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We study the mechanism design problem for a seller of an indivisible good in a setting where privately

informed buyers can acquire additional information and refine their valuations for the good at a cost. For

this setting, we propose optimal (revenue-maximizing) and efficient (welfare-maximizing) mechanisms that

induce a right level of investment in information acquisition. We show that because information is costly, in

the optimal and even the efficient mechanisms, not all the buyers would obtain the additional information.

In fact, these mechanisms incentivize buyers with higher initial valuations to acquire information.

1. Introduction

In the literature on the auction theory, it is often assumed that bidders have full information

about their valuations for the items that are sold at the auction, and the challenge for

the auctioneer is to design a mechanism that elicits the preferences and valuations of

the bidders. However, this assumption may not always hold. In many applications, as we

explain below, bidders have initial private information about their willingness to pay, and

they can acquire additional information at a cost to refine their valuations.

In the sale of complex financial or business assets, the buyers have a rough estimate

of their value for the business assets, but they often invest heavily in the due diligence

process to determine their exact valuation before making a decision (Vallen and Bullinger

1999). As another example, in timber auctions, bidders are aware of their manufacturing

cost, but they need to examine the volume and composition of wood on tracts to better

estimate their valuations (Roberts and Sweeting 2010, Athey and Levin 1999). Similarly,

in oil and gas auctions, buyers conduct seismic studies to get a more precise estimate of

the likelihood of finding oil or gas (Hendricks et al. 2003). Yet another example comes

from online ad auctions. In display advertising, advertisers can refine their valuations by

obtaining information about Internet users. In fact, many companies sell such information

to advertisers; we will refer to them as information providers.1

1 Examples include BlueKai, eXelate, Acxiom, PulsePoint, LiveRamp, Neustar, DataLogix, and OpenTracker. Infor-
mation providers gather information about the users via third-party HTTP cookies, which are often installed by
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In all of the examples above, the bidders incur the cost of information. But, the seller in

fact indirectly bears these costs. The intuition is that these costs will affect the bidders’ (ex-

ante) willingness to pay, and this in turn impacts their participation and bidding. Therefore,

the seller should ensure that bidders do not over-invest or under-invest in information

acquisition. On one hand, to avoid under-investment, the seller should motivate some of

the bidders to obtain information. On the other hand, to avoid over-investment, the seller

may would like to restrict some of the bidders from accessing to costly information if he is

able to control access to information.

In many applications, the seller can exert such a control. For instance, in the sale of

complex financial assets, the seller may control how much detail is disclosed to the poten-

tial buyers. In timber (oil and gas) auctions, the bidders can only obtain the additional

information if the auctioneer allows them to examine the tracts (fields). In the context

of online advertising, the seller (online publisher) can release the identity of the user to

only a subset of the advertisers. The identity of the user can be revealed to advertisers

by disclosing HTTP cookies (Kristol 2001). If the publisher releases these cookies to an

advertiser, the advertiser can subsequently take the cookies to the aforementioned infor-

mation provider and obtain (purchase) information. On the flip side, if the publisher does

not disclose these cookies to some advertisers, then these advertisers cannot acquire any

information about the user.2

In this work, we answer the following question: If the seller controls access to (addi-

tional) information, how can he incentivize a right set of bidders to invest in information

acquisition?

Our Contributions

We present a model to study costly information acquisition in auctions. Our model consists

of an auctioneer that sells an item to a set of agents. The agents have an initial private

valuation for the item and can obtain additional information at a cost. However, “access”

a website that a user may not have visited. HTTP cookies are strings of characters that can only be interpreted
by the party that has created them (Kristol 2001). In general, some of the cookies could have been created by the
advertisers themselves. In this work, we focus on the third-party cookies created by the information providers. Using
this technology, it is possible to track a user across different websites in order to identify the users’ interests and
intentions.

2 Major ad exchanges, such as Google AdX, allow publishers to run private auctions (Google DoubleClick Documen-
tation 2016) where they can control the information that is provided to the advertisers.
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to this additional information is controlled by the auctioneer, and the mechanism may

grant access only to a subset (or none) of the agents.

We present a two-stage efficient mechanism in our setting in Section 4. A mechanism

is efficient if it maximizes the sum of the social welfare of the auctioneer and the agents,

taking into account the cost incurred to obtain the additional information. When there is

no such cost, the efficient mechanism allows all agents to obtain the additional information.

However, when the information is costly, the efficient mechanism grants access to the

additional information only to a subset of the agents.

The efficient mechanism works as follows: In the first stage, agents bid in an initial round

of bidding. Then, based on their initial bids, the auctioneer selects a subset of agents and

grants them access to obtain additional information. Each selected agent can acquire the

additional information by incurring a cost. The selected agents then update their valuations

and bid in the second round of bidding. The second stage corresponds to the second-price

auction with no reserve.3

In order to increase the revenue, the seller may want to set a reserve price in the second

stage. In Section 5.1, we extend our analysis to mechanisms where the item is allocated via

a second-price auction with a reserve. These mechanisms are appealing from a practical

perspective because they allocate the item using the second-price auctions which is the

prevalent mechanism used in ad exchanges (Muthukrishnan 2009).

We further present a revenue-optimal mechanism in our setting. It turns out that

the allocation stage of the revenue-optimal mechanism is a bit more complicated than

a second-price auction. In order to optimize the revenue, the mechanism selects a set of

agents so that it maximizes the “virtual revenue” minus the cost of information. The item

is allocated via a weighted second-price auction where the weights favor the agents with

higher initial bids.

In the above mechanisms, the auctioneer controls access to information. To study the

impacts of such a control, in Sections 4.1 and 5.3, we investigate a mechanism called All-

Access, where the auctioneer does not control access to the additional information. In this

mechanism, agents obtain additional information if they choose to incur the cost. That

3 In this paper, we consider two stage mechanisms where all the agents are selected at the same time (in the first
stage) and the item is allocated in the second stage. See the discussion on adaptive selection rules at the end of
Section 4.
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is, the mechanism leaves the decision on obtaining the costly information to the agents.

The item is allocated via a standard second-price auction (with a reserve). We show that

the mechanism always admits a pure strategy Nash equilibrium. The equilibria, however,

might not be efficient/revenue-optimal. We observe that under the All-Access mechanism,

the agents tend to over-invest in information acquisition when the cost is low. Similarly,

when the cost is high, the agents tend to under-invest in information acquisition.

We numerically compare the above mechanisms. Interestingly, on average, the revenue-

optimal mechanism allows fewer agents to obtain the additional information compared to

the efficient mechanism. It is well established that the revenue-optimal mechanism distorts

the allocation and creates inefficiencies in order to extract more revenue from agents with

higher valuations. We observe that the revenue-optimal mechanism distorts the revelation

of information in addition to the allocation; see Section 6. In addition, we observe that

the revenue-optimal mechanism can significantly increase the revenue compared with the

aforementioned All-Access mechanism; see Section 5.3.

Our proposed mechanisms are flexible and can be generalized to a setting where mul-

tiple units of the item are sold; see Section 7.2. Furthermore, they can be extended to

environments where the cost of information can be seen as an entry cost, and all agents

who may receive the item with non-zero probability must invest in obtaining information;

see Section 7.1.

Related Work

In this section, we briefly discuss the literature related to our work.

Dynamic Mechanism Design: Our work belongs to the growing body of research on

mechanism design; see Bergemann and Said (2011) for a survey. In particular, our work

is closely related to that of Ëso and Szentes (2007) and generalizes their model to a set-

ting where information acquisition is costly. In the absence of this cost, Ëso and Szentes

(2007) show that the revenue-optimal mechanism grants all agents access to the additional

information. In contrast, we show that when obtaining the additional information is costly,

the auctioneer, even in the efficient mechanism, may not allow all bidders to acquire the

additional information. The selection rule of our mechanism determines the set of agents

who could access (and obtain) the additional information. From a technical perspective, as

we discuss later in Appendix A.1, this makes our proof a bit challenging. See Kakade et al.
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(2013), Pavan et al. (2014), Battaglini and Lamba (2012), Boleslavsky and Said (2013),

and Lobel and Xiao (2013) for recent results on designing optimal dynamic mechanisms.

Costly Information Acquisition: Most previous work on information acquisition consid-

ers settings where the bidders do not have any private information prior to entering the

auction. In such a setting, where the auctioneer controls the bidder’s access to information,

Crémer et al. (2009) show that the auctioneer can extract all the surplus by imposing an

admission fee; see also Pancs (2013). Information acquisition has also been studied in the

principle-agent context (Cremer and Khalil 1992, Szalay 2009) and reverse auctions (Beil

et al. 2015).

Shi (2012) studies costly information acquisition in a setting where bidders do not have

any private information prior to entry and can decide on how much to invest in order

to obtain information. He shows that the optimal mechanism takes the form of standard

auctions (e.g., second-price) with a reserve price. In contract, in our setting the bidders

are privately informed before they decide on the obtaining additional information.

Ye (2007) and Quint and Hendricks (2012) study indicative bidding auctions that are

commonly used in selling financial assets. The auction works as follows: bidders submit

non-binding bids to indicate their interest in the assets. The auctioneer then selects some

of the bidders that have higher valuations to proceed to the second round, which involves

a costly due diligence process and final bidding. Ye (2007) shows that in the indicative

bidding, efficient entry of the bidders is not guaranteed and the most qualified bidders

might not be selected by the auctioneer. Note that in contrast to our work, the number of

selected bidders is predetermined. In addition, only selected bidders who invest in obtaining

the additional information may participate in the allocation stage of the mechanism.

One of the closest works in the literature to ours is that by Lu and Ye (2014), who

study the design of a two-stage revenue-maximizing mechanism when acquiring information

is costly. Similar to indicative bidding auctions, they assume that obtaining the costly

additional information is necessary for agents to participate in the second stage. Under this

assumption, as the initial valuations of the agents increase, fewer agents will be allowed

to acquire information. Specifically, the selection rule of the mechanism is “monotone” in

initial valuations.

In contrast, we observe in Section 6 that the selection rule of our proposed mechanisms

is non-monotone. The reason is that in our model all agents—including those who do not
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update their valuations—participate in the second stage and have a chance to receive the

item; see Section 7 for details. The non-monotonicity of the allocation rule makes our

proofs more complicated. Furthermore, they assume that the seller can observe who obtains

the additional information, which may not be a realistic assumption in many practical

contexts. In contrast, in our setting the seller does not observe who obtains the additional

information. Therefore, our mechanisms should be designed in a way that all selected

agents willingly acquire the costly information. This requirement makes the mechanism

design problem more challenging.

In addition, we observe that the seller earns (significantly) higher revenue in our setting.

We provide a numerical example in Section 7.1. This is quite intuitive; When the cost of

information is high as in our setting, the seller can allocate the item even when no agent

invests in information. Another reason that the seller can obtain higher revenue in our

setting is that he can allocate the item to one of the agents that did not obtain information

when the updated valuations were all low.

In Section 7.1, we discussed how our mechanisms can be extended to the setting studied

by Lu and Ye (2014). In particular, we extend their revenue-maximizing mechanism to a

setting where the cost of information is not the same across agents. Note that in Lu and

Ye’s paper, all agents incur the same cost when they obtain information. In addition, we

presented a two-stage efficient mechanism in their setting.

Another related work is that by Hatfield et al. (2015). They focus on efficient mechanisms

where bidders can invest in costly information acquisition to determine their valuations.

They show that bidders make efficient investment choices when the utility of an agent is

equal to his marginal contribution to the social welfare; see also Bergemann and Välimäki

(2002). In contrast, we observer that for the All-Access mechanism, there might exist an

equilibrium where agents do not make efficient investment decisions; see Example 1 in

Section 4.1.

For a discussion on settings where the computation of valuation is costly, see Larson and

Sandholm (2001).

Information Disclosure: Our work also contributes to the vast literature on informa-

tion disclosure. In the following, we briefly discuss this literature, focusing on the works

motivated by applications in online advertising.
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Recently, several papers have studied the effect of sharing cookies and targeting in adver-

tising. Abraham et al. (2011) show that in a common value setting when some advertisers

are able to better utilize information obtained from cookies, asymmetry of information can

sometimes lead to low revenue in this market; see also Syrgkanis et al. (2013). Several

recent papers, such as Ghosh et al. (2007), Rayo and Segal (2010), Bergemann and Bonatti

(2011), Emek et al. (2012), Hummel and McAfee (2012), Bergemann and Bonatti (2013),

and Bhawalkar et al. (2014), analyze the role of providing more (targeting) information in

the context of online advertising and show that more information may reduce the revenue.

Our proposed mechanisms can control the access to information in order to maximize the

revenue.

Information disclosure has been studied in other applications. For instance, Jing (2011)

studies customer learning for new durable goods. In his model, the seller invests in inform-

ing customers before releasing the goods to the market. In addition, see Lewis (2011).

The remainder of this paper is organized as follows: In Section 2, we formally define

our model. Direct mechanisms are defined in Section 3. We present our efficient mech-

anism followed by the All-Access mechanism in Section 4. Section 5 discusses revenue

maximization and presents the revenue-optimal mechanism. We discuss the selection rule

of our mechanisms in Section 6. Finally, Section 7 explores some of the extensions of our

mechanisms.

2. Setting

We consider a setting with a seller of one (indivisible) item and n agents. The initial valu-

ation of each agent i for the item is denoted by vi,0 ∈ [v, v], which is drawn independently

from distribution F , with probability distribution function (p.d.f.) f . Distribution F is

known to the seller and all the agents. However, vi,0 is known only to agent i.

The seller may allow some of the agents to obtain (additional) information about their

valuations. Suppose agent i is one of the agents to whom the seller has “granted” access to

the additional information. In this case, agent imay decide to incur cost ci and obtain signal

δi about his valuation where δi is drawn independently (of vi,0 and other agents’ second

signals) from distribution Gi. The distributions Gi, i= 1,2, . . . , n, are publicly known, but

the second signals are private information. Without loss of generality, we assume E[δi] = 0.

Note that if E[δi] = ∆> 0, we can add ∆ to vi,0 and then subtract ∆ from δi.
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If agent i obtains second signal δi, his updated final valuation, denoted by vi,1, would be

equal to vi,0 + δi. For the agents who did not learn their second signals, either because the

seller denied them the access or by their own choice, let vi,1 = vi,0.

As an example, suppose an advertiser values male users at $0 and female users at $6.

Assume that each user has the same chance of being male as of being female. Thus, when

the user’s gender is unknown, his expected value, that is, his initial valuation, is 6+0
2

= 3.

By revealing the gender, the valuation of the advertiser will change; with probability 1
2
, his

valuation is increased by $3, and with probability 1
2
, it is decreased by the same amount.

That is, the second signal is either 3 or −3 with equal probability.

Throughout the paper, we denote the vector of the initial and final valuations of all

agents by v0 and v1. Also, v−i,0 and v−i,1, respectively denote the vector of the initial and

final valuations of all agents except for agent i.

The agents are risk neutral. The utility of an agent i who has received the item is

equal to his valuation, vi,1, minus his payment to the mechanism and the (possible) cost

of information acquisition. We will specify utility of the agents more precisely in the next

section.

3. Direct Mechanisms

In this section, we consider direct revelation mechanisms (Myerson 1986) where agents

report their valuations in two rounds. First, they report their initial valuations to the

mechanism. Then the mechanism decides on the set of agents that will have access to

information. Those agents report their updated valuations to the mechanism in the second

round and finally, the mechanism allocates the item.

More precisely, any direct mechanismM is defined by a tuple (s, q, p), which respectively

represents its selection, allocation, and payment rules. The seller announces the mechanism

to the agents and commits to (s, q, p). Following are the stages of the mechanism:

1. Initial Bidding: Agents report in the first round. The initial report (bid) of agent

i is denoted by bi,0. Throughout the paper, we will use “reporting” and “bidding” inter-

changeably.

