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S1- The finite horizon optimal allocation 
The optimal control problem for maximizing expected performance in our problem can be written as 

maximizing the expected performance subject to the dynamics of the system and the budget constraint: 

𝑀𝑀𝑀𝑀𝑀𝑀 � 𝐸𝐸(𝑅𝑅)
𝑡𝑡=𝑇𝑇

𝑡𝑡=0
𝑑𝑑𝑑𝑑 

Subject to: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝐶𝐶𝜌𝜌 −
𝑑𝑑
𝜏𝜏

 

𝑑𝑑(0) = 𝑑𝑑0 

𝛼𝛼 + 𝛽𝛽 = 1 

0 ≤ 𝑢𝑢 ≤ 1 

To solve this problem we can set up the present value Hamiltonian with the co-state variable λ which 

represents the shadow price of the capability at any point in time. Noting that environmental shock to the 

earnings, S, has a mean of zero, does not influence system’s dynamics, and its impact is independent of 

the control variable (u), we will have 𝐸𝐸(𝑅𝑅) = 𝑑𝑑𝛼𝛼𝑒𝑒𝑅𝑅
𝛽𝛽, and thus we find a rather simple Hamiltonian 

function: 
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𝐻𝐻(𝑑𝑑,𝑢𝑢, 𝑑𝑑) = 𝑑𝑑𝛼𝛼𝑒𝑒𝑅𝑅
𝛽𝛽 + 𝜆𝜆 �𝑒𝑒𝐶𝐶𝜌𝜌 −

𝑑𝑑
𝜏𝜏
� 

The necessary conditions for finding the optimal allocation policy, u, is: 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

= 0 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑

= −
𝑑𝑑𝜆𝜆
𝑑𝑑𝑑𝑑

 

𝜆𝜆(𝑇𝑇)𝑑𝑑(𝑇𝑇) = 0 

These conditions are also sufficient because the Hamiltonian is concave with respect to u and C for 

feasible values of C and u. Solving the first constraint we find the following optimal allocation fraction: 

𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀�1, �
𝛽𝛽
𝜆𝜆ℎ𝜌𝜌

�
1

1−𝛽𝛽
𝑑𝑑� 

After replacing the optimum allocation in the second condition, the dynamics of co-state variable is 

described by the following differential equation: 

𝑑𝑑𝜆𝜆
𝑑𝑑𝑑𝑑

=
𝜆𝜆
𝜏𝜏
− (1 − 𝛽𝛽) �

𝛽𝛽
𝜆𝜆ℎ𝜌𝜌

�
𝛽𝛽

1−𝛽𝛽
 

Solving this differential equation (using Bernoulli method) we get the following time trajectory for the 

shadow price of capability, λ:  

      𝜆𝜆(𝑑𝑑) = � 𝜏𝜏(1−𝛽𝛽)

�ℎ𝜌𝜌𝛽𝛽 �
𝛽𝛽

1−𝛽𝛽
+ 𝐾𝐾𝑒𝑒

𝑡𝑡
𝜏𝜏(1−𝛽𝛽)�

1−𝛽𝛽

 

Using the end state condition (λ(T)=0) we can solve for the constant K which gives the analytical 

expression for the time trajectory of λ for any time horizon and combination of parameters.  

𝐾𝐾 =
−𝜏𝜏(1 − 𝛽𝛽)

�ℎ𝜌𝜌𝛽𝛽 �
𝛽𝛽

1−𝛽𝛽
𝑒𝑒

𝑇𝑇
𝜏𝜏(1−𝛽𝛽)
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Inspecting the results, we note that this constant term is negative, and very small as long as T>τ(1-β), that 

is, the time to end of horizon is appreciably smaller than the time constant for the erosion of capability. 

Therefore, λ is almost constant until we get fairly close (relative to τ) to the end of investment horizon (T), 

at which time the shadow price starts to decline precipitously (note the exponential term in equation for 

λ), leading to increasing allocation of resources to performance generation and a decline of capability, 

until at exactly time T the shadow price and capability stocks both become zero. 

