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A dynamic default correlation model  
We develop a dynamic model of default that matches single-name CDS spreads by 
construction and can be calibrated to standard CDO tranche spreads. We assume that 
single-name default intensities have a one-factor structure with an unobservable systematic 
factor. Our model formalizes an intuitive idea: while the current level of spreads is 
determined by the distribution of default times, spread volatility is determined by the process 
of resolution of uncertainty about default times. We model resolution of uncertainty as 
learning about the unobservable systematic factor. Our model is computationally tractable 
and has the appealing property that the learning process can be specified to match 
empirically observed spread volatility with no affect on the model-implied spread levels1. 
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1. INTRODUCTION 

We develop a framework for pricing multi-name credit products dependent on correlation 
dynamics, such as options on tranches, forward-starting tranches, etc. Our model is “bottom-
up” in nature: we first fit single-name parameters to the observed CDS spread curves, and 
then derive the joint default distribution from a dynamic factor model. Our model formalizes 
an intuitive idea: while the current level of spreads is determined by the distribution of 
default times, spread volatility is determined by the process of resolution of uncertainty 
about default times. We model resolution of uncertainty as learning about the unobserved 
aggregate state of the market. This mechanism generates appealing features of spread and 
default dynamics, e.g., default-induced systematic spread widening, it is tractable and offers 
valuable flexibility in generating spread dynamics.  

We explain the basic idea in the context of pricing of options on standard CDO tranche 
spreads. Standard static copula-based models allow one to match current spreads on single 
names and standard liquid tranches, but they are silent on the volatility (more generally, the 
dynamics) of tranche spreads, since they do not explicitly specify how uncertainty about the 
joint distribution of default times is resolved. In the Chapovsky, Rennie, and Tavares model 
(2006), defaults are modelled in a doubly-stochastic framework and are assumed to be 
conditionally independent, i.e., their arrivals are independent conditionally on realized 
intensities. Furthermore, default correlation is induced by the factor structure of default 
intensities, e.g., by a common stochastic factor driving single-name default intensities. 
Conceptually, this framework can be as tractable as the standard copula-based models and 
can be calibrated to match spreads on individual names and liquid tranches. However, 
calibrating their model to match the volatility of tranche spreads as well, particularly for 
senior tranches, may be quite difficult. The common stochastic factor driving default arrival 
intensities affects both the correlation of defaults and the volatility of tranche spreads. Thus, 
the model must be calibrated to match tranche spread levels and their volatility 
simultaneously, which is a challenging modelling and computational problem. Our approach 
sidesteps this obstacle. We specify the dynamics of default intensities such that the tranche 
spread volatility is essentially de-coupled from current spread levels. Thus, one can start by 
calibrating single-name CDS spreads and current spreads on standard tranches, and then 
specify the dynamics of the model to produce the desired spread volatility without affecting 
the quality of initial calibration. Initial parameter choices impose constraints on the 
maximum achievable tranche spread volatility produced by the model, but otherwise do not 
affect the level and dynamics of volatility produced by the model. Such quasi-separability of 
our model is convenient and the underlying mechanism behind our model is intuitive. 

                                                 
1 I would like to thank Hongwei Cheng, Yadong Li, Marco Naldi, and Lutz Schloegl for many helpful discussions.   
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Consider a market in which single-name default intensities are driven by a common factor 
that in turn depends on an unobservable aggregate state. Market participants know the 
process driving the aggregate state, but do not observe the current state and instead form 
beliefs about it by observing public signals, such as news items and default events. The 
current level of spreads is based on current beliefs about the likelihood of all possible future 
values of default intensities of portfolio names. For senior tranches, this essentially reduces 
to the likelihood of various values of the common factor. However, the future volatility of 
spreads depends on how uncertainty about the future is resolved, i.e., it depends on the nature 
of the learning process. In the absence of news, senior tranche spreads change slowly and 
largely deterministically, while arrival of news leads to changes in investors’ beliefs and 
tranche spreads. Thus, our model effectively separates current spread levels, which depend 
on the joint distribution of default currently perceived by the market, from spread volatility, 
which is affected by the news arrival process. This separation is not complete. To generate 
sufficiently high spread volatility, the model must give rise to sufficiently high dispersion in 
spread levels across the (unobservable) states of the economy; otherwise learning cannot 
have much quantitative impact. With this caveat, the possibility of learning about the 
aggregate state from sources other than defaults, and the effect of such learning on spread 
volatility, gives our approach significant flexibility. 