2. Selection: Based on the initial reports, the mechanism selects a set of agents that

we call selected agents. The mechanism grants access to each selected agent i to acquire

additional information (signal δi) and in return charges them price ti. More precisely,



Golrezaei and Nazerzadeh: Auctions with Dynamic Costly Information Acquisition
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

selection rule s : Rn→ ({0,1}×R)n maps the initial bids to a pair (si, ti) for each agent i.

If agent i is selected, si(b0) is equal to 1. Otherwise, si is equal to 0. Each selected agent

pays amount ti to the mechanism to access his signal (the agent would still need to incur

an additional cost ci to learn the signal). To simplify the presentation, we assume ti is

equal to 0 for non-selected agents.4

3. Obtaining Information: Each selected agent i decides on whether to incur cost ci

and learn δi. We define ei to denote the decision variable for agent i for incurring cost ci

and updating his valuation. ei is equal to 1 if the selected agent i learns δi. For non-selected

agents, ei is defined to be 0. Neither the mechanism nor other agents can observe decision

ei of an agent i; it is only known to that agent.

4. Final Bidding: In the final round of reporting, only selected agents get a chance to

update their reports. For any selected agent i, bi,1 denotes the updated (and final) report

of agent i. For all other agents, let bj,1 = bj,0.

5. Allocation and Payments: Based on the initial and final bids of all agents (both

selected and unselected), the seller decides to whom to allocate the item, allocation rule

q : (R×R)n→ R+, and how much to charge each agent, payment rule p : (R×R)n→ R.

Namely, given all the bids and decision variables, qi(b0, b1) is the allocation probability,

and pi(b0, b1) is the payment of agent i.

The utility of agent i participating in the mechanism is equal to qivi,1 − pi − ti − eici
(more precisely, qi(b0, b1)vi,1− pi(b0, b1)− ti(b0)− eici). Each agent chooses a best-response

strategy to deal with the mechanism and strategies of the other agents in order to maximize

his expected utility, where the expectation is taken with respect to the second signals of the

(selected) agents. More formally, the best response strategy of each agent i can be described

with the following mappings: bi,0 : R→ R, ei : R3→ {0,1}, and bi,1 : R6→ R. With slight

abuse of notation, we denote the decision variables and functions with the same notation.

Function bi,0 maps vi,0, the initial valuation of the agent, to the bid in the first round bi,0. ei

is a function of the initial valuation, vi,0, and initial bid, bi,0, of the agent and his payment

ti. Finally, bi,1 is a function of the whole history of agent i (i.e., < vi,0, bi,0, si, ti, ei, vi,1 >)

4 This assumption to a large extent is without loss of generality. In general, a mechanism can charge any agents in the
first round independent of being selected or not. We are not putting any restrictions on the payment in the second
round; therefore, any such payment in the first round can be added to the payment in the second round.
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and determines the final bid. Given the strategy of the other agents, agent i optimizes over

tuple (bi,0, ei, bi,1) to obtain his best (utility-maximizing) strategy.

The truthful strategy for agent i consists of i) reporting truthfully in the first round (bi,0 =

vi,0); ii) obtaining additional information if selected (ei = 1 if si = 1); and iii) reporting

truthfully in the final round (bi,1 = vi,1).

A dynamic direct mechanism is incentive compatible (IC) if for every agent and every

truthful history, truth-telling is a best response given that all other agents report truthfully.

More precisely, a mechanism is IC if

ETruthful
[
qi(v0, v1)vi,1− pi(v0, v1)− ti(v0)− eici

]
= max

bi,0,ei,bi,1

{
E
[
qi
(
(bi,0, v−i,0), (bi,1, v−i,1)

)
vi,1− pi

(
(bi,0, v−i,0), (bi,1, v−i,1)

)
− ti

(
(bi,0, v−i,0)

)
− eici

]}
,

where the expectations are taken assuming other agents are truthful; that is, agents report

truthfully in both rounds, i.e., b−i,0 = v−i,0 and b−i,1 = v−i,1, and obtain information if

selected, that is, ej = 1 if sj = 1 for j 6= i. In addition, in the l.h.s., the expectation is taken

under the truthful strategy of agent i.

We show that our proposed mechanisms satisfy stronger incentive compatibility prop-

erties. Namely, selected agents always bid truthfully in the final round even if they have

deviated from the truthful strategy in the past. In addition, each selected agent prefers

to obtain additional information even if they observe other agents’ initial valuations. Cur-

rently, we assume that the agent only observes si and ti, which may contain information

about other agents’ valuations.

We can now define the participation constraints for the mechanism. An IC mechanism

is individually rational (IR) if for each agent i, the expected utility under the truthful

strategy is non-negative, that is,

ETruthful
[
qi(v0, v1)vi,1− pi(v0, v1)− ti(v0)− eici

]
≥ 0 .

4. The Efficient Mechanism

The social welfare of a mechanism is defined as the sum of the utility of the agents and

the seller minus the cost incurred to obtain additional information. Note that an IC and

IR mechanism is efficient if it obtains the maximum social welfare equal to:

max
S⊆{1,··· ,n}

{
ES

[
n∑
i=1

qivi,1

]
−
∑
i∈S

ci

}
= max

S⊆{1,··· ,n}
{Ω(v0, S)},
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where ES denotes the expectation with respect to the realizations of the second signals

when all agents in set S (and only those agents) obtain the additional information. In

addition, Ω(v0, S), defined below, denotes the maximum social welfare that can be obtained

when set S of agents acquires information.

Ω(v0, S) = ES

[
max

{
max
j∈S
{vj,0 + δj},max

j /∈S
{vj,0},0

}]
−
∑
j∈S

cj . (1)

To gain intuition, let us consider the following scenario. Assume all the agents bid truth-

fully, agents in set S obtain information, and subsequently, each agent j who updates his

valuation incurs cost cj. The total cost of information is equal to
∑

j∈S cj. The mecha-

nism maximizes the social welfare by allocating the item to the agent with the highest

non-negative final bid, that is, agent i? ∈ arg max{maxj∈S{vj,0 + δj},maxj /∈S{vj,0}}, where

maxj∈S{vj,0 + δj} and maxj /∈S{vj,0} are, respectively, the maximum updated bids of agents

who obtain information and the maximum bid of agents who do not. The item is allocated

to i? if his (final) bid is positive; otherwise, there would be no allocation.

Throughout the paper, we assume that the maximum expected social welfare that can

be obtained is bounded; that is, E
[
maxS⊆{1,2,...,n}{Ω(v0, S)}

]
<∞, where the expectation

is with respect to initial valuations v0.

We now present an efficient mechanism.

MEff Mechanism: The selection, allocation, and payment rules are defined as follows:

• Selection: Select a set of agents such that granting them access to information maxi-

mizes the social welfare of the seller and agents, taking into account the cost of information.

Specifically, select the following set of agents S(b0) = arg maxS⊆{1,··· ,n}
{

Ω(b0, S)
}

, where

Ω(b0, S) is defined in Eq. (1).

The payment of selected agent i is equal to

ti(b0) =−ci + E [qivi,1− pi|v0 = b0]−
∫ bi,0

v

E [qi|vi,0 = z, v−i,0 = b−i,0]dz , (2)

where the expectations are with respect to the second signals. Notation

E [qi|vi,0 = z, v−i,0 = x−i] denotes the expected probability of the allocation of agent i,

where the initial valuations of agent i and other agents are, respectively, equal to z and

x−i, assuming all the agents, including agent i, are truthful. Note that the first term in

the payment implies that the seller subsidizes the cost of information, ci, for each selected
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agent i. In lemmas 5 and 8 and their proofs, we discuss how this payment is calculated

using the Envelope Theorem and show that it incentivizes the agents to be truthful.

Recall that for non-selected agents, ti is equal to 0. See Section E.1 in the online appendix

for examples that depict initial payments.

• Allocation and Payments: Allocate the item to the agent with the highest non-

negative bid at a price equal to the second highest bid or a reserve. More precisely, con-

sider an agent i? ∈ argmaxi{bi,1}. If bi?,1 ≥ 0, agent i? receives the item and pays pi? =

max{maxi 6=i?{bi,1}, r}, where r : Rn→ R is a function of initial bids and will be defined

later in Eq. (3).

Let agent `∈ arg maxj /∈S(b0){bj,0} be an unselected agent with the highest initial bid. The

reserve price r is simply zero when b`,0 < 0 or all agents are selected; otherwise r is the

solution of the equation below∫ b`,0

max{r,0}
Pr
[
z ≥ max

j∈S(b0)

{
bj,0 + δj

}]
dz =

∫ b`,0

v

E
[
q`

∣∣∣v`,0 = z, v−`,0 = b−`,0

]
dz . (3)

Lemma 3 and Corollary 1 in Online Appendix, Section A, show that there exists an

r ∈ [0, b`,0] that satisfies the above equation. If there are multiple solutions to the above

equation, we choose the largest one.

Observe that because r ∈ [0, b`,0], the reserve price does not change the allocation or the

payment of the selected agents. Specifically, if a selected agent i wins the item, he pays

max{maxj 6=i{bj,1}, r}, which is identical to max{maxj 6=i{bj,1},0}. Then, one can describe

the payment of the mechanism as follows: If agent i? was a selected agent, then he pays

max{maxj 6=i?{bj,1},0}. If i? was not a selected agent, then he pays max{maxj 6=i?{bj,1}, r}.

In fact, by introducing the reserve price r, the mechanism charges agent ` differently in

the second round to incentivize him to bid truthfully in the first round. Note that the initial

bid of agent ` can change the set of selected agents. In addition, similar to all selected

agents, agent ` has a chance to win the item. However, unlike the selected agents, agent `

was not charged in the first round.

We now present the main result of this section.

Theorem 1 (Efficient Mechanism). Mechanism MEff is individually rational, incen-

tive compatible, and efficient.
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From its construction, it is not difficult to see that if mechanismMEff is IC, then it is also

efficient. We prove the incentive compatibility of the mechanism in the online appendix,

Section A. Observe that selected agents bid truthfully in the second round because the item

is allocated using a second-price auction. We then show that any selected agent that bids

truthfully in the first round obtains information. To this aim, we show that the mechanism’s

selection rule aligns with the agent’s incentive. Specifically, the marginal change in the

utility of a selected agent from not obtaining information is equal to the change in the

social welfare. The challenging part of the proof is showing that agents bid truthfully in

the first round because agents’ bids in the first round determine the set of selected agents

endogenously.

The selection rule ensures that a right set of agents invest in information acquisition.

Note that as more agents obtain information, there is a higher chance that an agent has

a high valuation for the item, which could increase the social welfare. On the other hand,

the increase in the highest valuation comes at the cost of information acquisition. Thus,

there is a trade-off here, and the selection rule aims to avoid over or under-investment in

information acquisition. In fact, as we show in Section 4.1, over or under-investment in

information acquisition may not be avoided if the seller cannot control access to information

via a selection rule.

We also note that the selection rule of the efficient mechanism chooses a set of agents and

allows them to update their valuations simultaneously. Alternatively, one can consider an

“adaptive” selection rule that discloses information step-by-step (cf. McAfee and McMillan

(1988)). During the selection stage, at each step, the mechanism selects one of the agents

to obtain information. Then, based on the report of that agent, the mechanism makes

a decision on obtaining more information or proceeding to the allocation stage. In this

paper, we consider a two-stage information disclosure, which could be more appealing from

a practical perspective. The sequential search can be time-consuming and complex. For

instance, in the example from online advertising, the mechanism should be executed in

milliseconds, and sequential information acquisition may not be feasible.

4.1. What If All Agents Are Allowed to Access the Additional Information?

Intuitively, the ability of the seller to control access to the additional information could

impact the social welfare and the utilities of the agents. To formalize this intuition, in
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this section, we present a mechanism called “All-Access.” In this mechanism, the seller

allows all agents to obtain information, if they wish, i.e., si = 1 and ti = 0 for i= 1,2, . . . , n.

We observe that when the seller leaves the decision on acquiring costly information to

the agents, the agents’ decisions can create inefficiency. Without the seller’s control, the

agents may over-invest or under-invest in information acquisition. In addition, we observe

that the agents tend to invest in information acquisition when their initial valuations are

not too high or too low. This is in contrast with the efficient mechanism that incentivizes

the agents with higher initial valuations to invest in information acquisition. We provide

examples in Section 6.

The All- Access mechanism works as follows: First, agents observe their initial valuations.

Next, each agent i makes a decision on incurring cost ci and obtaining his second signal.

The item is allocated via a second-price auction with no reserve price. Similar to our

original setting, the investment decision of an agent is only known to him. In addition,

initial valuations and second signals are private information and only their distributions

are publicly known.

In this mechanism, agents bid only once after they decide on refining their valuations.

To be consistence with the notation of our original setting, we denote the bid of an agent

i in the second-price auction by bi,1; the initial bid of an agent i, bi,0, is set to be zero. The

item is allocated to an agent with the highest non-negative bid, that is, i? ∈ arg maxi{bi,1}

if bi?,1 ≥ 0; in case of ties, the item is allocated at random to one of the agents. Agent i?

pays the second highest bid pi? = max{maxi 6=i? {bi,1} ,0}. If agent i? has obtained additional

information, his utility will be equal to (vi?,0 +δi?)−pi?−ci?. Otherwise, his utility is equal

to vi?,0− pi? . For any agent i 6= i? that does not receive the item, pi = 0.

We now consider the Nash Equilibrium (NE) of the All-Access mechanism. We assume

that all the agents bid truthfully (bi,1 = vi,1) in the auction because bidding truthfully is a

weakly dominant strategy for any agent i, independent of his and other agents’ decisions

on obtaining information. Therefore, to characterize the Nash Equilibrium, we focus on the

decision of the agents on information acquisition. We define ẽi(vi,0) = ei(vi,0, bi,0 = 0, ti = 0)

as the investment strategy of agent i with initial valuation vi,0 in the All-Access mechanism.

The next theorem shows that the All-Access mechanism always admits a pure strategy

Nash equilibrium (NE).
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Theorem 2 (Equilibria of the All-Access Mechanism). The All-Access mechanism

induces a game of incomplete information among agents where strategy of the agents are

defined by ẽ=< ẽ1, ẽ2, . . . , ẽn >. For this game, there exists a pure strategy Nash equilibrium

such that no agent i can gain by changing his investment strategy ẽi(·) if the investment

strategies of the other agents remain unchanged.

All the proofs of this section are provided in Appendix B.

To gain insight into the All-Access mechanism, in the rest of this section, we consider

the following example.

Example 1. Assume that there are two agents that participate in the All-Access mech-

anism with no reserve. The cost of obtaining second signals for both agents is the same

c1 = c2. The initial valuation of agents is drawn from a uniform distribution over [0,1], i.e.,

Uniform(0,1), and the second signals are drawn from Uniform(−1,1).

Although the setting in Example 1 is seemingly simple, it highlights challenges in charac-

terizing equilibrium of the All-Access mechanism. To characterize equilibrium of a game of

incomplete information, the single crossing conditions are often used (Athey 2001). How-

ever, for the setting in Example 1, we show that the single crossing conditions do not

hold; see Proposition 1 in the online appendix. In the light of this observation, in the next

theorem, we present the equilibria of the All-Access mechanism for a wide range of the

cost.

Theorem 3. Consider the All-Access mechanism with no reserve price and the setting in

Example 1. Then,

• when cost c≤ 7
96

, there exists an equilibrium in which both agents always obtain the

additional information, i.e., ẽi(vi,0) = 1 for i= 1,2 and vi,0 ∈ [0,1], and

• when cost c≥ 7
48

, there exists an equilibrium in which none of the agents obtain the

additional information, i.e., ẽi(vi,0) = 0, for i= 1,2 and vi,0 ∈ [0,1].