Therefore, assuming T>τ(1-β), we can find a constant shadow price of capability that applies to a large 

section of our time horizon: 

 

𝑑𝑑𝜆𝜆
𝑑𝑑𝑑𝑑

= 0 ⇒ 𝜆𝜆 =

⎝

⎜
⎛𝜏𝜏(1 − 𝛽𝛽)

�ℎ𝜌𝜌𝛽𝛽 �
𝛽𝛽

1−𝛽𝛽

⎠

⎟
⎞

1−𝛽𝛽

 

Replacing λ with this steady-state value in equation for uDyn and simplifying the equations we get the 

following expression for the approximate optimal control allocation: 

𝑢𝑢 = 𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗
𝑑𝑑
𝑑𝑑∗
� 

This simple expression suggests that optimal allocation in the dynamics case is 1) consistent with the 

steady state allocation, that is, if capability is at the steady-state optimal level, the allocation will be the 

same as steady state. 2) Variations of the optimal path in capability are compensated for by linear shifts in 

the allocation fraction: when capability falls short of the optimal steady state value, the allocation favors 

capability investment, while too much capability (relative to steady state) will lead to more effort (than 

steady state optimal) being allocated to earnings generation. Note that the heuristic used in our paper 

simplifies to this function when γ =0. 
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S2-The infinite horizon optimal allocation 
The infinite horizon optimal control problem with discounted performance can be written as: 

𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑒𝑒−𝑟𝑟𝑡𝑡𝐸𝐸(𝑅𝑅)
𝑡𝑡=∞

𝑡𝑡=0
𝑑𝑑𝑑𝑑 

Subject to: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝐶𝐶𝜌𝜌 −
𝑑𝑑
𝜏𝜏

 

𝑑𝑑(0) = 𝑑𝑑0 

𝛼𝛼 + 𝛽𝛽 = 1 

0 ≤ 𝑢𝑢 ≤ 1 

Here r is the continuous time discount rate. To solve this problem we set up the current value 

Hamiltonian with the transformed co-state variable 𝜓𝜓 and follow the regular steps: 

𝐻𝐻(𝑑𝑑,𝑢𝑢, 𝑑𝑑) = 𝑑𝑑𝛼𝛼𝑒𝑒𝑅𝑅
𝛽𝛽 + 𝜓𝜓 �𝑒𝑒𝐶𝐶𝜌𝜌 −

𝑑𝑑
𝜏𝜏
� 

To find the optimal allocation policy, u, we solve the following equations: 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

= 0 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑

= −
𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

+ 𝑟𝑟𝜓𝜓 

lim
𝑇𝑇→∞

𝑒𝑒−𝑟𝑟𝑡𝑡𝜆𝜆(𝑇𝑇) ≥ 0, lim
𝑇𝑇→∞

𝑒𝑒−𝑟𝑟𝑡𝑡𝜓𝜓(𝑇𝑇)𝑑𝑑(𝑇𝑇) = 0  

Solving the first constraint, we find the following optimal allocation fraction which is similar to the finite 

horizon case: 

𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀�1, �
𝛽𝛽
𝜓𝜓ℎ𝜌𝜌

�
1

1−𝛽𝛽
𝑑𝑑� 

After replacing the optimum allocation in the second condition, the dynamics of co-state variable is 

described by the following equation: 
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𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

= 𝜓𝜓(𝑟𝑟 +
1
𝜏𝜏

) − (1 − 𝛽𝛽) �
𝛽𝛽
𝜓𝜓ℎ𝜌𝜌

�
𝛽𝛽

1−𝛽𝛽
 

In this case, we observe that the equilibrium 𝜓𝜓 value satisfies the terminal conditions and thus provides 

the following solutions for the optimal co-state trajectory and allocation: 

𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

= 0 ⇒ 𝜓𝜓 =

⎝

⎜
⎛ 𝜏𝜏(1 − 𝛽𝛽)