Our model learning generalizes Collin-Dufresne, Goldstein, and Helwege (2003). Like theirs, 
our model also generates contagion: default of a single name leads to spread widening on other 
names in the portfolio. We extend their analysis to cover a more general specification of single-
name intensity processes necessary to reproduce single-name forward default probabilities.  

The rest of the paper is organized as follows. Section 2 presents the theoretical model. 
Ssection 3 discusses the numerical solution method. Section 4 presents results of calibration 
and numerical experiments. Section 5 concludes. 

2. THE MODEL 

Our model has a single-factor structure, with a common factor driving the default intensities 
of all names in the portfolio. We first describe the dynamics of single-name default 
intensities and then derive the dynamics of beliefs about the common aggregate factor. All 
stochastic processes are defined under the risk-neutral probability measure. To simplify 
notation, we keep this implicit. Furthermore, we assume that interest rates are non-stochastic. 

The single-name default intensity process 

We model the default intensity process of name i , )(~ tiλ , as follows. Let 0)(~ ≥ty be a 
stochastic process representing the systematic default intensity factor. We assume that 

∫∫∫ +=
T

Ai

T

i

T

i tytTdttdtt
000

(~)()()(~)(~ ββαλ

)

dt)  

0)(~ ≥tiα(tAβwhere  is a non-negative deterministic function of time and  is a stochastic 
process representing the idiosyncratic component of the single-name default intensity assumed 

to be independent across names and from the aggregate process 
~ )(ty

)(tA

. We separate 
~ )(β from ty

)(tPi

 purely for convenience of calibration. We also set the current time to zero. 

Let denote the current survival probability curve of name i . Since we require the 
default intensity process to be consistent with the empirical single-name survival probability 

http://www.defaultrisk.com/rs_collin_dufresne.htm
http://www.defaultrisk.com/rs_helwege_jean.htm
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curves, the following equality must hold: ( )[ ]dsst
i∫− 00 )(~exp λEtPi =)( hapovsky, 

Rennie, and Tavares (2006), this is satisfied by construction. 
. As in C
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Independence of the systematic and idiosyncratic components of the default intensity process 
imply that  

~,( ttt ii)(tPi = βα ΦΨ  

Without further restrictions, for any level of the single-name systematic risk exposure 
)(tiβ , one can construct the process )(~ tiα  so that the model reproduces the empirical 

single-name survival curves: 

( )
( ) ( )( ) ( )tz

ttzt
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i
ii

i ~
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+⎟⎟
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dti ln)(~
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where )(~ tzi  is any non-negative process with support [ )∞,0 . However, to make sure that 

the resulting default arrival intensity is always non-negative, we do need to restrict )(~ tzi  to 

as set of admissible processes. First, to ensure non-negativity of )(~ tiλ
)(

 for any value of the 

systematic factor ~ ty )(ti, we require single-name systematic risk exposure β  to be non-

negative and non-decreasing. Second, we require the ratio 
( )

( ) )( )(ttzt
tP

ii

i

β,~, ΦΨ

y

 to be non-

increasing. These two constraints guarantee that default intensities are always non-negative. 
The above constraints are imposed in calibration. 

The systematic component of default arrival intensities 
We assume that the systematic component of single-name default intensities, ~ , depends on 

the state of the economy : { }Js ,...,1s ∈ . The state of the economy follows a continuous-

time Markov chain moving between the  states with transition rates . Specifically, for 

two distinct states 

J s
jkq

j  and k, 

[ ( ) ] dtqjtskdtts jk===+ )(|Prob

∑
≠

−=
jkk

s
jk

s
jj qq

:

s , 

and . 

