
Accelerating Greedy Coordinate Descent Methods

Haihao Lu 1 Robert M. Freund 2 Vahab Mirrokni 3

Abstract
We introduce and study two algorithms to accel-
erate greedy coordinate descent in theory and in
practice: Accelerated Semi-Greedy Coordinate
Descent (ASCD) and Accelerated Greedy Co-
ordinate Descent (AGCD). On the theory side,
our main results are for ASCD: we show that
ASCD achieves O(1/k2) convergence, and it
also achieves accelerated linear convergence for
strongly convex functions. On the empirical side,
while both AGCD and ASCD outperform Acceler-
ated Randomized Coordinate Descent on most in-
stances in our numerical experiments, we note that
AGCD significantly outperforms the other two
methods in our experiments, in spite of a lack of
theoretical guarantees for this method. To comple-
ment this empirical finding for AGCD, we present
an explanation why standard proof techniques for
acceleration cannot work for AGCD, and we in-
troduce a technical condition under which AGCD
is guaranteed to have accelerated convergence.
Finally, we confirm that this technical condition
holds in our numerical experiments.

1. Introduction
Coordinate descent methods have received much-deserved
attention recently due to their capability for solving large-
scale optimization problems (with sparsity) that arise in
machine learning applications and elsewhere. With inexpen-
sive updates at each iteration, coordinate descent algorithms
obtain faster running times than similar full gradient de-
scent algorithms in order to reach the same near-optimality
tolerance; indeed some of these algorithms now comprise
the state-of-the-art in machine learning algorithms for loss
minimization.

Most recent research on coordinate descent has focused on
versions of randomized coordinate descent, which can es-

1Department of Mathematics and Operations Research Cen-
ter, MIT 2Sloan School of Management, MIT 3Google Research.
Correspondence to: Haihao Lu <haihao@mit.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

sentially recover the same results (in expectation) as full
gradient descent, including obtaining “accelerated” (i.e.,
O(1/k2)) convergence guarantees. On the other hand, in
some important machine learning applications, greedy co-
ordinate methods demonstrate superior numerical perfor-
mance while also delivering much sparser solutions. For
example, greedy coordinate descent is one of the fastest
algorithms for the graphical LASSO implemented in DP-
GLASSO (Mazumder & Hastie, 2012). And sequence mini-
mization optimization (SMO) (a variant of greedy coordi-
nate descent) is widely known as the best solver for kernel
SVM (Joachims, 1999)(Platt, 1999) and is implemented in
LIBSVM and SVMLight.

In general, for smooth convex optimization the standard
first-order methods converge at a rate of O(1/k) (including
greedy coordinate descent). In 1983, Nesterov (Nesterov,
1983) proposed an algorithm that achieved a rate ofO(1/k2)
– which can be shown to be the optimal rate achievable by
any first-order method (Nemirovsky & Yudin, 1983). This
method (and other similar methods) is now referred to as
Accelerated Gradient Descent (AGD).

However, there has not been much work on accelerating
the standard Greedy Coordinate Descent (GCD) due to the
inherent difficulty in demonstrating O(1/k2) computational
guarantees (we discuss this difficulty further in Section 4.1).
The only work that might be close as far as the authors are
aware is (Song et al., 2017), which updates the z-sequence
using the full gradient and thus should not be considered as
a coordinate descent method in the standard sense.

In this paper, we study ways to accelerate greedy coordi-
nate descent in theory and in practice. We introduce and
study two algorithms: Accelerated Semi-Greedy Coordi-
nate Descent (ASCD) and Accelerated Greedy Coordinate
Descent (AGCD). While ASCD takes greedy steps in the
x-updates and randomized steps in the z-updates, AGCD is
a straightforward extension of GCD that only takes greedy
steps. On the theory side, our main results are for ASCD:
we show that ASCD achieves O(1/k2) convergence, and
it also achieves accelerated linear convergence when the
objective function is furthermore strongly convex. However,
a direct extension of convergence proofs for ARCD does not
work for ASCD due to the different coordinates we use to
update x-sequence and z-sequence. Thus, we present a new

Accelerating Greedy Coordinate Descent Methods

proof technique – which shows that a greedy coordinate step
yields a better objective function value than a full gradient
step with a modified smoothness condition.

On the empirical side, we first note that in most of our
experiments ASCD outperforms Accelerated Randomized
Coordinate Descent (ARCD) in terms of running time. On
the other hand, we note that AGCD significantly outper-
forms the other accelerated coordinate descent methods in
all instances, in spite of a lack of theoretical guarantees for
this method. To complement the empirical study of AGCD,
we present a Lyapunov energy function argument that points
to an explanation for why a direct extension of the proof for
AGCD does not work. This argument inspires us to intro-
duce a technical condition under which AGCD is guaranteed
to converge at an accelerated rate. Interestingly, we confirm
that the technical condition holds in a variety of instances
in our empirical study, which in turn justifies our empirical
observation that AGCD works so well in practice.

