deal with richly structured ambiguity
sets in Section 6.3 of the previous chapter. That is, we intend to use the equivalence

B(L,K, µ, S) = B(Ls,Pn, µs, Ss)
to reduce a worst-case expectation problem over the structured ambiguity setK to its transformed
equivalent over the standard probability simplex Pn. The resulting unstructured worst-case
expectation bound B(Ls,Pn, µs, Ss) shall now however be approached via Theorem (7.2).
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Figure 7.1: The relationship between worst-case probability distributions P? and dual optimal
solutions (Y ?, y?, y?0) for the generalized Chebyshev bound G∞(µ, S) discussed in Sections 6.2.2
and 7.2.1 is shown in Figure 7.1(a). The complementarity condition (7.14) states that P? must
be supported on the points at which the optimal dual function x>Y ?x + 2y?>x + y?0 kisses
the indicator function 1 {Rn \ Ξ}. The figure shows the support of the worst-case probability
distribution P? in red. The blue ellipsoid indicates the points at which the value of the dual
function is one. The worst-case distribution P? for the generalized Gauss boundGn(µ, S) is shown
in 7.1(b) and is supported on the lines [0, xk] where xk are those points at which the optimal
dual function x>Y ?x+ 2y?>x+ y?0 kisses the loss function Ls(x) =

∫
1 {Rn \ Ξ} (y) unx(dy).

The main results presented in this section, from a practitioners point of view, are summarized
in the table below. We will focus mainly on indicator functions of polytopic sets Ξ which arise
in worst-case probability inequalities and piecewise affine functions which arise when dealing
with convex loss functions L. In doing so, we attempt to obtain counterparts to the uncertainty
quantification problems discussed in Section 7.2.1 for more richly structured ambiguity sets K.

Structure Probability inequalities Expectation & CVaR inequalities

Unimodal Uα Corollary 7.2 Corollary 7.4
Monotone Mγ Corollary 7.3 Corollary 7.5

7.3.1 Probability inequalities

We address here the problem of bounding the probability of the event ξ /∈ Ξ where Ξ is an
open convex polytope and P ∈ K is a structured ambiguity set with known mean µ and second
moment S. In this case we can use the standard identity between the probability of an event
and the expectation of its indicator function to state

B(1 {Rn \ Ξ} ,K, µ, S) = sup P(ξ /∈ Ξ)

s.t. P ∈ H(µ, S),

P ∈ K.
We assume again in this section that the set 0 ∈ Ξ has a half-space representation in the form
Ξ :=

{
x ∈ Rn : a>i x < bi, ∀i ∈ I

}
.
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We remark that when the ambiguity set K is taken to be the set of all α-unimodal distributions
Uα we recover the worst-case probability bound Gα(µ, S) discussed in Section 6.3 of the preceding
chapter. In this chapter we will generalize this result and show that the worst-case probability
problem B(1 {Rn \ Ξ} ,K, µ, S) admits a tractable reformulation whenever K is a Choquet star
simplex.

The indicator function 1 {Rn \ Ξ} can be represented as the point-wise maximum of the indicator
functions associated with the half-spaces from which the set Ξ is composed, i.e.

L = max
i∈I

1
{
a>i x ≥ bi

}
= 1 {Rn \ Ξ} . (7.15)

The next proposition shows how to transform, via the transformation (6.4), such an indicator
function for radial extreme distributions Tx into a loss function Ls for use in Theorem 7.2:

Proposition 7.1. If the set K admits a Choquet star representation with generating distribution
T, then

Ls(x) =

∫
max
i∈I

1
{
a>i x ≥ bi

}
(y) Tx(dy) = max

i∈I
T
([
bi/a

>
i x,∞

))
.

Proof. The proof follows from direct elementary manipulations and is thus omitted.

We have, according to the reduction Theorem 7.1, that the worst-case probability problem over
K can be reduced to an equivalent worst-case probability problem over the standard simplex Pn

sup
P∈K∩P(µ,S)

P(ξ /∈ Ξ) = B (1 {Rn \ Ξ} ,K, µ, S) ,

= B

(
max
i∈I

T
([
bi/a

>
i x,∞

))
,Pn, µs, Ss

)
,

where the final worst-case expectation bound is in the form required in Theorem 7.2 with `i(x) =
T
([
bi/a

>
i x,∞

))
. The univariate semi-infinite constraint (C2) for these particular functions `i

can be represented for many generators T as LMIs via sum-of-squares reformulations.

We will now make the result in Proposition 7.1 concrete for α-unimodal and γ-monotone dis-
tributions. Specifically, our method is as follows: Examples 3.2 and 3.3 provide us with the
appropriate generating distributions T for α-unimodal or γ-monotone distributions. We then use
these generating distributions T to transform (L, µ, S) 7→ (Ls, µs, Ss) via Theorem 7.1, where the
mapping L 7→ Ls in particular is supplied in Proposition 7.1. The resulting worst-case probabil-
ity bound is amendable to Theorem 7.2 for which we then identify the appropriate expression
for the constraint (C2) for our particular functions `i.

α-Unimodal distributions When the ambiguity set K is taken to be the set of all α-unimodal
distributions Uα, we recover the worst-case probability bound Gα(µ, S) discussed in Section 6.3 of
the preceding chapter. In that case we can use Proposition 7.1 to provide an alternative tractable
reformulation of the worst-case probability bound Gα(µ, S) based on its dual characterization.

Corollary 7.2 (α-Unimodal probability inequalities). For any rational 0 ≤ α = v
w , with (v, w) ∈

N and 0 ∈ Ξ we have the equality B(1 {Rn \ Ξ} ,Uα, µ, S) =

inf Tr

{(
Y y
y> y0

)
·
(
Sα µα
µ>α 1

)}
s.t. (C1),

q2w+vb2iT1,i + 2qw+vbiT2,i + qv(T3,i − 1) + 1 ≥ 0, ∀q ≥ 0

where Sα � µαµ>α for Sα = α+2
α S and µα = α+1

α µ.
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We remark here that Corollary 7.2 generalizes the results presented in Theorem 6.13 as it no
longer matters that the unimodality parameter α satisfies α ≥ 1. However, where the result
in Theorem 6.3 follows from a direct reformulation of the primal problem (6.2), the result in
Corollary 7.2 hinges on the dual problem (7.4) to be strong. Strong duality calls for the additional
Slater type condition Sα � µαµ

>
α to hold, which explains the strict inequality in the corollaries

stated hereafter. The proofs of the corollaries presented in this section are deferred to Appendix
B.

γ-Monotone distributions Our approach is identical to that in previous paragraph, except
that we now look to Example 3.3 to provide us with the appropriate generating distribution T
for γ-monotone distributions.

Corollary 7.3 (γ-Monotone probability inequalities). For any γ ∈ N0 we have the equality
B(1 {Rn \ Ξ} ,Mγ , µ, S) =

inf Tr

{(
Y y
y> y0

)
·
(
Sγ µγ
µ>γ 1

)}
s.t. (C1),

T1,ib
2
i q
n+γ+1 + 2biT2,iq

n+γ+ (T3,i − 1) qn+γ−1+

1

B(n, γ)

γ−1∑
k=0

(−1)k

n+ k

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ 1

where Sγ � µγµ>γ for Sγ = n+γ
n

n+γ+1
n+1 S and µγ = n+γ

n µ.

7.3.2 Expectation inequalities

The worst-case expectation bound B(L,Pn, µ, S) over the standard simplex is well known to be
tractable when the considered loss function L takes the form

L(x) = max
i∈I

a>i x− bi (7.16)

and thus convex. The previous class of worst-case expectation bounds can indeed be directly dealt
with using the approach taken in Example 7.3. Worst-case expectation problems B(L,Pn, µ, S)
for piece-wise affine loss functions find their application in a wide range of practical problem;
see for instance Bertsimas and Popescu [17], Zymler et al. [142] or Smith [119] plus the many
references therein. Because the set of all functions consisting of the point-wise maximum of affine
functions coincides with the class of lower semicontinuous (lsc) convex functions, the following
fact is of interest.

Fact 7.1. If the set K admits a Choquet star representation with generating distribution T and
L is convex, then

Ls(x) =

∫ ∞
0

L(tx) T(dt)

is convex as well.

Proof. The statement can be proved almost immediately from the definition of convexity. For
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all θ ∈ [0, 1]

Ls(θa+ (1− θ)b) =

∫ ∞
0

L(t(θa+ (1− θ)b)) T(dt)

=

∫ ∞
0

L(θ(ta) + (1− θ)(tb)) T(dt)

≤
∫ ∞

0

θL(ta) + (1− θ)L(tb) T(dt)

≤ θLs(a) + (1− θ)Ls(b)
showing convexity of Ls.

Despite the previous encouraging result, it is generally not the case that the function Ls can be
represented as the maximum of a finite number of affine functions when L is in the form (7.16).
Indeed, Fact 7.1 merely establishes that convexity is preserved but does not otherwise address
the structure of Ls. This is problematic as the application of Theorem 7.2 to the transformed
worst-case expectation problem B(Ls,Pn, µs, Ss) = B(L,K, µ, S) demands the loss function Ls
to be represented as a finite maximum. Hence, a generalization of Theorem 7.3 for general
piece-wise affine functions with richly structured distribution K ⊂ Pn does not seem obvious.

Instead of considering convex piecewise linear loss functions L as those in (7.16), we focus our
attention in what follows on loss functions in the form

L(x) = (d ◦ κΞ) (x), (7.17)

where d : R+ → R is a monotonically increasing function and 0 ∈ Ξ a convex set. The function
κΞ is the gauge function of the set 0 ∈ Ξ and increases with decreasing proximity to the set
Ξ. Loss functions in the form (7.17) arise in the distributionally robust optimization problems
of Zymler et al. [142, 143] and control problems by this author [131, 132] when bounding the
expected violation of a constraint ξ ∈ Ξ using

EP[L(ξ)] ≤ α, ∀P ∈ C

as the loss function L quantifies constraint violation severity and is increasing with decreasing
proximity to the feasible set Ξ. In Chapter 8 constraints of the aforementioned distributionally
robust type will be encountered again. The next proposition shows how to transform, via the
transformation (6.4), the loss function (7.17) for radial extreme distributions Tx into a loss
function Ls for use in Theorem 7.2:

Proposition 7.2. If the set K admits a Choquet star representation with generating distribution
T and L is in the form (7.17) with 0 ∈ Ξ =

{
x ∈ Rn : a>i x < bi, ∀i ∈ I

}
, then

Ls(x) = (ds ◦ κΞ)(x) = max
i∈I

ds(a
>
i x/bi),

with ds(q) :=
∫∞

0
d(tq) T(dt).

Proof. We have the following chain of equalities proving the claim

Ls(x) =

∫ ∞
0

L(tx) T(dt) =

∫ ∞
0

d (κΞ(tx)) T(dt)

=

∫ ∞
0

d (t · κΞ(x)) T(dt),

where the last equality follows from the positive homogeneity of κΞ.
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We have, according to the reduction Theorem 7.1, that the worst-case expectation problem over
K can be reduced to an equivalent worst-case probability problem over the standard simplex Pn,
i.e.

B(d ◦ κΞ,K, µ, S) = B

(
max
i∈I

ds(a
>
i x/bi),Pn, µs, Ss

)
,

where the second worst-case expectation bound is in the form required in Theorem 7.2 with
`i(a

>
i x) = ds(a

>
i x/bi). The univariate semi-infinite constraint (C2) for these particular functions

`i can once again be represented for many generators T as LMIs via sum-of-squares reformula-
tions. In doing so we thus obtain a tractable reformulation of the worst-case expectation problem
B(L,K, µ, S) for a limited class of piece-wise affine functions and by the reduction (7.9) for the
corresponding CVaR problem as well.

In the remainder of this section we discuss specific ambiguity sets K that admit Choquet star
representations, with a focus on unimodal and monotone distributions. To illustrate the power
of Proposition 7.2 we assume that d(t) = (t − 1)+ so that the loss function L in (7.17) is
piece-wise affine. We do remark however that the results stated hereafter apply equally well to
many other choices for the function d. The method here follows the approach taken in Section
7.3.1 closely. Examples 3.2 and 3.3 provide us with the appropriate generating distributions
T for α-unimodal or γ-monotone distributions. We then use this generating distribution T to
transform (L, µ, S) 7→ (Ls, µs, Ss) via Theorem 7.1, where the mapping L 7→ Ls in particular is
now supplied in Proposition 7.2. The resulting worst-case expectation bound is amendable to
Theorem 7.2 for which we then identify the appropriate expression for the constraint (C2) for
our particular functions `i.

α-Unimodal distributions

Corollary 7.4 (α-Unimodal expectation inequalities). For any rational 0 ≤ α = v
w ∈ Q, with

v, w ∈ N, we have the equality B(max{0, κΞ(x)− 1},Uα, µ, S) =

inf Tr

{(
Y y
y> y0

)
·
(
Sα µα
µ>α 1

)}
s.t. (C1),

q2w+v b2iT1,i + qw+v

(
2biT2,i −

α

α+ 1

)
+ qv (1 + T3,i)−

1

α+ 1
≥ 0, ∀q ≥ 1

where Sα � µαµ>α for Sα = α+2
α S and µα = α+1

α µ.

γ-Monotone distributions

Corollary 7.5 (γ-Monotone expectation inequalities). For any γ ∈ N0 we have the equality
B(max{0, κΞ(x)− 1},Mγ , µ, S) =

inf Tr

{(
Y y
y> y0

)
·
(
Sγ µγ
µ>γ 1

)}
s.t. (C1),

T1,ib
2
i q
n+γ+1 +

(
2biT2,i −

n

n+ γ

)
qn+γ + (T3,i + 1) qn+γ−1−

1

B(n, γ)

γ−1∑
k=0

(−1)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ 1

where Sγ � µγµ>γ for Sγ = n+γ
n

n+γ+1
n+1 S and µγ = n+γ

n µ.
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As mentioned in the beginning of this section, the polynomial inequalities appearing in Corollaries
7.2 to 7.5 admit exact SDP representations based on sum-of-squares representations as stated
in Theorem 4.2. Standard software tools, such as YALMIP of Löfberg [81], are available which
implement this transformation automatically. We did not state the resulting SDP constraints
explicitly as they offer no further insight and would only clutter the statement of previous
corollaries further.

7.4 Numerical examples

We illustrate the optimal inequalities presented in this paper by bounding the value of European
stock portfolios inspired by Bertsimas and Popescu [17] and by computing worst-case bounds
when aggregating random variables with known marginal information as done in Embrechts et
al. [47]. The resulting SDP problems are implemented in Matlab using the interface YALMIP and
solved numerically using SDPT3.

7.4.1 Optimal pricing of stock portfolios

In this example we are interested in finding an upper bound on the price of a European stock
option with random pay-off

Φ(ξ) := max{0, a>ξ − k} = k (κΞ(ξ)− 1)
+

for Ξ =
{
x ∈ Rn : a>x ≤ k

}
similar as in Bertsimas and Popescu [17]. This option allows its

holder to buy a portfolio a ∈ Rn of stocks at a price k ∈ R+ at maturity. The payoff Φ is hence
positive if the uncertain value ξ ∈ Rn of the stocks at maturity in the portfolio a ∈ Rn exceeds
the negotiated price k ∈ R+. If the price of portfolio of stocks a>ξ in the market at maturity is
less then k, then the holder will not exercise his right to buy the stock portfolio at price k.

When we denote with P? the distribution of ξ, then for the issuer of the option it is of interest
to know

p := sup
P∈C

EP[Φ(ξ)]

for C a set of probability distributions for which the option issuer is convinced that P? ∈ C.
Indeed, the issuer would like to demand a price of the stock option buyer which exceeds p, as in
this case he or she is convinced that on average a profit is made.

In the remainder of this section, we assume that our portfolio ξ = (ξIBM, ξAPPLE) consists of
a = (1, 1)> an equal part of IBM and APPLE stocks. The stock holder is convinced that the
distribution of ξ satisfies

P? ∈ C
((

164
114

)
,

(
20 5
5 60

)
+

(
164
114

)(
164
114

)>)
for a strike price at maturity k = 280. This situation is sketched in Figure 7.2(a). The stock
holder is also convinced that the distribution of ξ should be well-behaved and has a mode which
coincides with its mean. In Figure 7.2(b), the optimal price p is given when the stock holder
believes that either P? ∈ Mγ or P? ∈ Uα in function of γ ∈ {1, . . . , 5} and α ∈ {2, . . . , 6}. As
remarked before the bounds converge to either the bounds for arbitrary probability distributions
when α→∞ or completely monotone distributions in case γ →∞.

7.4.2 Factor models in insurance

As reported by Embrechts et al. [47], insurance companies most commonly model the size of
claims ξi incurred as a result of different types of insurance policies separately from another.
The claims ξi factor the total claim

Sn :=
∑n
i=1 ξi
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Figure 7.2: Optimal pricing of a portfolio containing an equal amount of IBM and APPLE stocks.
Figure 7.2(a) indicates the distribution of (ξIBM, ξAPPLE) visually. The red half line indicates
realizations beyond which a profit is made.

as a sum of n separate claims ξi without a specified dependence structure. The problem of
quantifying a certain statistic of L(Sn) for a given loss function L based on (partial) marginal
information of the distributions of the factors ξi is denoted by Rüschendorf [111] as a Fréchet
problem.