We model the common (systematic) factor of default intensities as a deterministic function of 
time and state, ( )ty j ( ) ( )( )tyty ts=~. The systematic factor is given by . The Markov-chain 

structure of the state process is analytically and numerically tractable and has been used by 
Graziano and Rogers (2006) to model CDO tranche spreads. However, their model does not 
fit single-name CDS spreads, and they do not model spread dynamics because of learning.  
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Evolution of beliefs 
The state of the economy is not observable and market participants must form beliefs about 
the current state. Given the current beliefs, one can compute prices of various default-

contingent claims. In particular, define a cumulative process . 

Given our specification of the single-name default intensity process, and the assumption of 
conditional independence, the joint distribution of survival probabilities of all names can be 
easily summarized by conditioning on

∫=
T

A dttytTX
0

)(~)()(~ β

)(~ tX . Survival probabilities conditional on the state 

of other credits in the portfolio can be expressed as functions of 
~X )(t : 

( )~ ( ) )(~
( ( )) ( ( )) 1,,)(| iiii

iettttPtXtP βββ −−Φ= tXt  

The conditional expected payoff of a multi-name credit derivative, ( ))(~ tXF , is then easy to 
compute. For example, under the assumption of deterministic recovery rate that we maintain 
in our numerical experiments, conditional expected loss on CDO tranches can be computed 
using a standard recursion. One can then integrate the conditional expected loss over the 
distribution of future values of .  )(~ tX

Given the Markovian structure of the state process, the joint process ( )( ))(~, tXts  is Markov, 

and therefore the distribution of  is completely characterized by the initial distribution 

over the starting values 

)(~ tX
( )( ))0(~,0s X  and the probability law of the process ( )( ))(~, tXts . 

Note that we do not need to know how beliefs about the unobservable values of ( )( ))(~, tXts

( )

 
evolve over time. To price CDO tranches, it suffices to know the distribution of future values 
of ( )~ )(, tXts  given the initial information set. However, the dynamics of tranche spreads 
depends on how beliefs change. More formally, current tranche spreads depend only on the 
conditional distribution of future values of default arrival intensities (current information), 
and not on the filtration (the process of information revelation). Thus, once the conditional 
distribution of future intensities has been calibrated to match tranche spreads, one can 
capture spread volatility by constructing the appropriate filtration. This is a formal 
counterpart of our earlier discussion of separation between calibration of standard tranche 
spreads and spread dynamics. 

We now describe how beliefs about the pair ( )( ))(~, tXts  evolve. Since the process )(~ tX  

can take a continuum of values, the probability distribution (beliefs) over ( )( ))t(~, Xts  are 
characterized by a stochastic PDE. To avoid unnecessary technicalities, and since the 
stochastic PDE will eventually need to be discretized and solved numerically, we instead 
construct a continuous-time Markov chain approximating the process ( )~( ) )(, tXts  and 
derive the evolution of beliefs about its state, which is a well-known filtering problem. 
Finally, we use a discrete-time Markov chain approximation for numerical computations. 
The main reason we use a continuous-time Markov chain approximation as an intermediate 
step is to derive intuitive analytical expressions for impact of news arrival on beliefs. This 
step is not necessary for numerical computations, which one can base directly on the 
discrete-time Markov chain approximation of the original process. 
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)(~
We approximate the process tX )(tX MC

kX Xq
by a continuous-time Markov chain  moving 

between the grid points . Let denote the transition rate matrix of this Markov chain. 
We specify the transition rates in a standard manner to obtain a consistent approximation of 
the original process (see Kushner and Dupuis, 2001, Chs. 5, 12). Specifically, we assume that 
the process either remains at the same grid point or moves up to the next grid point, and that 
transition probabilities satisfy 

( ) ( ) ( )tytXXtq Akk
X
jk

~)( 1 β=−+  

which means that the expected rate of change of the Markov chain coincides with that of the 
original process )(~ tX . Transitions of the Markov chain process for are independent 

from those for the state , which completely specifies the dynamics of the pair 

X
s

( )( ))(t, Xt MCs

( )tp jk

( )

.  

Let  denote the probability distribution capturing current beliefs about the value of the 

pair ( ))(, tXts MC

i

. Beliefs are updated as a result of the arrival of information from 
multiple sources. We model two types of information: defaults and general (“macro-
economic”) news. Assume for simplicity that there are two types of general news processes: 
good and bad news items. Then the information set available to investors at time T consists 
of: 

1. The history from 0 to T of the default status { }ti >τ1  of the portfolio names, where τ  

denotes the default time of name i . 