(1 + 𝑟𝑟𝜏𝜏) �ℎ𝜌𝜌𝛽𝛽 �
𝛽𝛽

1−𝛽𝛽

⎠

⎟
⎞

1−𝛽𝛽

 

𝑢𝑢 = 𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗
𝑑𝑑
𝑑𝑑∗

(1 + 𝑟𝑟𝜏𝜏)� 

In the infinite horizon discounted case the optimal allocation differs from the finite horizon, undiscounted, 

case with a factor of (1+rτ): if capabilities are slow to erode (large τ) and if discount rate is high, the 

baseline allocation favors earnings generation beyond the steady state optimal allocation. Moreover, the 

infinite horizon case does not include the precipitous decline in the value of capability at the end of time 

horizon (because there is no end to the time horizon). 

 

 

S3- The effort allocation function and characteristic of the resulting phase diagram 
Variables and model definition (reproduced from the paper)  

Performance Function:     𝑅𝑅 = 𝑑𝑑𝛼𝛼𝑒𝑒𝑅𝑅
𝛽𝛽 + 𝑆𝑆 

Allocated effort to performance    𝑒𝑒𝑅𝑅 = 𝑢𝑢ℎ 

Allocated effort to capability     𝑒𝑒𝐶𝐶 = (1 − 𝑢𝑢)ℎ 

System’s dynamics      𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= 𝑒𝑒𝐶𝐶𝜌𝜌 −
𝐶𝐶
𝜏𝜏
 

Optimal steady-state allocation policy   𝑢𝑢∗ = 𝛽𝛽
𝛼𝛼+𝛽𝛽
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Allocation heuristic used in this study   𝑢𝑢 = 𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗ � 𝑅𝑅
𝑇𝑇

𝑅𝑅𝑢𝑢∗
�
𝛾𝛾
� 𝐶𝐶
𝐶𝐶∗
�
1−𝛾𝛾𝛽𝛽

� 

Target performance      𝑅𝑅𝑇𝑇 = 𝑑𝑑∗𝛼𝛼𝑒𝑒𝑅𝑅∗
𝛽𝛽 

Expected performance using optimal steady state policy  𝑅𝑅𝑢𝑢∗ = 𝑑𝑑𝛼𝛼𝑒𝑒𝑅𝑅∗
𝛽𝛽 + 𝑆𝑆 

Effort to performance under optimal steady state policy 𝑒𝑒𝑅𝑅∗ = 𝑢𝑢∗ℎ 

Capability using optimal steady state policy    𝑑𝑑∗ = (1 − 𝑢𝑢∗)ℎ𝜌𝜌𝜏𝜏 

Throughout the rest of the document, it is assumed that we are using a constant return to scale 

production function (α+β=1). 

Phase diagram 

The phase diagram for the system reflects the changes in capability (dC/dt) as a function of capability. 

Specifically, replacing the equation for allocation into the system’s dynamics, we get: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢)ℎ𝜌𝜌 −
𝑑𝑑
𝜏𝜏

= �1 −𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗ �
𝑅𝑅𝑇𝑇

𝑅𝑅𝑢𝑢∗
�
𝛾𝛾

�
𝑑𝑑
𝑑𝑑∗
�
1−𝛾𝛾𝛽𝛽

��ℎ𝜌𝜌 −
𝑑𝑑
𝜏𝜏

 

after replacement and simplification, we get: 

�̇�𝑑 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ℎ𝜌𝜌�1 −𝑀𝑀𝑀𝑀𝑀𝑀 �1,
𝑢𝑢∗𝑑𝑑∗𝛾𝛾−1

(𝑑𝑑𝛼𝛼𝑒𝑒∗𝑅𝑅1−𝛼𝛼 + 𝑆𝑆)𝛾𝛾𝑑𝑑𝛾𝛾−𝛾𝛾𝛼𝛼−1
�� −

𝑑𝑑
𝜏𝜏

 

The allocation function thus responds to the capability level and to environmental shocks. The latter 

component reduces variability in response to the environmental shocks and the former either smoothes 

earnings (γ>1) or fixes capability shortfalls (γ<1) in response to deviations of capability. The response to 

capability level is thus the result of two competing forces, one which attempts to align the capability level 

with the optimal trajectory based on the optimal control policy, and another which compensates for 

falling capability by increasing allocation to earnings generation, thus smoothing the  earnings trajectory. 