Theorem 3 characterizes the equilibrium of the All-Access mechanism when the cost is

less than 7
96
≈ 0.072 and greater than 7

48
≈ 0.145. In order to compare the All-Access and

the efficient mechanisms, we numerically (using an iterative procedure) find the equilibrium

of the All-Access mechanism when the cost is within ( 7
96
, 7

48
); see Online Appendix, Section

C.1, for details.
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Figure 1 The average number of agents with the updated valuations and the average social welfare versus the

cost in the efficient and All-Access (with no reserve) mechanisms with n = 2, F = Uniform(0,1), and

Gi = Uniform(−1,1) for i= 1,2. Here, c1 = c2 = c.

Our numerical studies show that there exist equilibria in which agents follow interval-

based investment decisions. An equilibrium with interval-based investment decisions can be

defined with four parameters κ1, κ2, K1, and K2 where κ1 ≤K1 ∈ [0,1] and κ2 ≤K2 ∈ [0,1].

In the equilibrium, each agent i obtains information only when his initial valuation vi,0

lies in [κi,Ki]. We note that the range [κ1,K1] is not necessarily equal to [κ2,K2]. That is,

there exist equilibria in which the investment decisions of the agents are not symmetric.5

Under an interval investment strategy, agents do not obtain information when their

initial valuations are too low or too high. The intuition is that an agent with high initial

valuation does not have incentive to invest in information acquisition as he already has a

high chance of winning the item without incurring the cost of information. On the other

hand, an agent with low initial valuation is not willing to acquire costly information because

he has a slim chance of winning the item.

Figures 1a and 1b compare the All-Access mechanism with the efficient mechanism.

Observe that the equilibria of the All-Access mechanism may not be efficient as agents in

the All-Access mechanism tend to over-invest in information acquisition when the cost is

low, and they tend to under-invest when the cost is high. Yet another source of inefficiency

comes from that fact that agents follow interval-based investment strategies and as a result,

they may not acquire information when their initial valuations are high. This is in contrast

with the efficient mechanism that motivates agents with higher initial valuations to acquire

information; see Section 6.

5 We note that when the cost is less than 7
96

, the All-Access mechanism has an interval-based equilibrium with κ1 =
κ2 = 0 and K1 =K2 = 1. Similarly, when the cost is greater than 7

48
, the All-Access mechanism has an interval-based

equilibrium with κ1 =K1 and κ2 =K2.
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5. Maximizing Revenue

In the previous sections, we presented a welfare-maximizing (efficient) mechanism. Our goal

here is to design a revenue-optimal mechanism. We start with a heuristic called “Sequential

Second-Price (SSP) Mechanism.” In this mechanism, the allocation and payments are

determined via a second-price auction that makes the mechanism appealing from a practical

perspective. Furthermore, this class of mechanisms is motivated in part by the structure

of the efficient mechanism.

Despite the desirable properties of the SSP mechanism, it is not able to achieve the

maximum revenue. Therefore, in Section 5.2, we present a revenue-optimal mechanism. The

allocation rule of this mechanism favors agents with higher initial valuations and extracts

more revenue from those agents in the first round. Both these mechanisms control agents’

access to the additional information. In Section 5.3, we investigate the impacts of such a

control by re-visiting the All-Access mechanism.

5.1. Sequential Second-Price Mechanisms

The second-price auctions and their variations are prevalent in online advertising and

are used by Google and other major platforms. In this section, we present a class of

mechanisms, called Sequential Second-Price (SSP), which extends the second-price auction

to our setting with dynamic information acquisition.

The SSP mechanisms are similar to the efficient mechanism. The main difference is that

the SSP mechanism sets a lower bound (reserve price) r on the final bid of the agents.

That is, it allocates the item to the agent with the highest bid as long as his bid is greater

than or equal to r. In fact, the mechanism selects agents in set Sr, where

Sr(b0)∈ arg max
S⊆{1,··· ,n}

{Ωr(b0, S)}

Here,

Ωr(b0, S) = arg max
S⊆{1,··· ,n}

{
ES

[
max

{
max
i∈S
{bi,0 + δi},max

i/∈S
{bi,0}, r

}]
−
∑
i∈S

ci

}
.

Each selected agent i pays ti(b0) in the first round, where ti(b0) is given in Eq. (2).

The parameter r in the SSP mechanism can be optimized to maximize the revenue of the

seller. In the online appendix, Section E.2, we compare the revenue of the SSP mechanism
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with the optimal reserve and the revenue-optimal mechanism. In our examples, the SSP

mechanism yields more than 84% of the optimal revenue.

In practice, the SSP mechanism can be implemented via private auctions (Google AdX

Documentation 2015) and pre-negotiated contracts that grant advertisers access to addi-

tional information in advance and advertisers bid for the impressions over time. For

instance, consider a set of advertisers that are willing to display their ads on a specific

website over a period of time. Their initial valuations, which depend on the contents of

the website and advertisers’ products and services, remain constant over time. However,

advertisers’ final valuation may vary over time because it also depends on the demographic

or behavioral attributes of the user(s). In this case, there is no need for advertisers to

report their initial valuations for every impression; they only need to report their updated

valuations.

5.2. Revenue-Optimal Mechanism

For revenue maximization, without loss of generality, using the revelation princi-

ple (cf. Myerson (1986)), we focus on IC and IR mechanisms.

Definition 1 (Optimality). An incentive compatible and individually rational mecha-

nism is optimal if it maximizes the revenue, equal to E [
∑n

i=1(ti + pi)], among all incentive

compatible and individually rational mechanisms.6

Let α(vi,0) =− (1−F (vi,0))

f(vi,0)
be the negative of the inverse hazard rate associated with dis-

tribution F . We make the following assumption about α(·).

Assumption 1 (Monotone Hazard Rate). Distribution F , with p.d.f. f , has a monotone

hazard rate; that is, α(·) is non-decreasing in vi,0. Furthermore, assume that α(·) is differ-

entiable and supvi,0∈[v,v̄]{α′(vi,0)}<∞.

The above assumption is standard in the revenue-optimal mechanism design and ensures

that the virtual valuations of the agents are increasing in their initial valuations (Myerson

1981). We now present a revenue-optimal mechanism.

6 The optimality is defined among all two-stage mechanisms. As discussed in the previous section, a mechanism with
an adaptive selection rule may obtain higher revenue.
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MOpt Mechanism: The selection, allocation, and payment rules are defined as follows:

• Selection: Select the following set of agents:

SOpt(b0)∈ arg max
S⊆{1,2,...,n}

{
ES

[
max

{
max
i∈S
{bi,0 +α(bi,0) + δi},max

i/∈S
{bi,0 +α(bi,0)},0

}]
−
∑
i∈S

ci

}
,

(4)

and ti is defined the same as before; see Eq. (2).

• Allocation and Payments: Allocate the item to the agent with the high-

est non-negative weighted bid. More precisely, consider an agent i? ∈ argmaxi{bi,1 +

α(bi,0)}. If bi?,1 + α(bi?,0) ≥ 0, then the item is allocated to agent i? at price pi? =

max{maxi 6=i?{bi,1 +α(bi,0)}, r}−α(bi?,0) where r : Rn→R is a function of initial bids and

is defined below.

With slight abuse of notations, let ` ∈ arg maxj∈SOpt(b0){bj,0 + α(bj,0)} be an unselected

agent with the highest weighted bid. Then, if b`,0 + α(b`,0)< 0 or all agents are selected,

r= 0. Otherwise, r solves the following equation∫ b`,0+α(b`,0)

max{r,0}
Pr
[
z ≥ max

j∈SOpt(b0)

{
bj,0 + δj +α(bj,0)

}]
dz =

∫ b`,0

v

E
[
q`

∣∣∣v`,0 = z, v−`,0 = b−`,0

]
dz .(5)

Lemma 3 and Corollary 2 in the online appendix show that there exists an r ∈ [0, b`,0 +

α(b`,0)] that solves the above equation. Note that similar to the efficient mechanism, r does

not change the allocation or payment for selected agents.

Mechanism MOpt is built upon the ideas of virtual value formulation of Myerson (1981)

for static revenue-maximizing mechanism design. It allocates the item to the agent that

has the highest (final) virtual valuation vi,1 +α(vi,0). The mechanism maximizes the virtual

value of the winner minus the cost of information acquisition.

The following theorem establishes the optimality of MOpt.

Theorem 4 (Revenue-Optimal Mechanism). Suppose Assumption 1 holds. Mecha-

nism MOpt described above is incentive compatible, individually rational, and optimal.

In the online appendix, Section A, we show that mechanism MOpt is IC and IR. To

complete the proof of Theorem 4, in the following we show that mechanismMOpt is revenue-

optimal. First, via the following lemma, we show that the selection rule aims to optimize

the revenue by maximizing the expected “virtual revenue.”
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Lemma 1 (Revenue of MOpt). If all the agents follow the truthful strategy, then the expected

revenue of MOpt is equal to

E

[
max

S⊆{1,2,...,n}

{
ES

[
max

{
max
i∈S
{vi,0 +α(vi,0) + δi},max

i/∈S
{vi,0 +α(vi,0)},0

}]
−
∑
i∈S

ci

}]
, (6)

where the inner expectation is with respect to the second signals and the outer expectation

is with respect to the initial valuations.

The proof is given in Appendix D.1. We now provide an upper bound on the revenue of

any IC mechanisms that matches the revenue of mechanism MOpt.

Lemma 2 (Upper Bound). The expected revenue of the seller is at most equal to Eq. (6).

The upper bound is established using a closely related problem with fewer constraints

called the relaxed problem, cf. Ëso and Szentes (2007), Kakade et al. (2013), and Pavan

et al. (2014). In the relaxed problem, the mechanism, on the behalf of an agent, can decide

to obtain information, and then both the agent and the mechanism learn his second signal.

Because any mechanism that is IC in the original setting would also be IC in the relaxed

setting, the revenue of the optimal relaxed mechanism provides an upper bound for the

revenue of the revenue-optimal mechanism in the original setting; see Appendix D.1 for

details.

The revenue-optimal mechanism is a generalization of the handicap mechanism of Ëso

and Szentes (2007) and matches the mechanism when information acquisition is costless

(i.e., ci = 0) where the seller allows all agents access to information. We show that when

the information is costly, the seller grants access to additional information only to a subset

of agents. The intuition is that the seller indirectly bears the cost of information because

the costs will affect the agents’ (ex-ante) willingness to pay.

An important distinction between our mechanism and the handicap mechanism is the

selection rule that grants access to additional information to a right set of agents. A

technical challenge that we need to address is that the selection rule depends on the initial

bids which, as we discuss in Section 6 is “non-monotone” in the initial valuations of the

agents; also see Lemma 8 for more details.
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5.3. What If All Agents Are Allowed to Access to the Additional Information?

Here, we re-visit the All-Access mechanism to study the impacts of controlling access to the

additional information on the revenue-optimal mechanism. Specifically, we will introduce a

reserve price r to the All-Access mechanism to ensure that the seller has a degree of freedom

to extract more revenue from the agents. In this mechanism, privately informed agents

decide on updating their valuations and then participate in a second price auction with

reserve price r. One can easily extend Theorem 2 to show that the All-Access mechanism

with a reserve price always admits a pure strategy Nash equilibrium.

In the following, we will re-examine Example 1 when agents participate in the All-Access

mechanism with reserve price r.

Example 2. Assume that there are two agents that participate in the All-Access mecha-

nism with reserve price r ≥ 0. The cost of obtaining second signals for both agents is the

same, δi ∼Uniform(−1,1), and vi,0 ∼Uniform(0,1) for i= 1,2.

The following theorem, which generalizes Theorem 3, sheds light on the equilibria of the

All-Access mechanism with reserve price r for a wide range of the cost.

Theorem 5. Consider the All-Access mechanism with reserve price r ∈ [0,1] and the set-

ting in Example 2. Then,

• when cost c ≤ min{4r3−3r2−6r+5
48

, 8r3+6r2+7
96

}, there exists an equilibrium in which both

agents always obtain information, i.e., ẽi(vi,0) = 1, i= 1,2, for vi,0 ∈ [0,1], and

• when c≥ 3r4+8r3+6r2+7
48

and r≤
√

2− 1, or c≥ 3r−r3+1
12

and r ∈ (
√

2− 1,1], there exists

an equilibrium in which none of the agents obtain information, i.e., ẽi(vi,0) = 0, i = 1,2,

for vi,0 ∈ [0,1].

The proof is given in Section C.3 of the online appendix. Figure 2a depicts the results

of Theorem 5.

Next, in Figure 2b, we compare the All-Access mechanism (with revenue-maximizing

reserve price) with mechanismMOpt in terms of their collected revenue for different values

of the cost. As expected, the All-Access mechanism fails to obtain the maximum revenue.

Surprisingly, the revenue of the All-Access mechanism is not monotone in the cost. For

instance, the revenue of the All-Access mechanism when the cost c is 0.18 is less than

when the cost is 0.2. This follows from agent’s investment strategies. For c = 0.2, none

of the agents acquire information while for c= 0.18, agents update their valuations when
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Figure 2 Figure 2a depicts the results in Theorem 5. Figure 2b shows the revenue of the revenue-optimal

and All-Access (with revenue-maximizing reserve price) mechanisms versus the cost with n = 2, F =

Uniform(0,1), and Gi = Uniform(−1,1) for i= 1,2. Here, c1 = c2 = c.

their initial valuations are close to 0.5. For the latter case, it is likely that the updated

valuations of the agents fall below the reserve price considering the fact that the revenue-

maximizing reserve price is almost 0.5 and second signals are drawn from Uniform(−1,1).

This will reduce the seller’s revenue. In fact, the seller prefers that none of the agents

obtain information.

6. Who Will Be Selected?

Here, we discuss the selection rule of our mechanisms in more detail. We first present an

example that shows that the selection rule may not be monotone in initial valuations. We

then show that under certain symmetry assumptions, the selection rule favors agents with

higher initial valuations. Finally, we demonstrate how the selection rule reacts to increase

in the cost and variance of the second signals.

Figures 3a and 3b depict the selected agents in the revenue-optimal and efficient mecha-

nisms, respectively, for all realizations of v1,0 and v2,0 in the range of [−1.5,2.5] with n= 2,

F =N(0.5,0.5), and Gi =N(0,0.5) for i= 1,2. The cost of information for the first and

second agents is, respectively, 0.01 and 0.05, that is, c1 = 0.01 and c2 = 0.05. The x-axis

is the initial valuation of the second agent, and the y-axis is the initial valuation of the

first agent. The areas in the figures are divided into several regions. In the white and green

regions, the number of selected agents is zero and two, respectively. In the purple regions,

only agent 1 whose cost of information is lower is selected while in the yellow regions, only

agent 2 is selected.
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(a) Optimal Mechanism (b) Efficient Mechanism

Figure 3 Selected agents for different realizations of v1,0 and v2,0 with n= 2, c1 = 0.01, c2 = 0.05, F =N(0.5,0.5),

and Gi =N(0,0.5) for i= 1,2.

Non-monotonicity of Selection Rule: Observe that the number of selected agents does

not always increase as we move along one of the axes. Furthermore, when the initial

valuation of a selected agent increases and the initial valuation of the other agent remains

the same, he will not necessarily be selected. For instance, the efficient mechanism selects

both agents when v1,0 = v2,0 = 1 but does not select any agents when v1,0 = 2.4 and v2,0 = 1.

The reason that the selection rule is not monotone is that all agents, including those who

did not update their valuations, participate in the second round and have a chance to win

the item; see Section 7.1. The selection rule will remain non-monotone even if the cost of

information is the same across agents.

Also observe that the selection rule of both mechanisms favors agents with higher initial

valuations and lower costs, as agents with high initial valuations are more likely to win the

item in the second round. We can formalize this intuition under certain symmetric and

independence assumptions.