2. The history from 0 to T of the non-decreasing counting processes ( )( )tN G  and  
( )( )tN B which serve to capture good and bad news arrival in the economy. 

We model news arrival as counting processes, so the same analytical results apply to 
updating of beliefs based on defaults and news arrival. It is straightforward to model news 
arrival as Brownian diffusions. 

We derive the formulas for belief dynamics using a heuristic application of the Bayes’ rule to 
emphasize the economic intuition. Lipster and Shiryaev (Th. 19.6) offer a formal justification 
of our result.  

( )tjk( )tN λ (a news process) with the current arrival rate Consider a counting process , which 

depends on the current state ( )MC
kj Xs ,

( )tN

( ]

. We temporarily ignore the regular transitions of the 

chain and focus on updating of beliefs based on observations of . Using the Bayes’ rule, 
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This is an intuitive relationship. If news arrival is more likely in a particular state ( )MC
kj Xs ,  

(relatively high value of jkλ ), then after observing an arrival one raises the probability of 

this being the current state. Similarly, conditioning on no arrival, 

( ]( )

( ) ( ]( )
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jk tp

Again, we find an intuitive relationship. If the arrival rate of the news item is more likely in a 
particular state ( )MC

kj Xs , , then after observing no arrival one lowers the probability 

attached to this state. For example, while arrival of bad news leads one to revise one’s beliefs 
towards the relatively bad states, lack of bad news has the opposite effect. The difference is 
that the affect of news arrival on beliefs is immediate and discontinuous, while the affect of 
the absence of news is continuous and gradual. 

We now state the above results in more compact form. Define the average arrival rate of the 
counting process 

( ) ( ) ( )∑=
kj ,

jkjk ttpt λλ   

( )tM  defined by Consider a martingale process 

( ) ( ) ( )dtttdNtdM −−= λ  

where  denotes the value of process ( )−tx x  immediately before time . Then, t

( ) ( ) ( )
( ) ( )tdM

t
tptp jk

tjkjk

⎞
⎜⎜
⎝

⎛
−

−
−=d

λ
λ

⎟⎟
⎠

−1  

We now combine the updating due to different sources of information with the underlying 
dynamics of the Markov chain. First, note that the default rate of name i  is given by 

( ) ( ) ( ) ~~~ ( ) ( ) ( ) ( ).~ tytttXttt Aiii βββαλ ++= &

( )tiλ

 

~
 depends on both state variables, Thus, ( )ty~  and ( )tX~ . We denote the default arrival 

rate of name  in state ( ) ( )tjki,
MC
kj Xs ,  by i λ . Next, we define the dynamics of the news 

processes. Let (( ) )tN G  and  (( )( )tN B ( )( )tG
jγ have arrival intensities  and  ( ) )tB

jγ  
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conditional on being in state js = . We assume for simplicity that there are only two news 
processes and that the arrival rate of these processes depends only on the state s  and does 

not depend on X~ . Because arrival intensities of the news processes depend on the state, 
investors can learn something about the current state by observing these processes. We 
define the corresponding martingales 

( ) ( ) ( ) { }BG,NEWSNEWS ∈−−= dtttt γ ,NEWSNEWSdNdM  

Where 

( ) ( ) ( )∑=
kj

jjk ttpt
,

NEWSNEWS γγ  

is the average arrival rate of the news process. We thus obtain the dynamics of beliefs 

( ( ) ( ) ( )) ( )( )
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( ) ( )∑
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⎞
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= i t

 

{ }∈
⎜
⎝ −

We have already seen the intuition behind the updating of beliefs in response to news arrival. 
Next, consider how contagion arises in this model (the mechanism is qualitatively the same 
as in Collin-Dufresne, Goldstein and Helwege, 2003). Suppose that the first name defaults. 
Define the current expected values of the state variables 

( ) ( ) ( )∑=
jk

jjk tytpty ~  

And 

( ) ( ) ( )∑=
jk

kjk tXtptX  

(At the instant of default, the martingale corresponding to the first name, )t1M , increases by 
1. Since 

( ) ( ) ( ) ( ) ( ) (jA ttytttt 111 ) kjk X,1
~ βββα &++=λ  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )tXttytttt A 1111
~ βββαλ &++=  

we find that, following the default of the first name, the probability assigned to being in state 
( )MC

kj Xs ,  changes by 

( ) ( )
Xy

XXyy
p

A

kjA
jk

111

11
~ βββα

βββ
&

&

++
−+−

 

where all variables are evaluated at the instance preceding the default.  