These forces are at balance when γ=1, capability renewal tendencies win for smaller γ and earnings 

smoothing dominates for 𝛾𝛾 ≥ 1. 
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For simplifying the analysis of the system, we focus on the deterministic version of the equation, where 

the impact of environmental noise is excluded from calculations of capability change: 

�̇�𝑑 = ℎ𝜌𝜌�1 −𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗ �
𝑑𝑑
𝑑𝑑∗
�
1−𝛾𝛾

�� −
𝑑𝑑
𝜏𝜏

 

 By equating this equation to zero, we find that it always has a fixed point at 𝑑𝑑∗ where capability equals 

the optimal steady state capability. The existence and number of other fixed points depends on γ.  

1) 𝛾𝛾 ≤ 1:  

For 0 ≤ 𝑑𝑑 ≤ 𝑑𝑑∗ we have: 

�̇�𝑑 = ℎ𝜌𝜌 �1 − 𝑢𝑢∗ �
𝑑𝑑
𝑑𝑑∗
�
1−𝛾𝛾

� −
𝑑𝑑
𝜏𝜏
≥ ℎ𝜌𝜌(1 − 𝑢𝑢∗) −

𝑑𝑑∗

𝜏𝜏
 

Yet the right-hand side of inequality is by definition zero, so �̇�𝑑 ≥ 0.  

Using a similar argument, it is easy to see that for 𝑑𝑑 ≥ 𝑑𝑑∗ the net rate of change in capability is always 

negative. Therefore for 𝛾𝛾 ≤ 1 the phase diagram includes a single equilibrium at 𝑑𝑑∗ and no other fixed 

points, the system will always move back towards this equilibrium. 

2) 𝛾𝛾 > 1: 

Calling 𝑑𝑑∗ � 1
𝑢𝑢∗
�

1
1−𝛾𝛾 = 𝑑𝑑𝑠𝑠, the net flow equation has two ranges: 

 

�̇�𝑑 = −
𝑑𝑑
𝜏𝜏

  𝑀𝑀𝑖𝑖   𝑑𝑑 < 𝑑𝑑𝑠𝑠

�̇�𝑑 = ℎ𝜌𝜌 �1 − 𝑢𝑢∗ �
𝑑𝑑
𝑑𝑑∗
�
1−𝛾𝛾

� −
𝑑𝑑
𝜏𝜏

   𝑀𝑀𝑖𝑖   𝑑𝑑 ≥ 𝑑𝑑𝑠𝑠
 

Therefore, at least one additional fixed point exists at C=0. We now focus on the behavior of �̇�𝑑 when 𝑑𝑑 ≥

𝑑𝑑𝑠𝑠.  
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First, we observe that �̇�𝑑 is a continuous function in C that at 𝑑𝑑𝑠𝑠 takes the −𝐶𝐶
𝜏𝜏
 value and at 𝑑𝑑∗ is zero. The 

extremum for �̇�𝑑 can be found by equating its derivative with respect to C to zero which provides the 

following unique solution: 

𝜕𝜕�̇�𝑑
𝜕𝜕𝑑𝑑

= 0 ⇒ 𝑑𝑑 = �(𝛾𝛾 − 1)ℎ𝜌𝜌𝜏𝜏𝑑𝑑∗𝛾𝛾−1�
1
𝛾𝛾 

On the other hand: 