1.1. Related Work

Coordinate Descent. Coordinate descent methods have
a long history in optimization, and convergence of these
methods has been extensively studied in the optimization
community in the 1980s-90s, see (Bertsekas & Tsitsiklis,
1989), (Luo & Tseng, 1992), and (Luo & Tseng, 1993).
There are roughly three types of coordinate descent meth-
ods depending on how the coordinate is chosen: randomized
coordinate descent (RCD), cyclic coordinate descent (CCD),
and greedy coordinate descent (GCD). RCD has received
much attention since the seminal paper of Nesterov (Nes-
terov, 2012). In RCD, the coordinate is chosen randomly
from a certain fixed distribution. (Richtarik & Takac, 2014)
provides an excellent review of theoretical results for RCD.
CCD chooses the coordinate in a cyclic order, see (Beck
& Tetruashvili, 2013) for basic convergence results. More
recent results show that CCD is inferior to RCD in the worst
case (Sun & Ye, 2016), while it is better than RCD in certain
situations (Gurbuzbalaban et al., 2017). In GCD, we select
the coordinate yielding the largest reduction in the objective
function value. GCD usually delivers better function val-
ues at each iteration in practice, though this comes at the
expense of having to compute the full gradient in order to
select the gradient coordinate with largest magnitude. The
recent work (Nutini et al., 2015) shows that GCD has faster
convergence than RCD in theory, and also provides several
applications in machine learning where the full gradient
can be computed cheaply. A parallel GCD method is pro-
posed in (You et al., 2016) and numerical results show its
advantage in practice.

Accelerated Randomized Coordinate Descent. Since
Nesterov’s paper on RCD (Nesterov, 2012) there has been
significant focus on accelerated versions of RCD. (Nesterov,

2012) developed the first accelerated randomized coordinate
gradient method. (Lu & Xiao, 2015) present a sharper con-
vergence analysis of Nesterov’s method using a randomized
estimate sequence framework. (Fercoq & Richtarik, 2015)
proposed the APPROX (Accelerated, Parallel and PROXi-
mal) coordinate descent method and obtained an accelerated
sublinear convergence rate, and (Lee & Sidford, 2013) de-
veloped an efficient implementation of ARCD.

1.2. Accelerated Coordinate Descent
Framework

Our optimization problem of interest is:

P : f∗ := minimumx f(x) , (1)

where f(·) : Rn → R is a differentiable convex func-
tion.

Definition 1.1. f(·) is coordinate-wise L-smooth for the
vector of parameters L := (L1, L2, . . . , Ln) if ∇f(·) is
coordinate-wise Lipschitz continuous for the corresponding
coefficients of L, i.e., for all x ∈ Rn and h ∈ R it holds
that:

|∇if(x+ hei)−∇if(x)| ≤ Li|h| , i = 1, . . . , n , (2)

where ∇if(·) denotes the ith coordinate of ∇f(·) and ei is
ith unit coordinate vector, for i = 1, . . . , n.

We presume throughout that Li > 0 for i = 1, . . . , n.
Let L denote the diagonal matrix whose diagonal coeffi-
cients correspond to the respective coefficients of L. Let
〈·, ·〉 denote the standard coordinate inner product in Rn,
namely 〈x, y〉 =

∑n
i=1 xiyi, and let ‖ · ‖p denote the `p

norm for 1 ≤ p ≤ ∞. Let 〈x, y〉L :=
∑n
i=1 Lixiyi =

〈x,Ly〉 = 〈Lx, y〉 denote the L-inner product. Define
the norm ‖x‖L :=

√
〈x,Lx〉. Letting L−1 denote the in-

verse of L, we will also use the norm ‖ · ‖L−1 defined by

‖v‖L−1 :=
√
〈v,L−1v〉 =

√∑n
i=1 L

−1
i v2i .

Algorithm 1 presents a generic framework for accelerated
coordinate descent methods that is flexible enough to en-
compass deterministic as well as randomized methods. One
specific case is the standard Accelerated Randomized Coor-
dinate Descent (ARCD). In this paper we propose and study
two other cases. The first is Accelerated Greedy Coordinate
Descent (AGCD), which is a straightforward extension of
greedy coordinate descent to the acceleration framework and
which, surprisingly, has not been previously studied (that
we are aware of). The second is a new algorithm which we
call Accelerated Semi-Greedy Coordinate Descent (ASCD)
that takes greedy steps in the x-updates and randomized
steps in the z-update.

Accelerating Greedy Coordinate Descent Methods

Algorithm 1 Accelerated Coordinate Descent Framework
without Strong Convexity

Input: Objective function f with coordinate-wise
smoothness parameter L, initial point z0 = x0, param-
eter sequence {θk} defined as follow: θ0 = 1, and de-
fine θk recursively by the relationship 1−θk

θ2k
= 1

θ2k−1
for

k = 1, 2,
for k = 0, 1, 2, . . . do

Define yk := (1− θk)xk + θkz
k

Choose coordinate j1k (by some rule)
Compute xk+1 := yk − 1

L
j1
k

∇j1kf(yk)ej1k

Choose coordinate j2k (by some rule)
Compute zk+1 := zk − 1

nL
j2
k
θk
∇j2kf(yk)ej2k

end for

In the framework of Algorithm 1 we choose a coordinate
j1k of the gradient ∇f(yk) to perform the update of the x-
sequence, and we choose (a possibly different) coordinate
j2k of the gradient ∇f(yk) to perform the update of the z-
sequence. Herein we will study three different rules for
choosing the coordinates j1k and j2k which then define three
different specific algorithms:

• ARCD (Accelerated Randomized Coordinate Descent):
use the rule

j2k = j1k :∼ U [1, · · · , n] (3)

• AGCD (Accelerated Greedy Coordinate Descent): use
the rule

j2k = j1k := arg max
i

1√
Li
|∇if(yk)| (4)

• ASCD (Accelerated Semi-Greedy Coordinate De-
scent): use the rule

j1k := arg maxi
1√
Li
|∇if(yk)|

j2k :∼ U [1, · · · , n] .
(5)

In ARCD a random coordinate j1k is chosen at each iteration
k, and this coordinate is used to update both the x-sequence
and the z-sequence. ARCD is well studied, and is known
to have the following convergence guarantee in expectation
(see (Fercoq & Richtarik, 2015) for details):

E
[
f(xk)− f(x∗)

]
≤ 2n2

(k+1)2 ‖x
∗ − x0‖2L , (6)

where the expectation is on the random variables used to
define the first k iterations.