A few qualitative results follow from the above formula. First, changes in probabilities 
assigned to different states are proportional, i.e., one’s belief about the likelihood of a 
particular state following an event is proportional to the prior belief immediately before the 

http://www.defaultrisk.com/rs_collin_dufresne.htm
http://www.defaultrisk.com/rs_helwege_jean.htm
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event. Second, everything else being equal, a default of a name with high idiosyncratic 
component of default intensity iα

~  leads to a smaller revision of the probabilities assigned to 
different states of the systematic factor. The reason is that a default by a name with high 
idiosyncratic risk is not very informative about the systematic factor. Finally, a default of a 
name with high systematic risk loading, e.g., high iβ , increases the perceived likelihood of 
states with high systematic default risk. 

In summary, we have characterized theoretically both the distribution of future default 
intensities conditional on the current information set, which determines current tranche 
spreads, and the process of belief updating, which determines spread evolution. 

3. COMPUTATION 

It is straightforward to compute the distribution of future values of the continuous-time 
Markov chain ( )( ))(, tXts MC . We have derived the transition rates in the previous 
subsection. We now use a standard algorithm (see Kushner and Dupuis, 2001, Chs. 5, 12 ) to 
approximate this continuous-time process using a discrete-time Markov chain. We index the 
states of the chain by ( )kj, . Transitions of the chain in each direction are independent, 

therefore we derive transition probabilities for the discrete-time approximation to ( )ts  and 

 separately. Let ( )tX MC
( )( ( ))( )tkj ','q kj ,,ˆ  denote the time-t probability of the discrete-time 

Markov chain moving from state ( )kj,  at time t  to state ( )',' kj  at time tt Δ+ . Similarly, 

let  and(s ) ( )Xq
jj '

ˆ t tq
kk '

ˆ

( ) ( )( )( )
denote the transition probability alone each dimension. Then, 

( ) ( )tqtqtq X
kk

s
jjkjkj ''',',, ˆˆˆ =

tΔ

( ) ( )

. 

Let  denote the time step of the discrete-time Markov chain. Then,  

)( ( )
( )∑

≠

Δ−=

jnn

s
jn

jjttq

tq
tq

et
s
jj

:

'1
s

sq
jj

ˆ
'

 

is the transition probability of the approximating discrete-time Markov chain from state j  to 

state . As before, (jj ≠' )tqs
jj '

 denotes the transition rates of the continuous-time chain we 

are approximating. The same approximation can be used for transitions in the X-dimension. 

With the transition probabilities established, one can now compute the distribution over the 
future values of the chain simply by iterating forward the following one-step calculation, 
starting from the initial probability distribution over the states (beliefs): 

( ) ( ) ( ) ( )∑=Δ+
kj

Xs
jjjkkj tqtqtpttp

,
''' ˆˆ  kk '

4. CALIBRATION 

We calibrate our model to match prices of standard liquid CDO tranches. For each choice of 
the parameters governing the state variable process , we calibrate single-name 
systematic risk exposure as follows. 

( )ts

( )tAFirst, we calibrate the function β  so that the compensator Φ  mimics the shape of 
the “representative” survival curve. This initial step is not required, but it helps maintain 

( )1,t
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sufficiently high single-name loadings on the systematic source of default risk while ensuring 
that single-name default arrival rates are non-negative, i.e., that the condition  

( )
( )( ) 0

,
ln <⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ tt

tP
dt
d

i

i

β
 

is satisfied.  