We consider a portfolio containing four types of insurance policies, i.e. car, life, fire and medical
insurances. We will assume that only information on the means µi := EP[ξi] and second moments
s2
i := EP

[
ξ2
i

]
of the size of the corresponding insurance claims is given. Suppose we are interested

in large aggregate claims Sn occurring with probability at most ε = 5%, where that part of the
claim Sn exceeding the threshold k = 150.000 CHF is covered by a reinsurer. In what follows we
therefore consider the problem of quantifying the least upper bound on the conditional value at
risk CVaRε (L(Sn)), where

L(Sn) = min (max (Sn, 0) , k) ,

using only the marginal means µi and second moments s2
i = σ2

i + µ2
i as given in Table 7.1. Ad-

ditionally, it is assumed that the joint probability distribution P of (ξ1, . . . , ξ4) is star unimodal.
We are hence interested in the worst-case CVaR problem

supP∈K P-CVaRε (L(Sn))

s.t.

∫
xi P(dx) = µi, ∀i∫
x2
i P(dx) = s2

i , ∀i.

(7.18)

The worst-case CVaR problem can be reduced to a worst-case expectation problem as indicated in
Section 5.4.2 using the golden search method for the outer minimization problem over β ∈ [0, k].
Note that as the off-diagonal entries of the second moment matrix S are not given, the dual
formulation (7.1) of the resulting worst-case expectation bound must be adapted slightly by
requiring that the off-diagonal elements of the dual variable Y are zero.

According to Theorem 7.1 the resulting worst-case expectation bounds over the set of all star
unimodal distributions can be transformed to equivalent worst-case expectation bounds over
the standard probability simplex. In Appendix B we show that the resulting transformed loss
function Ls is in the form required by Theorem 7.2. The worst-case CVaR bound (7.18) thus
admits a tractable reformulation.
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CHF Average µi Standard deviation σi

Car insurance 15.000 2.000

Life insurance 7.000 1.000

Fire insurance 3.000 5.000

Medical insurance 20.000 2.000

Table 7.1: Marginal means and standard deviations of the size of the claims incurred by the four
types of insurance policies in the portfolio.

The worst-case excepted aggregate claim above the 5th percentile, i.e. CVaRα (L(Sn)), was
numerically determined to be 123.325 CHF in approximately 15 seconds using Matlab on a PC1

operated by Debian GNU/Linux 7 (wheezy).

1An Intel(R) Core(TM) Xeon(R) CPU E5540 @ 2.53GHz machine.
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Robust optimization is understood to be a methodology for optimization despite uncertainty.
Consider for the moment the uncertain optimization problem

inf f(u)

s.t. u ∈ C,
x(u, ξ) ∈ X

(8.1)

where the vector u in Rd is the decision variable. The uncertain outcome x(u, ξ) valued in Rc

depends both on the decision u and a random influence ξ valued in Rn. The function f will be
referred to as the objective function and the final constraint in (8.1) is denoted as the uncertain
constraint. The fact that the final constraint in the optimization problem (8.1) is uncertain
signals that in many real-world problems constraints are imposed on outcomes x(u, ξ) which
depend on uncertain events ξ which can not be influenced by the decision maker.

In our approach the uncertain influence ξ is taken to be governed by a probability distribution
that itself is only partially known or ambiguous. The distribution P of the uncertain data ξ
is merely assumed to belong to an ambiguity set C which ideally should be composed of all
distributions consistent with the information available on the uncertain data ξ. The decision
maker must hence take a decision u which remains feasible, whatever the distribution of the
exogenous influence ξ within the ambiguity set C.
We consider two types of such distributionally robust constraints. In the first case, we require
that the uncertain constraint x(u, ξ) ∈ X holds with a given probability for all probability dis-
tributions in the ambiguity set C. These constraints are commonly referred to as distributionally
robust chance constraints. In the second case, we impose CVaR constraints to bound the ex-
pected violation of the uncertain constraint x(u, ξ) ∈ X for all probability distributions within
C. Such constraints are referred to as distributionally robust CVaR constraints.

We will consider in the last chapter of the dissertation the dynamic counterpart of the static
optimization problem (8.1) as well. In the dynamic setting the uncertain outcome x(u, ξ) shall
represent the state of a linear dynamical system that depends both on previous control inputs u
and exogenous disturbances ξ.
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8.1 Uncertain constraints

There are several common approaches on how one can go about putting the ambiguous require-
ment x(u, ξ) ∈ X on a mathematically sound basis. At this point the uncertain constraint is
intentionally not made mathematically rigorous yet. In this chapter we will consider two types of
distributionally robust formulations for the uncertain constraint x(u, ξ) ∈ X. We are particularly
interested in characterizing under which conditions either formulation is sensible and amendable
to practical computation.

Chance constraints are a popular means of modeling constraints on uncertain outcomes that
need only to hold with a certain probability. Formally, the requirement that the random outcome
x(u, ξ) should be contained in the constraint set X with high probability is expressed as

P(x(u, ξ) ∈ X) ≥ 1− ε, (8.2)

where ε ∈ (0, 1) is a prescribed safety parameter that controls the level of acceptable constraint
violations. The probability distribution P denotes here the true but possibly unknown probability
distribution of the random variable ξ.

Chance constraints are often more practical than the worst-case robust constraints discussed in
Chapter 1, which can be viewed as degenerate chance constraints with ε = 0 and which tend to
encourage overly conservative decisions. More importantly, in many practical problems worst-
case state constraints typically become infeasible in the presence of an unbounded (e.g. Gaussian)
disturbance ξ.

In spite of their conceptual appeal, chance constraints have not yet found wide application
for a variety of reasons. On the one hand, the feasibility of a chance constraint can only be
checked if the distribution P of the random vector ξ is precisely known. In practice, however,
almost invariably this distribution must be estimated from noisy data and is therefore itself
subject to ambiguity. This is problematic because, as shown by Zymler et al. [142], even small
changes in the distribution can have a dramatic impact on the geometry and size of the set
of decision variables u feasible within the chance constraint (8.2). Moreover, incorporating
chance constraints into otherwise tractable optimization problems typically results in a non-
convex problem, and consequently to computational intractability.

Finally, chance constraints of the type (8.2) bound the probability of constraint violation but
do not impose any restrictions on the degree of the violations encountered. However, severe
constraint violations, i.e. scenarios in which the uncertain outcome x(u, ξ) strays far outside of
the constraint set X, are often much more harmful than mild violations in which the uncertain
outcome x(u, ξ) remains close to the boundary of X. Chance constraints hence fail to distinguish
between these two situations and provide no mechanism to penalize severe constraint violations
relative to mild ones.

In order to address these deficiencies, we first require some terminology and notation. We will
assume throughout this chapter that the constraint set X is characterized by the intersection of
zero sublevel sets of finitely many convex functions `i : Rc → R, so that

X := {x ∈ Rc : `i(x) < 0, ∀i ∈ [1, . . . , k]} .

We will refer to the functions `i as loss functions. We refer to (8.2) as a single chance constraint
if k = 1 and as a joint chance constraint if k > 1. Every joint chance constraint can easily be
reduced to an individual chance constraint by reexpressing X as {x ∈ Rc : Lα(x) < 0}, where
the aggregate loss function

Lα(x) := max
i∈[1,...,k]

αi`i(x) (8.3)

remains convex in x and depends on a set of strictly positive scaling parameters α ∈ Rk
++. Note

that the particular choice of α has no impact on the zero sublevel set of the function Lα, and
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consequently no impact on the set X or the associated chance constraint (8.2). The reader may
therefore regard α initially as a positive parameter that can be chosen arbitrarily. However, the
flexibility to select α will be useful either to control the tightness of a tractable approximation of
the chance constraint (8.2), or to penalize the degree of constraint violation of statistical outliers
in (8.2) as discussed further in this chapter.

We assume that the parameter α ∈ Rk
++ is given, either as an attempt to approximate a chance

constraint or as an indicator of the relative importance of the loss severity measures `i.

Assumption 8.1. The aggregated convex loss function Lα : Rc → R with α ∈ Rk
++ is given as

Lα(x) = max
i∈[1,...,k]

[
αi
(
a>i x− bi

)]
,

where ai ∈ Rc, bi ∈ R.

Recall that the constraint set X corresponds to the zero sub level set of the loss function Lα,
and consequently is assumed to be polytopic in this chapter.

Throughout the chapter we will exploit an interesting connection between chance constraints
of the type (8.2) and the VaR risk measure defined in Section 3.4. We emphasize that the
value-at-risk in our particular context typically relates to the degree of violation of some physical
constraint, and is unrelated to the loss of economic currency as in the usual interpretation
in economics. In the context of this dissertation, violation-at-risk might therefore be a more
appropriate interpretation.

By construction, the VaR measure of an uncertain quantity coincides with the (1 − ε)-quantile
of the probability distribution of that quantity. Moreover, the reader may easily verify that the
chance constraint (8.2) can be reformulated as a constraint on the VaR at level ε of the aggregate
loss function Lα(x), that is,

P-VaRε (Lα(x(u, ξ))) ≤ 0 ⇐⇒ P(x(u, ξ) ∈ X) ≥ 1− ε. (8.4)

A major deficiency of the VaR is its non-convexity. In fact, it is well known that the function
P-VaRε(L

α(x(u, ξ))) is generally non-convex in x even for linear loss functions Lα. A commonly
employed alternative, convex, risk measure closely related to the VaR is the CVaR.

The CVaR enjoys a number of practical advantages over VaR in this context, since it is monotone,
homogeneous and convex with respect to the loss function Lα. In addition, it represents a conser-
vative (upper) approximation to VaR, and consequently a conservative means of approximating
chance constraints. Indeed, it is easily shown that

P?-CVaRε (Lα(x(u, ξ))) ≤ 0 =⇒ P?(x(u, ξ) ∈ X) ≥ 1− ε. (8.5)

Note that for convex loss functions Lα the set of all random outcomes x(u, ξ) satisfying the
CVaR constraint in (8.5) is convex due to the convexity and monotonicity of the CVaR.

In economic theory, CVaR traditionally measures an economic loss, hence the function Lα is
specified ab initio. In optimization practice however, one is typically given a constraint set X
and is free to select any loss functions `i compatible with X, i.e. one can choose any `i satisfying
X = {x ∈ Rc : Lα(x) < 0}. The choice of the positive weights αi can then be used to indicate
the relative importance of the individual loss functions `i, i.e. the level of significance that the
decision maker attaches to the degree of violation of individual constraints in the event that they
occur.

CVaR constraints address the principal shortcoming of chance constraints. Indeed, CVaR con-
straints impose a higher penalty on realizations of x that materialize far outside the constraint
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set X (i.e. with Lα(x) � 0) and therefore penalize severe constraint violations more aggres-
sively than mild ones. In contrast, chance constraints impose uniform penalties on all constraint
violations irrespective of their degree of infeasibility.

Unfortunately, checking the feasibility of CVaR constraints still requires precise knowledge of
the probability distribution P of the random variable ξ. In practice, only limited information
about P may be available, such as the support or some descriptive distributions of the location
and dispersion of random variables under P. Abstractly, we can represent the limited available
information about P by an ambiguity set C of probability distributions with the following prop-
erties: (i) It is known that P ∈ C, and (ii) C is the smallest set of probability distributions for
which we can guarantee that P ∈ C.
In order to facilitate statements about computational tractability, we require some structural
assumptions concerning the ambiguity set C. As in the preceding chapters, we will assume that
the distributional information regarding the random variable ξ is limited to second-order moment
information. We henceforth assume that the ambiguity set

C = H(0,Σ) ∩ K

contains all zero mean probability distributions having a variance matrix Σ ∈ Sn+. For the sake of
exposition, we assumed without loss of generality that the random variable ξ has zero mean µ = 0.
This can always be achieved by considering an appropriate coordinate translation. Furthermore,
in what follows we will take the usual assumption that the set K is a Choquet star simplex
with generating univariate distribution T. The set K can again be used to model any further
structural information regarding the distribution of ξ such as unimodality or monotonicity.

To immunize the chance constraint (8.2) against distributional ambiguity, we can require that it
should hold for each probability distribution in the ambiguity set C. The resulting distributionally
robust chance constraint can be represented as

P(x(u, ξ) ∈ X) ≥ 1− ε ∀P ∈ C ⇐⇒ inf
P∈C

P(x(u, ξ) ∈ X) ≥ 1− ε. (8.6)

Similarly, recalling that X = {x ∈ Rc : Lα(x) < 0} for any α ∈ Rk
++, we can immunize the

CVaR constraint on the left hand side of (8.5) against distributional ambiguity as well. The
resulting distributionally robust CVaR constraint takes the form

P-CVaRε(L
α(x(u, ξ))) ≤ 0 ∀P ∈ C ⇐⇒ sup

P∈C
P-CVaRε(L

α(x(u, ξ))) ≤ 0. (8.7)

As in the classical setting without distributional ambiguity, it can be shown that (8.7) provides a
conservative approximation for (8.6); see Chen et al. [37] or Zymler et al. [142]. In other words,

sup
P∈C

P-CVaRε(L
α(x(u, ξ))) ≤ 0 =⇒ inf

P∈C
P(x(u, ξ) ∈ X) ≥ 1− ε. (8.8)

From the preceding two characterizations (8.6) and (8.7) the relationship between distributionally
robust constraints and uncertainty quantification becomes very clear. Indeed, the problem of
checking whether a fixed decision u is feasible in either formulation reduces to an uncertainty
quantification problem of the type discussed in Chapters 6 and 7. This chapter will hence benefit
greatly from the results made in the preceding part of the dissertation.

In the remainder of the chapter, we will assume that the uncertain outcome x(u, ξ) depends
affinely on both its arguments separately. Specifically, we will assume that x(u, ξ) can be written
in the canonical form

x(u, ξ) = A(u) +B(u)ξ (8.9)

where A(u) : Rd → Rc and B(u) : Rd → Rc×n are both affine functions of the decision variable.
We remark that in a large class of decision problems in engineering and finance the uncertain
outcome can be represented in the form suggested in (8.9).
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As the zero mean random variable ξ can be interpreted as a deviation, the vector valued term A(u)
can be seen to represent the nominal outcome x(u, 0) perturbed linearly in ξ in accordance with
the matrix B(u). Following the previous interpretation, both distributionally robust formulations
(8.6) and (8.7) provide hence a robust counterpart to the nominal constraint

x(u, 0) ∈ X ⇐⇒ A(u) ∈ X (8.10)

in which the random variable ξ has been replaced by its expectation. It is easily argued that for
any ambiguity set in the form C = H(0,Σ) ∩ K, both the corresponding distributionally robust
chance constraint (8.6) and the distributionally robust CVaR constraint (8.7) have the desirable
property of implying the nominal constraint (8.10).

8.2 Single uncertain constraints

As reflected in Assumption 9.2, we will focus in this chapter on uncertain constraints x(u, ξ) ∈ X
for polytopic sets X represented as a finite number of half-space constraints. For uncertain
constraints, the watershed between what is tractable and what remains intractable seems to
be roughly between single and joint uncertain constraints as also noticed by Calafiore and El
Ghaoui [30] and Zymler et al. [142]. As we will discuss in this chapter, many single uncertain
constraints indeed admit exact tractable reformulations while their joint counterparts often lead
to intractability and hence need approximation.

In this section, we will pay thus special attention to optimization problems of the type (8.1)
where the uncertain constraint is in the particular form

x(u, ξ) ∈ X = {x ∈ Rc : `1(x) < 0} . (8.11)

As discussed in previous section, the constraint (8.11) is referred to as a single uncertain con-
straint as the constraint set X is defined through a single loss function `1. Moreover, we required
in Assumption 9.2 that the constraint function is affine and represented as `1(x) = a>1 x−b1. This
means that the constraint set X in the uncertain constraint (8.11) consists of a single half-space
constraint.

In this section we will be interested in conditions under which the distributionally robust chance
constrained formulation (8.6) and the distributionally robust CVaR constrained formulation (8.7)
for single uncertain constraints of the type (8.11) admit a tractable representation. It will be
argued that in case of a single uncertain constraint an exact tractable reformulation can be found
in either case in terms of a tractable SOC constraint.

It will be advantageous to the exposition in the remainder of this section to state the uncertain
constraint (8.11) explicitly in terms of the random variable ξ. We have the following chain of
equivalences

x(u, ξ) ∈ X ⇐⇒ `1(x(u, ξ)) < 0 ⇐⇒ c(u)>ξ < d(u), (8.12)

where the functions c(u) : Rd → Rn and d(u) : Rd → R depend affinely on the decision variable
u and can be determined explicitly as c(u) :=B(u)>a and d(u) := b− a>A(u).

8.2.1 Single chance constraints

The uncertain constraint (8.12) can be reformulated as a distributionally robust chance constraint
as indicated in equation (8.6) of the preceding section. In the particular case of the single
uncertain constraint (8.12), the distributionally robust chance constrained formulation reduces
to the following condition on the decision u:

P
(
c(u)>ξ < d(u)

)
≥ 1− ε, ∀P ∈ C. (8.13)
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This single linear chance constraint (8.13) has already been studied extensively in the literature
for several distinct types of ambiguity sets C. Calafiore and El Ghaoui [30] show that they
admit an exact tractable reformulation in the terms of a SOC constraint when the ambiguity set
C = H(0,Σ) ∩ K consists of all zero mean probability distributions with variance matrix Σ, i.e.
K = Pn. As discussed at length in the preceding part of the thesis, the corresponding chance
constraint can be quite pessimistic as the ambiguity set C in that case contains many probability
distributions which in practice may not be very relevant. Yu et al. [139] made significant progress
by providing an exact SOC representation for the distributionally robust chance constraint (8.13)
in case K consists of symmetric linear unimodal distributions.

