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1 Technical Details of Model Solution

First, we present the HJB equations for value functions for the 2-state case in the paper.

Then, we present the HJB equations for the n-state case and present the solutions to the

value functions, of which the n = 2 case is a special case. To this end, we split Proposition 1

in the main text into two propositions, one for the debt value function (Proposition 1), and

one for the equity value function (Proposition 2).

Throughout, diag (·) is the diagonalization operator mapping any row or column vector

into a diagonal matrix (in which all off-diagonal elements are identically zero).

1.1 State Transitions

As notational conventions, we use capitalized bold-faced letters (e.g., X) to denote matrices,

lower case bold face letters (e.g. x) to denote vectors, and non-bold face letters denote scalars

(e.g. x). The only exceptions are the value functions for debt and equity, D,E respectively,

which will be vectors, and the (diagonal) matrix of drifts, µ. Dimensions for most objects are

given underneath the expression. While we focus on 2-aggregate-state case where s ∈ {G,B},

the Appendix presents general results for an arbitrary number of (Markov) aggregate states.
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Given the aggregate state s, recall that we have assumed that the intensity of switching

from state-H to state-L is ξs, and the L-state is absorbing, i.e., those L-type investors leave

the market forever. However, an L-type bond holder meets a dealer with intensity λs and

sells the bond for Bs = βDs
H + (1− β)Ds

L that he himself values at Ds
L. Then the L-type’s

intensity-modulated surplus when meeting the dealer can be rewritten as

λs (Bs −Ds
L) = λsβ (Ds

H −Ds
L) .

As a result, for the purpose of pricing, the effective transitioning intensity from L-type to

H-type is qLs→Hs = λsβ where λs is the state-dependent intermediation intensity and β is

the investor’s bargaining power.

1.2 Debt

Recall that the midpoint price is

P s =
As +Bs

2
=

(1 + β)Ds
H + (1− β)Ds

L

2
= wHD

s
H + wLD

s
L

with wH + wL = 1 and that holding costs are

hcs = χs [N − P s] = χs [N − wHD
s
H − wLD

s
L]

Stacking the holding cost function, we have

hc (y) = χ [N−W ·D (y)]
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where χ = diag ([χG, χG, χB, χB]), N = [0, N, 0, N ]> and

W =


0 0 0 0

wH wL 0 0

0 0 0 0

0 0 wH wL


is the appropriate weighting matrix. Thus, hc (y) has identcially zero odd-numbered rows.

Then, debt follows, on I2,

R̂ ·D(2) (y)︸ ︷︷ ︸
Discounting,4×1

= µ︸︷︷︸
4×4

(
D(2)

)′
(y)︸ ︷︷ ︸

4×1

+
1

2
Σ︸︷︷︸
4×4

(
D(2)

)′′
(y)︸ ︷︷ ︸

4×1

+ Q̂ ·D(2) (y)︸ ︷︷ ︸
Transition,4×1

+ c14︸︷︷︸
Coupon,4×1

+m
[
p14 −D(2) (y)

]︸ ︷︷ ︸
Maturity,4×1

− hc (y)︸ ︷︷ ︸
Holding Cost,4×1

, (1)

where Q̂ is the effective transition matrix (accounting for the OTC market outcome via the

recovery intensity λsβ) for debt out on interval I2, given by

Q̂ =


−ξG − ζG ξG ζG 0

βλG −βλG − ζG 0 ζG

ζB 0 −ξB − ζB −ξB
0 ζB βλB −βλB − ζB

 ,

and where

R̂ ≡ diag ([rG, rG, rB, rB]) ,µ ≡ diag ([µG, µG, µB, µB]) ,Σ ≡ diag
([
σ2
G, σ

2
G, σ

2
B, σ

2
B

])
.

Substituting it in, and noting that X = X(n) where n is the number of state, we have

R̂(2) ·D(2) (y)︸ ︷︷ ︸
Discounting,4×1

= µ(2)︸︷︷︸
4×4

(
D(2)

)′
(y)︸ ︷︷ ︸

4×1

+
1

2
Σ(2)︸︷︷︸
4×4

(
D(2)

)′′
(y)︸ ︷︷ ︸

4×1

+ Q̂(2) ·D(2) (y)︸ ︷︷ ︸
Transition,4×1

+ c14︸︷︷︸
Coupon,4×1

+m
[
p14 −D(2) (y)

]︸ ︷︷ ︸
Maturity,4×1

−
[
χ(2)N(2) − χ(2)W ·D(2) (y)