Next, we calibrate single-name loadings on the systematic source of default risk ( )tiβ . In 
particular, our aim is to allow for a sufficiently high contribution of systematic risk loading 
to the total variance of future default arrival rates, so that movements of the systematic factor 
could generate sufficiently high correlation of default arrivals across names. We do this by 
requiring that, for any two tenors of CDO tranches T 21 T< ,  

( )( )( ) ( )( )( ) ( )( )( ( )( ))1212 lnln,ln TPTPTT ii
sys
ii −≈Φ θβ 1,T iβ2 lnT Φ−

10 << sys
i

θ

 

where the parameter  controls the systematic risk exposure of name . 

Moreover, we require the function 

i
( )tiβ  to be non-decreasing. We aim to calibrate all 

single-name survival probability curves using the same value of the parameter . 

However, it may be necessary to reduce the value of this parameter for certain names to 

make sure that the condition 

sys
i

θ

( )
( ))( 0

,Φ t
tP

i

i

β
ln <⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
tdt

d

i

 is satisfied by a non-decreasing curve 

( )tβ . This may happen if, for instance, most names in the portfolio have upward-sloping 
forward default arrival rate curves, but a particular name has a steep downward-sloping 
forward default arrival rate curve. Then, for this name it may be impossible to achieve the 
desired level of systematic risk exposure with a non-decreasing curve (ti )β . 

Using the above procedure for matching single-name survival probability curves, we 
calibrate parameters of the systematic factor process, which include the initial probabilities 
attached to various states, the state-specific systematic factor values , and the transition 

rates between states, which we also allow to be deterministic functions of time. In particular, 
in our numerical experiments we found that sufficient flexibility is achieved by allowing 
these time-dependent functions to be piece-wise-linear between the CDO tranche tenors. 

( )ty j

When choosing parameter values, we aim to minimize a measure of distance between model-
predicted spreads and the observed bid-ask interval for tranche spreads. Depending on the 
application, an additional term can be added to the objective function to penalize day-to-day 
variation of calibrated model parameters, thus increasing parameter stability. 

5. NUMERICAL EXPERIMENTS 

In this section, we calibrate our model to tranche prices of the CDX IG9 index on 05/05/2008 
and illustrate the impact of learning on tranche prices.  

We assume a deterministic recovery rate of 40%. It is well known that, under recent market 
conditions, constant-recovery models have difficulty matching prices of senior tranches. 
However, we opt for the simplicity afforded by the constant-recovery assumption. Our basic 
framework can be extended to allow for stochastic recovery rates. 
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We use a four-state specification of the model and order the states so that the systematic factor 
values  are increasing with the state index. We report the key parameter values in Figure 

1. The matrix of transition rates between states, 

( )ty j

( )tqs , and the state-dependent systematic 

factor values ( )ty j

y

 are assumed to be piece-wise constant between tranche tenors. Since we 

are calibrating to prices of five-, seven-, and 10-year tranches, we end up with three sets of 
values for  and . We also report the initial probabilities attached to the four states. We 

calibrate the model under the assumption that the initial value of the cumulative process, 
, almost surely equals zero, while the initial value of the state is not observable. 

sq j

)0(X )0(s

Figure 1.  Key parameters of the four-state model 

Time interval Initial probabilities 

 1 2 3 4
81.7% 14.5% 3.8% 0.0%  

 
Transition rate matrix  sq

0-5Y 

1 2 3 4
1 -0.220 0.201 0.019 0.000
2 13.788 -14.799 1.000 0.011
3 0.000 0.122 -0.167 0.045
4 0.000 0.010 0.000 -0.010  

5-7Y 

1 2 3 4
1 -0.284 0.184 0.100 0.000
2 13.845 -14.842 0.997 0.000
3 0.000 1.510 -1.513 0.003
4 0.000 0.010 0.000 -0.010  

7-10Y 

1 2 3 4
1 -0.862 0.762 0.100 0.000
2
3
4

13.800 -14.800 1.000 0.000
0.000 1.610 -1.650 0.045
0.000 0.010 0.000 -0.010  

 Systematic factor values y  

0-5Y 
1 2 3 4

0.000 0.062 0.191 10.000  

5-7Y 
1 2 3 4

0.015 0.198 1.266 10.000  

7-10Y 
1 2 3 4

0.000 0.000 0.011 10.000  

Source: Lehman Brothers 
 

Calibrated parameter values have an intuitive interpretation. By construction, the systematic 
factor is increasing with the state index, thus lower states are interpreted as relatively good 
(low likelihood of defaults) and high states as relatively bad (high likelihood of defaults). 
Since the values of the factor are modulated by the time-dependent function )(tAβ , only the 
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relative values of the factor have economic meaning. We observe that the fourth state is 
significantly worse than any other state. We think of this as a disaster state. 