Theorem 6. Suppose for each agent i, the second signal δi is drawn, independently of

other agents’ signals, from distribution Gi = G. In addition, assume that distribution G is

symmetric and ci = c for i = 1,2, . . . , n. If an agent is selected in the revenue-optimal or

efficient mechanisms, then all agents with higher initial bids will also be selected.

A distribution G is symmetric if G(−y) = 1− G(y). For instance, normal and uniform

distributions satisfy the assumption. The proof is presented in Appendix B. The intuition
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is that the seller’s objective is an increasing function of the maximum valuation of the

agents. When agents are symmetric in terms of the cost and distribution of second signals,

the seller would rather select agents with higher initial valuations. These are the agents

who have a greater chance of receiving the item in the second round. We note that when

the distribution of the valuations are asymmetric, it is likely that the mechanism selects

an agent with lower initial valuation but higher variance of the second signal.

Theorem 6 provides a simple way to find the selected agents. One can sort the agents

according to initial valuations (bids) in descending order and evaluate the value of the

selection rule’s objective function for each of the n + 1 subsets ∅, {1}, {1,2}, · · · , and

{1,2, · · · , n} and then select the subset that maximizes the objective. See Guha et al.

(2006) and Goel et al. (2010) for optimization problems similar to our selection rule in

more general settings.

6.1. Impacts of the Cost and Variance of Second Signals on Selection Rules

To get more insight about the selection rule, we numerically study how the expected

number of selected agents changes as the cost and variance of second signals increase.

Figure 4a illustrates the impact of the variance of second signals, σ2, on the average number

of selected agents with n = 2, F = N(0.5,0.5), Gi = N(0, σ2), and ci = 0.05 for i = 1,27

When the second signals are more “uncertain,” the average number of selected agents

in the revenue-optimal (opt) and efficient (eff) mechanisms increases. The intuition is

that for larger variance, the seller anticipates seeing larger second signals and selects more

agents.

Figure 4b depicts the impacts of the cost of information, ci = c, on the average number

of selected agents when n= 2, F =N(0.5,0.5), and Gi =N(0,0.5). Both revenue-optimal

and efficient mechanisms react to an increase in the cost of information by restricting the

number of agents that can obtain information. Interestingly, to obtain higher revenue, the

revenue-optimal mechanism selects fewer agents. This implies that the revenue-optimal

mechanism distorts the revelation of information to extract more revenue from the agents.

7 See Section E.3 of the online appendix regarding the impact of the number of agents.
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Figure 4 Figure 4a- Average number of selected agents in the revenue-optimal and efficient mechanisms versus

the standard deviation of second signals, σ, with Gi = N(0, σ2) and ci = 0.05 for i = 1,2. Figure 4b-

Average number of selected agents in the revenue-optimal and efficient mechanisms versus the cost

of information, c, with Gi =N(0,0.5). Figure 4c- Average revenue of the opt and opt-e mechanisms

versus the cost with Gi =N(0,0.5), and ci = c for i= 1,2. In all the figures, n= 2 and F =N(0.5,0.5).

7. Extensions

In this section, we discuss some of the extensions of our mechanisms. In particular, we

extend our mechanism to a setting where agents are“extremely risk-averse” in a sense that

they do not engage in the auction without obtaining additional information. Moreover, we

generalize our mechanisms to a setting with multiple units for sale.

7.1. Information Acquisition as an Entry Cost

In our model, the seller may allocate the item to an agent who has not obtained additional

information. However, in some applications, such as the sale of high-valued assets, buyers

might face a significant risk if they purchase the item without gathering enough informa-

tion. For these applications, one can interpret the cost of obtaining information as an entry

cost. That is, buyers must invest in information to be considered in the allocation round.

Our proposed mechanisms can be extended to this setting by excluding unselected agents

from the allocation stage. More precisely, an efficient mechanism in this setting selects the

following set of agents

SEff-e(b0) = arg max
S⊆{1,2,...,n}

{
ES

[
max

{
max
j∈S
{bj,0 + δj},0

}]
−
∑
j∈S

cj

}
,

and similarly, a revenue-optimal mechanism selects the following set of agents

SOpt-e(b0) = arg max
S⊆{1,2,...,n}

{
ES

[
max

{
max
j∈S
{bj,0 +α(bj,0) + δj},0

}]
−
∑
j∈S

cj

}
.
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Note that when S = ∅, the mechanisms do not allocate the item. We refer to the corre-

sponding efficient and revenue-optimal mechanisms as eff-e and opt-e, respectively.

We note that mechanism opt-e is a generalization of a mechanism proposed by Lu and

Ye (2014), who study the problem of designing a revenue-maximizing mechanism with an

entry cost when the cost of information is the same across agents. They show that the

selection rule in this setting is monotone, that is, the number of selected agents decreases

as the initial valuation of an agent increases. Using monotonicity in the selection rule, Lu

and Ye (2014) show that their proposed mechanism is incentive compatible. Note that, as

we saw in Section 6, the selection rule will not be monotone if the item can be allocated

to an unselected agent.8

To get more insight, we numerically compare mechanisms MOpt and opt-e. We assume

that the cost of information is the same across agents, the number of agents n= 2, F =

N(0.5,0.5), and Gi =N(0,0.5) for i= 1,2. Figure 4c compares the revenue of the mecha-

nisms. For any value of the cost, mechanism MOpt yields more revenue than opt-e. The

revenue of the mechanism opt-e approaches zero as acquiring information becomes more

costly. However, mechanismMOpt is more robust to the cost of information because, when

the cost is high, it can allocate the item without allowing any agents to update their

valuations.

7.2. Multi-unit

In this section, we discuss how our mechanisms can be extended to a setting where m≥ 1

units of the item are sold to n>m agents. Specifically, we assume that each agent i needs

at most one unit of the item, and his initial valuation for the item is vi,0 ∈ [v, v]. Similar

to our original setting, vi,0 is agent i’s private information and is drawn (independently)

from distribution F .

We start with an efficient mechanism. The mechanism allocates the item to m agents

with the highest (non-negative) bids. In case the number of agents with a positive bid is

less than m, the mechanism allocates the item to agents with positive bids. The efficient

mechanism selects the following set of agents

max
S⊆{1,2,...,n}

{
ES

[
max

A⊆{1,2,...,n},|A|≤m

∑
i∈A

bi,1

]
−
∑
i∈S

ci

}
, (7)

8 We also relax an assumption in Lu and Ye (2014) where the mechanism can verify whether or not a selected agent
has invested in obtaining information.
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where A is the set of agents that the item will be allocated to, |A| is the cardinality of set

A, and the condition |A| ≤m implies that we cannot sell more than m units. In addition,

bi,1 = bi,0 + δi if i ∈ S, and bi,0 otherwise. It is easy to see that the selection rule of the

efficient mechanism selects a welfare-maximizing set of agents provided that it is incentive

compatible.

The initial payment of the selected agents is the same as before and is given in Eq. (2).

In addition, only agents that receive the item will pay in the second round. Specifically,

any selected agent that wins the item pays max{b(m+1),0}, where with slight abuse of

notations, b(m+1) is the (m+ 1)th highest final bid. Furthermore, any unselected agent j

that receives the item pays max{b(m+1), rj}, where rj solves the following equation∫ bj,0

max{rj ,0}
Pr
[
z ≥ b(m)

−j

]
dz =

∫ bj,0

v

E
[
qj

∣∣∣vj,0 = z, v−j,0 = b−j,0

]
dz , (8)

where b
(m)
−j is the mth highest final bid among all agents except for agent j. The term inside

the integral of the l.h.s., Pr
[
z ≥ b(m)

−j

]
, is the cumulative distribution function of random

variable b
(m)
−j at point z. Using a similar argument in Lemma 3 in the online appendix, one

can show that there exists rj ∈ [0, bj,0] that solves the above equation.

Next, we will present a revenue-optimal mechanism in this setting. Similar to mecha-

nismMOpt, the mechanism allocates the item to m agents with the highest (non-negative)

weighted bid, where the weighted bid of an agent i is bi,1 +α(bi,0). The mechanism allows

the following set of agents

max
S⊆{1,2,...,n}

{
ES

[
max

A⊆{1,2,...,n},|A|≤m

∑
i∈A

(
bi,1 +α(bi,0)

)]
−
∑
i∈S

ci

}
(9)

to acquire information. The initial payment is given in Eq. (2). In the second round, any

selected agent that receives the item has to pay the (m+ 1)th highest weighted bid if the

(m+1)th highest weighted bid is positive and is zero otherwise. In addition, any unselected

agent j that wins the item has to pay a maximum of (m+ 1)th highest weighted bid and

rj. Here, rj solves Eq. (8), where b
(m)
−j should be replaced by the mth highest final weighted

bid among all agents except for agent j. For any agents that do not receive the item, their

payment in the second round is zero.
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8. Conclusion

Information structure plays a crucial role in the outcome of auctions. This role becomes

even more important when information acquisition is costly. We observe that in such

environments, agents may over or under-invest in information. We also presented efficient

and revenue-optimal mechanisms that shows how auctioneer should control the access to

information via a selection rule and prices.

In the previous section, we discussed some of the extensions of our mechanism. An

important direction for future research is to extend the results to settings with adaptive

selection rules where information is disclosed sequentially over time, and the mechanism

makes “selection decisions” based on updated reported valuations of the agents (McAfee

and McMillan 1988). Another important direction is studying environments where the

agents are risk-averse.
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Auctions with Dynamic Costly Information
Acquisition: Online Appendix

Appendix A: Sequential Weighted Second-Price Mechanism & Proofs of Theorems 1 and 4

In this section, we present a parameterized class of mechanisms called Sequential Weighted Second-

Price (SWSP), which is denoted by M(ρ,β). Weight function β : R→R connects the bids in the

first and the second rounds by manipulating the final allocation and payments in the favor of agents

with higher initial valuations. Parameter ρ∈R specifies a lower bound on weighted bids the seller

is willing to accept for the item.

As it will be more clear later, this class of mechanism includes the efficient and optimal mecha-

nisms. We will show that the SWSP mechanisms are incentive compatible and individually rational.

As a corollary of this result, we will conclude that the efficient and optimal mechanisms are IC and

IR; that is, Theorems 1 and 4 hold.

We make the following assumption on function β.

Assumption 2. Weight function β is non-decreasing and differentiable with bounded derivatives,

that is, supz{β′(z)}<∞, z ∈ [v, v].

Note that as it will be more clear later, the non-decreasing function β alters the social welfare

and the seller’s revenue by distorting the allocation via favoring agents with higher valuations. The

weight function β and parameter ρ can be used to adjust the social welfare and the revenue of the

mechanism. For instance, as we show later, for the efficient mechanism, function β(·) and ρ are

equal to 0.

Let us start with the description of the mechanism.

Sequential Weighted Second-Price Mechanism M(ρ,β): The selection, allocation,

and payment rules are defined as follows:

• Selection: Select the following set of agents

Sρ,β(b0)∈ arg max
S⊆{1,··· ,n}

{
Ωρ,β(b0, S)

}
, (10)

where Ωρ,β(b0, S), the weighted surplus, is defined as follows

Ωρ,β(b0, S) = ES

[
max

{
max
i∈S
{bi,0 +β(bi,0) + δi},max

i/∈S
{bi,0 +β(bi,0)}, ρ

}]
−
∑
i∈S

ci. (11)

The expectation is with respect to the second signals of the selected agents; in case of ties, we will

choose one of the sets at random. Each selected agent i pays ti(b0) to the seller; see Eq. (2).
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• Allocation and Payments: Agents participate in a “weighted second-price” auction with a

reserve price ρ, where the mechanism allocates the item to the agent with the highest weighted

bid as along as it exceeds ρ. More precisely, consider an agent i? ∈ argmaxi{bi,1 + β(bi,0)}. If

bi?,1 + β(bi?,0) ≥ ρ, then the item is allocated to agent i?. If agent i? was a selected agent, then

he pays pi? = max{maxi6=i?{bi,1 +β(bi,0)}, ρ}− β(bi?,0). If agent i? is not a selected agent, then he

pays pi? = max{maxi 6=i?{bi,1 +β(bi,0)}, r}−β(bi?,0), where r :Rn→R will be defined below.

Note that by letting ρ= 0 and β(·) = 0, we can implement mechanism MEff. Furthermore, by

setting ρ= 0 and β(·) = α(·), we have mechanism MOpt.

Let ` be an unselected agent with the highest weighted bid, i.e., ` ∈ arg maxj /∈Sρ,β(b0){bj,0 +

β(bj,0)}. Then, if b`,0 +β(b`,0)<ρ or all agents are selected, r= ρ. Otherwise, r solves the following

equation∫ b`,0+β(b`,0)

max{r,ρ}
Pr
[
z ≥ max

j∈Sρ,β(b0)

{
bj,0 + δj +β(bj,0)

}]
dz =

∫ b`,0

v

E
[
q`

∣∣∣v`,0 = z, v−`,0 = b−`,0

]
dz . (12)

The next lemma shows that there exists an r ∈ [ρ, b`,0 +β(b`,0)] that solves the above equation.

Lemma 3. Consider agent ` ∈ arg maxj /∈Sρ,β(b0){bj,0 + β(bj,0)} in mechanism M(ρ,β). If b`,0 +

β(b`,0)≥ ρ, then there exists r ∈ [ρ, b`,0 +β(b`,0)] that satisfies Eq. (12).

The following results are immediate corollaries of Lemma 3.

Corollary 1. Let ` ∈ arg maxj /∈SEff(b0){bj,0} be an unselected agent ` with the highest initial bid

in mechanism MEff. Then, if b`,0 ≥ 0, then there exists r ∈ [0, b`,0] that satisfies Eq. (3)

Corollary 2. Let ` ∈ arg maxj /∈SOpt(b0){bj,0 + α(bj,0)} be an unselected agent ` with the highest

weighted bid in mechanism MOpt. Then, if b`,0 +α(b`,0)≥ 0, then there exists r ∈ [0, b`,0 +α(b`,0)]

that satisfies Eq. (5).

We now present the main result of this section, which shows that the proposed mechanism is IC

and IR.

Theorem 7 (Incentive Compatibility). Suppose ρ≥ 0 and function β satisfies Assumption 2.

Then, the Sequential Weighted Second-Price mechanism M(ρ,β) is incentive compatible and indi-

vidually rational.

The proof of the theorem is given in Appendix A.1.

If mechanism M(ρ,β) is incentive compatible, it maximizes the weighted surplus defined below

as

Ωρ,β(v0) = arg max
S⊆{1,...,n}

{Ωρ,β(v0, S)}
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The assumption that the derivatives of the function β are bounded will ensure us that the

weighted surplus, Ωρ,β(v0), is absolutely continuous in the initial valuations of the agents. Note that

Ωρ=0,β=0(v0) and Ωρ=0,β=α(v0) are, respectively, the maximum social welfare and virtual revenue.

Therefore, Theorem 7 implies mechanisms MEff and MOpt are efficient and optimal, respectively.

A.1. Proof of Theorem 7

In this section, we prove Theorem 7. We start with incentive compatibility and show that no agents

would prefer to deviate from the truthful strategy, as long as all other agents are truthful. We

prove this by going over the strategy of an agent in a backward manner. First, using Lemma 4, we

show that agents bid truthfully in the second round. Then, we prove that a selected agent obtains

the additional information (Lemma 5). Finally, in Lemma 8 we show that agents will be better off

by being truthful in the first round. We present the proof of Lemma 8 in Section A.2 since it our

key technical lemma. The proofs of other lemmas are relegated to Section D.

The key challenging part is to show that agents bid truthfully in the first round. The reason is

that the effects of initial bids are twofold. First, they determine the set of selected agents. Second,

they influence the final allocation of the item.