]︸ ︷︷ ︸
Holding Cost,4×1

, (2)
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For simulation purposes, we need to incorporate W in such a way into R and Q that there

is a unique discount rate in each state (i, s), i.e. R stays a diagonal discount matrix, and

that Q stays a true transition matrix.1 Thus, decompose W = W1 + W2 so that

W1 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



W2 =


0 0 0 0

wH −wH 0 0

0 0 0 0

0 0 wH −wH


First, we augement Q̂ to give the new transition matrix

Q ≡ Q̂+χW2 =


−ξG − ζG ξG ζG 0

βλG + χGwH −βλG − ζG − χGwH 0 ζG

ζB 0 −ξB − ζB −ξB
0 ζB βλB + χBwH −βλB − ζB − χBwH


1Let Q be a transition matrix. Then define, for a finited time-interval ∆t, the discrete-time transition

matirx is given by
Qdiscrete ≡ exp (Q∆t)

Note that ∆t = 0 implies that Qdiscrete = I and thus there is total persistence of the states. Also, note that
since Q is a transition matrix that we have Qdiscrete1 = 1. This comes from the fact that

exp (Q∆t) 1 = I · 1 +

∞∑
k=1

Qk · 1 (∆t)
k

k!
= 1

as Qk1 = 0 for all k ≥ 1.
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Note that Q is still a true transition matrix. Next, let us define the diagonal discount matrix

R(2) as

R ≡ R̂− χW1 =


rG 0 0 0

0 rG − χG 0 0

0 0 rB 0

0 0 0 rB − χB


and we acknowledge the possibility of an indiviual entry being negative. Then, we have

[
R(2) +mI4 −Q(2)

]︸ ︷︷ ︸
4×4

D(2) (y)︸ ︷︷ ︸
4×1

= µ(2)︸︷︷︸
4×4

(
D(2)

)′
(y)︸ ︷︷ ︸

4×1

+
1

2
Σ(2)︸︷︷︸
4×4

(
D(2)

)′′
(y)︸ ︷︷ ︸

4×1

+ c14︸︷︷︸
Coupon,4×1

− χ(2)N(2)︸ ︷︷ ︸
Holding Cost,4×1

+ m · p14︸ ︷︷ ︸
Maturity,4×1

, (3)

the final form of the second-order ODE we are interested in.

Define R(1) =

 rG + ζG 0

0 rG − χG + ζG

, Q(1) ≡

 −ξG ξG

βλG + χGwH −βλG − χGwH


and Q̃(1) ≡

 ζG 0

0 ζG

 = ζGI2. On interval I1 = [ydef (G) , ydef (B)], the bond is “dead” in

state B, and the alive bonds D(1) =
[
D

(G,1)
H , D

(G,1)
L

]>
solve

[
R(1) +mI2 −Q(1)

]
D(1) = µ(1)

(
D(1)

)′
+

1

2
Σ(1)

(
D(1)

)′′
+ Q̃(1)

 αB
H

αB
L

 vBU (y)

+
(
c12 − χ(1)N(1)

)
+m · p12 (4)

for

y ∈ I1 = [ydef (G) , ydef (B)] ,

where the last term is the recovery value in case of a jump to default brought about by a

state jump.
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The boundary conditions at y =∞ and y = ydef (G) are standard:

lim
y→∞

∣∣D(2) (y)
∣∣ <∞, and D(1)

(
yGdef

)
=

 αG
H

αG
L

 vGU (yGdef) (5)

For the boundary yBdef , we must have value matching conditions for all functions across

ydef (B):

D(2)
(
yBdef

)
=


D(1)

(
yBdef

) αB
H

αB
L

 vBU (yBdef)
 (6)

and smooth pasting conditions for functions that are alive across yBdef (x[1:2] selects the first 2

rows of vector x): (
D(2)

)′ (
yBdef

)
[1:2]

=
(
D(1)

)′ (
yBdef

)
. (7)

1.3 Equity

For equity, we have

RR = diag ([rG, rB]) ,µµ = diag ([µG, µB]) ,ΣΣ = diag
([
σ2
G, σ

2
B

])
, (8)

and

QQ(2) =

 −ζG ζG

ζB −ζB


so that

RR(2)E(2) (y)︸ ︷︷ ︸
Discounting,2×1

= µµ(2)︸ ︷︷ ︸
2×2

(
E(2)

)′
(y)︸ ︷︷ ︸

2×1

+
1

2
ΣΣ(2)︸ ︷︷ ︸
2×2

(
E(2)

)′′
(y)︸ ︷︷ ︸

2×1

+QQ(2)E(2) (y)︸ ︷︷ ︸
Transition,2×1

+ 12 exp (y)︸ ︷︷ ︸
Cashflow,2×1

− (1− π) c12︸ ︷︷ ︸
Coupon,2×1

+m
[
S(2) ·D(2) (y)− p12

]︸ ︷︷ ︸
Rollover,2×1

(9)
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where QQ(2) is the effective transition matrix for equity out on interval I2 and RR(2) is the

effective discount matrix.