𝜕𝜕2�̇�𝑑
𝜕𝜕𝑑𝑑2

= −(𝛾𝛾 − 1)𝛾𝛾𝑟𝑟𝑢𝑢∗𝑑𝑑∗𝛾𝛾−1𝑑𝑑−𝛾𝛾−1 

 

All the terms in the equation are positive, except for the one negative sign, therefore, the second 

derivative of capability flow with respect to capability is always negative in this region. As a result, the 

extremum found above is the only maximum for the net capability flow function which should be above 

zero (given that �̇�𝑑 = 0 at 𝑑𝑑∗) and thus there is a single other point at which  �̇�𝑑 = 0. This point can be 

found numerically1 by solving the rate-level equation for zero capability change rate. Given the positive 

first derivative of �̇�𝑑 with respect to C at this point, it is also the only tipping point for the system.  

To recap, when 𝛾𝛾 ≤ 1, the system includes a single unique equilibrium at 𝑑𝑑 = 𝑑𝑑∗. For 𝛾𝛾 > 1 the system 

includes exactly three fixed points: two are stable equilibria at 𝑑𝑑 = 0, 𝑑𝑑 = 𝑑𝑑∗ and one is a tipping point 

located in between. 

S4- Performance of surviving firms in large sample experiments 
Figure S 1 reports the results of large sample experiments where performance of surviving firms are 

graphed as a function of earnings focus and parameters of environmental uncertainty. In panel a, 

variations with increasing standard deviation of demand variability are shown while fixing the correlation 

                                                      
1 No general analytical solution exists for the location of tipping point. 
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time at 12 months. In panel b, noise correlation time is varied, fixing the standard deviation of 

environmental shocks at 10% of optimal performance. In both cases earnings of surviving firms increase 

in expectation as γ increases, because the increase in γ leads to an increasingly lucky sample of surviving 

firms. At very high levels of γ the effect reverses because extremely earnings focused firms, even if very 

lucky, by over investing in capabilities ensure that their performance does not exceed market 

expectations, and thus do not show higher performance. 

  
Figure S 1- Performance of surviving firms as a function of earnings focus and a) Environmental variability b) 
Correlation time of that variability 

 

S5- Time compression diseconomies in capability investments 
We incorporate time compression diseconomies by using the following equation for the capability 

dynamics: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝐶𝐶∗(
𝑒𝑒𝐶𝐶
𝑒𝑒𝐶𝐶∗

)(1−𝛿𝛿)𝜌𝜌 −
𝑑𝑑
𝜏𝜏

 

Here 𝑒𝑒𝐶𝐶∗ = (1 − 𝑢𝑢∗)ℎ is the amount of effort allocated to capability building under optimum steady-state 

allocation policy, and δ is the time compression diseconomy parameter. With δ =0, we get to the base 

model, and with δ=1, capability growth rate will always be equal to the optimum value regardless of the 

actual effort allocated to capability building.  

a b 
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 Figure S 2 reports the resulting fraction of firms that fail (panel a) and performance variability 

under different levels of time compression diseconomies (and earnings focus). In general time, 

compression diseconomies do reduce tipping and failure rates, but only modestly, requiring very high 

values of δ (~1) to fully remove tipping dynamics. Impact on performance variability is negligible. 

  
Figure S 2- Impact of time compression diseconomies on tipping dynamics. 

 

S6- Nonlinear capability erosion rates 
We incorporate potential nonlinearity in capability erosion rates using the following equation for the 

capability dynamics: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝐶𝐶𝜌𝜌 −
𝑑𝑑∗

𝜏𝜏
(
𝑑𝑑
𝑑𝑑∗

)𝜅𝜅 

With this setting,  κ=1 recreates our base model, and κ values above one lead to lower erosion rates for 

capability values below C* and higher erosion rates above optimum capability. In Figure S 3 we report the 

large-scale results where we change κ between 1 and 2 and earnings focus between 0 and 2. Results 

show a modest reduction in failure rates with increases in κ, though within realistic ranges the tipping 

dynamics persist, and there is limited impact on performance variability. 

a b 
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Figure S 3- Impact of nonlinearity in capability erosion rates on firm failure and performance variability among 
surviving firms. 