The following lemma shows that agents who can bid in the second round will be truthful even

if they were untruthful in the first round. Precisely, we will show that

vi,1 = arg max
bi,1

{
qivi,1− pi− ti− ciei

}
. (13)

Note that unselected agents do not bid in the second round; that is, their initial bids are considered

as their final bids.

Lemma 4 (Truthfulness in the Second Round). Under mechanism M(ρ,β), for any agent

that is allowed to update his bid in the second round of bidding, truthfulness is a weakly dominant

strategy, even if the agent has not been truthful in the first round.

From a technical perspective, one of the aspects that differentiates our work from the previous

work on dynamic mechanism design, in particular Ëso and Szentes (2007), is that the deviation

strategies of the agents, in addition to misreporting his valuations, include the decision on obtaining

information. In the following lemma, we show that a selected agent i will acquire the additional

information when he bids truthfully in the first round, and all other agents follow the truthful

strategy, i.e.,

1 = arg max
ei∈{0,1}

{
qivi,1− pi− ti− eici

∣∣b0 = v0, b−i,1 = v−i,1, ej = 1 if sj = 1, j 6= i
}
, (14)

The conditions in the above equation imply that agent i bids truthfully in the first round, and all

other agents follow the truthful strategy; that is, they bid truthfully in both rounds and if they

get selected, they obtain information.
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Lemma 5 (Obtaining Additional Information). Consider a selected agent i who bids truth-

fully in the first round. Assuming all other agents are truthful, agent i would incur cost ci to obtain

signal δi.

Lemma 5 implies that a selected agent i “who bids truthfully in the first round” will obtain infor-

mation. However, if agent i bids untruthfully in the first round is selected, he will not necessarily

obtain information. We will show in Lemma 8 that agent i will not gain from bidding untruthfully

in the first round regardless of his decision to obtain information.

The proof of Lemma 5is provided in Section D.3. To obtain the result, we show that the incentive

of the selected agent i gets aligned with the selection rule. Thus, the selected agent prefers to incur

cost ci and acquire information; that is, ei = 1.

The final step is to show that an agent i will bid truthfully in the first round. Let Ui(xi, x̂i) be

the utility of agent i with initial valuation xi when he bids x̂i in the first round and follows the

“optimal strategy” afterwards (assuming other agents are truthful). More precisely,

Ui(xi, x̂i) = max
bi,1,ei

{
E
[
qi
(
(x̂i, v−i,0), (bi,1, v−i,1)

)
vi,1− eici− siti

(
(x̂i, v−i,0)

)
− pi

(
(x̂i, v−i,0), (bi,1, v−i,0)

)]}
,

(15)

where the expectation is taken assuming that all agents except for agent i are truthful. Then,

considering the fact that initial valuation v0 = x, for any j 6= i, we have vj,1 = xj + δj if agent j is

selected and xj otherwise. Note that after initial bidding, agent i optimizes over (ei, bi,1) to obtain

his best (utility-maximizing) strategy.

We start with characterizing Ui(xi, xi).

Lemma 6. If the vector of initial valuations is given by x, and all agents except for agent i are truth-

ful, then the expected utility of agent i who bid truthfully in the first round, denoted by Ui(xi, xi),

is equal to

Ui(xi, xi) =

∫ xi

v

E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz, (16)

In addition, Ui(xi, xi) is non-decreasing in xi.

In the proof of Lemma 6, we use lemmas 4 and 5 where we show that if agent i bids truthfully

in the first round, he will prefer to follow the truthful strategy afterwards.

Lemma 6 implies that the utility of truthful agent i is fully determined by his allocation prob-

ability for different initial valuations. Furthermore, the higher his probability of allocation is, the

more utility he earns. In fact, Eq. (16) is analogous to the utility of an agent in standard static

incentive compatible mechanisms (see Myerson (1981)).
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We now consider the utility of agent i when he bids untruthfully in the first round and follows his

optimal strategy thereafter, i.e., Ui(xi, x̂i) defined in Eq. (15). By Lemma 4, if agent i with initial

bid x̂i 6= xi gets selected, he bids truthfully in the second round, i.e., bi,1 = vi,1. But, untruthful

agent i will not necessarily obtain information if the mechanism selects him. In the following, we

denote his best investing strategy by ei(vi,0 = xi, bi,0 = x̂i, ti).

The next lemma establishes an upper bound on Ui(xi, x̂i).

Lemma 7. Suppose the vector of initial valuations is given by x, and all agents except agent i are

truthful. We have Ui(xi, x̂i) ≤ max
{
Ui(x̂i, x̂i) +

∫ xi
x̂i

Pr [z+ eiδi +β(x̂i)≥ ω−i]dz,0
}

, where ω−i is

the maximum weighted bids of all agents but agent i when he misreports x̂i in the first round and

other agents are truthful, i.e.,

ω−i = max
{

max
j∈Sρ,β(x̂i,x−i),j 6=i

{xj +β(xj) + δj}, max
j /∈Sρ,β(x̂i,x−i),j 6=i

{xj +β(xj)}, ρ
}

(17)

and ei = ei(vi,0 = xi, bi,0 = x̂i, ti).

The term inside the integral, i.e., Pr [z+ eiδi +β(x̂i)≥ ω−i], is the probability that agent i with

final weighted bid z+ eiδi + β(x̂i) wins the item when agents in set Sρ,β(x̂i, x−i)\{i} obtain infor-

mation and agent i follows an investing strategy associated with ei = ei(vi,0 = xi, bi,0 = x̂i, ti).

Next, we show that Ui(xi, xi)≥Ui(xi, x̂i); that is an agent i prefers to bid truthfully in the first

round. In Lemma 7, we find an upper bound for Ui(xi, x̂i). Then, when Ui(xi, x̂i) = 0, immediately

we have Ui(xi, xi) ≥ Ui(xi, x̂i) = 0. Now we show that even the upper bound of Ui(xi, x̂i), i.e.,

Ui(x̂i, x̂i) +
∫ xi
x̂i

Pr [z+ eiδi +β(x̂i)≥ ω−i]dz, is smaller than Ui(xi, xi), where ei = ei(vi,0 = xi, bi,0 =

x̂i, ti).

We start with defining a suboptimal selection rule Ŝy1,y2
(z,x−i) for any nonzero measure interval

[y1, y2] such that y1 ≤ y2 and [y1, y2]⊆ [min{xi, x̂i},max{xi, x̂i}], where

Ŝy1,y2
(z,x−i) =

Sρ,β(x̂i, x−i)\{i} if ei = 0 and z ∈ [y1, y2];
Sρ,β(x̂i, x−i) if ei = 1 and z ∈ [y1, y2];
Sρ,β(z,x−i) otherwise,

where ei = ei(vi,0 = xi, bi,0 = x̂i, ti). Note that the suboptimal selection rule Ŝy1,y2
follows the optimal

selection rule everywhere except interval [y1, y2]. In the interval [y1, y2], the set of selected agents is

the set of agents that update their valuations when all agents except for agent i follow the truthful

strategy, and agent i with initial valuation xi misreports x̂i in the first round and follows his best

strategy afterward with regard to obtaining the additional information. The suboptimal selection

rule captures the untruthful behavior of agent i in the first round while other agents are truthful.

In the next lemma, by characterizing the difference between the weighted surplus under the

selection rule of the SWSP mechanism, Sρ,β(x), and suboptimal selection rule Ŝy1,y2
(x), we will

show that agent i prefers to bid truthfully in the first round; that is, Ui(xi, xi)≥Ui(xi, x̂i).
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Lemma 8. For any interval [y1, y2], consider the suboptimal selection rule Ŝy1,y2
described above.

Then, for any x ∈ [v, v̄]n, we have Ωρ,β(x, Ŝy1,y2
(x))−Ωρ,β(x,Sρ,β(x))≤ 0, and as a result, agent i

prefers to bid truthfully in the first round; that is, Ui(xi, xi)≥Ui(xi, x̂i).

Note that by Lemma 8, an agent i who misreports his initial valuation will be worse off regardless

of his decision to acquire information.

A.2. Proof of Lemma 8

Throughout the proof, to simplify our notations, we denote Sρ,β by S. Furthermore, without loss

of generality, we assume that x̂i <xi. A similar argument can be applied when x̂i >xi.

We first show that the weighted surplus under the selection rule of the SWSP mecha-

nism, S(x), i.e., Ωρ,β(x,S(x)), is less than the weighted surplus under selection rule Ŝy1,y2
(x),

i.e., Ωρ,β(x, Ŝy1,y2
(x)). Then, by characterizing the difference between Ωρ,β(x, Ŝy1,y2

(x)) and

Ωρ,β(x,S(x)) as a function of allocation probabilities, and using the fact that β(·) is an increasing

function, we show that Ui(xi, xi)≥Ui(xi, x̂i).
By definition, Ωρ,β(x,S(x)) = Ωρ,β(x). Then, since the selection rule S(x) maximizes the

weighted surplus, we have Ωρ,β(x, Ŝy1,y2
(x)) − Ωρ,β(x) ≤ 0. Next, in Lemma 9, we characterize

Ωρ,β(x, Ŝy1,y2
(x))−Ωρ,β(x). The proof which uses the Envelope Theorem ( cf. Milgrom and Segal

(2002)) is provided in Section D.4.

Lemma 9. For any interval [y1, y2], consider the suboptimal selection rule Ŝy1,y2
. Then, we have

Ωρ,β(x, Ŝy1,y2
(x))−Ωρ,β(x)

=

∫ y2

y1

(
1 +β′(z)

)(
E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, Ŝy1,y2
(z,x−i)

]
−E

[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, S(z,x−i)
])
dz,

where E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, S
]

is the probability that truthful agent i with initial valuation z

receives the item when other agents bid truthfully and agents in set S update their valuations.

In the following, using Lemma 9 and the fact that Ωρ,β(x, Ŝy1,y2
(x))≤Ωρ,β(x), we will show that

agent i prefers to bid truthfully in the first round. Precisely, we will show that∫ xi

z=x̂i

E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz ≥

∫ xi

z=x̂i

Pr
[
z+ eiδi +β(x̂i)≥ ω−i

]
dz , (18)

where by Lemma 6, the l.h.s. is Ui(xi, xi)− Ui(x̂i, x̂i). In addition, by Lemma 7, the r.h.s. is an

upper bound of Ui(xi, x̂i)−Ui(x̂i, x̂i). Thus the above equation implies that agent i does not have

any incentive to bid untruthfully in the first round.

By definition, E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, S(z,x−i)
]

= E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
. Then, by

Lemma 9 and the fact that Ωρ,β(x, Ŝy1,y2
(x))≤Ωρ,β(x), we have∫ y2

y1

(
1 +β′(z)

)(
E
[
qi
∣∣vi,0 = z, v−i,0 = x−i

]
−E

[
qi
∣∣vi,0 = z, v−i,0 = x−i, Ŝy1,y2

(z,x−i)
])
dz ≥ 0.(19)
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Note that for any y1 ≤ z ≤ y2, we have

E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i , Ŝy1,y2
(z,x−i)

]
= Pr [z+ eiδi +β(z)≥ ω−i]

≥ Pr
[
z+ eiδi +β(x̂i)≥ ω−i

]
, (20)

Here, again, ei = ei(vi,0 = xi, bi,0 = x̂i, ti), and the equality follows from the construction of the

suboptimal selection rule and the definition of ω−i in Eq. (17). In addition, the inequality holds

because the weight function β(·) is non-decreasing. Applying Eq. (20) in Eq. (19), we obtain∫ y2

y1

(
1 +β′(z)

)(
E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
−Pr

[
z+ eiδi +β(x̂i)≥ ω−i

])
dz ≥ 0 .

Then, Eq. (18) follows from the fact that the above equation holds for any nonzero measure interval

[y1, y2]⊆ [x̂i, xi], and the weight function β(·) is non-decreasing. Therefore, agent i prefers to bid

truthfully in the first round.

Appendix B: Proof of Theorem 6

We show this result for any mechanism which selection rule maximizes the weighted surplus

Ωρ,β(b0, S), where Ωρ,β(b0, S) is defined in Eq. (13), ρ≥ 0, and β : R→R is a non-decreasing func-

tion from an initial bid to a weight. Note that the efficient and optimal mechanisms select a set of

agents that maximize Ωρ=0,β=0(b0, S) and Ωρ=0,β=α(b0, S), respectively.

Consider two unselected agents i, j such that bi,0 > bj,0. Assume that agents in set S are already

selected. We will show that when the cost of information is the same for all agents, Ωρ,β(b0, S∪{i})

is greater than or equal to Ωρ,β(b0, S∪{j}); that is, the seller prefers to add agent i to set S rather

than agent j.

By definition,

Ωρ,β(b0, S∪{i}) = E

[
max

{
max
k 6=i,j
{bk,1 +β(bk,0)}, bi,0 +β(bi,0) + δi, bj,0 +β(bj,0), ρ

}]
−c×(|S|+1) ,

where the expectation is with respect to second signals and bk,1 = bk,0 + δk if k ∈ S and is bk,0

otherwise. For any realizations of second signals, let Y−i = max
{

maxk 6=i,j{bk,1 + β(bk,0)}, bj,0 +

β(bj,0), ρ
}
− bi,0−β(bi,0). Then, Ωρ,β(b0, S ∪{i}) is given by

E
[(
bi,0 +β(bi,0) + δi

)
1{δi ≥ Y−i} +

(
Y−i + bi,0 +β(bi,0)

)
1{δi <Y−i}

]
− c× (|S|+ 1) .

After some manipulations, it can be rewritten as

bi,0 +β(bi,0) +Y−i G(Y−i) +

∫ δ̄

Y−i

z dG(z)− c× (|S|+ 1) ,
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where G is the distribution of δi. Likewise,

Ωρ,β(b0, S ∪{j}) = bj,0 +β(bj,0) +Y−j G(Y−j) +

∫ δ̄

Y−j

z dG(z)− c× (|S|+ 1),

where Y−j = max
{

maxk 6=i,j{bk,1 + β(bk,0)}, bi,0 + β(bi,0), ρ
}
− bj,0 − β(bj,0). Using integration by

part, one can easily show that Ωρ,β(b0, S ∪ {i})−Ωρ,β(b0, S ∪ {j}) = bi,0 + β(bi,0)− bj,0 − β(bj,0)−∫ Y−j
Y−i
G(z)dz. To show the result we need to consider the following two cases.

• Y−i−Y−j = bj,0 +β(bj,0)−bi,0−β(bi,0): In this case, max
{

maxk 6=i,j{bk,1 +β(bk,0)}, ρ
}

is greater

than bj,0 + β(bj,0) and bi,0 + β(bi,0). That is, Y−i = max
{

maxk 6=i,j{bk,1 + β(bk,0)}, ρ
}
− bi,0− β(bi,0)

and Y−j = max
{

maxk 6=i,j{bk,1 +β(bk,0)}, ρ
}
− bj,0−β(bj,0). Thus,

Ωρ,β(b0, S ∪{i})−Ωρ,β(b0, S ∪{j}) ≥ bi,0 +β(bi,0)− bj,0−β(bj,0)− (bi,0 +β(bi,0)− bj,0−β(bj,0)) = 0,

where the inequality follows from the fact that for any z, G(z)≤ 1.

• Y−i − Y−j 6= bj,0 + β(bj,0)− bi,0 − β(bi,0): In this case, max
{

maxk 6=i,j{bk,1 + β(bk,0)}, ρ
}

is less

than bi,0 + β(bi,0). That is, Y−j = bi,0 + β(bi,0)− bj,0− β(bj,0) and Y−i ≥ bj,0 + β(bj,0)− bi,0− β(bi,0).

Then,

Ωρ,β(b0, S ∪{i})−Ωρ,β(b0, S ∪{j})≥ bi,0 +β(bi,0)− bj,0−β(bj,0)−
∫ bi,0+β(bi,0)−bj,0−β(bj,0)

bj,0+β(bj,0)−bi,0−β(bi,0)

G(z)dz.