In AGCD we choose the coordinate j1k in a “greedy” fash-
ion, i.e., corresponding to the maximal (weighted) absolute
value coordinate of the the gradient ∇f(yk). This greedy

coordinate is used to update both the x-sequence and the
z-sequence. As far as we know AGCD has not appeared in
the first-order method literature. One reason for this is that
while AGCD is the natural accelerated version of greedy
coordinate descent, the standard proof methodologies for
establishing acceleration guarantees (i.e., O(1/k2) conver-
gence) fail for AGCD. Nevertheless, we show in Section
5 that AGCD is extremely effective in numerical experi-
ments on synthetic linear regression problems as well as
on practical logistic regression problems, and dominates
other coordinate descent methods in terms of numerical
performance. Furthermore, we observe that AGCD attains
O(1/k2) convergence (or better) on these problems in prac-
tice. Thus AGCD is worthy of significant further study,
both computationally as well as theoretically. Indeed, in
Section 4 we will present a technical condition that implies
O(1/k2) convergence when satisfied, and we will argue that
this condition ought to be satisfied in many settings.

ASCD, which we consider to be the new theoretical contri-
bution of this paper, combines the salient features of AGCD
and ARCD. In ASCD we choose the greedy coordinate of
the gradient to perform the x-update, while we choose a
random coordinate to perform the z-update. In this way
we achieve the practical advantage of greedy x-updates,
while still guaranteeing O(1/k2) convergence in expecta-
tion by virtue of choosing the random coordinate used in
the z-update, see Theorem 2.1. And under strong convexity,
ASCD achieves accelerated linear convergence as will be
shown in Section 3.

The paper is organized as follows. In Section 2 we present
the O(1/k2) convergence guarantee for ASCD. In Section
3 we present an extension of the accelerated coordinate de-
scent framework to the case of strongly convex functions,
and we present the associated linear convergence guarantee
for ASCD under strong convexity. In Section 4 we study
AGCD; we present a Lyapunov energy function argument
that points to why standard analysis of accelerated gradient
descent methods fails in the analysis of AGCD. In Section
4.2 we present a technical condition under which AGCD
achieves O(1/k2) convergence. In Section 5, we present re-
sults of our numerical experiments using AGCD and ASCD
on synthetic linear regression problems as well as practical
logistic regression problems.

2. Accelerated Semi-Greedy Coordinate
Descent (ASCD)

In this section we present our computational guarantee for
the Accelerated Semi-Greedy Coordinate Descent (ASCD)
method in the non-strongly convex case, which is Algorithm
1 with rule (5). At each iteration k the ASCD method
chooses the greedy coordinate j1k to do the x-update, and
chooses a randomized coordinate j2k ∼ U [1, · · · , n] to do

Accelerating Greedy Coordinate Descent Methods

the z-update. Unlike ARCD where the same randomized
coordinate is used in both the x-update and the z-update –
in ASCD j1k is chosen in a deterministic greedy way, j1k and
j2k are likely to be different.

At each iteration k of ASCD the random variable j2k is
introduced, and therefore xk depends on the realization of
the random variable

ξk := {j20 , . . . , j2k−1} .

For convenience we also define ξ0 := ∅.

The following theorem presents our computational guaran-
tee for ASCD for the non-strongly convex case:

Theorem 2.1. Consider the Accelerated Semi-Greedy Co-
ordinate Descent method (Algorithm 1 with rule (5)). If f(·)
is coordinate-wise L-smooth, it holds for all k ≥ 1 that:

Eξk
[
f(xk)− f(x∗)

]
≤ 2n2

(k+1)2 ‖x
∗ − x0‖2L . (7)

In the interest conveying some intuition on proofs of accel-
erated methods in general, we will present the proof of The-
orem 2.1 after first stating some intermediary results along
with some explanatory comments. The proofs for these
results can be found in supplementary materials.

We start with the Three-Point Property (Tseng, 2008). Given
a differentiable convex function h(·), the Bregman distance
for h(·) is Dh(y, x) := h(y)−h(x)−〈∇h(x), y−x〉. The
Three-Point property can be stated as follows:

Lemma 2.1. (Three-Point Property (Tseng, 2008)) Let
φ(·) be a convex function, and let Dh(·, ·) be the Bregman
distance for h(·). For a given vector z, let

z+ := arg min
x∈Rn

{φ(x) +Dh(x, z)} .

Then for all x ∈ Rn,

φ(x) +Dh(x, z) ≥ φ(z+) +Dh(z+, z) +Dh(x, z+)

with equality holding in the case when φ(·) is a linear func-
tion and h(·) is a quadratic function.