For I1, define RR(1) = rG + ζG,µµ
(1) = µG,ΣΣ(1) = σ2

G,QQ(1) = 0, Q̃Q
(1)

= ζG. Then

[
RR(1) −QQ(1)

]
E(1) (y) = µµ(1)

(
E(1)

)′
(y) +

1

2
ΣΣ(1)

(
E(1)

)′′
(y) + Q̃Q

(1)
01

+11 exp (y)− (1− π) c11 +m
[
S(1) ·D(1) (y)− p11

]
(10)

The particular solution is

E(2) (y)︸ ︷︷ ︸
2×1

= GG(2)︸ ︷︷ ︸ ·
2×4

exp
(
ΓΓ(2)y

)
︸ ︷︷ ︸

4×4

· bb(2)︸ ︷︷ ︸
4×1

+ KK(2)︸ ︷︷ ︸
2×8

exp
(
Γ(2)y

)
︸ ︷︷ ︸

8×8

b(2)︸︷︷︸
4×2

+

kk
(2)
0︸ ︷︷ ︸

2×1

+ kk
(2)
1︸ ︷︷ ︸

2×1

exp (y) for y ∈ I2

E(1) (y)︸ ︷︷ ︸
1×1

= GG(1)︸ ︷︷ ︸ ·
1×2

exp
(
ΓΓ(1)y

)
︸ ︷︷ ︸

2×2

· bb(1)︸ ︷︷ ︸
2×1

+
1×4

KK(1)︸ ︷︷ ︸exp
(
Γ(1)y

)
︸ ︷︷ ︸

4×4

b(1)︸︷︷︸
4×1

+

kk
(1)
0︸ ︷︷ ︸

1×1

+ kk
(1)
1︸ ︷︷ ︸

1×1

exp (y) for y ∈ I1

where GG(i),ΓΓ(i), bb(i),KK(i), kk
(i)
0 and kk

(i)
1 for i ∈ {1, 2} are given below. In particular,

the constant vector bb(i) is determined by boundary conditions similar to those for debt.

1.4 Defaulted bonds

Consider now a defaulted bond. Its value Di
l (y) will be determined by the holding cost

hcsdef (y) = χdef
s

[
Ndef − P def

s (y)
]
. Let V (y) = diag

([
vGU (y) , vGU (y) , vBU (y) , vBU (y)

])
. Then,

we can write out

R̂ ·Ddef (y) = θ
[
V (y)α−Ddef

]
+ Q̂def ·Ddef (y)− χdef

[
Ndef −WdefDdef (y)

]
(11)

which is solved by

Ddef (y) =
[
R̂ + θIn − Q̂def − χdefWdef

]−1 [
θV (y)α− χdefNdef

]
7



Suppose now that Ndef = V (y) ndef . Then, we have

Ddef (y) =
[
R̂ + θIn − Q̂def − χdefWdef

]−1
V (y)

[
θα− χdefndef

]
(12)

where we used that fact that χdefV (y) = V (y)χdef as both are diagonal matrices.

1.5 Generalization to n aggregate states and solution

We follow the Markov-modulated dynamics approach of Jobert and Rogers (2006).

We note that there are multiple possible bankruptcy boundaries, ydef (s), for each aggregate

state s one boundary. Order states s such that s > s′ implies that ydef (s) > ydef (s′) and

denote the intervals Is = [ydef (s) , ydef (s+ 1)] where ydef (n+ 1) =∞, so that Is ∩ Is+1 =

ydef (s+ 1). Finally, let yb = [ydef (1) , ..., ydef (n)]> be the vector of bankruptcy boundaries.

It is important to have a clean notational arrangement to handle the proliferation of

states. Let D
(s)
l denote the value of debt for a creditor in individual liquidity state l and

with aggregate state s. We will use the following notation: D
(s,i)
l ≡ D

(s)
l , y ∈ Ii, that is

D
(s,i)
l is the restriction of D

(s)
l to the interval Ii. It is now clear that D

(s,i)
l = recovery for

any i < s, as it would imply that the company immediately defaults in interval Ii for state

s. Let us, for future reference, call debt in states i < s dead and in states i ≥ s alive.