Note that the upper level of the integral equals negative the lower level of the integral. Thus, by

the fact the G(−z) = 1−G(z), we have
∫ bi,0+β(bi,0)−bj,0−β(bj,0)

bj,0+β(bj,0)−bi,0−β(bi,0)
G(z)dz = bi,0 + β(bi,0)− bj,0− β(bj,0);

that is, Ωρ,β(b0, S ∪{i})−Ωρ,β(b0, S ∪{j}) is at least zero, which is the desired result.

Appendix C: Appendix to Sections 4.1 and 5.3

In this section, we first present the proof of Theorem 2. Then, we show that the single crossing

conditions might not hold in the All-Access mechanism. We then provide the proof of Theorems 3

and 5.

C.1. Proof of Theorem 2

To show the result, we consider the following procedure: At each round, one agent presumes that

other agents are playing stationary strategies. That is, he assumes that the maximum bid of other

agents, B = max{maxj 6=i{vj,0 +δj ẽj(vj,0)},0}, is drawn from a stationary distribution. Then, he best

responds to the strategies of other agents. We show this procedure terminates in an equilibrium.

To this aim, we establish that when an agent updates his strategy in any round, he increases a

bounded potential function Ω̄ : {(ẽ1, ẽ2, . . . , ẽn)}→R, defined below,

Ω̄(ẽ1, ẽ2, . . . , ẽn) = E

[
max

{
max

j=1,2,...,n
{vj,0 + δj ẽj(vj,0)},0

}
−

n∑
j=1

cj ẽj(vj,0)

]
,
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where ẽj = ẽj(·), j = 1,2, . . . , n, is the investment strategy of agent j, and the expectation is with

respect to vj,0 and δj for j = 1,2, . . . , n. Note that the potential function is the average social

welfare of the auctioneer and agents when agents follow investment strategies < ẽ1, ẽ2, . . . , ẽn >.

Then, considering the fact that Ω̄(ẽ1, ẽ2, . . . , ẽn) ≤ E
[
maxS⊆{1,2,...}{Ω(v0, S)}

]
<∞, the potential

function is bounded, and as a result, the process of updating strategies will eventually result in an

equilibrium.

For any initial valuation vi,0, agent i selects ẽi(vi,0) ∈ {0,1} that maximizes his utility. Let ẽ−i

be investment strategies of all agents except of agent i. Given ẽ−i, the utility of agent i with initial

valuation vi,0 when he does not obtain information (ẽi(vi,0) = 0) can be written as

ui
(
vi,0, ẽi(vi,0) = 0, ẽ−i

)
= Ev−i,0,ẽ−i [max{vi,0−B ,0}]

= Ev−i,0,ẽ−i

[
max

{
vi,0−max

{
max
j 6=i
{vj,0 + δj ẽj(vj,0)} ,0

}
,0

}]
, (21)

where Ev−i,0,ẽ−i denotes the expectation with respect to the initial valuations and second signals

of all agents except for agent i while taking into account their investment strategies, i.e., ẽ−i.

Recall that the agents bid truthfully in the second price auction. Similarly, when agent i obtains

information, his expected utility is given by

ui
(
vi,0, ẽi(vi,0) = 1, ẽ−i

)
= Ev−i,0,ẽ−i

[
E

[
max

{
(vi,0 + δi)−max

{
max
j 6=i
{vj,0 + ẽj(vj,0)δj} ,0

}
,0

}]]
− ci ,

(22)

where the inner expectation is with respect to δi. In the rest of the proof, we denote all the

expectations by E. Then, for any initial valuation vi,0, we have

ẽi(vi,0) = arg max
e∈{0,1}

{ui
(
vi,0, e, ẽ−i

)
} = arg max

e∈{0,1}
{E[max{vi,0 + δie−B,0}]− cie}

= arg max
e∈{0,1}

{E[max{(vi,0 + δie),B}−B− cie]}

= arg max
e∈{0,1}

{
E

[
max{(vi,0 + δie),B}− cie−

∑
j 6=i

cj ẽj(vj,0)

]}

= arg max
e∈{0,1}

{
E

[
max

{
(vi,0 + δie),max{max

j 6=i
{vj,0 + δj ẽj(vj,0)},0}

}
− cie−

∑
j 6=i

cj ẽj(vj,0)

]}
,

where the last equation follows from the definition of B. It is easy to observe that at any round,

when an agent i updates his strategy, the potential function is increased. Then, by the fact that

the potential function is bounded, the process of updating strategies will eventually terminate in

an equilibrium point.
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C.2. The All-Access Mechanism and Single Crossing Conditions

The following proposition shows that in the setting in Example 1, the All-Access mechanism does

not admit any equilibrium with increasing investment decisions.

Proposition 1. Consider the All-Access mechanism with no reserve price and the setting in

Example 1. Then, there exists no equilibrium such that both agents follow increasing investment

decisions. That is, if an agent i= 1,2 acquires information only when his initial valuation is greater

than µi ∈ (0,1), i.e., ẽi(vi,0) = 1 for vi,0 ≥ µi, and ẽi(vi,0) = 0 for vi,0 < µi, then the other agent

j 6= i will not choose the following increasing investment decision: ẽj(vj,0) = 1 for vj,0 ≥ µj, and

ẽj(vj,0) = 0 for vj,0 <µj, where µj ∈ (0,1).

C.2.1. Proof of Proposition 1 To show the result, we will assume that an agent i= 1,2 follows

an increasing investment decision. That is, he only obtains the additional information when his

initial valuation is greater than µi ∈ (0,1). Then, we will establish that agent j 6= i will not follow

an increasing investment decision.

Throughout the proof, for simplicity, we denote µi by µ. We define W (vj,0) as the difference

between the utility of agent j when he obtains information and the utility of agent j when he does

not obtain information given that agent i 6= j only obtains information when his initial valuation

is greater than µ, i.e.,

W (vj,0) = uj(vj,0, ẽj(vj,0) = 1, ẽi)−uj(vj,0, ẽj(vj,0) = 0, ẽi) ,

where uj(vj,0, ẽj(vj,0) = 1, ẽi) and uj(vj,0, ẽj(vj,0) = 0, ẽi) are defined in equations (22) and (21).

Here, ẽi(v) = 1 for any v ∈ [µ,1], and ẽi(v) = 0 for v ∈ [0, µ). We will show that W (·) is a unimodular

function and obtains its unique maximum at v̂ ∈ (0, µ). Precisely, we will show that
∂W (vj,0)

∂vj,0
≥ 0 for

vj,0 ∈ [0, v̂] and
∂W (vj,0)

∂vj,0
≤ 0 for vj,0 ∈ [v̂,1]. This implies that for any values of the cost, agent j will

not follow an increasing investment decision. To see why note that agent j with initial valuation

vj,0 updates his valuation if W (vj,0) ≥ 0. Then, considering the fact that W (·) is unimodular,

{vj,0 :W (vj,0)≥ 0} cannot be in the form of [µj,1] where µj ∈ (0,1).

Let H(·) be the distribution of the maximum bid that agent j competes against, i.e., B =

max{(vi,0 + δiẽi(vi,0)),0} where ẽi(vi,0) = 1 for vi,0 ∈ [µ,1], and is zero otherwise. Then

W (vj,0) = E

[∫ max{vj,0+δj ,0}

x=0

(vj,0 + δj −x)dH(x)

]
−
∫ vj,0

x=0

(vj,0−x)dH(x)− c,

By Leibniz’s integral rule,
∂W (vj,0)

∂vj,0
can be written as

∂Wr(vj,0)

∂vj,0
= E[H(max{vj,0 + δj,0})]−H(vj,0) = E[H(vj,0 + δj)]−H(vj,0)
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The second equality holds because B ≥ 0 and as a result H(x) = 0 for any x< 0. The next Lemma

characterizes the distribution H(·).

Lemma 10. Suppose that vi,0 ∼ u(0,1), δi ∼ u(−1,1), ẽi(vi,0) = 1 for vi,0 ∈ [µ,1], and ẽi(vi,0) = 0

for vi,0 ∈ [0, µ). Then, the distribution of B = max{(vi,0 + ẽi(vi,0)δi), 0}, denoted by H, is given by

H(x) =



0 x < 0.
3−µ

2
x+ (µ−1)2

4
0 ≤ x < µ.

1−µ
2
x+µ+ (µ−1)2

4
µ ≤ x < µ+ 1

−x2

4
+x µ+ 1 ≤ x < 2

1 x ≥ 2

The proof is straightforward. Thus, it is omitted.

To simplify our notations, in the rest of the proof, we denote δj and vj,0 with δ and v, respectively.

In the following, using Lemma 10, we will show that there exists v̂ ∈ [0, µ] such that for v ∈ [0, v̂)

W (v) is increasing in v, and it is non-increasing otherwise. By Lemma 10, for any v ∈ [0, µ), we

have

∂W (v)

∂v
= E[H(v+ δ)]−H(v) =

1

2

∫ µ−v

−v

(
3−µ

2
(v+ δ) +

(µ− 1)2

4

)
dδ

+
1

2

∫ 1

µ−v

(
1−µ

2
(v+ δ) +µ+

(µ− 1)2

4

)
dδ−

(
3−µ

2
v+

(µ− 1)2

4

)
=

v2(1−µ) + (µ2 + 4µ− 9)v− 3µ2 + 5µ

8

Since ∂W (v)

∂v
is quadratic in v, it is easy to verify that ∂W (v)

∂v
is decreasing in v ∈ [0, µ]. Then, by

the fact that ∂W (v)

∂v

∣∣
v=0

= −3µ2+5µ
8

> 0 and ∂W (v)

∂v

∣∣
v=µ

= µ(µ−2)

4
< 0, we can conclude that there exists

v̂ ∈ (0, µ) such that ∂W (v)

∂v
≥ 0 for v ∈ [0, v̂], and ∂W (v)

∂v
< 0 for v ∈ (v̂, µ).

The last step of the proof is to show that W (v) is decreasing in v when v > µ. Lemma 10 implies

that for any v > µ, we have

∂W (v)

∂v
= E[H(v+ δ)]−H(v) =

1

2

∫ µ−v

−v

(
3−µ

2
(v+ δ) +

(µ− 1)2

4

)
dδ

+
1

2

∫ 1+µ−v

µ−v

(
1−µ

2
(v+ δ) +µ+

(µ− 1)2

4

)
dδ

+
1

2

∫ 1

1+µ−v

(
−(v+ δ)2

4
+ (v+ δ)

)
dδ−

(
1−µ

2
v+µ+

(µ− 1)2

4

)
=
µ3 + 12µv− 9µ2− 9µ

24
+

(3v2− 3v− v3)

24
.

By the fact that 3v2− 3v− v3 is decreasing in v ∈ (µ,1] and v > µ, we have

∂W (v)

∂v
≤ µ3 + 12µv− 9µ2− 9µ

24
+

(3µ2− 3µ−µ3)

24
=

12µv− 6µ2− 12µ

24
≤ −6µ2

24
< 0,

where the second inequality follows from the fact that v≤ 1.
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C.3. Proof of Theorems 3 and 5

Theorem 3 can be seen as a corollary of Theorem 5. Therefore, in the following, we will verify

Theorem 5.

The proof is naturally divided into two parts. In the first part, we show that when the cost

is small, there exists an equilibrium in which both agents obtain the additional information, i.e.,

ẽi(vi,0) = 1 for i= 1,2 and vi,0 ∈ [0,1]. In the second part, we show that when the cost is large, there

exists an equilibrium in which none of the agents obtain the additional information, i.e., ẽi(vi,0) = 0

for i= 1,2 and vi,0 ∈ [0,1].

Part 1: We will show that when an agent i = 1,2 obtains the additional information for any

vi,0 ∈ [0,1], then agent j 6= i also has incentive to obtain information for any vj,0 ∈ [0,1] as long as

cost c≤min{ 4r3−3r2−6r+5
48

, 8r3+6r2+7
96

}.

With slightly abuse of notation, we define Wr(vj,0) as the difference of the utility of agent j = 1,2

with initial valuation vj,0 when he obtains information, and his utility when he does not obtain

information given that the reserve price is r, and agent i 6= j obtains the additional information

for any initial valuation. That is,

Wr(vj,0) = uj(vj,0, ẽj(vj,0) = 1, ẽi)−uj(vj,0, ẽj(vj,0) = 0, ẽi) ,

where uj(vj,0, ẽj(vj,0) = 1, ẽi) and uj(vj,0, ẽj(vj,0) = 0, ẽi) are defined in equations (22) and (21).

Here, ẽi(v) = 1 for any v ∈ [0,1]. We will show that Wr(vj,0) ≥ 0 for any vj,0 ∈ [0,1]; that is, for

any initial valuation, agent j prefers to update his valuation. To this end, we will verify that Wr(·)

achieves its minimum at either vj,0 = 0 or vj,0 = 1. Then by showing that Wr(1),Wr(0)≥ 0, we can

conclude that Wr(vj,0)≥ 0 for any vj,0 ∈ [0,1].

Similar to the proof of Theorem 1, we write Wr(·) as a function of the distribution of the

competing bid B, where B = max{(vi,0 + ẽi(vi,0)δi), r}= max{vi,0 + δi, r}9. This follows because a

second price auction is a truthful mechanism, and agent i 6= j obtains the additional information

for any value of vi,0. We denote the distribution of B by Hr. Then

Wr(vj,0) = E

[∫ max{vj,0+δj ,r}

x=r

(vj,0 + δj −x)dHr(x)

]
−
∫ vj,0

x=r

(vj,0−x)dHr(x)− c,

where the expectation is with respect to δj. We will show that the derivative of Wr(vj,0) with respect

to vj,0 is positive for small values of vj,0 and is non-positive for large values of vj,0. This implies

that Wr(vj,0)≥min{Wr(0),Wr(1)} for any vj,0 ∈ [0,1]. By Leibniz’s integral rule,
∂Wr(vj,0)

∂vj,0
can be

written as
∂Wr(vj,0)

∂vj,0
= E[Hr(vj,0 +δj)]−Hr(vj,0). The next lemma characterizes the distribution Hr.

9 We can assume that the seller is one of the opponents with submitted bid of r.
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Lemma 11. If vi,0 ∼ u(0,1) and δi ∼ u(−1,1), the distribution of B = max{(vi,0 + δi), r}, denoted

by Hr, is given by

Hr(x) =


0 x< r;
1
4

+ x
2

r≤ x≤ 1;

x− x2

4
1<x≤ 2;

1 x> 2

The proof is straightforward. Thus, it is omitted.

In the following, using Lemma 11, we will show that arg minv∈[0,1]{Wr(v)} is either 0 or 1. To this

aim, we will show that Wr(v) is increasing in v given that v < r, and is decreasing in v otherwise.

Observe that for any v ∈ [0, r), ∂Wr(v)

∂v
= E[Hr(v + δ)]≥ 0. Furthermore, by Lemma 11, for any

v ∈ (r,1], we have

∂Wr(v)

∂v
= E[Hr(v+ δ)]−Hr(v) =

1

2

∫ 1−v

r−v

(
1

4
+
v+x

2

)
dx+

1

2

∫ 1

1−v

(
(v+x)− (v+x)2

4

)
dx−

(
1

4
+
v

2

)
=

3v2− v3− 3v

24
+
−3r2− 3r

24
≤ 3r2− r3− 3r

24
+
−3r2− 3r

24
=
−r3− 6r

24
≤ 0

The first inequality holds because 3v2− v3− 3v is decreasing in v and v > r. We established that

Wr(·) gets minimized either at v= 0 or v= 1. Then, in the last step, we will verify Wr(0),Wr(1)≥ 0.