It follows from integration and the coordinate Lipschitz
condition (2) that for all x ∈ Rn and h ∈ R:

f(x+ hei) ≤ f(x) + h · ∇if(x) + h2Li

2 . (8)

At each iteration k = 0, 1, . . . of ASCD, notice that xk+1 is
one step of greedy coordinate descent from yk in the norm
‖ · ‖L. Now define sk+1 := yk − 1

nL
−1∇f(yk), which is

a full steepest-descent step from yk in the norm ‖ · ‖nL .
We first establish that the greedy coordinate descent step
yields a good objective function value as compared to the
quadratic model that yields sk+1.

Lemma 2.2.

f(xk+1) ≤ f(yk)+〈∇f(yk), sk+1−yk〉+n
2 ‖s

k+1−yk‖2L .

Utilizing the interpretation of sk+1 as a gradient descent
step from yk but with a larger smoothness descriptor (nL
as opposed to L), we can invoke the standard proof for
accelerated gradient descent derived in (Tseng, 2008) for
example. We define tk+1 := zk − 1

nθk
L−1∇f(yk), or

equivalently we can define tk+1 by:

tk+1 = arg min
z
〈∇f(yk), z − zk〉+ nθk

2 ‖z − z
k‖2L (9)

(which corresponds to zk+1 in (Tseng, 2008) for standard
accelerated gradient descent). Then we have:

Lemma 2.3.

f(xk+1) ≤(1− θk)f(xk) + θkf(x∗) +
nθ2k
2 ‖x

∗ − zk‖2L
− nθ2k

2 ‖x
∗ − tk+1‖2L . (10)

Notice that tk+1 is an all-coordinate update of zk, and com-
puting tk+1 can be very expensive. Instead we will use
zk+1 to replace tk+1 in (10) by using the equality in the
next lemma.

Lemma 2.4.

n
2 ‖x

∗ − zk‖2L − n
2 ‖x

∗ − tk+1‖2L
=n2

2 ‖x
∗ − zk‖2L − n2

2 Ej2k

[
‖x∗ − zk+1‖2L

]
. (11)

We now have all the ingredients needed to prove Theorem
2.1.

Proof of Theorem 2.1 Substituting (11) into (10), we ob-
tain:

f(xk+1) ≤(1− θk)f(xk) + θkf(x∗) +
n2θ2k
2 ‖x

∗ − zk‖2L
− n2θ2k

2 Ej2k

[
‖x∗ − zk+1‖2L

]
.

Rearranging and substituting 1−θk+1

θ2k+1
= 1

θ2k
yields:

1−θk+1

θ2k+1

(
f(xk+1)− f (x∗)

)
+ n2

2 Ej2k

∥∥x∗ − zk+1
∥∥2
L

≤
[
1−θk
θ2k

(
f(xk)− f (x∗)

)
+ n2

2

∥∥x∗ − zk∥∥2
L

]
.

Taking the expectation over the random variables
j21 , j

2
2 , . . . , j

2
k , it follows that:

Eξk+1

[
1−θk+1

θ2k+1

(
f(xk+1)− f (x∗)

)
+ n2

2

∥∥x∗ − zk+1
∥∥2
L

]
≤Eξk

[
1−θk
θ2k

(
f(xk)− f (x∗)

)
+ n2

2

∥∥x∗ − zk∥∥2
L

]
.

Accelerating Greedy Coordinate Descent Methods

Algorithm 2 Accelerated Coordinate Descent Framework
(µ-strongly convex case)

Input: Objective function f(·) with known smoothness
parameter L and strongly convex parameter µ, initial
point z0 = x0, parameters a =

√
µ

n+
√
µ and b = µa

n2 .
for k = 0, 1, 2, . . . do

Define yk = (1− a)xk + azk

Choose j1k (by some rule)
Compute xk+1 = yk − 1

L
j1
k

∇j1kf(yk)ej1k

Compute uk = a2

a2+bz
k + b

a2+by
k

Choose j2k (by some rule)
Compute zk+1 = uk − a

a2+b
1

nL
j2
k

∇fj2k(yk)ej2k
end for

Applying the above inequality in a telescoping manner for
k = 1, 2, . . ., yields:

Eξk

[
1−θk
θ2k

(
f(xk)− f (x∗)

)]
≤Eξk

[
1−θk
θ2k

(
f(xk)− f (x∗)

)
+ n2

2

∥∥x∗ − zk∥∥2
L

]
...

≤Eξ0
[
1−θ0
θ20

(
f(x0)− f (x∗)

)
+ n2

2

∥∥x∗ − z0∥∥2
L

]
=n2

2

∥∥x∗ − x0∥∥2
L
.

Note from an induction argument that θi ≤ 2
i+2 for all i =

0, 1, . . ., whereby the above inequality rearranges to:

Eξk
[(
f(xk)− f (x∗)

)]
≤ θ2k

1−θk
n2

2

∥∥x∗ − x0∥∥2
L

≤ 2n2

(k+1)2

∥∥x∗ − x0∥∥2
L
.

3. Accelerated Coordinate Descent
Framework under Strong Convexity

We begin with the definition of strong convexity as devel-
oped in (Lu & Xiao, 2015):

Definition 3.1. f(·) is µ-strongly convex with respect to
‖ · ‖L if for all x, y ∈ Rn it holds that:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ
2 ‖y − x‖

2
L .

Note that µ can be viewed as an extension of the condition
number of f(·) in the traditional sense since µ is defined
relative to the coordinate smoothness coefficients through ‖·
‖L, see (Lu & Xiao, 2015). Algorithm 2 presents the generic
framework for accelerated coordinate descent methods when
f(·) is µ-strongly convex for known µ.