Finally, let us stack the alive functions along states s but still restricted to interval i so that

D(i) =
[
D

(1,i)
H , D

(1,i)
L , ..., D

(i,i)
H , D

(i,i)
L

]>
where D

(s,i)
l has s denoting the state, i denotes the

interval and l denotes the individual liquidity state. The separation of s and i will clarify the

pasting arguments that apply when y crosses from one interval to the next. Let

Ii︸︷︷︸
i×i

=


1 · · · 0
...

. . .
...

0 · · · 1

 (13)
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be the i-dimensional identity matrix, and let

1i︸︷︷︸
i×1

= [1, ..., 1]> (14)

be a column vector of ones.

Fundamental parameters. Let R̂ = diag ([r1, r1, ..., rn, rn]) and let RR = diag ([r1, ..., rn]).

Let Q̂ summarize the OTC-augmented transition intensities. Define the building block matri-

ces BW1
s =

 0 0

0 1

 and BW2
s =

 0 0

wH −wH

 so that BW
s =

 0 0

wH wL

 = BW1
s + BW2

s .

Then, we have

W1 = diag
([

BW1
1 , ...,BW1

n

])
,W2 = diag

([
BW2

1 , ...,BW2
n

])
,χ = diag ([χ1, χ1, ..., χn, χn])

and we define the diagonal discount matrix R and the transition matrix Q as

R = R̂− χW1,Q = Q̂ + χW2

Let µ = diag ([µ1, µ1, ..., µn, µn]), Σ = diag ([σ2
1, σ

2
1, ..., σ

2
n, σ

2
n]).

Define X(n) = X, that is the restriction to the set In = [ydef (n) ,∞) does not change

any of the matrices. Let Q(i) be the transition matrix of jumping into an alive state s′ ≤ i

when y ∈ Ii and in an alive state s ≤ i. Let Q̃(i) be the transition matrix of jumping into

a default state s′ > i when y ∈ Ii and in an alive state s ≤ i, so that Q̃ = Q̃(n) = 0. The

decomposition for y ∈ Ii takes the following form

Q[1:2i]︸ ︷︷ ︸
2i×2n

=

Q(i) − diag
(
Q̃(i)12(n−i)

)
︸ ︷︷ ︸

2i×2i

| Q̃(i)︸︷︷︸
2i×2(n−i)


R[1:2i]︸ ︷︷ ︸
2i×2n

=

R(i) − diag
(
Q̃(i)12(n−i)

)
︸ ︷︷ ︸

2i×2i

|02i×2(n−i)︸ ︷︷ ︸
2i×2(n−i)


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so that Q(i), Q̃(i),R(i),µ(i),Σ(i) are given by

Q̃(i) = Q[1:2i,2i+1:2n]

Q(i) = Q[1:2i,1:2i] + diag
(
Q̃(i)12(n−i)

)
R(i) = R[1:2i,1:2i] + diag

(
Q̃(i)12(n−i)

)
µ(i) = µ[1:2i,1:2i]

Σ(i) = Σ[1:2i,1:2i]

where X[1:k] takes the first k rows of matrix X and X[1:k,1:l] takes the first k rows and l columns

of matrix X. Note that in the n = 2 aggregate state case, we have Q̃(1) = diag
[
Q̃(1)12

]
as

we have no joint jumps in liquidity state and in the aggregate state.

Let ṽ(i) exp (y) be the recovery or salvage value of the firm when default is declared in

states s > i for y ∈ Ii. Let v(i) be the vector unlevered values for states (i+ 1, ..., n)× (H,L)

(i.e., it is of dimension 2 (n− i)× 1), and let α(i) be the effective recovery ratios for those

same states. Then, we have ṽ(i) = α(i) diag
(
v(i)
)
.

Debt valuation within an interval Ii. Debt valuation follows the following differential

equation on interval Ii:

(
R(i) +mIi −Q(i)

)
D(i) = µ(i)

(
D(i)

)′
+

1

2
Σ(i)

(
D(i)

)′′
+ 1{i<n}Q̃

(i)ṽ(i) exp (y)

+
(
c12i − χ(i)N(i)

)
+m · p12i (15)

where Q̃(i)ṽ(i) exp (y) represents the intensity of jumping into default times the recovery in

the default state and m ·p12i represents the intensity of randomly maturing times the payoff in

the maturity state. Next, let us conjecture a solution of the kind g exp (γy)+k
(i)
0 +k

(i)
1 exp (y)

where g is a vector and γ is a scalar. The particular part stemming from c(i) is solved by a

term k
(i)
0 with

k
(i)
0︸︷︷︸

2i×1

=
(
R(i) +mIi −Q(i)