At time zero, the model attaches the highest likelihood to state 1 (82%), with state 2 being 
the second most likely state (14%). Transition rates between states imply that the economy is 
usually in state 1, with infrequent transitions to state 2 and even more rare transition to states 
3 and 4. Once in state 2 or 3, the economy tends to revert to a better state relatively quickly. 
This is not the case for the disaster state, 4: we set the transition probability out of this state 
to a very low value, which means that once the economy is in the disaster state, multiple 
defaults are practically inevitable. Current probability attached to states 2 and 3 is relatively 
high given the transition probabilities. This is consistent with the increase in risk observed 
during the past few months. In the framework of our model, one would attribute the 
relatively high likelihood of bad states to the recent arrival of negative news. 

Figure 2 compares the tranche spreads implied by the model to the market data. We see that 
the four-state version of the model offers sufficient flexibility to match spreads of all 
tranches at the five-year tenor, but has difficulty matching spreads on tranches with longer 
tenors, particularly those of senior tranches.  

Figure 2.  Model-implied and market tranche spreads 

Term Tranche Upfront or Spread 
  Data Model 
5Y 0-3% 

3-7% 
7-10% 
10-15% 
15-30% 

60.91 
383.23 
197.07 
96.31 
41.03 

60.83 
385.27 
194.76 
95.89 
40.44 

7Y 0-3% 
3-7% 
7-10% 
10-15% 
15-30% 

65.87 
464.37 
229.15 
118.65 
45.66 

67.52 
479.24 
224.55 
143.42 
49.05 

10Y 0-3% 
3-7% 
7-10% 
10-15% 
15-30% 

69.31 
550.57 
278.36 
133.18 
54.57 

69.70 
561.60 
264.76 
159.10 
65.80 

CDX IG9 tranche quotes at close of business on 5 May 2008 and the corresponding model-implied spreads. 
Source: Lehman Brothers 

To illustrate the impact of learning on spread dynamics, suppose that we have just observed 
the arrival of a news process with arrival rates dependent on the state  and equal to 1.5, 1.0, 
0.75, and 0.0001 in states 1, 2, 3, and 4, respectively. This process has relatively high arrival 
rates in good states compared to bad states, and can thus be interpreted as the good-news 
process. Using the general formula for updating beliefs, we find that the probabilities assigned 
to different states change from the calibrated values (81.7%, 14.5%, 3.8%, 0%) to (87.6%, 
10.3%, 2.0%, 0%). As expected, the perceived likelihood of bad states has fallen, while the 
likelihood of the best state (state 1) has risen. Figure 3 reports the updated tranche spreads.  

s
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Figure 3.  Model-implied tranche spread change following news arrival 

Term Tranche Upfront or Spread 
  Before News After News 
5Y 0-3% 

3-7% 
7-10% 
10-15% 
15-30% 

60.83 
385.27 
194.76 
95.89 
40.44 

60.01 
342.00 
160.80 
76.34 
33.92 

7Y 0-3% 
3-7% 
7-10% 
10-15% 
15-30% 

67.52 
479.24 
224.55 
143.42 
49.05 

65.29 
382.20 
148.69 
72.59 
27.55 

10Y 0-3% 
3-7% 
7-10% 
10-15% 
15-30% 

69.70 
561.60 
264.76 
159.10 
65.80 

68.24 
517.43 
240.21 
140.52 
56.00 

Model-implied tranche spreads before and after and arrival of positive news. 
Source: Lehman Brothers 

Positive news reduces tranche spreads, particularly for senior tranches. This is intuitive. 
Positive news affects the distribution of future values of the systematic factor, shifting 
probability mass towards lower values of the factor. This reduces individual CDS spreads and 
default correlation. Because news about the systematic factor does not affect idiosyncratic 
default intensities, it is not surprising that it has relatively weak impact on the equity tranche 
spread. Lower single-name spreads reduce the equity tranche spread, while reduced default 
correlation has the opposite affect. The net result is a small reduction in the equity tranche 
spread. In contrast, senior tranche spreads are much more affected, mostly because of reduced 
default correlation. Thus, senior tranche spreads show a lot more sensitivity to the change in 
beliefs about the initial value of the aggregate state. In contrast, junior tranche spreads are more 
sensitive to changes in idiosyncratic single-name default intensities (shocks to ~ )(tzi ).  