Just as in the non-strongly convex case, we extend the three
algorithms ARCD, AGCD, and ASCD to the strongly con-
vex case by using the rules (3), (4), and (5) in Algorithm 2.
The following theorem presents our computational guaran-
tee for ASCD for the strongly convex case:

Theorem 3.1. Consider the Accelerated Semi-Greedy Co-
ordinate Descent method for the strongly convex case (Algo-
rithm 2 with rule (5)). If f(·) is coordinate-wise L-smooth
and µ-strongly convex with respect to ‖ · ‖L, it holds for all
k ≥ 1 that:

Eξk

[
f(xk)− f∗ + n2

2 (a2 + b)‖zk − x∗‖2L
]

≤
(

1−
√
µ

n+
√
µ

)k (
f(x0)− f∗ + n2

2 (a2 + b)‖x0 − x∗‖2L
)
.

(12)

We provide a concise proof of Theorem 3.1 in the supple-
mentary materials.

4. Accelerated Greedy Coordinate
Descent

In this section we discuss accelerated greedy coordinate
descent (AGCD), which is Algorithm 1 with rule (4). In the
interest of clarity we limit our discussion to the non-strongly
convex case. We present a Lyapunov function argument
which shows why the standard type of proof of accelerated
gradient methods fails for AGCD, and we propose a tech-
nical condition under which AGCD is guaranteed to have
an O(1/k2) accelerated convergence rate. Although there
are no guarantees that the technical condition will hold for
a given function f(·), we provide intuition as to why the
technical condition ought to hold in most cases.

4.1. Why AGCD fails (in theory)

The mainstream research community’s interest in Nesterov’s
accelerated method (Nesterov, 1983) started around 15 years
ago; and yet even today most researchers struggle to find
basic intuition as to what is really going on in accelerated
methods. Indeed, Nesterov’s estimation sequence proof
technique seems to work out arithmetically but with lit-
tle fundamental intuition. There are many recent works
trying to explain this acceleration phenomenon (Su et al.,
2016)(Wilson et al., 2016)(Hu & Lessard, 2017)(Lin et al.,
2015)(Frostig et al., 2015)(Allen-Zhu & Orecchia, 2014)
(Bubeck et al., 2015). A line of recent work has attempted
to give a physical explanation of acceleration techniques
by studying the continuous-time interpretation of acceler-
ated gradient descent via dynamical systems, see (Su et al.,
2016), (Wilson et al., 2016), and (Hu & Lessard, 2017). In
particular, (Su et al., 2016) introduced the continuous-time
dynamical system model for accelerated gradient descent,

Accelerating Greedy Coordinate Descent Methods

and presented a convergence analysis using a Lyapunov
energy function in the continuous-time setting. (Wilson
et al., 2016) studied discretizations of the continuous-time
dynamical system, and also showed that Nesterov’s estima-
tion sequence analysis is equivalent to the Lyapunov energy
function analysis in the dynamical system in the discrete-
time setting. And (Hu & Lessard, 2017) presented an energy
dissipation argument from control theory for understanding
accelerated gradient descent.

In the discrete-time setting, one can construct a Lyapunov
energy function of the form (Wilson et al., 2016):

Ek = Ak(f(xk)− f∗) + 1
2‖x
∗ − zk‖2L , (13)

where Ak is a parameter sequence with Ak ∼ O(k2), and
one shows that Ek is nonincreasing in k, yielding:

f(xk)− f∗ ≤ Ek
Ak
≤ E0

Ak
∼ O

(
1

k2

)
.

The earlier proof techniques of acceleration methods such
as (Nesterov, 1983) and (Tseng, 2008), as well as the recent
proof techniques for accelerated randomized coordinate de-
scent (such as (Nesterov, 2012), (Lu & Xiao, 2015), and
(Fercoq & Richtarik, 2015)) can all be rewritten in the above
form (up to expectation) each with slightly different param-
eter sequences {Ak}.

Now let us return to accelerated greedy coordinate descent.
Let us assume for simplicity that L1 = · · · = Ln (as we
can always do rescaling to achieve this condition). Then
the greedy coordinate j1k is chosen as the coordinate of the
gradient with the largest magnitude, which corresponds to
the coordinate yielding the greatest guaranteed decrease
in the objective function value. However, in the proof of
acceleration using the Lyapunov energy function, one needs
to prove a decrease in Ek (13) instead of a decrease in
the objective function value f(xk). The coordinate j1k is
not necessarily the greedy coordinate for decreasing the
energy function Ek due to the presence of the second term
‖x∗−zk‖2L in (13). This explains why the greedy coordinate
can fail to decrease Ek, at least in theory. And because x∗

is not known when running AGCD, there does not seem to
be any way to find the greedy descent coordinate for the
energy function Ek.

That is why in ASCD we use the greedy coordinate to
perform the x-update (which corresponds to the fastest
coordinate-wise decrease for the first term in energy func-
tion), while we choose a random coordinate to perform the
z-update (which corresponds to the second term in the en-
ergy function); thereby mitigating the above problem in the
case of ASCD.

4.2. How to make AGCD work (in theory)

Here we propose the following technical condition under
which the proof of acceleration of AGCD can be made to
work.