By definition,

Wr(0) = E
[
(δ−B)+

]
− c= Pr[B = r]×

∫ 1

r

1

2
(δ− r)dδ+

1

4

∫ 1

r

∫ δ

r

(δ−x)dxdδ− c

=
4r3− 3r2− 6r+ 5

48
− c

Similarly,

Wr(1) = E
[
(1 + δ−B)+

]
−E

[
(1−B)+

]
− c

= Pr[B = r]×E
[
(1 + δ− r)+

]
+

1

4

∫ 1

δ=r−1

∫ min{1+δ,1}

x=r

(1 + δ−x)dxdδ

−Pr[B = r]× (1− r)− 1

2

∫ 1

x=r

(1−x)dx =
8r3 + 6r2 + 7

96
− c

Therefore, when c≤min{ 4r3−3r2−6r+5
48

, 8r3+6r2+7
96

}, Wr(v)≥ 0 for any v ∈ [0,1]. As a result, the agent

is willing to obtain information regardless of his initial valuation.

Part 2: In this part, we will show that when the reserve price r≤
√

2−1 and an agent i= 1,2 does

not obtain the additional information regardless of his initial valuation, then agent j 6= i also does

not have any incentive to obtain information for any vj,0 ∈ [0,1] as long as cost c≥ 3r4+8r3+6r2+7
48

.

Similarly, when r >
√

2− 1 and the cost is greater than 3r−r3+1
12

, there exists an equilibrium such

that none of the agents obtain the additional information.
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With slightly abuse of notation, we define Wr(vj,0) as the difference between the utility of agent

j when he obtains information and the utility of agent j when he does not obtain information

given that agent i 6= j does not acquire the additional information for any initial valuation, i.e.,

Wr(vj,0) = uj(vj,0, ẽj(vj,0) = 1, ẽi)− uj(vj,0, ẽj(vj,0) = 0, ẽi), where ẽi(v) = 0 for any v ∈ [0,1]. We

will show that Wr(vj,0)≤ 0 for any vj,0 ∈ [0,1] when i- c≥ 3r4+8r3+6r2+7
48

and r ≤
√

2− 1, or ii- c≥
3r−r3+1

12
and r >

√
2− 1 . To this aim, we will verify that maxv∈[0,1]{Wr(v)}= 3r4+8r3+6r2+7

48
− c≤ 0

when r≤
√

2− 1, and maxv∈[0,1]{Wr(v)}= 3r−r3+1
12

− c≤ 0 when r >
√

2− 1. This implies that the

agent does not have any incentive to update his valuation for any initial valuation.

Specifically, we will show that Wr(v) is increasing in v when v ∈ [0,max{r, 1−r2
2
}], and is decreas-

ing otherwise. That is, arg maxv∈[0,1]{Wr(v)}= 1−r2
2

if r≤
√

2− 1, and arg maxv∈[0,1]{Wr(v)}= r if

r >
√

2− 1. We show these statements by characterizing ∂Wr(v)

∂v
.

By part 1, ∂Wr(v)

∂v
= E[Hr(v+ δ)]−Hr(v), where Hr(·) is the distribution of the bid that agent

j competes against. Then, considering the fact that vi,0 ∼ u(0,1), and the other agent does not

obtain information, i.e., B = max{vi,0, r}, we have

Hr(x) =

 0 x< r;
x x∈ [r,1];
1 x> 1.

This implies that for any v ∈ [0,1]

E[Hr(v+ δ)] = Pr[δ+ v≥ 1] +
1

2

∫ 1−v

r−v
(v+x)dx=

v

2
+

1− r2

4
.

Thus, for any v < r, we have ∂Wr(v)

∂v
= E[Hr(v+ δ)] = v

2
+ 1−r2

4
≥ 0 and for any v > r,

∂Wr(v)

∂v
= E[Hr(v+ δ)]−H(v) =

−v
2

+
1− r2

4
.

We point that for any v≥ r, we have ∂Wr(v)

∂v
≤ 0 as long as r >

√
2− 1. To see why note that

∂Wr(v)

∂v
=
−v
2

+
1− r2

4
≤ −r

2
+

1− r2

4
≤ 0 ,

where the last inequality holds because r >
√

2−1. On the other hand, when r≤
√

2−1, dWr(v)

dv
≥ 0

for v ∈ [r, 1−r2
2

] and ∂Wr(v)

∂v
≤ 0 for v ≥ 1−r2

2
. This implies that we have arg maxv∈[0,1]{Wr(v)} = r

when r >
√

2− 1, and arg maxv∈[0,1]{Wr(v)}= 1−r2
2

when r≤
√

2− 1. The proof will be completed

by showing that i- Wr(
1−r2

2
) ≤ 0 when c ≥ 3r4+8r3+6r2+7

48
and r ≤

√
2− 1, and ii- Wr(r) ≤ 0 when

c≥ 3r−r3+1
12

and r >
√

2− 1.

For r≤
√

2− 1, we have

max
v∈[0,1]

{Wr(v)} = Wr(
1− r2

2
) = E

[(
1− r2

2
+ δ−B

)+
]
−E

[(
1− r2

2
−B

)+
]
− c
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= Pr[B = r]×E

[(
1− r2

2
+ δ− r

)+
]

+
1

2

∫ 1

δ=r− 1−r2
2

∫ min{ 1−r2
2 +δ,1}

x=r

(
1− r2

2
+ δ−x)dxdδ

−Pr[B = r]×
(

1− r2

2
− r
)
−
∫ 1−r2

2

x=r

(
1− r2

2
−x)dx =

3r4 + 8r3 + 6r2 + 7

48
− c≤ 0 ,

where the inequality holds because c≥ 3r4+8r3+6r2+7
48

. Similarly, when r >
√

2− 1, we have

max
v∈[0,1]

{Wr(v)} = Wr(r) = E
[
(r+ δ−B)+

]
−E

[
(r−B)+

]
− c

= Pr[B = r]×E
[
(δ)+

]
+

1

2

∫ 1

δ=0

∫ max{r+δ,1}

x=r

(r+ δ−x)dxdδ− c =
3r− r3 + 1

12
− c ≤ 0 ,

where the inequality follows from the fact that c≥ 3r−r3+1
12

.

Appendix D: Technical Proofs

D.1. Proof from Section 5

Proof of Lemma 1 Let x be the vector of the initial valuations. Given that mechanismMOpt is

incentive compatible, the revenue of the seller is given by

E

[
n∑
i=1

ti + pi

]
= E

[
n∑
i=1

vi,1qi− ci× si−Ui(xi, xi)
∣∣∣v0 = b0 = x

]
, (23)

where vi,1 = xi + δi if i ∈ SOpt(x) and xi otherwise, and the expectations are with respect to

initial valuations and second signals. Note that the sum of the first and second terms is the social

welfare of the agents and the seller. In the following, we compute the last term in the r.h.s. of the

above equation, that is, E [Ui(xi, xi)], where the expectation is with respect to initial valuations.

By Lemma 6, we have E [Ui(xi, xi)] =
∫ v̄
xi=v

∫ xi
z=v

E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz dF (xi), where the

expectation inside the integral is with respect to v−i,0. Changing the order of integrals, we get∫ v̄

z=v

∫ v̄

xi=z

dF (xi)E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz =

∫ v̄

z=v

(1−F (z))E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz.

By multiplying and dividing the r.h.s. of the equation above by the probability density f(z),

we obtain E [Ui(xi, xi)] = E
[

1−F (xi)

f(xi)
qi
∣∣v0 = x

]
= E

[
−α(xi)qi

∣∣v0 = x
]
. Substituting E[Ui(xi, xi)] in

Eq. (23), the expected revenue of the seller is given by E
[∑n

i=1(vi,1 +α(xi))qi− ci× si
∣∣v0 = x

]
.

Finally, the result follows from applying the selection and allocation rules. �

Proof of Lemma 2 To find an upper bound, we consider a relaxed environment in which the

seller observes the additional information of selected agents, and she can force agents to update

their valuations. It is easy to see that the maximum achievable revenue in this environment is an

upper bound on the revenue of the seller in the original environment.

By the revelation principle, we focus on direct incentive compatible mechanisms that consist of

transfer scheme t̄i :Rn→R, selection rule s̄i :Rn→{0,1}, and allocation rule q̄i :R2n→R+, where
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s̄i is 1 when agent i is selected and is 0 otherwise. Note that the payment and selection rules are

only functions of initial bids, and the allocation rule is a function of the initial bids and the second

signals observed by the seller.

To compute the upper bound on the revenue of any incentive compatible mechanism in the

relaxed environment, we first need to characterize the utility of each agent i. Assume that agent i

with initial valuation xi reports x̂i, and other agents report truthfully. Then, his utility is given by

Ui(xi, x̂i) = E
[
q̄i× (xi + δis̄i)− t̄i− cis̄i

∣∣∣bi,0 = x̂i, vi,0 = xi, v−i,0 = b−i,0 = x−i

]
,

where the expectation is with respect to the second signals. Incentive compatibility implies that

Ui(xi, xi)−Ui(x̂i, x̂i) ≤Ui(xi, xi)−Ui(x̂i, xi) = (xi− x̂i)E
[
q̄i

∣∣∣bi,0 = xi, b−i,0 = x−i

]
,

and similarly, Ui(xi, xi)−Ui(x̂i, x̂i)≥ (xi− x̂i)E
[
q̄i

∣∣∣bi,0 = x̂i, b−i,0 = x−i

]
. Without loss of generality,

we assume that xi > x̂i. Then, using the above equations,

E
[
q̄i
∣∣bi,0 = x̂i, b−i,0 = x−i

]
≤ Ui(xi, xi)−Ui(x̂i, x̂i)

xi− x̂i
≤E

[
q̄i
∣∣bi,0 = xi, b−i,0 = x−i

]
.

Finally by taking the limit as x̂i→ x−i , we get Ui(xi, xi) =Ui(v, v)+
∫ xi
v

E
[
q̄i
∣∣vi,0 = z, b−i,0 = x−i

]
dz.

We are now ready to compute the upper bound of the revenue. By using the same arguments

as in Lemma 1, it can be shown that for any selection rule s̄i and allocation rule q̄i revenue of the

seller when agents are truthful is given by

E
[ ∑
i:s̄i(x)=1

(
xi +α(xi) + δi

)
q̄i +

∑
i:s̄i(x)=0

(
xi +α(xi)

)
q̄i−

n∑
i=1

cis̄i−
n∑
i=1

Ui(v, v)
∣∣b0 = x

]
, (24)

where the expectation is with respect to the first and second signals. Because the mechanism should

be individually rational, we set Ui(v, v) = 0 for all i. Then, to maximize the revenue, the item

should be allocated to the agent with the highest non-negative virtual valuation, that is,

q̄i = 1 if i∈ arg maxj
{(
xj +α(xj) + δj s̄j(x)

)}
10

and 0 otherwise. Therefore, the expected revenue of the seller can be written as

E

[
max

{
max

i:s̄i(x)=1
{xi +α(xi) + δi} , max

i:s̄i(x)=0
{xi +α(xi)} ,0

}
−

n∑
i=1

cis̄i

∣∣∣b0 = x

]
.

So, if agents in set Srelaxed, defined below, obtain the additional information, the revenue gets

maximized:

Srelaxed(x) = arg maxS⊂{1,··· ,n}

{
E

[
max

{
max
i∈S
{xi + δi +α(xi)},max

i/∈S
{xi +α(xi)},0

}]
−
∑
i∈S

ci

}
.

Finally, the result follows by plugging the selection rule Srelaxed(x) and allocation rule q̄i in Eq.

(24). �

10 In case of ties, we choose one of them randomly.
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D.2. Proofs from Section A

Proof of Lemma 3 The basic idea is to establish an upper bound on the r.h.s. of Eq. (12). We

will show the upper bound is larger than the l.h.s. of Eq. (12) at r= ρ. This will imply that Eq. (12)

is satisfied at some r≥ ρ.

We first show that the r.h.s. of Eq. (12), i.e.,
∫ b`,0
v

E
[
q`
∣∣v`,0 = z, v−`,0 = b−`,0

]
dz, is less

than or equal to
∫ b`,0
v

Pr
[
z + β(b`,0) ≥ ω−`

]
dz, where ω−` = max

{
maxj∈Sρ,β(b0)

{
bj,0 + δj +

β(bj,0)
}
, ρ
}

. Because agent ` has the largest weighted bid among unselected agents, ω−` =

max
{

maxj∈Sρ,β(b0)

{
bj,0 + δj +β(bj,0)

}
,maxj /∈Sρ,β(b0),j 6=`

{
bj,0 +β(bj,0)

}
, ρ
}

. Then, by Lemma 7,

U`(v, b`,0) ≤ U`(b`,0, b`,0)−
∫ b`,0

v

Pr
[
z+β(b`,0)≥ ω−`

]
dz ≤ U`(v, v)

= U`(b`,0, b`,0)−
∫ b`,0

v

E
[
q`
∣∣v`,0 = z, v−`,0 = b−`,0

]
dz,

where the second inequality follows from Lemma 8, and the equality follows from Lemma 6. By the

above equation, we can conclude that
∫ b`,0
v

E
[
q`
∣∣v`,0 = z, v−`,0 = b−`,0

]
dz is less than

∫ b`,0
v

Pr
[
z +

β(b`,0)≥ ω−`
]
dz.

Next, we will show that the l.h.s. of Eq. (12) at r = ρ is greater than the upper bound, i.e.,∫ b`,0
v

Pr
[
z+β(b`,0)≥ ω−`

]
dz. Then, considering the fact that the upper bound is not a function of

r, the l.h.s. is a non-increasing function of r, and is zero at r= b`,0 +β(b`,0), we conclude that there

exists an r ∈ [ρ, b`,0 +β(b`,0)] that satisfies Eq. (12).

By changing variable, the l.h.s. at r= ρ can be written as∫ b`,0

ρ−β(b`,0)

Pr
[
z+β(b`,0)≥max

{
max

j∈Sρ,β(b0)

{
bj,0 + δj +β(bj,0)

}
, ρ
}]
dz =

∫ b`,0

ρ−β(b`,0)

Pr
[
z+β(b`,0)≥ ω−`

]
dz,

Then, because b`,0 +β(b`,0)≥ ρ, we have∫ b`,0

ρ−β(b`,0)

Pr
[
z+β(b`,0)≥ ω−`

]
dz ≥

∫ b`,0

max{ρ−β(b`,0),v}
Pr
[
z+β(b`,0)≥ ω−`

]
dz

=

∫ b`,0

v

Pr
[
z+β(b`,0)≥ ω−`

]
dz−

∫ max{ρ−β(b`,0),v}

v

Pr
[
z+β(b`,0)≥ ω−`

]
dz

=

∫ b`,0

v

Pr
[
z+β(b`,0)≥ ω−`

]
dz,

where the last equality holds because ω−` ≥ ρ and for any z ≤ ρ−β(b`,0), Pr
[
z+β(b`,0)≥ ω−`

]
= 0.

The last equation shows that the l.h.s. of Eq. (12) at r= ρ is greater than the r.h.s. of Eq. (12).

�
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D.3. Proofs from Section A.1

Proof of Lemma 4 Consider a selected agent i with initial bid bi,0. If agent i wins the item, his

payment in the second round, pi, would be equal to max{maxj 6=i{bj,1 +β(bj,0)}, ρ}− β(bi,0). Note

that pi is independent of bi,1. Therefore, an agent cannot change his price for the item. However,

the agent can change the probability of the allocation. It is easy to see that underbidding may only

result in losing the item. On the other hand, over bidding may yield a negative utility. Note that

overbidding can make a difference only when

vi,1 +β(bi,0) ≤ max{max
j 6=i
{bj,1 +β(bj,0)}, ρ} ≤ bi,1 +β(bi,0).