)−1︸ ︷︷ ︸
2i×2i

(c+m · p) 12i − χ(i)N(i)︸ ︷︷ ︸
2i×1

(16)
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and the particular part stemming from Q̃(i)ṽ(i) is solved by a term k
(i)
1 exp (y) with

k
(i)
1︸︷︷︸

2i×1

=

(
R(i) +mIi −Q(i) − µ(i) − 1

2
Σ(i)

)−1
︸ ︷︷ ︸

2i×2i

Q̃(i)︸︷︷︸
2i×2(n−i)

ṽ(i)︸︷︷︸
2(n−i)×1

(17)

It should be clear that k
(n)
1 = 0 as on In there is no jump in the aggregate state that

would result in immediate default. Plugging in, dropping the c(i) and Q̃(i)ṽ(i) exp (y) terms,

canceling out exp (γy) > 0, we have

02i =
(
Q(i) +mIi −R(i)

)
g + µ(i)γg +

1

2
Σ(i)γ2g (18)

Following JR06, we premultiply by 2
(
Σ(i)

)−1
and define h = γg to get

γg = h (19)

γh = −2
(
Σ(i)

)−1
µ(i)h + 2

(
Σ(i)

)−1 (
R(i) +mIi −Q(i)

)
g (20)

Stacking the vectors j =

 g

h

 we have

γj =

 02i I2i

2
(
Σ(i)

)−1 (
R(i) +mIi −Q(i)

)
−2
(
Σ(i)

)−1
µ(i)

 j = A(i)︸︷︷︸
4i×4i

j (21)

where I is of appropriate dimensions. The problem is now a simple eigenvalue-eigenvector

problem and each solution j is a pair

 γ
(i)
j︸︷︷︸

1×1

, j
(i)
j︸︷︷︸

4i×1

 (or rather

 γ
(i)
j︸︷︷︸

1×1

, g
(i)
j︸︷︷︸

2i×1

, as the vector

j
(i)
j contains the same information as g

(i)
j when we know γ

(i)
j , so we discard the lower half of

j
(i)
j ). The number of solutions j to this eigenvector-eigenvalue problem is 4i. Let

G(i) ≡
[
g
(i)
1 , ...,g

(i)
2×2×i

]
(22)

11



be the matrix of eigenvectors, and let

γ(i) ≡
[
γ
(i)
1 , ..., γ

(i)
2×2×i

]′
(23)

Γ(i) ≡ diag
[
γ(i)
]

(24)

be the corresponding vector and diagonal matrix, respectively, of eigenvalues.

The general solution on interval i is thus

D(i)︸︷︷︸
2i×1

= G(i)︸︷︷︸
2i×4i

· exp
(
Γ(i)y

)
︸ ︷︷ ︸

4i×4i

· c(i)︸︷︷︸
4i×1

+ k
(i)
0︸︷︷︸

2i×1

+ k
(i)
1︸︷︷︸

2i×1

exp (y) (25)

where the constants c(i) =
[
c
(i)
1 , ..., c

(i)
4i

]>
will have to be determined via conditions at the

boundaries of interval Ii (NOTE: c
(i)
j 6= c where c is the coupon payment).

Boundary conditions. The different value functions D(i) for i ∈ {1, ..., n}are linked at

the boundaries of their domains Ii. Note that Ii ∩ Ii+1 = {ydef (i+ 1)} for i < n.

For i = n, we can immediately rule out all positive solutions to γ as debt has to be finite

and bounded as y →∞, so that the entries of C(n) corresponding to positive eigenvalues will

be zero:2

lim
y→∞

∣∣D(n) (y)
∣∣ <∞ (26)

For i < n, we must have value matching of the value functions that are alive across

the boundary, and we must have value matching of the value functions that die across the

boundary:

D(i+1) (ydef (i+ 1)) =


D(i) (ydef (i+ 1)) ṽi+1

H

ṽi+1
L

 exp (ydef (i+ 1))

 (27)

For i < n, we must have mechanical (i.e. non-optimal) smooth pasting of the value functions

2 According to JR06, there are exactly 2 × |S| = 2n eigenvalues of A in the left open half plane (i.e.
negative) and 2n eigenvalues in the right open half plane (i.e. positive).
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that are alive across the boundary:

(
D(i+1)

)′
(ydef (i+ 1))[1:2i] =

(
D(i)

)′
(ydef (i+ 1)) (28)

where x[1...2i] selects the first 2i rows of vector x.

Lastly, for i = 1, we must have

D(1) (ydef (1)) =

 ṽ1H

ṽ1L

 exp (ydef (1)) (29)

Full solution. We can now state the full solution to the debt valuation given cut-off

strategies:

Proposition 1. The debt value functions D for a given default vector yB are

D (y) =



D(n) (y)︸ ︷︷ ︸
2n×1

= G(n) · exp
(
Γ(n)y

)
· c(n) + k

(n)
0 y ∈ In

...
...