In this section we will analyze the single uncertain constraint (8.13) when the ambiguity set
C is richly structured. As discussed previously, we consider the distributionally robust chance
constraint (8.13) when the ambiguity set K admits a Choquet star representation in terms of the
generating distribution T in which case

exK = {Tx : x ∈ Rn} .
We will prove that the single distributionally robust chance constraint (8.13) admits a tractable
SOC representation for any ambiguity set K admitting a Choquet star representation. We will
make this somewhat abstract result concrete by considering the particular case of α-unimodal
and γ-monotone distributions.

Before we state our main result concerning single distributionally robust chance constraints, we
introduce first a function fT defined through the following univariate uncertainty quantification
problem:

fT(k) := sup Q(z ≥ k)

s.t. Q ∈ H(0, 1) ∩ K.
(8.14)

The function fT hence represents the worst-case probability of the event that a standardized
univariate random variable z exceeds the threshold k when z is distributed in K. We remark
that the uncertainty quantification problem (8.14) was discussed in both the Chapters 6 and 7.
The function fT plays an important role in the reformulation of the chance constraint (8.13) as
it will represent the influence of the structure imposed on the ambiguity set C through the set
K.

Proposition 8.1. The single distributionally robust chance constraint (8.13) with ambiguity set
C = H(0,Σ)∩K admits an exact tractable representation in the terms of a convex SOC constraint

b− a>A(u) ≥ f−1
T (ε)

∥∥∥Σ1/2B(u)>a
∥∥∥

2
, (8.15)

where the function fT is defined as in (8.14).

Proof. Define the univariate random variable zR := c(u)>ξ. Because of the projection Theorem
3.4 for Choquet star representable sets, we have that the ambiguity concerning the distribution
of the random variable zR is given as the ambiguity set

H(0, σ2
R) ∩mix {Tx : x ∈ R}

where σR =
∥∥Σ1/2c(u)

∥∥
2
. The chance constraint (8.13) can now equivalently be written in terms

of the random variable zR. We have indeed equivalently that

Q

(
zR
σR
≥ d(u)

σR

)
≤ ε, ∀Q ∈ H(0, σ2

R) ∩mix {Tx : x ∈ R} .

As the random variable zR/σR has zero mean and unit variance, the previous constraint is
equivalent to fT(d(u)/σR) ≤ α. The function fT(k) is evidently monotonically decreasing in k and
thus admits the unique generalized inverse f−1

T (ε) = inf {k ∈ R : f(k) ≤ ε}. The proposition
follows now immediately from elementary manipulations.
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In what remains of this section we will show how the abstract result stated in Proposition
8.1 can be made concrete in the particular case of α-unimodal and γ-monotone distributions.
Nevertheless we begin by discussing the case in which no structure is specified, i.e. K = Pn,
as can be found in for instance in the work of Calafiore and El Ghaoui [30]. In this case the
corresponding function fT defined though the uncertainty quantification problem (8.14) even
admits a closed form expression.

Unstructured probability distributions As promised we start by showing how the results
of Calafiore and El Ghaoui [30] on distributionally robust chance constraints with unstructured
probability distributions K = Pn can be seen as a simple corollary of Proposition 8.1. Under
previously mentioned conditions

fδ(k) = sup Q [z ≥ k]

s.t. Q ∈ H(0, 1) ∩ Pn.

The last uncertainty quantification problem can be seen as the unilateral counterpart of the
classical Chebyshev inequality (1.6). Indeed, fδ(k) is the probability that a standardized random
variable exceeds a certain threshold k and was studied already by Cantelli [34]. The classical
Cantelli inequality establishes that

fδ(k) =

{
1

1+k2 if k ≥ 0

1 otherwise

admitting the inverse f−1
δ (ε) =

√
(1− ε)/ε.

Unimodal and monotone distributions For general Choquet star representable sets K,
the uncertainty quantification problem (8.14) does not seem to admit closed form expressions.
Nevertheless, explicit tractable reformulations were provided for the function

fT(k) = B(1 {z ≥ k} ,K, 0, 1)

in the Chapters 6 and 7.

In particular when K consists of the set of all α-unimodal distributions Uα, the function fT(k)
reduces to the worst-case probability bound Gα(0, 1) for the polytopic set Ξ = {x ∈ R : x ≥ k}
and admits the tractable reformulation provided in Theorem 6.4. Alternatively when work-
ing with γ-monotone distributions K = Mγ , the corresponding worst-case probability bound
B(1 {z ≥ k} ,Mγ , 0, 1) can be readily solved as described in Corollary 7.3.

In either case, the function fT can be evaluated by solving a small tractable convex optimization
problem. For all practical purposes, these convex optimization problems provide a de facto closed
form expression for the corresponding functions fT. The results are made concrete in case of
unimodal and monotone distributions in Figure 8.1.

8.2.2 Single CVaR constraints

The uncertain constraint (8.12) can also be reformulated as a CVaR constraint instead as indi-
cated in equation (8.7) of the preceding section. In the particular case of the single uncertain
constraint (8.12) the distributionally robust CVaR constrained formulation in equation (8.7)
reduces to following condition on the decision u:

P-CVaRε (`1 (x(u, ξ))) ≤ 0, ∀P ∈ C (8.16)

independent of the choice of α1 ∈ R++ as the CVaR is homogenous. Similar to the distribution-
ally robust chance constrained formulation (8.13), the previous single CVaR constraint (8.16) has
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Figure 8.1: The function fT for α-unimodal and γ-monotone distributions in R. The case α =∞
denotes the function fδ corresponding no structural information, i.e. K = Pn. Similarly, the case
α =∞ denotes the function fT for completely monotone distributions in R.

been studied by Calafiore and El Ghaoui [30] albeit to a far lesser extend. Nevertheless, they are
known to admit an exact tractable reformulation again in the form of a SOC constraint when the
ambiguity set C = H(0,Σ) ∩ K consists of all zero mean probability distributions with variance
Σ, i.e. the ambiguity set C obtained with the particular choice K = Pn. For reasons similar to
the distributionally robust chance constrained formulation, the corresponding distributionally
robust CVaR reformulation can be quite pessimistic. Yu et al. [139] presents an exact SOC
representation for the distributionally robust CVaR constraint (8.16) in case the set K consists
of symmetric linear unimodal distributions.

We will set out to study the distributionally robust CVaR constraint (8.16) when the ambiguity
set C is more richly structured. In particular, we will consider again the situation in which the
ambiguity set K admits a Choquet star representation in terms of the generating distribution T
in which case

exK = {Tx : x ∈ Rn} .
We will first prove that the single distributionally robust CVaR constraint (8.16) admits a
tractable SOC representation for any ambiguity set K admitting a Choquet star representation.
We will make this abstract result concrete by considering the particular cases of α-unimodal and
γ-monotone distributions.

Before we state the main result concerning distributionally robust CVaR constraints, we intro-
duce first a function gT defined through a univariate uncertainty quantification problem:

gT(ε) := sup Q-CVaRε(z)

s.t. Q ∈ H(0, 1) ∩ K.
(8.17)

It will be indicated shortly hereafter that the function gT plays the same role in the reformulation
of the distributionally robust CVaR constraint as the function f−1

T played in Proposition 8.1.

The function gT(ε) represents the worst-case CVaR at level ε of a standardized univariate random
variable z distributed in K. The function gT(ε) is evidently monotonically decreasing in ε. We
remark that previous uncertainty quantification problem (8.17) was discussed in Chapter 7. The
function gT plays an important role in the reformulation of the distributionally robust CVaR
constraint (8.16) as it will represent the influence of the structure imposed on the ambiguity set
C through the set K.
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Proposition 8.2. The single distributionally robust CVaR constraint (8.16) with ambiguity set
C = H(0,Σ) ∩ K admits an exact representation in terms of a convex SOC constraint

b− a>A(u) ≥ gT(ε)
∥∥∥Σ1/2B(u)>a

∥∥∥
2
, (8.18)

where the function gT is defined as in (8.17).

Proof. Define the univariate random variable zR := c(u)>ξ. Because of the projection Theorem
3.4 for Choquet star representable sets, we have that the ambiguity concerning the distribution
of the random variable zR is given as the ambiguity set

H(0, σ2
R) ∩mix {Tx : x ∈ R} ,

where σR =
∥∥Σ1/2c(u)

∥∥
2
. The CVaR constraint can equivalently be written with in terms of the

random variable zR. We have indeed equivalently that

Q-CVaRε

(
zR
σR
− d(u)

σR

)
≤ 0, ∀Q ∈ H(0, σ2

R) ∩mix {Tx : x ∈ R}

or

Q-CVaRε

(
zR
σR

)
≤ d(u)

σR
, ∀Q ∈ H(0, σ2

R) ∩mix {Tx : x ∈ R}

using the homogeneity of the CVaR measure. As the random variable zR/σR has zero mean
and unit variance, the previous constraint is equivalent to gT(ε) ≤ d(u)/σR from which the
proposition follows immediately.

In what remains of this section we will show how the result stated in Proposition 8.2 can be
made concrete in the particular case of α-unimodal and γ-monotone distributions. Nevertheless,
we start again by discussing the case in which no structure is specified, i.e. K = Pn as found
for instance in the works of Calafiore and El Ghaoui [30] or Zymler et al. [142]. In this case the
corresponding function gT defined though the uncertainty quantification problem (8.17) admits
again a closed form expression.

Unstructured probability distributions As promised we start by showing how the results
of Calafiore and El Ghaoui [30] and Zymler et al. [142] on distributionally robust CVaR con-
straints with unstructured probability distributions K = Pn can be seen as a simple corollary of
Proposition 8.2. Under aforementioned conditions

gδ(ε) = sup Q-CVaRε(z)

s.t. Q ∈ H(0, 1) ∩ Pn.

The previous worst-case CVaR problem is shown by Yu et al. [139] to in fact admit a closed form
expression which is given as

gδ(ε) =

√
1− ε
ε

.

We remark here that in the unstructured case K = Pn, the distributionally robust chance
constraint and CVaR constraint reformulations are equivalent. Indeed, we have that gδ = f−1

δ

and both chance and CVaR reformulations are seen to be equivalent by merit of Propositions
8.1 and 8.2. This remarkable observation was made before by Zymler et al. [142], where it was
in fact shown to hold for any single uncertain constraint with a quadratically representable loss
function `1. This equivalence between distributionally robust chance and CVaR constraints is
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Figure 8.2: The function gT for α-unimodal and γ-monotone distributions in R. The case α =∞
denotes the function gδ corresponding no structural information, i.e. K = Pn. Similarly, the case
α =∞ denotes the function gT for completely monotone distributions in R.

however peculiar to the situation K = Pn as shown by a counterexample in Yu et al. [139].
Instead, we have the inequality

f−1
T (ε) ≤ gT(ε)

for any ε ∈ (0, 1) as a direct consequence of Propositions 8.1 and 8.2 in conjunction with the
implication (8.8).

Unimodal and monotone distributions For general Choquet star representable sets K,
the uncertainty quantification problem (8.17) does unfortunately not seem to admit closed form
expressions. As indicated in Section 5.4.2 the worst-case CVaR can be reduced to a worst-case
expectation bound

gT(k) = min
β

β +
1

ε
B((z − β)+,K, 0, 1).

Tractable reformulations of the inner problem B((z − β)+,K, 0, 1) can be found in Chapter 7.
As mentioned before, the outer minimization problem over β is convex and can be done using
any univariate optimization method such as those found in Kiefer [68].

In particular when K = Uα consists of the set of all α-unimodal distributions, the worst-case
bound B((z − β)+,Uα, 0, 1) admits the tractable reformulation provided in Corollary 7.4. Al-
ternatively, when working with γ-monotone distributions K =Mγ the corresponding worst-case
bound B((z − β)+,Mγ , 0, 1) can be readily solved as described in Corollary 7.5.

In either case, the function gT can be evaluated by solving a small number of tractable convex
optimization problems. For practical purposes, the convex optimization problems provide a de
facto closed form solution for the corresponding functions gT. The results are made concrete in
case of unimodal and monotone distributions in Figure 8.2.

8.3 Joint uncertain constraints

In the last part of the chapter we will return back to the more general problem of joint uncertain
constraints. In the case of single uncertain constraints discussed in the previous section the
difference between distributionally robust chance and CVaR constraints ran only skin deep.
Indeed, both the single distributionally robust chance and CVaR constraints were shown to admit
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similarly structured SOC representations by virtue of Propositions 8.1 and 8.2, respectively. Joint
uncertain constraints deepen the divide between the distributionally robust chance formulation
and the distributionally robust CVaR formulation significantly. Where distributionally robust
CVaR constraints are often computationally tractable, Zymler et al. [142] argued that their
chance constraint counterpart is often not. In the present section we will outline when exact
tractable reformulations are available, and when not, what type of approximation can be used
instead.

In what remains we will consider an uncertain optimization problem of the type (8.1) with joint
uncertain constraints of the particular form

x(u, ξ) ∈ X = {x ∈ Rc : Lα(x) < 0} . (8.19)

As discussed in Section 8.1, the final constraint in the uncertain problem (8.19) is denoted as a
joint chance constraint, as the set X is defined now through multiple loss functions `i defining
the aggregated loss function Lα(x) := maxi∈[1,...,k] αi`i(x). Assumption 9.2 requires each loss

function `i(x) = a>i x − bi to be affine. The corresponding constraint set X is thus necessar-
ily polytopic. Again we will be interested in the conditions under which the distributionally
robust chance constrained formulation (8.6) and the distributionally robust CVaR constrained
formulation (8.7) of the uncertain constraint (8.19) admit a tractable representation.

It will benefit the exposition in the remainder of this section to state the uncertain constraint
of the optimization problem (8.19) explicitly in terms of the random variable ξ. We have the
following chain of equivalences

x(u, ξ) ∈ X ⇐⇒ Lα(x(u, ξ)) < 0 ⇐⇒ C(u)>ξ < D(u), (8.20)

where the functions C(u) : Rd → Rn×k and D(u) : Rd → Rk are matrix and vector valued,
respectively, and depend affinely on the decision variable u. Both functions can be determined
column-wise as Ci(u) :=B(u)>ai and Di(u) := bi − a>i A(u) for i ∈ [1, . . . , k].

8.3.1 Joint chance constraints

The uncertain constraint (8.20) can be reformulated as a distributionally robust chance con-
straint as indicated in equation (8.6) of the preceding section. In the particular case of the joint
uncertain constraint (8.12) for the polytopic constraint set X the chance constrained formulation
in equation (8.6) reduces to the following condition on the decision u:

P
(
C(u)>ξ < D(u)

)
≥ 1− ε, ∀P ∈ C. (8.21)

This joint linear chance constraint (8.21) has already been studied extensively by Zymler et al.
[142] in case the ambiguity set C = H(0,Σ)∩Pn consists of all zero mean probability distributions
with variance Σ. Unfortunately, distributionally robust chance constraints seem to be intractable
in general. Indeed, there is no known tractable reformulation of the joint chance constraint (8.21),
even in case the ambiguity set K = Pn is left unstructured. Nevertheless, we will indicate in
what follows how the results in the Chapters 6 and 7 can be brought to bear in the construction
of tractable approximations of distributionally robust chance constraints.

The feasibility problem We start by remarking here that checking the feasibility of a fixed
decision u in the joint chance constraint (8.21) requires the solution of an uncertainty quantifi-
cation problem. Denote with Ξ(u) :=

{
x ∈ Rn : C(u)>x < D(u)

}
the set of realizations of the

random variable ξ such that the uncertain outcome x(u, ξ) realizes within the constraint set X
for a given decision u.



116 8. ROBUST OPTIMIZATION WITH SECOND-ORDER MOMENT INFORMATION

The joint chance constraint (8.21) can indeed equivalently be characterized in terms of an un-
certainty quantification problem

B(L[u],K, 0,Σ) = sup P(ξ /∈ Ξ(u)) ≤ ε,

s.t. P ∈ H(0,Σ) ∩ K

where the loss function is taken to be the indicator function L[u](x) = 1 {Rn \ Ξ(u)} (x). For
a fixed decision u the bound B(L[u],K, 0,Σ) reduces to an uncertainty quantification problem
of the type discussed in Section 7.3.1. Checking the feasibility of a fixed decision can hence
be done through solving a tractable convex optimization problem by merit of Proposition 7.1.
The tractable reformulation in case the ambiguity set K consists of the set of all α-unimodal or
γ-monotone distributions is given explicitly in Corollaries 7.2 and 7.3, respectively. We would
like to remark that Proposition 7.1 is in fact only applicable when 0 ∈ Ξ(u). The previous
assumption is not limiting here as it is equivalent to the requirement of nominal constraint
satisfaction x(u, 0) ∈ X and thus is fulfilled when the decision u is feasible.