Technical Condition 4.1. There exists a positive constant
γ and an iteration number K such that for all k ≥ K it
holds that:

k∑
i=0

1

θi
〈∇f(yi), zi − x∗〉 ≤

k∑
i=0

nγ

θi
∇jif(yi)(ziji − x

∗
ji) ,

(14)
where ji = arg maxi

1√
Li
|∇if(yk)| is the greedy coordi-

nate at iteration i.

One can show that this condition is sufficient to prove an
accelerated convergence rateO(1/k2) for AGCD. Therefore
let us take a close look at Technical Condition 4.1. The
condition considers the weighted sum (with weights 1

θi
∼

O(i2)) of the inner product of ∇f(yk) and zk − x∗, and
the condition states that the inner product corresponding to
the greedy coordinate (the right side above) is larger than
the average of all coordinates in the inner product, by a
factor of γ. In the case of ARCD and ASCD, it is easy to
show that Technical Condition 4.1 holds automatically up
to expectation, with γ = 1.

Here is an informal explanation of why Technical Con-
dition 4.1 ought to hold for most convex functions and
most iterations of AGCD. When k is sufficiently large, the
three sequence {xk}, {yk} and {zk} ought to all converge
to x∗ (which always is observed in practice though not
justified by theory), whereby zk is close to yk. Thus we
can instead consider the inner product 〈∇f(yk), yk − x∗〉
in (14). Notice that for any coordinate j it holds that
|ykj − x∗j | ≥ 1

Lj
|∇jf(yk)|, and therefore |∇jf(yk) · (ykj −

x∗j)| ≥ 1
Lj
|∇jf(jk)|2. Now the greedy coordinate is cho-

sen by ji := arg maxj
1
Lj
|∇jf(jk)|2, and therefore it is

reasonably likely that in most cases the greedy coordinate
will yield a better product than the average of the compo-
nents of the inner product.

The above is not a rigorous argument, and we can likely
design some worst-case functions for which Technical Con-
dition 4.1 fails. But the above argument provides some
intuition as to why the condition ought to hold in most
cases, thereby yielding the observed improvement of AGCD
as compared with ARCD that we will shortly present in Sec-
tion 5, where we also observe that Technical Condition 4.1
holds empirically on all of our problem instances.

With a slight change in the proof of Theorem 2.1, we can
show the following result:

Theorem 4.1. Consider the Accelerated Greedy Coordinate

Accelerating Greedy Coordinate Descent Methods

κ = 102 κ = 103 κ = 104 κ =∞

Algorithm
Framework 1
(non-strongly

convex)

0 1 2 3 4 5

10−11

10−9

10−7

10−5

10−3

10−1

101

103

0 2 4 6 8 10

10−9

10−7

10−5

10−3

10−1

101

103

0 5 10 15 20 25 30

10−9

10−7

10−5

10−3

10−1

101

103

0 2 4 6 8 10

10−10

10−8

10−6

10−4

10−2

100

102 ASCD
ARCD
AGCD

Algorithm
Framework 2

(strongly
convex)

0 1 2 3 4 5

10−11

10−9

10−7

10−5

10−3

10−1

101

103

0 2 4 6 8 10

10−10

10−8

10−6

10−4

10−2

100

102

0 5 10 15 20 25 30

10−9

10−7

10−5

10−3

10−1

101

103

0 2 4 6 8 10
10−12

10−10

10−8

10−6

10−4

10−2

100

102 ASCD
ARCD
AGCD

Figure 1. Plots showing the optimality gap versus run-time (in seconds) for synthetic linear regression problems solved by ASCD, ARCD
and AGCD.

Descent (Algorithm 1 with rule (4)). If f(·) is coordinate-
wise L-smooth and satisfies Technical Condition 4.1 with
constant γ ≤ 1 and iteration number K, then it holds for
all k ≥ K that:

f(xk)− f(x∗) ≤ 2n2γ
(k+1)2 ‖x

∗ − x0‖2L . (15)

We note that if γ < 1 (which we always observe in practice),
then AGCD will have a better convergence guarantee than
ARCD.
Remark 4.1. The arguments in Section 4.1 and Section
4.2 also work for strongly convex case, albeit with suitable
minor modifications.

5. Numerical Experiments
5.1. Linear Regression

We consider solving synthetic instances of the linear regres-
sion model with least-squares objective function:

f∗ := min
β∈Rp

f(β) := ‖y −Xβ‖22

using ASCD, ARCD and AGCD, where the mechanism for
generating the data (y,X) and the algorithm implementa-
tion details are described in the supplementary materials.
Figure 1 shows the optimality gap versus time (in seconds)
for solving different instances of linear regression with dif-
ferent condition numbers of the matrix XTX using ASCD,
ARCD and AGCD. In each plot, the vertical axis is the ob-
jective value optimality gap f(βk) − f∗ in log scale, and

the horizontal axis is the running time in seconds. Each
column corresponds to an instance with the prescribed con-
dition number κ of XTX , where κ = ∞ means that the
minimum eigenvalue of XTX is 0. The first row of plots is
for Algorithm Framework 1 which is ignorant of any strong
convexity information. The second row of plots is for Al-
gorithm Framework 2, which uses given strong convexity
information. And because the linear regression optimiza-
tion problem is quadratic, it is straightforward to compute
κ as well as the true parameter µ for the instances where
κ > 0. The last column of the figure corresponds to κ =∞,
wherein we set µ using the smallest positive eigenvalue of
XTX , which can be shown to work in theory since all rele-
vant problem computations are invariant in the nullspace of
X .