Next, we illustrate our model’s ability to generate contagion. We assume that a default is 
observed at time zero. Since, mathematically, a default has the same impact as a negative news 
arrival, all we must do is calibrate a negative news process to mimic default of one credit.  

We consider two cases: default by a high-yield name, and default by a relatively safe high-
grade name. Based on the range of calibrated model parameters, we set ( ) 7.00 =Aβ and 

consider name  with i ( ) 35.00 =iβ . We assume that credit is not in the portfolio, so its 
default affects tranche spreads only as a result of its informational content. For a high-yield 
name, we set the current value of the idiosyncratic default arrival component to 

i

15.0)0(~ =iα . Based on the general expression for the single-name default arrival rate, 

which simplifies because ( ) 00~ =X , a default by such a name is equivalent to an arrival of 

the news process with state-contingent arrival-rates ( ).0*245.015.0 jj y+=γ  

Immediately following the default, beliefs about the current aggregate state change from 
(81.7%, 14.5%, 3.8%, 0%) to (79.6%, 15.5%, 4.9%, 0%). In contrast, consider a high-grade 
name with a much lower idiosyncratic default arrival rate ~ 02.0)0( =iα , so that 
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( ).0*245.002.0 jj y+=γ  In the event of default by such a name, beliefs are revised to 

(68.1%, 21.2%, 10.6%, 0%). We see that a default by a high-grade name has much larger 
impact on the beliefs about the aggregate state. The reason is that the idiosyncratic 
component of the default arrival rate on such a name is relatively low, thus its default arrival 
rate is much more sensitive to the current state than that of a high-yield name. Accordingly, 
default by a high-grade name is much more informative about the aggregate state than 
default by a high-yield name.  

Figure 4 compares post-default five-year tranche spreads under the two scenarios. 

Figure 4.  Model-implied tranche spreads following a default 

Term Tranche Upfront or Spread 
  Before News After News 
   Default by 

High-Yield 
Default by 

High-Grade 
5Y 0-3% 

3-7% 
7-10% 
10-15% 
15-30% 

60.83 
385.27 
194.76 
95.89 
40.44 

61.26 
409.48 
213.72 
106.74 
44.04 

63.60 
546.84 
319.26 
166.22 
63.63 

Model-implied tranche spreads for the five-year tenor before and after a default. The defaulted name is either high-yield, 
or high-grade. 
Source: Lehman Brothers 

Our framework has further implications for post-default spread dynamics. If the true state of 
the world in which the default took place is relatively good, then this default is not likely to 
be followed by further negative news or additional defaults. The lack of negative events is 
interpreted by the Bayesian observer as evidence against being in one of the bad states, thus, 
following the immediate post-default widening, spreads tend to drift back to normal levels 

CONCLUSION 

We have presented a framework for modeling default correlation and spread dynamics. Our 
numerical experiments illustrate the main features of the model and show that even a basic 
four-state version of the model can reproduce recently observed tranche spreads with 
reasonable accuracy.  

Our analysis suggests several natural topics for further research. We calibrate our model to a 
single snapshot of market prices, and do not investigate parameter stability over time. 
Ideally, a well-specified model should allow one to fit a time series of tranche spreads with 
relatively stable parameters. Since increased model flexibility (e.g., more aggregate states) 
may be needed to match prices under various market conditions, one must deal with 
parameter proliferation, perhaps using some kind of regularization technique. One must also 
develop an effective algorithm for calibrating the news processes to match the empirical data 
on spread dynamics. Finally, it would be natural to introduce stochastic recovery in case of 
default, perhaps by assuming that the recovery ratio is lower in bad aggregate states. This 
may be necessary to replicate the recently observed high spreads on senior tranches. 
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