We remark here that for the purpose of reformulating the joint chance constraint (8.21) the
uncertainty quantification problem defining the bound B(L[u],K, 0,Σ) is best stated in its dual
form. Indeed, the set of feasible decisions u in the joint chance constraint (8.21) can be character-
ized using the dual characterization (7.4) of the worst-case expectation problem B(L[u],K, 0,Σ)
and is given as

(8.21) ⇐⇒

u ∈ Rd :
∃
(
Y y
y> y0

)
∈ Sn+1

+ , Tr {Y Σs}+ y0 ≤ ε,

x>Y x+ 2x>y + y0 − Ls[u](x) ≥ 0, ∀x ∈ Rn

 (8.22)

for Ls[u](x) :=
∫∞

0
L[u](tx) T(dt) and Σs ·

∫∞
0
t2 T(dt) = Σ � 0. As pointed out previously,

Proposition 7.1 guarantees that the feasibility of a given decision u in the set (8.22) reduces to
an LMI. Although checking feasibility of a given decision is tractable there is unfortunately no
known tractable reformulation of the set (8.22) or equivalently the distributionally robust chance
constraint (8.21). This is the case even when no additional structure is imposed, i.e. K = Pn.
In what remains of this section we discuss instead two popular approaches to derive tractable
approximations of the distributionally robust chance constraint (8.21).

The Bonferroni approximation A very popular method to approximate the joint chance
constraint (8.21) makes use of Bonferroni’s inequality; see for instance Galambos [50]. In the
context of the distributionally robust chance constraint (8.21) the Bonferroni inequality translates
to

P
(
∪i∈[1,...,k]

{
Ci(u)>ξ ≥ Di(u)

})
≤

k∑
i=1

P
(
Ci(u)>ξ ≥ Di(u)

)
.

The power of the Bonferroni inequality lies in the fact that it limits the probability of the joint
event {Lα(x(u, ξ)) ≥ 0} in terms of the probability of k individual events {`i(x(u, ξ)) ≥ 0}. The
distributionally robust joint chance constraint (8.21) can now indeed be approximated in terms
of k distributionally robust single chance constraints each with a violation budget εi, i.e.

∀P ∈ C : P
(
Ci(u)>ξ ≤ Di(u)

)
≤ 1− εi,

∑
i

εi ≤ ε =⇒ (8.21)

Each distributionally robust single chance constraints can be represented as a tractable SOC
constraint as indicated in Proposition 8.1.

A shortcoming of the Bonferroni approximation is that its quality depends critically on the choice
of the violation budgets εi. Unfortunately, Nemirovski and Shapiro [88] show that the problem
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of determining the best choice for the budgets for a generic joint chance constraint of the type
(8.21) is non-convex and believed to be intractable. The Bonferroni approximation is furthermore
shown by Chen et al. [37] to be conservative even if the violation budget is allocated optimally.
As a consequence, in most applications of the Bonferroni approximation to the distributionally
robust chance constraint (8.21) the budget is divided equally amongst all individual constraints
by taking εi = ε/k.

CVaR approximation Recent attempts by Chen et al. [37] and Zymler et al. [142] to improve
the Bonferroni approximation are based on approximating the distributionally robust joint chance
constraint (8.21) in terms of a distributionally robust CVaR constraint. The approximation is
based on implication (8.8) which guarantees that a distributionally robust CVaR constraint
implies its corresponding distributionally robust chance constraint.

As the constraint set X = {x ∈ Rc : Lα(x) < 0} is independent of the choice of α ∈ Rk
++, the

implication
∀P ∈ C : P-CVaRε(L

α(x(u, ξ))) ≤ 0 =⇒ (8.21)

holds uniformly in α. The parameter α can hence be chosen to make the CVaR approximation
as tight as possible. However, the problem of finding the best values for α exactly seems to be
computationally formidable. Nevertheless, in practice the quality of the CVaR approximation
does not seem to depend as critically on the value of α as compared to the dependency of the
Bonferroni approximation on the budgets εi.

Whether or not the CVaR approximation of distributionally robust chance constraints is sensible
depends on whether distributionally robust CVaR constraints allow for a tractable reformula-
tion. In what remains of this chapter we will indicate that is in fact the case for unstructured
distributions K = Pn.

8.3.2 Joint CVaR constraints

The uncertain constraint (8.20) can also be reformulated as a distributionally robust CVaR
constraint instead as indicated in equation (8.7) of the preceding section. In the particular case
of the joint uncertain constraint (8.20) the distributionally robust CVaR constrained formulation
in equation (8.7) reduces to the following condition on the decision u:

P-CVaRε (Lα(x(u, ξ))) ≤ 0, ∀P ∈ C. (8.23)

As discussed before, distributionally robust CVaR constraints alleviate some of the deficiencies
suffered by chance constraints such as blindness towards extreme events in which the uncertain
outcome x(u, ξ) realizes far outside the constraint set X. We will indicate in this section that
next to these more desirable theoretical properties, distributionally robust CVaR constraints
have the additional benefit of being less computationally demanding.

Fact 8.1 (Distributionally robust CVaR constraints). The distributionally robust CVaR con-
straint (8.23) presents a convex constraint on the decision variable u, i.e. the set{

u ∈ Rd : P-CVaRε (Lα(x(u, ξ))) ≤ 0, ∀P ∈ C
}

is a convex set.

Proof. The fact can be proven directly from the definition of a convex set. Let the decisions u1

and u2 be feasible in the distributionally robust CVaR constraint (8.23), then for any decision
u = tu1 + (1− λ)u2 with t ∈ [0, 1] we have

P-CVaRε (Lα(x(u, ξ))) = P-CVaRε (Lα(tx(u1, ξ) + (1− t)x(u2, ξ)))

≤ tP-CVaRε (Lα(x(u1, ξ))) + (1− t)P-CVaRε (Lα(x(u2, ξ))) ,
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using the affinity of x(u, ξ) in u and the convexity of the function Lα and CVaR measure. When
both u1 and u2 are feasible, the decision tu1 + (1− t)u2 for t ∈ [0, 1] is feasible as well.

We will assume for now that no structure in specified, i.e. K = Pn, and hence that the ambiguity
set C = H(0,Σ) consists of all zero mean probability distributions with variance Σ. We will
discuss the case of more richly structured ambiguity sets, i.e. K ⊂ Pn, in the last part of this
section.

The feasibility problem We start our analysis again by remarking here that checking the
feasibility of a fixed decision u in the joint distributionally robust CVaR constraint (8.23) requires
the solution of an uncertainty quantification problem. Denote with L[u](ξ) = Lα(x(u, ξ)) the
function mapping the realizations of the random variable ξ to the severity of the uncertain
outcome x(u, ξ) as measured by the aggregated loss function Lα for a given decision u.

The distributionally robust CVaR constraint (8.23) can indeed equivalently be characterized in
terms of an uncertainty quantification problem

BCVaR(L[u],Pn, 0,Σ) = sup P-CVaRε(L[u](ξ)) ≤ 0

s.t. P ∈ H(0,Σ) ∩ Pn
(8.24)

as discussed in Section 5.4.2. For a fixed and given decision u, the previous worst-case CVaR
bound BCVaR(L[u],Pn, µ, S) reduces to an uncertainty quantification problem of the type dis-
cussed in Section 7.2.1. Checking the feasibility of a fixed decision can hence be done through
solving the tractable convex optimization problem given in Theorem 7.3.

We remark here that for the purpose of reformulating the distributionally robust CVaR constraint
(8.23) the uncertainty quantification problem (8.24) is best stated in its dual form. Indeed, the set
of feasible decisions u in the distributionally robust CVaR constraint (8.23) can be characterized
using the dual characterization given in Theorem 7.3.

Theorem 8.1 (Distributionally robust CVaR contraints [142]). The distributionally robust
CVaR constraint (8.23) for ambiguity set C = H(0,Σ) ∩ Pn and loss functions Lα satisfying
Assumption 9.2 is equivalent to the LMIu ∈ Rd :

∃
(
Y y
y> y0

)
∈ Sn+1

+ s.t. β + Tr {Y Σ}+ y0 ≤ 0(
Y y
y> y0 + β

)
� αi

(
0 1

2Ci(u)
1
2Ci(u)> −Di(u)

)
, ∀i ∈ [1, . . . , k]

 (8.25)

if the variance matrix satisfies Σ � 0.

Proof. The proof is a simple corollary of equation (8.24) in combination with Theorem 7.3.

The constraint set (8.25) is an exact representation of the set of decisions u feasible in the
distributionally robust CVaR constraint (8.23). As the functions B(u) and D(u) are both affine
in the decision variable u, the feasible set of the distributionally robust CVaR constraint (8.23)
is indeed represented as a tractable LMI condition. Theorem (8.25) is hence powerful as it allows
for the exact and tractable reformulation of distributionally robust CVaR constraints.
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Structured ambiguity sets When the ambiguity set K is more richly structured, the distri-
butionally robust CVaR constraint (8.23) can be stated again in terms of an worst-case CVaR
bound

BCVaR(L[u],K, 0,Σ) = sup P-CVaRε(L[u](ξ)) ≤ 0.

s.t. P ∈ H(0,Σ) ∩ K
(8.26)

For a given decision u, the previous worst-case CVaR bound reduces to an uncertainty quan-
tification problem of the type discussed in Section 7.3.2. Using the reduction put forward
in Theorems 6.1 and 7.1, the worst-case CVaR bound in previous constraint is equivalent to
BCVaR(Ls[u],Pn, 0,Σs) for the transformed arguments

Ls[u] =

∫ ∞
0

L[u](tx) T(dt) and Σs ·
∫ ∞

0

t2 T(dt) = Σ.

As shown in Fact 7.1, the function Ls[u](x) is convex in x for any fixed u and vice-versa. Un-
fortunately, the loss function Ls[u] is not in the form required by Theorem 7.2 and consequently
the tractable representation (8.25) for the distributionally robust CVaR constraint (8.23) seems
not to admit an immediate extension to the case of more richly structured sets K.

8.4 Conclusions

We have introduced in this chapter distributionally robust chance and CVaR constraints. We
discussed their properties in both the single and joint constraint case. For single uncertain
constraints, the difference between distributionally robust chance and CVaR constraints runs
only skin deep. Both the chance and the CVaR constrained formulation indeed present a convex
robust constraint on the decision variable which can in fact be stated explicitly in terms of a
tractable SOC constraint. In the joint case, only the CVaR constrained formulation is convex in
general. Moreover, for unstructured distributions the CVaR constrained formulation reduces to
an LMI in the decision variable. Although feasibility of a fixed decision in a distributionally robust
chance constraint reduces to a tractable uncertainty quantification problem, distributionally
robust chance constraints do not seem to present tractable constraints on the decision variable
and hence must be approximated.

In Chapter 9 the distributionally robust chance and CVaR constraints discussed here will be
considered in a dynamic setting. We will illustrate there that the proposed distributionally
robust constraints constitute sensible design objectives in practice as well as in theory.
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We investigate the control of constrained stochastic linear systems when faced with limited infor-
mation regarding the disturbance process, i.e. when only the first two moments of the disturbance
distribution are known. We consider the two types of distributionally robust constraints already
encountered in the static optimization setting in Chapter 8. In the first case, we require that
the constraints hold with a given probability for all disturbance distributions sharing the known
moments. These constraints were referred to as distributionally robust chance constraints. In
the second case, we impose CVaR constraints to bound the expected constraint violation for all
disturbance distributions consistent with the given moment information. Such constraints were
referred to as distributionally robust CVaR constraints with second-order moment specifications.

We propose a method for designing linear controllers for systems with such constraints that
is both computationally tractable and practically meaningful for both finite and infinite hori-
zon problems. We prove in the infinite horizon case that our design procedure produces the
globally optimal linear output feedback controller for distributionally robust CVaR and chance
constrained problems. The proposed methods are illustrated for a wind blade control design case
study for which distributionally robust constraints constitute sensible design objectives.

The current chapter will in fact present the dynamic counterpart of Chapter 8 on distribution-
ally robust optimization. The robust optimization problem discussed in the previous chapter
consisted of taking a single static decision u which satisfied the constraints despite uncertainty ξ.
A robust control problem on the other hand considers taking several decisions ut. The decisions
ut are taken as to satisfy the constraints at each time despite several uncertainties ξt. As the
decisions ut are not just static, but rather are taken dynamically over time, they may be adapted
to the uncertainties ξt in accordance to a causal control law.

9.1 Finite horizon problems

We consider a discrete-time linear time-invariant (DLTI) system with n states x, m control inputs
u, r outputs y, d exogenous inputs or disturbances ξ:{

xt+1 = Axt +But + Cξt and x0 = x

yt = Dxt + Eξt,
(S)

where all matrices are of appropriate dimension and the disturbances ξt model both process noise
(via the term Cξt) and measurement noise (via Eξt).

121
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When addressing chance- or CVaR- constrained control of the uncertain system S, we will require
a more sophisticated measure space (Ω,F) than the measure spaces on finite dimensional vector
spaces considered in the previous chapters. We will henceforward assume that the sample space
Ω is sufficiently rich such that any (joint) distribution of all the random variables appearing in
the system S on the Cartesian product of their individual range spaces is induced by a probability
distribution on (Ω,F), and we will denote by P∞ the set of all such probability distributions1.

Our goal is to design a finite-horizon control law for the system S that minimizes an aver-
age quadratic cost, subject to an additional requirement that the state satisfies the constraint
‘xt ∈ X’ in either a chance- or CVaR-constrained sense. The control inputs ut will be restricted
to be Fyt := σ(y0, . . . , yt)-measurable throughout. Simply put, the previous statement means
that the adaptation of the control input ut at any time t may only depend on the observed out-
puts (y0, . . . , yt) at that time and is enforced to guarantee causality. We remark that this is the
essential difference between the static optimization problems discussed in Chapter 8 in which a
decision needed to be taken independently of the disturbance, and the dynamic control problems
discussed here in which feedback of the past measured disturbances to the input is essential.

We wish to achieve our control objectives despite some ambiguity on the disturbance distribution.
Specifically, we assume only that the following information is available about the disturbance
process:

Assumption 9.1 (Weak sense stationary disturbances). We assume that in the DLTI system
S, the disturbance ξt is a weak sense stationary (w.s.s.) white noise process with variance matrix
EP

[
(ξt − µ) · (ξt − µ)>

]
= Σ and mean EP[ξt] = µ for all t ∈ N0.

The w.s.s. assumption appears frequently in signal processing literature such as Papoulis [96],
but is far less common in the control literature. In effect, it assumes that only the autocorrelation
Rξξ(t) := EP

[
ξi · ξ>i−t

]
is known, with Rξξ(0) = Σ + µµ> and Rξξ(t) = µµ> otherwise. Further-

more, knowing the first two moments of a w.s.s. process is, by merit of the Wiener-Khintchine
Theorem, equivalent to knowing its power spectrum. Estimating the spectral density of the dis-
turbance ξt, for example from historical data, is significantly easier in practice than determining
the complete marginal distribution of ξt with respect to P. This particular type of estimation
problem is also referred to as spectral density estimation in the signal processing community, see
for instance Stoica and Moses [124].

The w.s.s. assumption implies that the only information available about the disturbance distri-
bution is its autocorrelation function. Hence, the underlying probability distribution P? is only
known to be an element of the ambiguity set

C∞(µ,Σ) :=

{
P : EP

[
(ξ>i , 1)> · (ξ>j , 1)>

]
=

(
Σδij + µµ> µ

µ> 1

)
, ∀i, j ∈ N0

}
.

The set C∞(µ,Σ) contains all probability distributions consistent with the known moment in-
formation about the system disturbance. Notice that the probability distributions in C∞(µ,Σ)
are defined for an infinite horizon. This will permit us to work with the same ambiguity set
C∞(µ,Σ) despite varying horizons in the finite horizon setting. When choosing a control policy
for the system S, we will require that it be distributionally robust with respect to the ambiguity
set C∞(µ,Σ), in either a chance constrained or CVaR sense, for the constraint ‘xt ∈ X’. In
order to achieve this control design objective, the notion of a distributionally robust constraint,
introduced in Chapter 8, is now used to formulate our control problem.

1This means that we can think of Ω as the Cartesian product of all the random variables’ range spaces, in
which case F is identified with the Borel σ-algebra on Ω, while each random variable reduces to a coordinate
projection.
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Control constraints: We will consider distributionally robust constraints for the system S
enforced over a finite time horizon of length N , i.e.

sup
P∈C∞(µ,Σ)

P-CVaRε(L
α(xt)) ≤ 0 ∀t ∈ [0, . . . , N − 1]. (9.1)

We will refer to the parameter N as the horizon length of the finite optimal control problem
studied. In the remainder of this chapter, we will be particularly interested in quadratically
representable loss functions Lα as indicated in the following assumption.

Assumption 9.2. An aggregated loss function Lα : Rn → R with α ∈ RI
++ for the distribution-

ally robust CVaR constraints (9.1) is given as

Lα(x) = max
i∈{1,...,k}

[αi`i(x)] = max
i∈{1,...,k}

[
αi
(
x>Eix+ 2e>i x+ e0

i

)]
,

where Ei ∈ Sn+, ei ∈ Rn, e0
i ∈ R.