Here we see in Figure 1 that AGCD and ASCD consistently
have superior performance over ARCD for both the non-
strongly convex case and the strongly convex case, with
ASCD performing almost as well as AGCD in most in-
stances.

We remark that the behavior of any convex function near
the optimal solution is similar to the quadratic function
defined by the Hessian at the optimum, and therefore the
above numerical experiments show promise that AGCD and
ASCD are likely to outperform ARCD asymptotically for
any twice-differentiable convex function.

Accelerating Greedy Coordinate Descent Methods

Dataset µ̄ = 10−3 µ̄ = 10−5 µ̄ = 10−7 µ̄ = 0

w1a

0 100 200 300 400 500

10−4

10−3

10−2

10−1

0 100 200 300 400 500

10−9

10−7

10−5

10−3

10−1

0 100 200 300 400 500

10−11

10−9

10−7

10−5

10−3

10−1

0 100 200 300 400 500
10−6

10−5

10−4

10−3

10−2

10−1

100

ASCD
ARCD
AGCD

a1a

0 100 200 300 400 500

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 100 200 300 400 500

10−12

10−10

10−8

10−6

10−4

10−2

100

0 100 200 300 400 500

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

0 100 200 300 400 500

10−8

10−6

10−4

10−2

100

ASCD
ARCD
AGCD

Figure 2. Plots showing the optimality gap versus run-time (in seconds) for the logistic regression instances w1a and a1a in LIBSVM,
solved by ASCD, ARCD and AGCD.

5.2. Logistic Regression

Here we consider solving instances of the logistic regression
loss minimization problem:

f∗ := min
β∈Rp

f(β) :=
1

n

n∑
i=1

log(1 + exp(−yiβTxi)) ,

using ASCD, ARCD and AGCD, where {xi, yi} is the
feature-response pair for the i-th data point and yi ∈
{−1, 1}. Although the loss function f(β) is not in gen-
eral strongly convex, it is essentially locally strongly convex
around the optimum but with unknown local strong convex-
ity parameter µ̄. And although we do not know the local
strong convexity parameter µ̄, we can still run the strongly
convex algorithm (Algorithm Framework 2) by assigning a
value of µ̄ that is hopefully close to the actual value. Using
this strategy, we solved a large number of logistic regression
instances from LIBSVM (Chang & Lin, 2011). Figure 2
shows the optimality gap versus time (in seconds) for solv-
ing two of these instances, namely w1a and a1a; we present
similar comparisons for more datasets in the supplementary
materials. In each plot, the vertical axis is the objective
value optimality gap f(βk)− f∗ in log scale, and the hor-
izontal axis is the running time in seconds. Each column
corresponds to a different assigned value of the local strong
convexity parameter µ̄. The right-most column in the figure
uses the assignment µ̄ = 0, in which case the algorithms are
implemented as in the non-strongly convex case (Algorithm
Framework 1). The implementation details are described in
the supplementary materials, which also contains plots of
the optimality gaps versus the number of iterations.

Table 1. Largest observed values of γ for five different datasets in
LIBSVM for k ≥ K̄ := 5000.

Dataset: w1a a1a heart madelon rcv1
γ: 0.25 0.17 0.413 0.24 0.016

Here we see in Figure 2 that AGCD always has superior
performance as compared to both ASCD and ARCD. In the
relevant range of optimality gaps (≥ 10−9), ASCD typi-
cally outperforms ARCD for smaller values of the assigned
strong convexity parameter µ̄. However, the performance of
ASCD and ARCD are essentially the same when no strong
convexity is presumed.

Last of all, we attempt to estimate the parameter γ
that arises in Technical Condition 4.1 for AGCD in sev-
eral of the datasets in SVMLIB. Although for small
k, the ratio between

∑k
i=0

1
θi
〈∇f(yi), zi − x∗〉 and∑k

i=0
n
θi
∇jif(yi)(ziji −x

∗
ji

) can fluctuate widely, this ratio
stabilizes after a number of iterations in all of our numerical
tests. From Technical Condition 4.1, we know that γ is the
upper bound of such ratio for all k ≥ K for some large
enough value of K. Table 1 presents the observed values
of γ for all K ≥ K̄ := 5, 000. Recalling from Theorem
4.1 that the γ value represents how much better AGCD can
perform compared with ARCD in terms of computational
guarantees, we see from Table 1 that AGCD should outper-
form ARCD for these representative instances – and indeed
this is what we observe in practice in our tests.

Accelerating Greedy Coordinate Descent Methods

Acknowledgment
The authors thank Martin Jaggi for pointing out the related
work (Locatello et al., 2018), whose connection to this paper
is discussed in the supplementary materials. The authors
are also grateful to the referees for their comprehensive
efforts and their suggestions to improve the readability of
the paper.

References
Allen-Zhu, Zeyuan and Orecchia, Lorenzo. Linear coupling:

An ultimate unification of gradient and mirror descent.
arXiv preprint arXiv:1407.1537, 2014.

Beck, Amir and Tetruashvili, Luba. On the convergence of
block coordinate descent type methods. SIAM journal on
Optimization, 23(4):2037–2060, 2013.

Bertsekas, Dimitri and Tsitsiklis, John. Parallel and dis-
tributed computation: numerical methods, volume 23.
Prentice hall Englewood Cliffs, NJ, 1989.