D(i) (y)︸ ︷︷ ︸
2i×1

= G(i) · exp
(
Γ(i)y

)
· c(i) + k

(i)
0 + k

(i)
1 exp (y) y ∈ Ii

...
...

D(1) (y)︸ ︷︷ ︸
2×1

= G(1) · exp
(
Γ(1)y

)
· c(1) + k

(1)
0 + k

(1)
1 exp (y) y ∈ I1

13



with the following boundary conditions to pin down vectors c(i):

lim
y→∞

∣∣∣∣∣∣D(n) (y)︸ ︷︷ ︸
2n×1

∣∣∣∣∣∣ < ∞ (30)

D(i+1) (ydef (i+ 1))︸ ︷︷ ︸
2(i+1)×1

=


D(i) (ydef (i+ 1)) ṽi+1

H

ṽi+1
L

 exp (ydef (i+ 1))


︸ ︷︷ ︸

2(i+1)×1

(31)

(
D(i+1)

)′
(ydef (i+ 1))[1:2i]︸ ︷︷ ︸

2i×1

=
(
D(i)

)′
(ydef (i+ 1))︸ ︷︷ ︸
2i×1

(32)

D(1) (ydef (1))︸ ︷︷ ︸
2×1

=

 ṽ1H

ṽ1L

 exp (ydef (1))

︸ ︷︷ ︸
2×1

(33)

where x[1:2i] selects the first 2i rows of vector x.

Note that the derivative of the debt value vector is

(
D(i)

)′
(y)︸ ︷︷ ︸

2i×1

= G(i)Γ(i) · exp
(
Γ(i)y

)
· c(i) + k

(i)
1 exp (y) (34)

where we note that Γ(i)·exp
(
Γ(i)y

)
= exp

(
Γ(i)y

)
·Γ(i)as both are diagonal matrices (although

this interchangeability only is important when s = 1 as it then helps collapse some equations).

The first boundary condition (30) essentially implies that we can discard any positive

entries of γ(n) by setting the appropriate coefficients of C(n) to 0. The second boundary

condition (31) implies that we have value matching at any boundary ydef (i+ 1) for i < n, be

it to a continuation state or a bankruptcy state. The third boundary condition (32) implies

that we also have smooth pasting at the boundary ydef (i+ 1) for those states in which the

firm stays alive on both sides of the boundary. Finally, the fourth boundary condition (33)

implies value matching at the boundary ydef (1), but of course only for those states in which

the firm is still alive.
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1.6 Equity

The equity holders are unaffected by the individual liquidity shocks the debt holders are

exposed to. The only shocks the equity holders are directly exposed to are the shifts in µ (s)

and σ (s), i.e. shifts to the cash-flow process.

However, as debt has finite maturity and has to be rolled over by assumption, equity

holders are indirectly affected by liquidity shocks in the market through the effect it has on

debt prices. Thus, when debt matures, it is either rolled over if the debt holders are of type

H, or it is reissued to different debt holders in the case that the former debt holder is of

type L. Either way, there is a cash flow (inflow or outflow) of m
[
S(i) ·D(i) (y)− p1i

]
at each

instant as a mass m · dt of debt holders matures on [t, t+ dt].

For notational ease, we will denote by double letters (e.g. xx) a constant for equity that

takes a similar place as a single letter (i.e. x) constant for debt. Then, the HJB for equity on

interval Ii is given by

(
RR(i) −QQ(i)

)
E(i) (y) = µµ(i)

(
E(i)
)′

(y) +
1

2
ΣΣ(i)

(
E(i)
)′′

(y) + 1{i<n}Q̃Q
(i)

0i︸ ︷︷ ︸
Default

+1i exp (y)︸ ︷︷ ︸
Cashflow

− (1− π) c1i︸ ︷︷ ︸
Coupon

+m
[
S(i) ·D(i) (y)− p1i

]︸ ︷︷ ︸
Rollover

(35)

where

Q̃Q
(i)

= QQ[1:i,i+1:n] (36)

QQ(i) = QQ[1:i,1:i] + diag
(
Q̃Q

(i)
1n−i

)
(37)

RR(i) = RR[1:i,1:i] + diag
(
Q̃Q

(i)
1n−i

)
(38)

µµ(i) = µµ[1:i,1:i] (39)

ΣΣ(i) = ΣΣ[1:i,1:i] (40)

Note that Q̃Q
(i)

is the transition matrix only between aggregate states that is also an i× i

square matrix, and S(i) is a i× 2i matrix that selects which debt values the firm is able to

issue (each row has to sum to 1), and m is a scalar (NOTE: In contrast to R, the matrix
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RR does not contain the maturity intensity m). For example, for i = 2, if the company is

able to place debt only to H types, then S(2) =

 1 0 0 0

0 0 1 0

. It is important that for

reach row i only entries 2i − 1 and 2i are possibly nonzero, whereas all other entries are

identically zero (otherwise, one would issue bonds belonging to a different state).