We assume that the parameter α ∈ Rn
++ is known or given, either as an attempt to approximate

the distributionally robust chance constraint

sup
P∈C∞(µ,Σ)

P(xt ∈ X) ≥ 1− ε ∀t ∈ [0, . . . , N − 1],

or as an indicator of the relative importance of the loss severity measures `i as explained in
Chapter 8. Recall that the constraint set X corresponds to the zero sub level set of the loss
function Lα, and consequently is assumed to be a finite intersection of half-spaces and generalized
ellipsoids by virtue of Assumption 9.2. Moreover as shown by Zymler et al. [142] and discussed
in Section 8.2.2, the distributionally robust CVaR constraint (9.1) coincides with its chance
constraint counterpart in case X is a single ellipsoid (k = 1). In the remainder of the chapter
we will hence focus exclusively on the CVaR constraint formulation.

We remark here that distributionally robust constraint (9.1) presents a condition on the inputs
u :=(u0, u1, . . . ) as it can be restated as

sup
P∈C∞(µ,Σ)

P-CVaRε(L
α(xt(u, ξ))) ≤ 0 ∀t ∈ [0, . . . , N − 1].

with ξ = (ξ0, ξ1, . . . ) the collection of all disturbances. For the sake of exposition, we will not
make the dependence of the states xt explicit on the controls and disturbances. Nevertheless,
the distribution P will always refer to the distribution of the disturbance ξ even if not made
explicit. The distribution of the state xt will be referred to as Qt where its dependence on the
control inputs is once again not made explicit.

For the system S we define a causal control policy πN := {u0, u1, . . . , uN−1}, such that the
control input selected at each time t ∈ [0, . . . , N − 1] is a function mapping prior measurements
to actions, i.e. ut is Fyt -measurable, where we assume that the initial state x0 = x is known
without any loss of generality2. Remark that the inputs ut(ξ) are thus all causal functions of the
measured part of the disturbance ξ. This last dependence is however suppressed in this chapter
to ease notation. We denote the set of all causal policies as ΠN . We wish to find, if it exists, a
policy πN ∈ ΠN such that system S satisfies the CVaR constraints (9.1) over a finite horizon.
We refer to such a policy as admissible with respect to the system S and the CVaR constraints
(9.1).

Objective function: Our aim is to find a causal control policy πN ∈ ΠN that is admissible with
respect to the CVaR constraints while minimizing a given objective function JN . We will assume

2In the case that the initial state x0 = x is itself uncertain, one can always add an additional leading state
x−1 = 0 and a state update equation x0 = Ax−1 + ξ−1, where ξ−1 equals x in distribution.
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here that the objective function JN : Rn × ΠN → R+ is a discounted sum of quadratic stage
costs, i.e. that it is in the form

JN (x, πN ) := sup
P∈C∞(µ,Σ)

EP

[
N−1∑
t=0

βt
[
x>t Qxt + u>t Rut

]
+ βNx>NQfxN

]
, (9.2)

where we refer to β ∈ [0, 1) as the discount factor of the control cost. It is assumed that the
objective function JN is convex, i.e. Q, Qf ∈ S+ and R ∈ S++. We are therefore interested in
the solution to the optimal control problem

inf
πN∈ΠN

JN (x, πN )

s.t. xt+1 = Axt +But + Cξt, x0 = x

sup
P∈C∞(µ,Σ)

P-CVaRε(L
α(xt)) ≤ 0, ∀t ∈ [0, . . . , N − 1].

(RN )

There are however no known methods of solving the above problem in its full generality. The
hardness of the problem can be attributed to two observations; (i) optimizing directly over
arbitrary measurable policies πN in ΠN where ΠN is infinite dimensional is out the question;
and (ii) distributionally robust constraints such as (9.1), even for convex loss functions L, are
hard to deal with directly when xt ∈ Fyt is a general non-linear function of the past measurements
(y0, . . . , yt). Hence, in what follows we restrict attention to control policies that are affine in the
past disturbances. Restricted policies of this type are well known in the operations research and
control community, where they are commonly referred to either as linear decision rules such as
in Ben-Tal et al. [6] or affine feedback policies by Goulart et al. [55]. Although such policies are
typically suboptimal, recent research effort by Hadjiyiannis et al. [58], Van Parys et al. [129] and
Iancu et al. [62] has focussed on providing sub-optimality bounds when applied to systems with
worst-case constraints.

Denote by x := (x>0 , . . . , x
>
N )>, u := (u>0 , . . . , u

>
N−1)> and y := (y>0 , . . . , y

>
N−1)> the collection

of states, inputs and measurements, respectively, over the given finite horizon. Similarly define
a vector of disturbances as

ξ := (1, ξ>0 , . . . , ξ
>
N−1)>, (9.3)

augmented with a leading one. This leading term is included for notational convenience so that
any affine function of (ξ0, . . . , ξN−1) can be written as Xξ for some matrix X with appropriate
dimensions. Because of the w.s.s. condition on the disturbance process in Assumption 9.1, we
have that EP

[
ξ · ξ>

]
= Mw ∈ SNd+1

++ with

Mw :=
(
1, µ>, . . . , µ>

)> (
1, µ>, . . . , µ>

)
+ diag (0, IN ⊗ Σ).

The dynamics of the linear system S over the finite horizon N can then be written as

x = Bu+ Cξ, y = Du+ Eξ, (9.4)

for some matrices (B,C,D,E) that can be derived from the system matrices and initial state
x0 = x; see Appendix B. Note in particular that the leading one in (9.3) means that the term
Cξ is an affine function of both the disturbances and the initial state x0 = x. Our approach will
be to restrict u to be affine in the past disturbances, i.e. u = Uξ for some causal feedback matrix
U ∈ N.

The set of causal policies N must ensure that the resulting feedback policy ut is Fyt -measurable,
i.e. that the feedback policy ut depends only on the initial state x and observed outputs [y0, . . . , yt].
This can be achieved by a reparametrization of the feedback policy u = Ũη as an affine function
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of the purified observations η = (DC + E) ξ as discussed by Ben-Tal et al. [6, Section 14.4.2].
The causality set can then be defined as

N :=

U ∈ RNx×Nw : U =


u0 0 0 0
u1 U1,0 0 0
...

...
. . .

...
uN−1 UN−1,0 . . . UN−1,N−1

 (DC + E)


which ensures that ut is Fyt -measurable. Assume we have such an affine policy u = Uξ, then the
cost of this policy according to the cost function (9.2) is

J̃N (x, U) := Tr
{
U> (Ju + BJxB)UMw + 2CJxBUMw + C>JxCMw

}
,

where Jx := diag
(
diag

(
β0, . . . , βN−1

)
⊗ Q, βNQf

)
and Ju := diag

(
β0, . . . , βN−1

)
⊗ R. Note

that J̃N (x, U) is convex quadratic in U since diag(Q,R) ∈ S+. We are now ready to state the
main result of this section, which shows that finding the best affine control policy for problem
RN can be reformulated as a tractable convex optimization problem.

Theorem 9.1 (CVaR constrained control). The best admissible affine control policy of problem
RN , i.e. a solution to the restricted problem

inf
U∈N

J̃N (x, U)

s.t. x = Bu+ Cξ, u = Uξ

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα(xt)) ≤ 0, ∀t ∈ [0, . . . , N − 1],

(R̃N )

where the loss function Lα : Rn → R satisfies Assumption 9.2, can be found as a solution to the
SDP

inf J̃N (x, U)

s.t.

U ∈ N, βt ∈ R, Xt ∈ SNd+2
+ , P it ∈ SNd+1

+

βt +
1

ε
Tr {MwXt} ≤ 0,

Xt −
(

αiP
i
t αi(BtU + Ct)

>ei
e>i (BtU + Ct)αi αie

0
i − βt

)
� 0,(

P it (BtU + Ct)
>E

1
2
i

E
1
2
i (BtU + Ct) In

)
� 0,


∀t ∈ [0, . . . , N − 1]

∀i ∈ [1, . . . , k]

(9.5)

where B =: (B>0 , . . . ,B
>
N−1)> and C =: (C>0 , . . . ,C

>
N−1)>.

Proof. The proof follows by applying the tractability result provided in Theorem 7.3 to the
constraints

sup
P∈C∞(µ,Σ)

P-CVaRε(L
α(

xt︷ ︸︸ ︷
(BtU + Ct) ξ)) ≤ 0.

Explicitly writing out the quadratic form in the preceding inequality as

sup
P∈C∞(µ,Σ)

P-CVaRε

(
max
i

αiξ
>(BtU + Ct)>Ei(BtU + Ct)ξ + 2αie

>
i (BtU + Ct)ξ + αie

0
i

)
≤ 0

yields a matrix inequality with quadratic terms in the variable U :

∃βt ∈ R, Xt ∈ SNd+2
+ :


βt +

1

ε
Tr {MwXt} ≤ 0

Xt �
(
αi(BtU+Ct)

>Ei(BtU+Ct) (BtU+Ct)
>eiαi

αie
>
i (BtU+Ct) e0iαi−βt

)
, ∀i ∈ [1, . . . , k].
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The final result claimed in the theorem is then found by applying classical Schur complements,
and rewriting the quadratic matrix inequality as two LMIs using the additional variables P it ∈
SNd+1

+ .

As discussed before, the distributionally robust constraint (9.1) is sometimes used to approximate
a corresponding chance constraint for a judicious choice of α. The equivalence between chance
constraints and CVaR constraints when X is a simple ellipsoid or k = 1 is proven in Zymler et
al. [142]. This result enables us to formulate the following corollary to Theorem 9.1.

Corollary 9.1 (Chance constrained control). The best admissible affine control policy of the
restricted problem

inf
U∈N

J̃N (x, U)

s.t. x = Bu+ Cξ, u = Uξ

inf
P∈C∞(µ,Σ)

P {xt ∈ X} ≥ 1− ε, ∀t ∈ [0, . . . , N − 1],

where the constraint set X =
{
x : x>E1x+ 2e>1 x+ e0

1 < 0
}

is a single ellipsoid, can be found
as a solution of the SDP (9.5) with k = 1 and α1 = 1.

9.2 Infinite horizon problems

Infinite horizon control problems lend themselves to applications in which transient behaviour
is of lesser importance, but in which we are interested in steady state behaviour. In Section 9.3
we present a numerical example of such a problem in the context of wind turbine blade control.
The problem setting is similar to the one presented in Section 9.1, in that we again consider the
DLTI system S where the disturbance input process ξt satisfies Assumption 9.1. In addition, we
assume that the disturbance ξt has zero mean µwt = µ = 0, and a zero initial condition x0 = 0
reflects our indifference towards transient behaviour.

Hence in this infinite horizon setting, we consider the following optimal control problem

inf
π∈Π∞

sup
P∈C∞(µ,Σ)

lim sup
N→∞

1

N
EP

[
N−1∑
t=0

[
x>t Qxt + u>t Rut

]]
s.t. xt+1 = Axt +But + Cξt,

sup
P∈C∞(µ,Σ)

lim sup
t→∞

P-CVaRε (Lα (xt)) ≤ 0,

(R∞)

where the loss function Lα(x) satisfies again Assumption 9.2. We assume throughout this section

that the pairs (Q
1
2 , A) and (C,A) are observable and that the pair (A,B) is stabilizable, which

is sufficient to guarantee the existence of linear time-invariant exponentially stabilizing control
policies. The feedback policies π are restricted to Π∞, where Π∞ is the set of all linear time-
invariant and causal (Fyt -measurable) feedback policies. We restricted attention to linear control
strategies for the same reasons mentioned in Section 9.1. It is also well known that such a
restriction causes no loss of optimality when the distributionally robust constraint in R∞ is
disregarded; see Kwakernaak and Sivan [71]. Indeed, the classical linear-quadratic-Gaussian
(LQG) controller is optimal for the unconstrained version of problem R∞.

The cost function in R∞ is the infinite horizon limit of the stage cost function in (9.2) for system
S, with no discounting or terminal cost. By omitting the discounting factor, the cost of a control
law π becomes independent of the initial condition x0 reflecting an indifference towards the cost
of transient behavior. The design goal in this case reduces to minimizing the average stage cost,
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so that the objective function becomes

J∞(π) := sup
P∈C∞(µ,Σ)

lim sup
N→∞

1

N
EP

[
N−1∑
t=0

[
x>t Qxt + u>t Rut

]]
,

= lim sup
N→∞

1

N

N−1∑
t=0

EP

[
x>t Qxt + u>t Rut

]
∀P ∈ C∞(µ,Σ),

where the equality follows from the fact that the expectation of a quadratic cost is independent
of P ∈ C∞(µ,Σ) for linear control policies.

The robust constraint in R∞ can be seen as a distributionally robust version of the nominal
requirement

lim sup
t→∞

P-CVaRε(L
α(xt)) ≤ 0. (9.6)

This constraint expresses the design requirement that P-CVaRε(L
α(xt)) ≤ 0 when t tends to

infinity. If a steady state distribution Q∞ exists, the constraint (9.6) can be read as a constraint
on the steady state distribution of {xt}, i.e.

Q∞-CVaRε(L
α(x)) ≤ 0,

where the distributions Qt of xt converge to the steady state distribution Q∞ of the random
variable x for t tending to infinity. However, Assumption 9.1 is not sufficient to guarantee that
xt converges in distribution to any steady state distribution Q∞, hence we cannot treat (9.6)
as a steady state constraint in general. Nevertheless, we observe that, although {xt} need not
converge in distribution, its first two moments are known to converge whenever π is a strictly
stabilizing linear control law:

Theorem 9.2 (Steady state behavior [71, Theorem 6.23]). Let the discrete-time stochastic pro-
cess xt be the solution of the stochastic difference equation xt+1 = Āxt + C̄ξt, where Ā ∈ Rn×n,
C̄ ∈ Rn×d and ξt has zero mean and satisfies Assumption 9.1. Define the variance matrix

Cxx(t) := EP

[
[xt −EP[xt]] · [xt −EP[xt]]

>
]
.

If Ā is asymptotically stable then the asymptotic variance matrix P∞ := limt→∞ Cxx(t) exists and
is the unique solution of the discrete Lyapunov equation P∞ = limt→∞ Cxx(t) = ĀP∞Ā>+C̄C̄>.

Despite the possible lack of convergence in distribution of xt, Theorem 9.2 will enable us to
represent the distributionally robust constraint of problem R∞

lim sup
t→∞

P-CVaRε (Lα (xt)) ≤ 0, ∀P ∈ C∞(µ,Σ), (9.7)

as a tractable constraint on the linear control law π, provided that we can identify a dynamic
counterpart to the tractable reformulation (7.11).

Note that a direct application of reformulation (7.11) to the constraint (9.7) is problematic. If one
assumes momentarily that {xt} converges, then (9.7) could be reformulated as a distributionally
robust constraint in the form

Q∞-CVaRε (Lα (x)) ≤ 0, ∀Q∞ ∈ Q∞, (9.8)

whereQ∞ :=
{

Q∞ :
∫
xQ∞(dx) = 0,

∫
xx> Q∞(dx) = P∞

}
an ambiguity set of distributions of

the steady state. One could then apply the reformulation (7.11) to produce a LMI representation
of the constraint (9.8). However, not every probability distribution in Q∞ is necessarily a
steady state distribution obtainable as a limit distribution of {xt}. Hence, even if a steady state
distribution exists, a replacement of the infinite horizon constraint (9.7) with (9.8) is seemingly
conservative.

However, in the finite-horizon case we have the following result:
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Lemma 9.1. Suppose that x0 = 0 and each xt is a linear function of (ξ0, . . . , ξt−1) resulting from
some linear control policy π ∈ Π∞. Define Qt :=

{
Qt :

∫
xQt(dx) = 0,

∫
xx> Qt(dx) = Cxx(t)

}
for each t ∈ N. Then

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα (xt)) = sup
Qt∈Qt

Qt-CVaRε (Lα (x)) .

Proof. To prove the claim, according to definition (3.11) of the CVaR, it suffices to show that
supP∈C∞(µ,Σ) EP[g(xt)] = supQt∈Qt EQt [g(x)] holds for any measurable function g : Rn → R.

Because xt is linear in the disturbances xt = R · (ξ0, . . . , ξt−1) for some R ∈ Rn×td as x0 = 0, we
can write

sup
P∈C∞(µ,Σ)

EP[g (R · (ξ0, . . . , ξt−1))] = sup
Qt∈Qt

EQt [g(x)]

The last equality can easily be shown using the projection Theorem 3.4 as done in for instance
by Yu et al. [139].

If one implements a stabilizing linear control policy π ∈ Π∞ such that P∞ = limt→∞ Cxx(t, t)
can be shown to exist by application of Theorem 9.2, then it follows in the limit from Lemma 9.1
that

lim sup
t→∞

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα (xt)) = sup
Q∞∈Q∞

Q∞-CVaRε (Lα (x)) (9.9)

since the worst-case CVaR is continuous in its moment information. However the former worst-
case CVaR bound in (9.9), although tractable as indicated in Theorem 7.3, could potentially
lead to a conservative reformulation of the constraint of interest (9.7) since

sup
P∈C∞(µ,Σ)

lim sup
t→∞

P-CVaRε (Lα (xt)) ≤ lim sup
t→∞

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα (xt)) , (9.10)

and consequently

sup
P∈C∞(µ,Σ)

lim sup
t→∞

P-CVaRε (Lα (xt)) ≤ sup
Q∞∈Q∞

Q∞-CVaRε (Lα (x)) .