Bubeck, Sébastien, Lee, Yin Tat, and Singh, Mohit. A
geometric alternative to nesterov’s accelerated gradient
descent. arXiv preprint arXiv:1506.08187, 2015.

Chang, Chih-Chung and Lin, Chih-Jen. Libsvm: a library
for support vector machines. ACM transactions on intel-
ligent systems and technology (TIST), 2(3):27, 2011.

Fercoq, Olivier and Richtarik, Peter. Accelerated, paral-
lel, and proximal coordinate descent. SIAM Journal on
Optimization, 25(4):1997–2023, 2015.

Frostig, Roy, Ge, Rong, Kakade, Sham, and Sidford, Aaron.
Un-regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization. In
International Conference on Machine Learning, 2015.

Gurbuzbalaban, Mert, Ozdaglar, Asuman, Parrilo, Pablo A,
and Vanli, Nuri. When cyclic coordinate descent outper-
forms randomized coordinate descent. In Advances in
Neural Information Processing Systems, pp. 7002–7010,
2017.

Hu, Bin and Lessard, Laurent. Dissipativity theory
for Nesterov’s accelerated method. arXiv preprint
arXiv:1706.04381, 2017.

Joachims, Thorsten. Advances in kernel methods. chap-
ter Making Large-scale Support Vector Machine Learn-
ing Practical, pp. 169–184. MIT Press, Cambridge, MA,
USA, 1999.

Lee, Yin Tat and Sidford, Aaron. Efficient accelerated
coordinate descent methods and faster algorithms for
solving linear systems. In Proceedings of the 2013 IEEE
54th Annual Symposium on Foundations of Computer

Science, FOCS ’13, pp. 147–156, Washington, DC, USA,
2013. IEEE Computer Society.

Lin, Hongzhou, Mairal, Julien, and Harchaoui, Zaid. A uni-
versal catalyst for first-order optimization. In Advances
in Neural Information Processing Systems, 2015.

Locatello, Francesco, Raj, Anant, Reddy, Sai Praneeth,
Rätsch, Gunnar, Schölkopf, Bernhard, Stich, Sebastian U,
and Jaggi, Martin. Revisiting first-order convex optimiza-
tion over linear spaces. arXiv preprint arXiv:1803.09539,
2018.

Lu, Zhaosong and Xiao, Lin. On the complexity analysis of
randomized block-coordinate descent methods. Mathe-
matical Programming, 152(1-2):615–642, 2015.

Luo, Zhi-Quan and Tseng, Paul. On the convergence of
the coordinate descent method for convex differentiable
minimization. Journal of Optimization Theory and Appli-
cations, 72(1):7–35, 1992.

Luo, Zhi-Quan and Tseng, Paul. Error bounds and conver-
gence analysis of feasible descent methods: a general
approach. Annals of Operations Research, 46(1):157–
178, 1993.

Mazumder, Rahul and Hastie, Trevor. The graphical lasso:
new insights and alternatives. Electronic Journal of Statis-
tics, 6:2125, 2012.

Nemirovsky, A. S. and Yudin, D. B. Problem Complexity
and Method Efficiency in Optimization. Wiley, New York,
1983.

Nesterov, Yu. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341–362, 2012.

Nesterov, Yurii. A method of solving a convex program-
ming problem with convergence rate O(1/k2). In Soviet
Mathematics Doklady, volume 27, pp. 372–376, 1983.

Nutini, Julie, Schmidt, Mark, Laradji, Issam, Friedlander,
Michael, and Koepke, Hoyt. Coordinate descent con-
verges faster with the Gauss-Southwell rule than random
selection. In International Conference on Machine Learn-
ing, pp. 1632–1641, 2015.

Platt, John C. Advances in kernel methods. chapter Fast
Training of Support Vector Machines Using Sequential
Minimal Optimization, pp. 185–208. MIT Press, Cam-
bridge, MA, USA, 1999.

Richtarik, Peter and Takac, Martin. Iteration complexity of
randomized block-coordinate descent methods for min-
imizing a composite function. Mathematical Program-
ming, 144(1-2):1–38, 2014.

Accelerating Greedy Coordinate Descent Methods

Song, Chaobing, Cui, Shaobo, Jiang, Yong, and Xia, Shu-
Tao. Accelerated stochastic greedy coordinate descent by
soft thresholding projection onto simplex. In Advances in
Neural Information Processing Systems, pp. 4841–4850,
2017.

Su, Weijie, Boyd, Stephen, and Candes, Emmanuel J. A
differential equation for modeling Nesterovs accelerated
gradient method: theory and insights. Journal of Machine
Learning Research, 17(153):1–43, 2016.

Sun, Ruoyu and Ye, Yinyu. Worst-case complexity of cyclic
coordinate descent: O(n2) gap with randomized version.
arXiv preprint arXiv:1604.07130, 2016.

Tseng, P. On accelerated proximal gradient methods for
convex-concave optimization. Technical report, May 21,
2008.

Wilson, Ashia C, Recht, Benjamin, and Jordan, Michael I.
A Lyapunov analysis of momentum methods in optimiza-
tion. arXiv preprint arXiv:1611.02635, 2016.

You, Yang, Lian, Xiangru, Liu, Ji, Yu, Hsiang-Fu, Dhillon,
Inderjit S, Demmel, James, and Hsieh, Cho-Jui. Asyn-
chronous parallel greedy coordinate descent. In Advances
in Neural Information Processing Systems, pp. 4682–
4690, 2016.