 

S7- Asymmetric earnings management 
We incorporate potential asymmetries in earnings management using the following equation for 

managerial decision rule: 

𝑢𝑢(𝑆𝑆,𝑑𝑑) =

⎩
⎪
⎨

⎪
⎧ 𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗ �

𝑅𝑅(𝑢𝑢∗, 0,𝑑𝑑∗)
𝑅𝑅(𝑢𝑢∗, 𝑆𝑆,𝑑𝑑)

�
𝛾𝛾

�
𝑑𝑑
𝑑𝑑∗
�
1−𝛾𝛾𝛽𝛽

�  𝑀𝑀𝑖𝑖 𝑅𝑅(𝑢𝑢∗, 0,𝑑𝑑∗) > 𝑅𝑅(𝑢𝑢∗, 𝑆𝑆,𝑑𝑑) 

𝑀𝑀𝑀𝑀𝑀𝑀 �1,𝑢𝑢∗ �
𝑅𝑅(𝑢𝑢∗, 0,𝑑𝑑∗)
𝑅𝑅(𝑢𝑢∗, 𝑆𝑆,𝑑𝑑)

�
𝛾𝛾(1−𝜁𝜁)

�
𝑑𝑑
𝑑𝑑∗
�
1−𝛾𝛾𝛽𝛽

�  𝑀𝑀𝑖𝑖 𝑅𝑅(𝑢𝑢∗, 0,𝑑𝑑∗) ≤ 𝑅𝑅(𝑢𝑢∗, 𝑆𝑆,𝑑𝑑)
 

By changing ζ values between 0 and 1, we can create asymmetric responses where, foreseeing earnings 

to exceed targets, managers may or may not over-invest in capabilities. Specifically, with ζ=1 we get the 

base case model and with ζ=0 we have no adjustment of capability investment based on expected excess 

earnings. Figure S 4 reports on the failure rates for different values of ζ, showing significant robustness of 

the results to this behavioral assumption. 

a b 
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Figure S 4- Impact of asymmetric earnings management heuristics. 

 

S8- Endogenous effort growth 
We incorporate the possibility of endogenous effort growth through the following equation: 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= (𝑅𝑅 �
ℎ(0)
𝑅𝑅∗(0)

�𝑀𝑀𝑀𝑀𝑀𝑀(0,1.2 − 𝜒𝜒𝜒𝜒) − ℎ)/𝜃𝜃 

Here ℎ
(0)

𝑅𝑅∗(0)
 becomes a constant term that reflects the rates by which performance translate into future 

effort availability. The χ parameter regulates the penalty imposed due to variability of earnings, V 

(measured as mean absolute fractional error between the actual performance and market targets). The 

time constant θ represents the time it takes for impact of performance on available effort to materialize 

(due to various perception and physical delays) and a value of 12 month is used in the simulations. The 

equation is formulated to reflect a 20% per year maximum growth rate, and results are similar, but more 

pronounced, for higher growth rates. We start the effort from the initial value in the base model 

(h(0)=200) and allow it to dynamically change in the rest of the simulation time. Large-scale results are 

reported in Figure S 5. While the fraction of firms that fail do not change considerably (tipping dynamics 

are robust to endogenizing h), more significant performance variation is observed in this setting due to 

endogenous growth of lucky firms, sampled due to failure of unlucky ones, among the more earnings-

focused firms. This effect becomes stronger when market puts a penalty on volatility of performance 
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(Panel b). However, once the full sample of firms is considered, short-termism leads to both lower 

performance average and higher variability. 

  

  
Figure S 5- Impact of endogenous effort on firm failure (a) performance of surviving firms (b), variability in performance 
across all firms (c) and performance for all firms (d). 

 

 

 
 

a b 

c d 
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