In this case, the utility of agent i would be non-positive:

vi,1− pi = vi,1 +β(bi,0)−max{max
j 6=i
{bj,1 +β(bj,0)}, ρ} ≤ vi,1 +β(bi,0)− (vi,1 +β(bi,0)) = 0.

Therefore, a weekly dominate strategy of agent i is to be truthful. �

Proof of Lemma 5 Consider agent i ∈ Sρ,β(x) who bids truthfully in the first round, where x

is the initial valuations of agents. In the proof, to simplify the notations, we denote Sρ,β(x) by

S(x). We will show that agent i will learn his second signal, i.e., ei = 1, given that other agents are

truthful. To this aim, we will prove that for agent i, the marginal value of changing his decision

to obtain information is identical to the change in the weighted surplus Ωρ,β. More precisely, the

difference between the utility of agent i when he obtains information and that when he does not

is equal to Ωρ,β(x,S(x)) − Ωρ,β(x,S(x)\{i}). Then, since the SWSP mechanism maximizes the

weighted surplus, i.e., Ωρ,β(x,S(x))≥Ωρ,β(x,S(x)\{i}), we conclude that agent i prefers to update

his valuation.

We first characterize the utility of agent i when he does not obtain information. Let Y be the

random variable corresponding to the maximum weighted bid of all agents except for agent i, i.e.,

Y = max
{

maxj∈S(x),j 6=i
{
xj + δj + β(xj)

}
,maxj /∈S(x)

{
xj + β(xj)

}
, ρ
}

. Then, by Lemma 4, when

agent i does not update his valuation, his utility is given by

E
[
max

{
xi +β(xi)−Y,0

}]
− ti = E

[
max{Y,xi +β(xi)}−Y

]
− ti,

= Ωρ,β(x,S(x)\{i}) +
∑

j∈S(x)\{i}

cj −E[Y ]− ti (25)

Note that in computing utility of agent i, we use the fact that other agents are truthful. In addition,

the second equality holds because

Ωρ,β(x,S(x)\{i})

= E

[
max

{
max

j∈S(x),j 6=i
{xj +β(xj) + δj}, max

j /∈S(x)
{xj +β(xj)}, xi +β(xi), ρ

}]
−

∑
j∈S(x)\{i}

cj

= E[max{Y,xi +β(xi)}]−
∑

j∈S(x)\{i}

cj ,
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Similarly, when agent i obtains the additional information, his utility is equal to

E
[
max

{
xi + δi +β(xi)−Y,0

}]
− ti− ci = E

[
max{Y,xi + δi +β(xi)}−Y

]
− ti− ci

= Ωρ,β(x,S(x)) +
∑

j∈S(x)\{i}

cj −E[Y ]− ti . (26)

The first expression follows from Lemma 4 where we show that agent i bids truthfully in the second

round. The second equality holds because

Ωρ,β(x,S(x)) =E

[
max

{
max

j∈S(x),j 6=i
{xj +β(xj) + δj}, max

j /∈S(x)
{xj +β(xj)}, xi + δi +β(xi), ρ

}]
−
∑
j∈S(x)

cj

= E
[
max{Y,xi + δi +β(xi)}

]
−
∑
j∈S(x)

cj .

In addition, note that ti in Eq. (26) is the same as ti in Eq. (25) since agent i’s decision to obtain

information, i.e., ei, is not observable by the mechanism. By equations (25) and (26), the difference

between the utility of agent i when he updates his valuation and his utility when he does not is

Ωρ,β(x,S(x))−Ωρ,β(x,S(x)\{i}). Then, considering the fact that the SWSP mechanism maximizes

the weighted surplus, i.e., Ωρ,β(x,S(x)) ≥ Ωρ,β(x,S(x)\{i}), we conclude that agent i prefers to

learn his second signal. �

Proof of Lemma 6 We first show that for any x−i ∈ [v, v̄]n−1 and any i = 1,2, . . . , n,

E [qi|vi,0 = xi, v−i,0 = x−i] is a non-decreasing function of xi. Observe that the weighted surplus

is the maximum of affine functions of vi,0 + β(vi,0). Thus, it is a convex function of vi,0 + β(vi,0).

Furthermore, the weighted surplus is a continuos function of vi,0 + β(vi,0), and its derivative with

respect to vi,0 + β(vi,0) at vi,0 = xi, if exists, is equal to E [qi|vi,0 = xi, v−i,0 = x−i].
11 This implies

that E [qi|vi,0 = xi, v−i,0 = x−i] is a non-decreasing function of vi,0 + β(vi,0). Finally, considering

the fact function β is non-decreasing, we can conclude that E [qi|vi,0 = xi,0, v−i,0 = x−i] is a non-

decreasing function of vi,0.

Next we show that the utility of an agent i that bids truthfully in the first round and follows

the optimal strategy afterwards follows from Eq. (16) when all other agents are truthful. By

Lemma 5, agent i that bids truthfully in the first round will obtain information if he gets selected.

Furthermore, Lemma 4 implies that agent i will bid truthfully in the second round if he is allowed

to update his bid in the second round. Therefore, agent i that bids truthfully in the first round

stays truthful.

Now, we are ready to show the result. We consider the following cases. Throughout this proof,

for simplicity, we drop the subscript of Sρ,β(x), and denote it by S(x).

11 To see that note E [qi|vi,0 = xi, v−i,0 = x−i] is equal to Pr[vi,1 + β(xi) ≥ max{maxj∈S(x){xj + δj +
β(xj,0)},maxj /∈S(x){xj +β(xj,0)}, ρ}], where vi,1 = xi + δi if i∈ S(x) and it is xi otherwise.
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i) i∈ S(x): By lemmas 4 and 5, selected agent i learns his second signal and reports it truthfully

in the second round. Thus, his utility is given by E
[
qi(xi + δi)− pi− ti− ci

∣∣v0 = x0

]
. The claim

follows from plugging ti from Eq. (2).

ii) i /∈ S(x) and xi + β(xi)<max
{

maxj /∈S(x),j 6=i{xj +β(xj)}, ρ
}

: In this case, the utility of agent

i and his allocation probability is 0. By the fact that E
[
qi
∣∣vi,0 = z, v−i,0 = x−i

]
is an increas-

ing function of z and E
[
qi
∣∣vi,0 = xi, v−i,0 = x−i

]
= 0, we can write the utility of agent i as∫ xi

v
E
[
qi
∣∣vi,0 = z, v−i,0 = x−i

]
dz = 0.

iii) i /∈ S(x) and xi + β(xi)≥max
{

maxj /∈S(x),j 6=i{xj +β(xj)}, ρ
}

: In this case, when unselected

agent i wins the item, he has to pay maximum of r and the second highest weighted bid. There-

fore, Ui(xi, xi) = E
[
qi×

(
xi +β(xi)−max

{
maxj∈S(x)

{
xj + δj +β(xj)

}
, r
})]

, where Ui(xi, xi) is

defined in Eq. (15).

Let Y = maxj∈S(x){xj + δj +β(xj)}, and let H be the distribution of Y . Then, Ui(xi, xi) can be

written as

E
[(
xi +β(xi)−Y

)
×1
{
xi +β(xi)≥ Y ≥ r

}
+
(
xi +β(xi)− r

)
×1
{
xi +β(xi)≥ r≥ Y

}]
= (xi +β(xi))

(
H(xi +β(xi))−H(r)

)
−
∫ xi+β(xi)

r
zdH(z) + (xi +β(xi)− r)H(r)

=
(
xi +β(xi)

)
H(xi +β(xi))− rH(r)−

∫ xi+β(xi)

r
zdH(z) =

∫ xi+β(xi)

r
H(z)dz,

where in the first equation, the expectation is with respect to the second signals. The last equality

is followed from the integration by part. Therefore, using Eq. (12), we get

Ui(xi, xi) =

∫ xi+β(xi)

r

Pr
[
z ≥ max

j∈S(x)

{
xj + δj +β(xj)

}]
dz =

∫ xi

v

E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz.

�

Proof of Lemma 7 Throughout the proof, all the expectations are with respect to the second

signals. Consider an untruthful agent i with initial valuation xi who bids x̂i in the first round. We

establish an upper bound on his utility. We consider the following two cases, si = 1 and si = 0.

si = 1: When agent i is selected, si = 1, he can either obtain information or not. Given his

investing decision ei = ei(vi,0 = xi, bi,0 = x̂i, ti), by Lemma 4, his utility can be written as

Ui(xi, x̂i) = E
[
(xi + eiδi)− pi− ti− eici

∣∣∣v0 = x, bi,0 = x̂i, b−i,0 = x−i

]
(27)

= E [max{xi +β(x̂i) + eiδi−ω−i,0}− ti− eici] ,

where ω−i is defined in Eq. (17), and the expectation is taken assuming the all agents except for

agent i are truthful. Note that for abbreviation, we omit the condition in the second equation and
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in the rest of the proof. Then, by adding and subtracting E [max{x̂i +β(x̂i) + eiδi−ω−i,0}], the

utility can be rewritten as

Ui(xi, x̂i) = E
[

max{x̂i +β(x̂i) + eiδi−ω−i,0}− ti− eici

−
(

max{x̂i +β(x̂i) + eiδi−ω−i,0}−max{xi +β(x̂i) + eiδi−ω−i,0}
)]

= E
[

max{x̂i +β(x̂i) + eiδi−ω−i,0}− ti− eici
]

+

∫ xi

x̂i

Pr [z+β(x̂i) + eiδi ≥ ω−i]dz

When ei = 1 the first term in the last line is Ui(x̂i, x̂i). Otherwise, it is the utility of selected

agent i with initial x̂i who bids truthfully, gets selected, but does not learn his second signal,

which is by Lemma 5 is less than or equal to Ui(x̂i, x̂i). Thus, the utility is at most Ui(x̂i, x̂i) +∫ xi
x̂i

Pr [z+β(x̂i) + eiδi ≥ ω−i]dz, which is the desired result.

si = 0: Note that si = 0 means agent i is not selected. Then, if x̂i + β(x̂i) <

max
{

maxj /∈Sρ,β(x̂i,x−i){xj +β(xj)}, ρ
}

, his utility is zero. If not, the utility of agent i given that he

stays in the game can be written as

E
[
qi×

(
xi +β(x̂i)−max

{
ω−i, r

})]
.

By adding and subtracting E [qi× x̂i], and by the fact that agent i receives the item if x̂i +β(x̂i) is

greater than ω−i, we have

E
[
max

{
(x̂i +β(x̂i)−max

{
ω−i, r

}
,0
}

+ (xi− x̂i)×1
{
x̂i +β(x̂i)≥ ω−i

}]
.

The first term is Ui(x̂i, x̂i). Since Ui(x̂i, x̂i) ≥ 0 and agent i can exit the game if his utility gets

negative, he can at most yield max{Ui(x̂i, x̂i) +
∫ xi
x̂i

Pr
{
x̂i + β(x̂i)≥ ω−i

}
dz,0}, which is less than

max{Ui(x̂i, x̂i) +
∫ xi
x̂i

Pr
{
z+β(x̂i)≥ ω−i

}
dz,0}.

�

D.4. Proofs from Section A.2

Proof of Lemma 9 We establish the following two claims.

• Claim 1: For any set S ⊆ {1,2, . . . , n}

Ωρ,β((xi, x−i), S)−Ωρ,β((x̂i, x−i), S) =

∫ xi

x̂i

(1 +β′(z))E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, S
]
dz .

• Claim 2: Suppose Assumption 2 holds. Then weighted surplus is an absolutely continuous

and convex function of vi,0 +β(vi,0), and it is given by

Ωρ,β(x) = Ωρ,β((x̂i, x−i)) +
∫ xi
x̂i

(1 +β′(z))E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz .
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The proof of claims follows from Theorems 1 and 2 in Milgrom and Segal (2002). Thus, we do

not repeat it here. By Claims 1 and 2 and the fact that E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, Ŝy1,y2
(z,x−i)

]
=

E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
for z < y1 and z > y2, we have

Ωρ,β(x, Ŝy1,y2
(x)) = Ωρ,β((x̂i, x−i), Ŝy1,y2

(x̂i, x−i)) +

∫ y1

x̂i

(
1 +β′(z)

)
E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz

+

∫ y2

y1

(
1 +β′(z)

)
E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i, Ŝy1,y2
(z,x−i)

]
dz

+

∫ xi

y2

(
1 +β′(z)

)
E
[
qi

∣∣∣vi,0 = z, v−i,0 = x−i

]
dz.

Then, the result follows from Claim 2 and the fact that, by construction, Ωρ,β(x̂i, x−i) =

Ωρ,β((x̂i, x−i), Ŝy1,y2
(x̂i, x−i)). �

Appendix E: Numerical Experiments

In Section E.1, we depict the initial payments. Section E.2 compares the SSP mechanism with the

optimal mechanism in terms of the revenue of the seller. In Section E.3, we study impacts of the

number of agents, n.

E.1. Payments in the First Round

Recall that the initial payment ti incentivizes agents to be truthful. In this section, we investigate

how much the opt and eff mechanisms charge each agent i upfront for different realizations of

initial valuations. As usual, n= 2, F =N(0.5,0.5), Gi =N(0,0.5), and ci = 0.05 for i= 1,2.

The initial payment for the first agent, t1, in the opt and eff mechanisms for all realizations

of v1,0 and v2,0 in the range of [−1.5,2.5] is shown in Figures 5a and 5b, respectively. The x-axis is

v2,0, and the y-axis is v1,0. Here, different shades of gray mean different initial payment as defined

in the color bars next to the figures. By construction, the initial payment of the first agent is zero

if he is not selected. Furthermore, when he is selected, t1 is an increasing function of v1,0.

E.2. The SSP Mechanism versus the optimal Mechanism

In this section, we seek to understand how the SSP mechanism performs in compare with mecha-

nism MOpt. To this aim, we report the revenue of the SSP mechanism under four problem classes,

corresponding with cost 0.02 and 0.05, and number of agents of 2 and 3. Here, F =N(0.5,0.5) and

Gi =N(0, σ2), where σ2 = 0.5,1,1.5, and 2.

In Table 1, for each problem class, we present the revenue of the SSP mechanism with revenue-

maximizing r as a percentage of the optimal revenue, averaged over 2000 instances in each problem

class. We observe that the SSP mechanism performs better as the number of agents gets larger, σ2

becomes smaller, and the additional information gets more costly. In addition, the SSP mechanism

yields more than 84% of the optimal revenue.
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(a) Optimal mechanism (b) Efficient mechanism

Figure 5 The payment of agent 1 in the first round, t1, for different realizations of v1,0 and v2,0 with n = 2,

c= 0.05, F =N(0.5,0.5), and Gi =N(0,0.5).

Problem Class Gi =N(0, σ2)

n cost σ2 = 0.5 σ2 = 1 σ2 = 1.5 σ2 = 2

2
0.02 94 90 87 84
0.05 95 92 90 87

3
0.02 95 93 89 88
0.05 96 94 92 90

Table 1 Revenue of the SSP mechanism (with revenue-maximizing r) as a percentage of the optimal revenue

with F =N(0.5,0.5). Here, the standard errors of all numbers are less than 1%.
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Figure 6 Revenue, social welfare, and average number of selected agents of the optimal and efficient mechanisms

versus number of agents, n, with c= 0.05, F =N(0.5,0.5), and Gi =N(0,0.5).

E.3. More Agents

In this section, we investigate how the number of agents can affect the outcome of the opt and

eff mechanisms. Again, F =N(0.5,0.5), Gi =N(0,0.5), and ci = 0.05.

Figure 6 shows the average number of selected agents, revenue, and social welfare versus the

number of agents, n. As the number of agents increases, the revenue and social welfare, and average

number of selected agents in all considered mechanisms rise. However, even in the eff mechanism,

the average number of selected agents is sub-linear (concave) in n.
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