Writing out D(i) (y) = G(i) exp
(
Γ(i)y

)
c(i)and conjecturing a solution to the particular,

non-constant part KK(i)︸ ︷︷ ︸
i×4i

exp
(
Γ(i)y

)
︸ ︷︷ ︸

4i×4i

c(i)︸︷︷︸
4i×1

, we have

(
R̃R

(i)
− Q̃Q

(i)
)

KK(i) exp
(
Γ(i)y

)
c(i)

=

[
µµ(i) ·KK(i) · Γ(i) +

1

2
ΣΣ(i)KK(i) ·

(
Γ(i)
)2

+m · S(i) ·G(i)

]
exp

(
Γ(i)y

)
c(i) (41)

We can solve this by considering each γ
(i)
j separately — recall that c(i) is a vector and

exp
(
Γ(i)y

)
is a diagonal matrix and in total there are 4i different roots. Consider the part of

the particular part S(i) · g(i)
j exp

(
γ
(i)
j y
)
· c(i)j and our conjecture gives KK

(i)
j︸ ︷︷ ︸

i×1

exp
(
γ
(i)
j y
)

︸ ︷︷ ︸
1×1

· c(i)j︸︷︷︸
1×1

for each root j ∈ [1, ..., 4i]. Plugging in and multiplying out the scalar exp
(
γ
(i)
j y
)
c
(i)
j , we

find that

(
R̃R

(i)
− Q̃Q

(i)
)

KK
(i)
j = µµ(i) ·KK

(i)
j · γ

(i)
j +

1

2
ΣΣ(i)KK

(i)
j ·
(
γ
(i)
j

)2
+m · S(i) · g(i)

j (42)

Solving for KK
(i)
j , we have

KK
(i)
j︸ ︷︷ ︸

i×1

=

[
R̃R

(i)
− Q̃Q

(i)
− µµ(i) · γ(i)j −

1

2
ΣΣ(i) ·

(
γ
(i)
j

)2]−1
︸ ︷︷ ︸

i×i

m · S(i)︸︷︷︸
i×2i

g
(i)
j︸︷︷︸

2i×1

(43)

Finally, for the homogenous part we use the same approach as above, but now we have less

states as the individual liquidity state drops out. Thus, we conjecture gg exp (γγ · y) to get

0i =
(
Q̃Q

(i)
− R̃R

(i)
)

gg + µµ(i)γγgg +
1

2
ΣΣ(i)γγgg (44)
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so that, again, we have the following eigenvector eigenvalue problem

γγjj =

 0i Ii

2
(
ΣΣ(i)

)−1 (
R̃R

(i)
− Q̃Q

(i)
)
−2
(
ΣΣ(i)

)−1
µµ(i)

 jj = AA(i)︸ ︷︷ ︸
2i×2i

jj (45)

which gives
(
γγ

(i)
j ,gg

(i)
j

)
for j ∈ [1, ..., 2i] solutions. We stack these into a matrix of

eigenvectors GG(i) and a vector of eigenvalues γγ(i), from which we define the diagonal

matrix of eigenvalues ΓΓ(i) ≡ diag
(
γγ(i)

)
. What remains is to solve for kk

(i)
0 and kk

(i)
1 . We

have

kk
(i)
0 =

[
R̃R

(i)
− Q̃Q

(i)
]−1 [

− (1− π) c1i +m
(
S(i)k

(i)
0 − p1i

)]
(46)

and

kk
(i)
1 =

[
R̃R

(i)
− Q̃Q

(i)
− µµ(i) − 1

2
ΣΣ(i)

]−1 (
1i +m · S(i)k

(i)
1

)
(47)

with k
(n)
1 = 0.

We are left with the following proposition.

Proposition 2. The equity value functions E for a given default vector yB are

E (y) =



E(n) (y)︸ ︷︷ ︸
n×1

= GG(n) · exp
(
ΓΓ(n)y

)
· cc(n) + KK(n) exp

(
Γ(n)y

)
c(n) + kk

(n)
0 + kk

(n)
1 exp (y) y ∈ In

...
...