This conservatism follows from the possibility that for each time t the distributions attaining
the worst-case bound of the right-hand side of previous inequality may depend on t. In other
words, the worst-case bound of the right-hand side is not obviously obtainable as the limit when
t tends to infinity for some fixed distribution P ∈ C∞(µ,Σ), similar as the situation discussed
for condition (9.8). Fortunately, we can show that this is in fact not the case and that no
conservatism is incurred.

Lemma 9.2. Let the discrete-time stochastic process xt be the solution of the stochastic difference
equation xt+1 = Āxt + C̄ξt, where Ā ∈ Rn×n, C̄ ∈ Rn×d and ξt has zero mean and satisfies
Assumption 9.1. If Ā is asymptotically stable then

sup
P∈C∞(µ,Σ)

lim sup
t→∞

P-CVaRε (Lα (xt)) = sup
Q∞∈Q∞

Q∞-CVaRε (Lα (x)) .

Proof. See Appendix B.

The equivalence (7.12) in view of Lemma 9.2 now provides a probabilistic interpretation to what
otherwise could be considered ad hoc variance constraints

lim
t→∞

Tr
{
E

1
2 E
[
xtx
>
t

]
E

1
2

}
≤ ε

as for instance discussed in Zhu et al. [141]. Indeed, constraining the variance to be bounded
using a trace norm can now be read as a distributionally robust probabilistic constraint on the
state satisfying a centered ellipsoidal state constraint X =

{
x : x>Ex ≤ 1

}
. In general we have

the following counterpart to the tractable reformulation (7.11).
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Theorem 9.3 (Tractability of worst-case CVaR for linear systems). Let the discrete-time stochas-
tic process xt be the solution of the stochastic difference equation xt+1 = Āxt + C̄ξt, where
Ā ∈ Rn×n, C̄ ∈ Rn×d and ξt has zero mean and satisfies Assumption 9.1. If Ā is asymptotically
stable then

∀P ∈ C∞(µ,Σ) : lim sup
t→∞

P-CVaRε (Lα (xt)) ≤ 0 ⇐⇒ inf
β,X

β +
1

ε
Tr {diag(P∞, 1) ·X} ≤ 0

s.t. X ∈ Sn+1
+ , β ∈ R, ∀i ∈ [1, . . . , k] :

X −
(
αiEi αiei
αie
>
i αie

0
i − β

)
� 0,

where P∞ = ĀP∞Ā> + C̄C̄> the stationary variance of the state.

Proof. The theorem is a direct consequence of Lemma 9.2 combined with the reformulation
(7.11).

We remark that the condition in Theorem 9.3 offers an exact condition for constraints of the
type (9.7) to hold under the disturbance Assumption 9.1. When a tighter condition is required,
one must either resort to nonlinear control laws π or assume additional information regarding
the disturbance process. We next show that the equivalence (7.12) in case of a single centered
ellipsoid also implies that the optimal linear feedback law for problem R∞ has an order which
equals the number of states n of system S, and is the combination of a Kalman filter and a static
feedback gain.

Theorem 9.4 (Optimal linear feedback law). The optimal linear feedback law π? of problem R∞
in case of Lα(x) = x>E1x+ e0

1 consists of a linear estimator-controller pair (S,K) and hence is
of the form

π? :

{
x̂t+1 = Ax̂t +But + S (yt+1 − C (Axt +But))

ut = Kx̂t,
(9.11)

with S := Y D>
(
DYD> + EE>

)−1
. The matrix Y is the unique positive definite solution of the

discrete algebraic Riccati equation

Y = A
(
Y − Y D>

(
DYD> + EE>

)−1
DY

)
A> + CC>,

which can be solved efficiently as done by Arnold and Laub [1]. The static feedback matrix is
given by K = Z?(P ?)−1, where P ? ∈ Sn++ and Z? ∈ Rm×n can be found as the optimal solution
of the SDP

inf TrQ (Σ + P ) + TrRX
s.t. P ∈ Sn+, Z ∈ Rm×n, X ∈ Sm+(

X Z
Z> P

)
� 0, e0

1 + 1
εTr {E1 (Σ + P )} ≤ 0(

P −APA> −BZA> −AZ>B> − Γ BZ
Z>B> P

)
� 0,

(9.12)

where Γ := Y D>
(
DYD> + EE>

)−1
DY and Σ = Y − Γ. Since (9.11) can be decomposed into

a Kalman estimator S and state feedback controller K, problem R∞ satisfies a separation or
certainty equivalence principle.

Proof. See Appendix B.

The Kalman filter in Theorem 9.4 depends only on the process and measurement noise charac-
teristics and is independent of the distributionally robust constraint (9.7) and cost function J∞.
Finding the optimal static feedback gain K requires only the solution of the tractable convex
problem (9.12).



130 9. ROBUST CONTROL WITH SECOND-ORDER MOMENT INFORMATION

flap torque
CG

h

TU

Figure 9.1: The geometry of the 2-DOF structural model. The overall model is linear continuous
time invariant and has a modest size of 13 states, one endogenous and exogenous input T and
ξgust, respectively.

9.3 Wind turbine blade control design problem

To illustrate the method introduced in the preceding section, we consider a wind turbine control
problem similar to the one discussed in Ng et al. [91]. As the size of wind turbines is increased
for larger energy capture, they are subject to greater risks of fatigue failure and extreme loading
events. Therefore, most large wind turbines today are equipped with pitch control for speed
regulation, which can also be used for load alleviation.

However, these pitch actuators are slow and limited by the inertia of the blades. Hence, as in Ng
et al. [91], we assume that the blades are equipped with an actively controlled flap. The control
objective is to minimize actuation energy while keeping some measure of blade loading within
specified bounds. The disturbance acting on the turbine blades is mostly due to atmospheric
turbulence, for which little more than the frequency spectrum is known; see Campbell [31].
According to the standard military design reference [86], atmospheric turbulence is typically
treated as a Gaussian stochastic process defined by a standardized velocity spectrum. We follow
this standard atmospheric turbulence model, modulo the normality assumption which is not well
supported in reality. Hence, this is a natural setting in which the ideas developed in this paper
are of practical interest.

An aerofoil section with flap can be modeled using a simple two degree of freedom (2-DOF)
plunge-pitch aerofoil, restrained by a pair of springs as shown in Figure 9.1. The two dimensional
aerofoil represents a cross section of one of the flexible wind turbine blades. For small elastic
deformations and under the assumption of potential flow, we can use the classical methods
provided by Theodorsen [126] to describe the behavior of our simple 2-DOF plunge-pitch aerofoil
with a simple linear model. The modeling technique used here is by no means the only one
possible, but results in a modest size system of only ten states. An alternative technique using
classical vortex-panel methods by Katz and Plotkin [66] to get higher fidelity, but still linear,
models is presented in Ng et al. [91]. We note that the methods described in this paper are not
limited by the modest size of our control model, as indicated in further work of this author [132]
where a high fidelity model is considered.

Since the disturbance modeling is important to our approach, we discuss it in slightly more detail
in the next subsection.
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9.3.1 Disturbance model

The majority of the disturbance acting upon the wind turbine blades is a direct result of atmo-
spheric turbulence. Most commonly, atmospheric turbulence is represented as the convolution
of (Gaussian) white noise through a linear time-invariant (LTI) shaping filter, referred to by the
military reference [86] and Campbell [31] as a von Kármán filter. Hence

ξgust := H(n1),

where n1 is Gaussian white noise and H the von Kármán filter, which we choose to be a proper
stable rational filter as in done in Campbell [31] with state space representation

−7.701 −7.008 −1.404 1
1 0 0 0
0 1 0 0

1.447 7.022 1.533 0

 . (H)

It is clear that the Gaussian assumption made on ξgust is unlikely to be fulfilled in practice,
hence we assume only that n1 is a scalar white w.s.s. noise process, i.e. EP

[
n2

1(t)
]

= 1 and thus
not necessarily Gaussian. Hence, in practice we need only estimate the power spectrum of the
atmospheric turbulence ξgust, e.g. from historical data.

The overall system of the wind turbine blade model with additional flap and disturbance filter is
a linear continuous time invariant system with 13 states, 10 states for the 2-DOF airfoil model
and 3 states for the turbulence model. The overall model has one endogenous input T and one
exogenous input n1. We assume that the states φ and h representing the pitch and plunge, see
Figure 9.1, are measured with negligible measurement noise, i.e.

y =

(
φ
h

)
+ δn2,

where n2 is a zero mean white noise signal with unit variance matrix, uncorrelated with n1. To
fit in the framework provided in the paper, we discretize the continuous time model using the
zero order hold method at sampling frequency fs = 100 Hz which captures most of the salient
system dynamics for the model parameters we have selected.

9.3.2 Numerical results

A natural control design criterion in this setting is to ensure that the vector (α̇, ḣ) is kept small
in order to bound the fatigue stress, usually caused by high variance dynamic loads. In addition
we would like extreme static loading events to be rare, corresponding to the requirement that the
deformation vector (α, h) remains close to zero. We express these two design criteria respectively
as

inf
P∈C∞(µ,Σ)

lim sup
t→∞

P
{

(φ̇(t), ḣ(t)) ∈ B(55)
}
≥ 1− ε, (9.13)

inf
P∈C∞(µ,Σ)

lim sup
t→∞

P {(φ(t), h(t)) ∈ B(6)} ≥ 1− ε, (9.14)

where ε = 0.1, and B(r) denotes a ball of radius r centered at the origin. The natural control
objective in this setting is to minimize the expected actuation power usage. We express this by
considering the cost function

J(π) = lim sup
t→∞

sup
P∈C∞(µ,Σ)

EP

[
ψ̇2(t)

]
,

which must be minimized subject to the fatigue and loading constraints (9.13) and (9.14) respec-
tively. Using the method described in Section 9.2, the optimal linear time invariant controller can
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Figure 9.2: Figure 9.2(a) shows the variance of the vectors (φ, h) and (φ̇, ḣ) when uncontrolled
and with the optimal controller according to Section 9.2, as the sets

{
x ∈ R2 : x>Σ−1x− 1 ≤ 0

}
with Σ the respective variance matrix. Similarly, Figure 9.2(b) shows the variance of the vectors
(φ, h) and (φ̇, ḣ) when uncontrolled, and with the standard LQR controller KLQR(0.1).

be computed efficiently. Although it should be noted that in Theorem 9.4 only one probability
constraint is considered, the generalization to the case of finitely many constraints of type (9.7)
is straightforward and omitted here. The difference between the variance of the vectors (φ, h)
and (φ̇, ḣ), when uncontrolled or controlled with the synthesized controller K?, is visualized in
Figure 9.2(a).

We compare this controller to the standard H2-optimal controller found by tuning the cost
function

lim sup
t→∞

sup
P∈C∞(µ,Σ)

EP

[
γψ̇2(t) + φ2(t) + φ̇2(t) + h2(t) + ḣ2(t)

]
,

which weighs the actuation energy versus the size of the states (φ, φ̇, h, ḣ), according to the
tuning factor γ. A näıve method of designing a controller is to tune γ such that the closed loop
system satisfies the fatigue (9.13) and loading (9.14) constraints.

We compare in Table 9.3.2 the cost of the optimal controller K? and three näıvely tuned con-
trollers KLQR(γi). First it is noted that when uncontrolled, the control cost is zero. However,
since ε = 0.1 both design specifications (9.13) and (9.14) are violated. The optimal controller
K? has satisfied (9.13) and (9.14) exactly with no conservatism and relatively low cost. The
LQR controller KLQR(0.43) has the same cost as K? but does not satisfy the constraints. The
other LQR controllers either violate one of the constraints or have a massive cost compared to
K?. The difference between the variance of the vectors (φ, h) and (φ̇, ḣ), when uncontrolled or
controlled with the controller KLQR(0.1), is visualized in Figure 9.2(b).

It can be seen from this example that the methodology of Section 9.2 provides an easy procedure
to design controllers that handle constraints of the type (9.13) and (9.14). Again we point out
that, by dropping the Gaussian assumption on the stochastic process (n1, n2), an assumption
which in reality can not be justified anyway, the distributionally robust constraint formulation
both makes practical sense and leads to a computationally tractable formulation.
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Control J (φ, h) /∈ B(6) (φ̇, ḣ) /∈ B(55)

Uncontrolled 0 0.16 0.12

K? 82 0.10 0.10

KLQR(0.43) 82 0.16 0.09

KLQR(0.1) 425 0.15 0.07

KLQR(3.2e−3) 3730 0.10 0.05

Table 9.1: Numerical results for the wind turbine blade control problem. The third and fourth
column show the worst-case probability that (φ, h) /∈ B(6) and (φ̇, ḣ) /∈ B(55), respectively.
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10.1 Contributions of this dissertation

This dissertation presents novel contributions related to the three principal objectives put forward
in Chapter 1. Each of these objectives was dealt with in its corresponding part of the dissertation.
The specific contributions, organized by part, are as follows:

10.1.1 Convexity and probability

The first part of the dissertation attempts to argue that many concepts in probability theory enjoy
an underlying convex structure very similar to convexity in Rn. Indeed, the sets of distributions
defined through moment conditions, a unimodality or monotonicity property are all shown to be
convex sets. This means in particular that many results found in this dissertation concerning
probability theory and uncertainty quantification problems have a direct counterpart in either
convex analysis or convex optimization in Rn. The first part of this dissertation states few truly
novel results. Having said that, the perspective offered on uncertainty quantification problems
as convex optimization problems over convex sets of probability distributions has, so we think,
significant merit.

The offered perspective aspires to persuade the reader that essentially the same mathematical
tools used to reformulate standard worst-case robust constraints apply equally well to distribu-
tionally robust formulations too. The crucial difference being that for the former constraints we
exploit the convexity of the set of all possible realizations of an uncertain disturbance realizing in
Rn and in the later constraints the convexity of the set of viable distributions of a random vari-
able on Rn. The striking similarity between vectors in Rn and probability distributions on Rn is
made explicit by the intentional analogy between Chapters 2 and 3 dealing with convex analysis
and Chapters 4 and 5 on optimization over convex sets of vectors and probability distributions
respectively.

Almost all results in this thesis draw from three fundamental ideas introduced in the first part
of the dissertation:

1. Choquet representations of convex sets of distributions.

135
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2. The fundamental theorem of linear programming.

3. Conic duality between measures and functions on Rn.

The three aforementioned results take an almost identical form in case of sets of vectors in
Rn. Indeed, these three fundamental ideas are often best understood intuitively through the
geometric interpretation offered by their finite dimensional counterparts.

10.1.2 Uncertainty quantification

In the second part of the dissertation we generalized the classical 19th century probability bounds
discussed in Chapter 1 to events in arbitrary dimensions. This was done by considering worst-case
expectation bounds for sets of structured distributions sharing a known mean vector and second
moment matrix. Emphasis was put on the structured sets of all α-unimodal and γ-monotone
distributions, although many of the result apply to more general structural properties equally
well.

The central result in this part of the dissertation is the observation that an uncertainty quan-
tification problem over a Choquet star simplex can be reduced to an equivalent transformed un-
certainty quantification problem over the standard probability simplex. The previous reduction
proves extremely beneficial to the exposition of the dissertation as only unstructured uncertainty
quantification problems over the standard probability simplex need to be considered initially.
These resulting unstructured uncertainty quantification problems can be analyzed further from
either a primal or, equivalently, their dual optimization perspective.

In Chapter 6, via the primal optimization perspective, we revealed for the first time that the
generalized Chebyshev bound reported by Vandenberghe et al. [133] admits a counterpart for uni-
modal distributions as well. In doing so we provide a much anticipated extension of the univariate
classical Gauss bound to events in arbitrary dimensions. Using the notion of α-unimodality, the
Gauss bound (for α = n) and Chebyshev bound (letting α→∞) are furthermore embedded as
two extreme elements in a hierarchy of worst-case α-unimodal probability bounds all of which
admit a tractable representation in terms of a semi-definite program.

The dual optimization perspective taken in Chapter 7 allowed for the generalization of many
other worst-case probability and conditional value-at-risk bounds found in the literature to more
richly structured sets of distributions. The dual perspective yields a semi-infinite convex opti-
mization reformulation which is shown to be amendable to exact and tractable sum-of-squares
reformulations. In case of α-unimodal and γ-monotone distributions, we explicitly provide for
both corresponding structured worst-case expectation bounds an exact reformulation in terms
of a semi-definite program.

10.1.3 Distributionally robust constraints

The results of the first two parts are put to good use in the context of distributionally ro-
bust chance and conditional value-at-risk constraints in the last part of the dissertation. The
application and tractability of distributionally robust constraints with second-order moment in-
formation is discussed in the static optimization context of Chapter 8 and for dynamic optimal
control problems in Chapter 9.

In the static optimization context of Chapter 8 we observe an important dichotomy between
single and joint distributionally robust constraints in terms of their computational tractability.
Single linear distributionally robust constraints are shown to admit a tractable reformulation in
terms of a second-order cone constraint whatever the structural assumptions made regarding the
corresponding ambiguity set. The more general case of joint polytopic distributionally robust
constraints proved more challenging but can nevertheless be analyzed using the uncertainty
quantification framework put forward in the second part of the dissertation.
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In Chapter 9 we advanced the use of distributionally robust conditional value-at-risk constraints
as mathematically sound and practically sensible design objectives for optimal control problems.
The best linear control policy can be characterized using a tractable semi-definite program in
both a finite and infinite horizon context. Furthermore, it is shown that the optimal linear
controller separates still into a Kalman filter only influenced by the disturbance characteristics
and state feedback gain characterized as a tractable semi-definite program parametric in only
the control constraints and objective.

10.2 Directions for future research

In what remains of this chapter, we suggest two directions of research showing great potential
along which the results in this dissertation could be extended even further.

10.2.1 Higher-order moment information

The theoretical results presented in the first part of the dissertation concerning the uncertainty
quantification problem (5.1) are applicable to general ambiguity sets C defined through a finite
number of moment conditions of the type

∫
gi(x) P(dx) = mi and possibly further additional

structure represented through the set K. Nevertheless, all practical results stated subsequently
deal only with quadratic moment functions gi corresponding to second-order moment informa-
tion, most often taking shape in a given mean vector or second moment matrix.

Recall that, ideally, the ambiguity set C should be taken as the smallest set such that the unknown
distribution P of the disturbance ξ of interest is guaranteed to be an element of C. In that case,
the uncertainty quantification problem supP∈C EP[L(ξ)] yields the best bound on the quantity
of interest EP[L(ξ)] for a random variable ξ distributed within C. When only second-moment
information is considered, the related ambiguity set may be too large and the corresponding
worst-case expectation bound overly pessimistic.

This pessimism innate to worst-case expectation bounds obtained using merely second-order
moment information, is alleviated in this dissertation by requiring that the distributions in
the ambiguity set C enjoy additional structure, e.g. unimodality or monotonicity. Higher-order
moments such as skewness or Kurtosis could alternatively be taken into account as well by con-
sidering higher-order polynomial moment functions gi thereby reducing the inherent pessimism
of second-order probability and expectation bounds even further.

Unfortunately, there are negative results given in Bertsimas and Popescu [18] on the tractability
of uncertainty quantification problems including higher-order moment information. Already
unstructured uncertainty quantification problems are NP-hard when non-quadratic polynomial
moment functions gi are considered. It would be of interest however to know whether practically
relevant restricted subclasses of uncertainty quantification problems with higher-order moment
information can nevertheless be approximated systematically. One may think here of for instance
the Fréchet type problems discussed in Rüschendorf [111] in which many higher order marginal
moments are assumed known, but no or a very limited dependence structure is specified. The
application of approximate sum-of-squares techniques similar to the approach taken by Popescu
[103] to uncertainty quantification problems could present a good starting point when pursuing
this direction of research.

10.2.2 Data-driven uncertainty quantification

An important motivation for the use of any distributionally robust approach is the observation
that in practice distributions are never observed directly, but rather need to be estimated from
noisy historical data and are thus necessarily incompletely characterized and ambiguous. Relat-
ing this to the approach taken in this dissertation, it is indeed the case that estimating the mean
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and second moment of a random variable is more sensible in practice then aiming to estimate
its full distribution. This previous observation is most pronounced in case the random variable
is multidimensional as estimating probability distributions in high dimensions is prone to the
infamous curse of dimensionality reported by Donoho [45].

To what confidence the mean and second moment can be estimated, or for that matter to
what extent structural properties such as unimodality or monotonicity can be detected, is not
discussed in this dissertation. The work of Delage and Ye [43] presents valuable ideas on how
one can go about constructing a confidence set M containing the mean and second moment
(µ, S) ∈ M with high confidence starting from independent and identically distributed samples
from the unknown distribution. When the confidence set M admits a semidefinite representation,
the corresponding uncertainty quantification problems with moment ambiguity can readily be
solved using the approach outlined in Section 6.4.

The previous two step approach in which a certain number of a priori fixed moments, e.g. mean
and second moment, is estimated first and then a related uncertainty quantification problem is
considered afterwards begs the question whether or not a more direct method could be developed.
Recently the works of Bertsimas et al. [16] and Esfahani and Kuhn [48] showed great signs of
promise in constructing ambiguity sets C for which P ∈ C with high confidence directly from data
without making much structural assumptions on the ambiguity set C. It would be of interest to
study to which extent a priori structural information such as unimodality or monotonicity of the
distribution P could be brought to bear in the aforementioned data-driven context as well.
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A.1 The measure spaces (Rn,B(Rn))

We collect here the necessary material on measure spaces relevant to this dissertation in order
to make its exposition somewhat self contained. As entire books, indeed entire bookshelves, are
devoted to this topic our compilation will necessary be minimal. We will focus all attention to
probability measures on Rn. The presented results can be found in almost any standard reference
on measure theory; see for instance the work of Billingsley [22].

A pair (Ω,F), consisting of an non-empty set Ω and a σ-algebra F on Ω, is denoted a measure
space. A set F is a σ-algebra on Ω whenever (i) the set F contains the universe Ω, (ii) for any
A ∈ F then also its complement Ω \ A ∈ F , and lastly (iii) the set F is closed under countable
unions, i.e. for all countable collection of sets Ai ∈ F then also its union ∪iAi ∈ F .

Definition A.1 (Measurable functions). A function ξ : Ω1 → Ω2 between two measure spaces
(Ω1,F1) and (Ω2,F2) is said to be measurable if

ξ−1(A) := {x ∈ Ω1 : ξ(x) ∈ A} ∈ F1 ∀A ∈ F2.

A function m : F → R is a denoted a (finite signed) measure if m(∅) = 0 and m is countable
additive, i.e. for all countable collections Ai of pairwise disjoint sets in F we have m(∪iAi) =∑
i m(Ai). If a measure P : F → R+ has the property P(Ω) = 1 then it is called a probability

distribution. Taken together, a measure space (Ω,F) and a probability distribution P compose a
probability space in which case Ω is usually referred to as the universe and F as the event space.
In the context of probability spaces, measurable functions are denoted as random variables. We
can relate to a random variable a probability distribution on its range space.

Definition A.2 (Distribution). The probability distribution P2 : F2 → [0, 1] is denoted the
distribution of the random variable ξ between the probability space (Ω1,F1,P1) and measure
space (Ω2,F2) if

P2(A) = P1(ξ−1(A)), ∀A ∈ F2.

We use the shorthand ξ ∼ P to denote that the random variable has distribution P.

Definition A.3 (Borel σ-algebra). For a set S we denote with B(S) the smallest σ-algebra
containing all open subset of S.

We remark here that B(S) can alternatively, and equivalently, be defined as the intersection of
all σ-algebras on S containing all its open subsets. It can be remarked that B(S) is only well
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f
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Figure A.1: The radial probability measure u3
x is not absolutely continuous and hence admits

no density for the Lebesgue measure on Rn. However, the probability measure u3
x is absolutely

continuous with respect to the Lebesgue measure on the linear subspace aff supp u3
x generated

by its support.

defined when S is endowed with a topology, i.e. its open and closed subsets are appropriately
defined.

In this work we are only confronted with the measure spaces (Rn,B(Rn)) where B(Rn) is the
Borel σ-algebra on Rn. Throughout the dissertation we assume that Rn is endowed with the
standard topology. That is, a set S in Rn is closed if for any sequence xi ∈ S, i ∈ N, we have
that limi→∞ xi ∈ S. In what follows, we restrict attention to the measure space (Rn,B(Rn))
although most of the stated results hold in more general measure spaces.

If P1 ≥ 0 and P2 ≥ 0 are two probability distributions on the same measure space (Rn,B(Rn)),
then P1 is said to be absolutely continuous with respect to P2 if P1(A) = 0 for every set A ∈
B(Rn) for which P2(A) = 0. The Radon-Nykodym theorem guarantees that if P1 is absolutely
continuous with respect to P2 and both are σ-finite, then P1 admits a density function f with
respect to P2, i.e.

P1(A) =

∫
A

f(ω) P2(dω), ∀A ∈ B(Rn), (A.1)

where f : Rn → R+ is a measurable function. The probability distribution P1 is said to be ab-
solutely continuous if it is absolutely continuous with respect to the (σ-finite) Lebesgue measure
on Rn. We say that f is a density function of P1 if equation (A.1) holds where P2 is taken to be
the Lebesgue measure, i.e.

P1(A) =

∫
A

f(ω) dω, ∀A ∈ B(Rn). (A.2)

We remark here that the density function of a continuous measure is usually not unique. The
values of f on a finite (or even countably infinite) set of points could be changed to other
nonnegative values and equation (A.2) would still hold. We say that P1 admits a continuous
density function if (A.2) holds for some positive continuous function f .

Example A.1 (Radial measures). The radial probability measures uαx and mγx are not absolutely
continuous and hence admit no density for the Lebesgue measure on Rn. However, both probability
measures are absolutely continuous with respect to the Lebesgue measure on the linear subspace
generated by their support. Indeed, the corresponding density functions fα and fγ for uαx and mγx
are

fα(ω) = 1 {0 ≤ ω ≤ ‖x‖2} · α ·
ωα−1

‖x‖α2
and

fγ(ω) = 1 {0 ≤ ω ≤ ‖x‖2} ·B(n, γ)−1 · ω
n−1

‖x‖n2
·
(

1− ω

‖x‖2

)γ−1
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respectively. See also Figure A.1 in which the situation for u3
x is depicted.

A.2 The vector spaces En and E?n
Many of the results stated in Chapters 3 and 5 are expressed in the language of topological
vector spaces (over R). We thus deem it fitting to glean the most relevant results concerning
topological vector spaces of measures on the measure space (Rn,B(Rn)) discussed in Section A.1
and put them to paper. The interested reader is referred to the work of Schaefer and Wolff [113]
for a more complete and general treatment of the matter.

A vector space over the field R is a set of elements V , denoted as vectors, together with two
operations called vector addition and scalar multiplication that satisfy certain axioms. The
space En of all (finite signed) measures on the measure space (Rn,B(Rn)) is a vector space for
the vector addition and scalar multiplication defined, respectively, through

(m1 + m2)(A) := m1(A) + m2(A) (αm1)(A) :=αm1(A), ∀A ∈ B(Rn)

for m1, m2 elements of En and α ∈ R.

In contrast to the intuition stemming from vectors in Rn, there is in general vector spaces no
notion of nearness or distance. The mixing hull of a set S in En as defined in (3.3) does however
require En to be endowed a topology. Throughout the dissertation we assume that a set S in En
is closed if for any sequence mi ∈ S, i ∈ N, we have that limi→∞ mi ∈ S in the weak sense.

Definition A.4 (Weak convergence). A sequence {mi} of elements in En is said to converge
weakly to an element m in En if ∫

g(x) mi(dx)→
∫
g(x) m(dx)

for every bounded and continuous measurable function g : Rn → R.

Two standard references on weak convergence are the books by Billingsley [21] and Parthasarathy
[97]. An important result on weak convergence is the following result due to Prokhorov [106].

Theorem A.1 (Prokhorov). A subset S of En has compact closure under weak convergence if,
and only if, for every ε > 0 there is a compact set B ⊂ Rn such that

m(B) ≥ 1− ε

for all m ∈ S.

We say that two vector spaces V and V ? are paired, if there is defined a bilinear form 〈·, ·〉 :
V ?×V → R. In other words, for any v? ∈ V and v ∈ V , we have that 〈v?, ·〉 and 〈·, v〉 are linear
functionals on the spaces V and V ?, respectively. In this dissertation the duality presented in
the infinite dimensional setting is based on the pairing of vector spaces.

The topological vector space En endowed with the weak topology can be paired with the space
E?n of all measurable functions f : Rn → R using a bilinear product defined here as

〈f,m〉 :=
∫
f(x) m(dx).

Please note that we do not need to equip the dual space E?n with a topology in this dissertation.
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A.3 Equality constrained quadratic programs

We will state here a relevant result concerning equality constrained QPs used throughout the
rest of this paper. Assume we define a function Q : Rd → R as follows

Q(b) := min
x∈Rn

x>Gx+ 2x>c+ y

s.t. Ax = b,

with A ∈ Rd×n having full row rank and G positive semidefinite. It is assumed that the function
x>Gx+ 2x>c in bounded from below such that Q(b) >∞. We can now represent the quadratic
function Q using a dual representation as indicated in the following theorem.

Theorem A.2 (Parametric representation of Q). The function Q is lower bounded by

Q(b) ≥ b>T1b+ 2b>T2 + T3 (A.3)

for all T1 ∈ Sd, T2 ∈ Rd and T3 ∈ R such that there exist Λ1 ∈ Rd×d, Λ2 ∈ Rd withΛ1 + Λ>1 − T1 Λ2 − T2 −Λ>1 A
Λ>2 − T>2 y − T3 c> − Λ>2 A
−A>Λ1 c−A>Λ2 G

 � 0. (A.4)

Moreover, inequality (A.3) is tight uniformly in b ∈ Rd for some T1, T2 and T3 satisfying
condition (A.4).

Proof. The Lagrangian of the optimization problem defining Q(b) is given as

L(x, λ) :=x>Gx+ 2x>
(
c+A>λ

)
− 2λ>b+ y.

As x>Gx + 2x>c is bounded from below on Rn, we have that for all b ∈ Rd there exists a
minimizer x? such that Q(b) = (x?)>Gx? + 2(x?)>c + y and Ax? = b. From the first order
optimality conditions for convex QPs which can be found in Nocedal and Wright [92, Lemma
16.1], we have that minx maxλ L(x, λ) = L(x?, λ?) = maxλ minx L(x, λ) where the saddle point
(x?, λ?) is any solution of the linear system(

G A>

A 0

)(
x?

λ?

)
=

(
−c
b

)
. (A.5)

The quadratic optimization problem maxx L(x, λ?) admits a maximizer if, and only if, (c+A>λ?)
is in the range of G. It must thus hold that(

Id −GG†
) (
c+A>λ?

)
= 0. (A.6)

Hence when dualizing the problem defining Q(b), we get its dual representation

Q(b) = max
λ
−
(
c+A>λ

)>
G†
(
c+A>λ

)
− 2λ>b+ y.

From equation (A.5) it follows that λ? is any solution of the linear equation b + AG†A>λ? +
AG†c = 0. Therefore there exists an affine λ?(b) = −Λ?1b − Λ?2 with Λ?1 ∈ Rd×d and Λ?2 ∈ Rd

such that

Q(b) = −
(
c−A>Λ?1b−A>Λ?2

)>
G†
(
c−A>Λ?1b−A>Λ?2

)
+ 2b>Λ?1

>b+ 2Λ?2
>b+ y. (A.7)

From equation (A.6) it follows that for all b ∈ Rd it holds that
(
Id −GG†

) (
c−A>Λ?1b−A>Λ?2

)
=

0. We must hence also have that(
Id −GG†

) (
−A>Λ?1, c−A>Λ?2

)
= 0 (A.8)
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The dual reprenstation of Q(b) guarantees that for all λ(b) = −Λ1b − Λ2 with Λ1 ∈ Rd×d and
Λ2 ∈ Rd

Q(b) ≥ −
(
c−A>Λ1b−A>Λ2

)>
G†
(
c−A>Λ1b−A>Λ2

)
+ 2b>Λ>1 b+ 2Λ>2 b

Lower bounding the right hand side of the previous inequality with b>T1b + 2T>2 b + T3 yields
Q(b) ≥ b>T1b+ 2T>2 b+ T3 if for all b in Rd it holds that(

b
1

)> [(
Λ1 + Λ>1 − T1 Λ2 − T2

Λ>2 − T>2 y − T3

)
−
(
−Λ>1 A

c> − Λ>2 A

)
G†
(
−A>Λ1 c−A>Λ2

)](b
1

)
≥ 0

and (
Id −GG†

) (
−A>Λ1, c−A>Λ2

)
= 0.

Following Gallier [51, Thm 4.3], we obtain the first part of the theorem after taking a Schur
complement

∃Λ1,Λ2 :

Λ1 + Λ>1 − T1 Λ2 − T2 −Λ>1 A
Λ>2 − T>2 y − T3 c> − Λ>2 A
−A>Λ1 c−A>Λ2 G

 � 0 =⇒ Q(b) ≥ b>T1b+ 2T>2 b+ T3.

As Q(b) is a quadratic function there exist T ?1 , T ?2 and T ?3 such that Q(b) = b>T ?1 b+2T ?2
>b+T ?3 .

The equations (A.7) and (A.8) guarantee [51, Thm 4.3] thatΛ?1 + Λ?1
> − T ?1 Λ?2 − T ?2 −Λ?1

>A
Λ?2
> − T ?2 > y − T ?3 c> − Λ?2

>A
−A>Λ?1 c−A>Λ?2 G

 � 0

completing the proof.





B Proofs

Corollary 7.2:

From Example 3.2, we have that the generating distribution T for the set of α-unimodal distri-
butions Uα satisfies

T([0, t]) = α

∫ t

0

λα−1 dλ, ∀t ∈ [0, 1].

The moment transformations from Theorem 6.1 become

µα :=

[∫ ∞
0

λT(dλ)

]-1
µ =

[
α

∫ 1

0

λα(dλ)

]-1
µ =

α+ 1

α
µ

Sα :=

[∫ ∞
0

λ2 T(dλ)

]-1
S =

[
α

∫ 1

0

λα+1(dλ)

]-1
S =

α+ 2

α
S.

From Proposition 7.1, the transformed loss function Ls required in Theorem 6.1 can be found as

Ls(x) = max
i∈I

T
([
bi/a

>
i x,∞

))
= max

i∈I
fi(a

>
i x),

where

fi(q) =

α
∫ 1

bi/q

λα−1 dλ, q ≥ bi,

0 otherwise.

In order to apply Theorem 7.2, we now need only reformulate the semi-infinite constraint (C2),
i.e. the constraint

T3,i + 2qT2,i + q2T1,i ≥ fi(q) ∀q ∈ R, ∀i ∈ I.

Because 0 ∈ Ξ and hence bi > 0, we have equivalently, for each i ∈ I, and for all q ∈ R+

T3,i + 2qT2,i + q2T1,i ≥
{

1− (bi/q)
α q ≥ bi,

0 otherwise.

which can be seen to reduce to

T3,i + 2qT2,i + q2T1,i ≥ 1− bαi
qα
, ∀q ≥ 0.

Defining a new scalar variable q̃ and applying the variable substitution q̃w = q, this can be
rewritten as

q̃2w+vT1,i + 2q̃w+vT2,i + q̃v(T3,i − 1) + bαi ≥ 0, ∀q̃ ≥ 0

after multiplying both sides with q̃v > 0. The final result is obtained after the substitution

b
1/w
i q̄ = q̃.
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Corollary 7.3:

We follow the same approach as the proof of Corollary 7.2, but this time use the generating
distribution T for γ-monotone distributions from Example 3.3, i.e.

T([0, t]) =
1

B(n, γ)
·
∫ t

0

λn−1 · (1− λ)γ−1 dλ, ∀t ∈ [0, 1].

In this case the moment transformations from Theorem 6.1 become

µγ :=

[∫ ∞
0

λT(dλ)

]-1
µ =

[
1

B(n, γ)

∫ 1

0

λn(1− λ)γ−1(dλ)

]-1
µ =

n+ γ

n
µ

Sγ :=

[∫ ∞
0

λ2 T(dλ)

]-1
S =

[
1

B(n, γ)

∫ 1

0

λn+1(1− λ)γ−1(dλ)

]-1
S =

n+ γ

n

n+ γ + 1

n+ 1
S.

From Proposition 7.1, the transformed loss function Ls required in Theorem 6.1 become

Ls(y) = max
i∈I

T
([
bi/a

>
i y,∞

))
= max

i∈I
fi(a

>
i y).

where

fi(q) =


1

B(n, γ)

∫ 1

bi/q

λn−1(1− λ)γ−1 dλ, q ≥ bi,

0 otherwise.

For q ≥ bi, we can use a binomial expansion to evaluate this integral1, obtaining

B(n, γ)fi(q) = B(n, γ)−
∫ bi/q

0

λn−1 · (1− λ)γ−1 dλ

= B(n, γ)−
γ−1∑
k=0

∫ bi/q

0

(−1)k
(
γ − 1

k

)
λn+k−1 dλ

= B(n, γ)− bni
γ−1∑
k=0

(−bi)k
n+ k

(
γ − 1

k

)
1

qn+k

In order to apply Theorem 7.2, we now need only reformulate the semi-infinite constraint (C2).
We obtain, for each i ∈ I, the constraint

T3,i + 2qT2,i + q2T1,i ≥ 1− bni
B(n, γ)

γ−1∑
k=0

(−bi)k
n+ k

(
γ − 1

k

)
1

qn+k
, ∀q ≥ bi.

recalling that 0 ∈ Ξ and hence bi > 0. We multiply both sides by qn+γ−1 > 0 to produce, for
each i ∈ I the constraint

T1,iq
n+γ+1 + 2T2,iq

n+γ + (T3,i − 1) qn+γ−1 +
bni

B(n, γ)

γ−1∑
k=0

(−bi)k
n+ k

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ bi.

The final result is obtained after the substitution biq̄ = q.

1 Note that the integral amounts to 1−B(n, γ)−1
∫ bi/q
0 λn−1(1−λ)γ−1 dλ = 1−Ibi/q(n, γ), where Ibi/q(n, γ) is

the so-called regularized incomplete beta function, i.e. the cumulative distribution function for the beta distribution
with shape parameters (n, γ).
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Corollary 7.4:

The method of proof follows that of Corollary 7.2, except that we now apply Proposition 7.2 to
generate the transformed loss function Ls.

In this case the loss function L is equivalent to L = d ◦ κΞ with d(t) = max{0, t− 1}. Recalling
from Example 3.2 the generating distribution T for α-unimodal distributions, we set

ds(t) =

∫ ∞
0

d(λt) T(dλ)

= α

∫ 1

0

max{0, (λt− 1)}λα−1dλ,

which is zero for any t ≤ 1. For t ≥ 1, we can evaluate the integral to get

∀t ≥ 1 : ds(t) = α

∫ 1

1/t

(tλα − λα−1)dλ

=
α

α+ 1
t− 1 +

1

α+ 1

(
1

t

)α
and then set Ls(x) = maxi∈I fi(a>i x) where each fi(q) := ds(q/bi).

We can now apply Theorem 7.2 by reformulating the constraint (C2) for this choice of fi for each
i ∈ I, resulting in the constraint

T3,i + 2qT2,i + q2T1,i ≥
α

α+ 1

q

bi
− 1 +

1

α+ 1

bαi
qα

∀q ≥ bi

because 0 ∈ Ξ and hence bi > 0. We define a new scalar variable q̃ and apply the variable
substitution q̃w = q, resulting in the constraint

q̃2w+vT1,i + q̃w+v

(
2T2,i −

α

(α+ 1)bi

)
+ q̃v (1 + T3,i)−

bαi
α+ 1

≥ 0, ∀q̃ ≥ b1/wi

after multiplying both sides by q̃v > 0. The final result is obtained after the substitution

b
1/w
i q̄ = q̃.

Corollary 7.5:

The method of proof parallels that of Corollary 7.4, but this time using the generating distribution
T for γ-monotone distributions from Example 3.3. In this case we set

ds(t) =
1

B(n, γ)

∫ 1

0

max{0, (λt− 1)}λn−1(1− λ)γ−1dλ,

which is zero for any t ≤ 1. For any t ≥ 1, using a binomial expansion we can evaluate the
integral to get

∀t ≥ 1 : B(n, γ)ds(t) = t

∫ 1

1/t

λn(1− λ)γ−1 dλ−
∫ 1

1/t

λn−1(1− λ)γ−1 dλ

= tB(n+1, γ)−B(n, γ)+

∫ 1/t

0

λn−1(1−λ)γ−1dλ− t
∫ 1/t

0

λn(1−λ)γ−1dλ

= tB(n+1, γ)−B(n, γ)+

γ−1∑
k=0

[
(−1)k

(
γ − 1

k

)∫ 1/t

0

(
λn−1 − tλn

)
λk dλ

]

= tB(n+ 1, γ)−B(n, γ) +

γ−1∑
k=0

(−1)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)(
1

t

)n+k
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and then set Ls(x) = maxi∈I fi(a>i x) where each fi(q) := ds(q/bi). In order to apply Theorem
7.2, we now need only reformulate the semi-infinite constraint (C2). We obtain, for each i ∈ I,
the constraint

T3,i + 2qT2,i + q2T1,i ≥
B(n+ 1, γ)

biB(n, γ)
q − 1+

bni
B(n, γ)

γ−1∑
k=0

(−bi)k
(n+ k)(n+ k + 1)

(
γ − 1

k

)
1

qn+k
∀q ≥ bi

because 0 ∈ Ξ and hence bi > 0. We multiply both sides by qn+γ−1 > 0 to produce the constraint

T1,iq
n+γ+1 +

(
2T2,i −

B(n+ 1, γ)

biB(n, γ)

)
qn+γ + (T3,i + 1) qn+γ−1−

bni
B(n, γ)

γ−1∑
k=0

(−bi)k
(n+ k)(n+ k + 1)

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ bi.

The final result is obtained after the substitution biq̄ = q̃.

Factor models in insurance

As mentioned in Section 5.4.2, any worst-case CVaR problem can be reduced to a related worst-
case expectation problem. We are therefore interested in loss functions of the form L(Sn) =
min (max (Sn, 0) , k)− β for 0 ≤ β ≤ k. We have that the loss function L(Sn) can be written as
the gauge function L(Sn) = d ◦ κΞ(Sn) for

Ξ =

{
x ∈ Rn :

n∑
i=1

xi ≥ 1

}

and

d =


0 if t ≤ β,
t− β if β ≤ t < k,

k − β if t ≥ k.

Recalling from Example 3.2 the generating distribution T for α-unimodal distributions, we set
ds(t) =

∫∞
0
d(λt) T(dλ) which is zero for any t ≤ β. For β ≤ t < k, we can evaluate the integral

to get

β ≤ ∀t < k : ds(t) = α

∫ 1

β/t

(λt− β)λα−1dλ

=
α

α+ 1
t− β +

βα+1

α+ 1

1

tα
.

Similarly for t ≥ k, we get

∀t ≥ k : ds(t) = α

∫ k/t

β/t

(λt− β)λα−1dλ+ α

∫ 1

k/t

(k − β)λα−1dλ

= k − β − kα+1 − βα+1

α+ 1

1

tα

and then set Ls(x) = ds(
∑n
i=1 xi). In order to apply Theorem 7.2, we now need only reformulate

the semi-infinite constraint (C2). This can be done using methods analogous to the method
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described in the proof of Corollary 7.4, but is omitted here for the sake of brevity. We get finally
T1,iβ

2q2w+v + qw+vβ

(
2T2,i −

α

α+ 1

)
+ qv (T3,i + β)− β

α+ 1
≥ 0, 1 ≤ ∀q <

(
k

β

)1/w

T1,ik
2q2w+v + 2kqw+vT2,i + qv (T3,i + β − k) + k

1− (β/k)α+1

α+ 1
≥ 0, ∀q ≥ 1

 (C2)

Proof of Lemma 9.2

Recalling (9.9), it is sufficient to prove that the inequality (9.10) actually holds with equality. In
other words, it suffices to show that

lim sup
t→∞

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα (xt)) ≤ sup
P∈C∞(µ,Σ)

lim sup
t→∞

P-CVaRε (Lα (xt)) . (B.1)

Choose any δ > 0 and N ′ ∈ N. From the definitions of the limit superior and the supremum
appearing in the left-hand side of (B.1), there exists some time instance N ≥ N ′ > 0 and some
probability measure P̃ ∈ C∞(µ,Σ) such that the left-hand side of (B.1) is bounded by

lim sup
t→∞

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα (xt)) ≤ P̃-CVaRε (Lα (xN )) + δ. (B.2)

Consider now the subsequence {xkN}∞k=0, i.e. the subsequence obtained by taking every N th

element of the sequence {xt} beginning from x0. The elements of this subsequence are related
by

x(k+1)N = ĀNxkN +
[
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk, k ∈ N

where each ∆ξk := (ξkN ; . . . ; ξ(k+1)N−1) is a collection of disturbances N steps long.

Consider the distribution of ∆ξ0 under the measure P̃, i.e. the marginal distribution of the
first N elements of the disturbance sequence {ξt} under P̃. Construct a probability measure
P′ ∈ C∞(µ,Σ) such that the subsequences ∆ξk are independent and identically distributed (i.i.d.)
and such that ∆ξ0 has the same distribution under both P′ and P̃. The marginal distribution of
the state xN will then likewise be the same under both P′ and P̃. Consequently, we must also
have

P̃-CVaRε (Lα (xN )) = P′-CVaRε (Lα (xN ))

as the CVaR is a law invariant risk measure; see Chapter 3.

The loss function Lα is convex and thus satisfies Lα(x + y) ≥ Lα(x) + ∂Lα(x)>y with ∂Lα a
subgradient of Lα. As the CVaR measure is monotone, we obtain the inequality

P′-CVaRε

(
Lα
(
x(k+1)N

))
= P′-CVaRε

(
Lα
(
ĀNxkN+

[
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk

))
≥ P′-CVaRε

(
Lα
([
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk

)
+∂Lα

([
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk

)>
ĀNxkN

)
.

From the definition of the CVaR given in (3.11) and the inequality (a+ b)
+ ≥ (a)

+ − |b| we can
then conclude

P′-CVaRε

(
Lα
(
x(k+1)N

))
≥ P′-CVaRε

(
Lα
([
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk

))
− 1

ε
EP′

[
|∂Lα

([
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk

)>
ĀNxkN |

]
.

For every δ > 0 there exists p such that |x| ≤ εδ + px2. Since the disturbance subsequences
∆ξk are assumed i.i.d. with x0 = 0, the random variable xN has the same distribution as
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[
ĀN−1C̄, . . . , C̄

]
∆ξk for all k. Using the fact that xkN is independent from ∆ξk we then obtain

EP′

[
|∂Lα

([
ĀN−1C̄, . . . , ĀC̄, C̄

]
∆ξk

)>
(ĀN )>xkN |

]
≤ pEP′

[(
∂Lα(xN )>ĀNxkN

)> · (∂Lα(xN )>ĀNxkN
)]

+ εδ

≤ pTr
{
EP′
[
∂Lα(xN )∂Lα(xN )>

]
ĀNEP′

[
xkNx

>
kN

]
(ĀN )>

}
+ εδ

using additionally that Cxx(kN) � P∞ for all k. Since N ′ could be chosen arbitrarily large, we
now assume that N ≥ N ′ > 0 is large enough that

pTr
{
EP′
[
∂Lα(xN )∂Lα(xN )>

]
ĀNP∞(ĀN )>

}
≤ εδ,

which is always possible when Ā is asymptotically stable and because

EP′
[
∂Lα(xN )∂Lα(xN )>

]
� E EP′

[
xN · x>N

]
E> + e � ∞

for any E � αiEi and e � αiei · e>i for all i ∈ [1, . . . , k] is bounded from above uniformly in N .
It then follows that

P′-CVaRε

(
Lα
(
x(k+1)N

))
+ 2δ ≥ P′-CVaRε (Lα (xN )) = P̃-CVaRε (Lα (xN )) , ∀k. (B.3)

Combining the preceding inequalities (B.2) and (B.3), we obtain the inequality

lim sup
t→∞

sup
P∈C∞(µ,Σ)

P-CVaRε (Lα (xt))≤ lim sup
t→∞

P′-CVaRε (Lα (xt)) + 3δ.

Since δ > 0 could be chosen to be arbitrarily small, (B.1) immediately follows and the proof is
complete.

Proof of Theorem 9.4

We have according to Lemma 9.2 and Corollary 7.1 the equivalences

sup
P∈C∞(µ,Σ)

lim sup
t→∞

P-CVaRε (L1 (xt)) ≤ 0 ⇐⇒ sup
Q∞∈Q∞

Q∞-CVaRε (L1 (x)) ≤ 0.

⇐⇒ lim sup
t→∞

Tr
{
E

1/2
1 EP

[
xtx
>
t

]
E

1/2
1

}
≤ −e0

1ε.

when the closed loop system is stable. Notice that this without loss of generality as an unstable
system would yield an unbounded cost J∞ and hence can be discarded.

The following inequalities

lim inf
t→∞

EP

[
x>t Qxt + u>t Rut

]
≤ J∞(π) ≤ lim sup

t→∞
EP

[
x>t Qxt + u>t Rut

]
, ∀P ∈ C∞(µ, S)

follow immediately from the definition of limit inferior and limit superior, respectively. The
objective function now can be written in the form of a standard H2-problem,

Jlqr = lim
t→∞

Tr
{
Q

1
2 EP

[
xtx
>
t

]
Q

1
2 +R

1
2 EP

[
utu
>
t

]
R

1
2

}
,

using the fact that the expectation operator is linear and the trace identity Tr {AB} = Tr {BA}
and EP

[
xtx
>
t

]
converges for t→∞ . Hence, when restricted to linear control strategies, problem

R∞ reduces to
infπ limt→∞ EP

[
x>t Qxt + u>t Rut

]
s.t. xt+1 = Axt +But + Cξt,

limt→∞ Tr
{
E

1
2
1 EP

[
xtx
>
t

]
E

1
2
1

}
≤ −e0

1ε.



B. PROOFS 151

However, the last problem is an instance of a standard multi-criterion H2-problem, see Boyd et
al. [26, Section 12.2.1]. The fact that the optimal control law is of the form (9.11) is a result of the
fact that it solves an H2-problem with a different cost measure, i.e. there exists an unconstrained
H2-problem with state and input penalty matrices Q̃, R̃ for which the solution satisfies the
omitted trace constraint as shown by Boyd et al. [26, Section 6.5.1]. The fact that K can be
found as the solution to an SDP can be found as well in Boyd et al. [26], and essentially follows
from standard LMI manipulations.

Definition of system matrices

Define the matrices B ∈ RNx×Nu , C ∈ RNx×Nw , D ∈ RNy×Nu and E ∈ RNy×Nw as follows

B :=


0
B 0
AB B 0
...

. . .
. . .

... B 0
AN−1B AN−2B ... AB B

=:


B0

B1

B2

...

...
BN

 , D :=

 0
D 0
D 0

. . .
. . .
D 0

=:


D0

D1

D2

...
DN−1

 ,

C :=


x0

Ax0 C
A2x0 AC C

...
. . .

. . .
ANx0 A

N−1C ... AC C

=:


C0

C1

C2

...
CN

 , E :=

 1
E
E

. . .
E

=:


E0

E1

E2

...
EN−1

 ,

where x0 is the initial state of system S, and Nx := (N + 1)n, Nu := Nm, Nw := Nd + 1 and
Ny = rN .
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