E(i) (y)︸ ︷︷ ︸
i×1

= GG(i) · exp
(
ΓΓ(i)y

)
· cc(i) + KK(i) exp

(
Γ(i)y

)
c(i) + kk

(i)
0 + kk

(i)
1 exp (y) y ∈ Ii

...
...

E(1) (y)︸ ︷︷ ︸
1×1

= GG(1) · exp
(
ΓΓ(1)y

)
· cc(1) + KK(1) exp

(
Γ(1)y

)
c(1) + kk

(1)
0 + kk

(1)
1 exp (y) y ∈ I1
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with the following boundary conditions to pin down the vector cc(i):

lim
y→∞

∣∣∣∣∣∣E(n) (y) exp (−y)︸ ︷︷ ︸
n×1

∣∣∣∣∣∣ < ∞ (48)

E(i+1) (ydef (i+ 1))︸ ︷︷ ︸
(i+1)×1

=

 E(i) (ydef (i+ 1))

0


︸ ︷︷ ︸

(i+1)×1

(49)

(
E(i+1)

)′
(ydef (i+ 1))[1:i]︸ ︷︷ ︸

i×1

=
(
E(i)
)′

(ydef (i+ 1))︸ ︷︷ ︸
i×1

(50)

E(i) (ydef (1))︸ ︷︷ ︸
i×1

= 0 (51)

where x[1:i] selects the first i rows of vector x.

Note first the dimensionalities: ΓΓ(i)︸ ︷︷ ︸
2i×2i

,GG(i)︸ ︷︷ ︸
i×2i

and Γ(i)︸︷︷︸
4i×4i

,G(i)︸︷︷︸
2i×4i

. Note second the derivative of

the equity value vector is

(
E(i)
)′

(y)︸ ︷︷ ︸
i×1

= GG(i)ΓΓ(i) ·exp
(
ΓΓ(i)y

)
·cc(i) +KK(i)Γ(i) exp

(
Γ(i)y

)
c(i) +kk

(i)
1 exp (y) (52)

where we note that Γ(i)·exp
(
Γ(i)y

)
= exp

(
Γ(i)y

)
·Γ(i) and ΓΓ(i)·exp

(
ΓΓ(i)y

)
= exp

(
ΓΓ(i)y

)
·

ΓΓ(i)as both are diagonal matrices (although this interchangeability only is important when

s = 1 as it then helps collapse some equations).

The optimality conditions for bankruptcy boundaries {ydef (i)}i are given by

(
E(i)
)′

(ydef (i))[i] = 0 (53)

i.e., a smooth pasting condition at the boundaries at which default is declared.

Finally, we summarize all the different matrices and vectors involved in the derivation of

the propositions in Table 1.
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Table 1: Matrix & Vector Dimensions.

Debt Parameters Equity Parameters

Symbol Interpretation Dimension Symbol Interpretation Dimension

D(i) (y) Debt Value Function 2i× 1 E(i) (y) Equity Value Function i× 1
µ(i) (Log)-Drifts 2i× 2i µµ(i) (Log-)Drifts i× i
Σ(i) Volatilities 2i× 2i ΣΣ(i) Volatilities i× i
R(i) Discount rates and maturity 2i× 2i RR(i) Discount rates i× i
χ(i) Holding cost slopes 2i× 2i c Coupon 1× 1
N(i) Holding cost intercepts 2i× 1 π Tax rate 1× 1

Q(i) Transition to cont. states 2i× 2i QQ(i) Transition to cont. states i× i
Q̃(i) Transition to default states 2i× 2 (n− i) AA(i) Matrix to be decomposed 2i× 2i

ṽ(i) Vector of recovery values 2 (n− i)× 1 ΓΓ(i) Diag matrix of eigenvalues 2i× 2i

W(i) Mid-point weighting matrix 2i× 2i GG(i) Matrix of eigenvectors i× 2i

Γ(i) Diag matrix of eigenvalues 4i× 4i kk
(i)
0 ,kk

(i)
1 Coeff. of particular sol. i× 1

G(i) Matrix of eigenvectors 2i× 4i S(i) Issuance matrix i× 2i

k
(i)
0 ,k

(i)
1 Coeff. of particular sol. 2i× 1 KK(i) Coeff. of particular sol. i× 4i

c(i) Vector of constants 4i× 1 cc(i) Vector of constants 2i× 1

2 Computing the Model-implied Moments by Ratings

We follow the steps below in computing the model-implied aggregate moments on default

probability, credit spreads, and others. These are also described, in more concise form, at the

beginning of Section 3.3 in the paper. Due to a proliferation of material in the appendix in

this revision, we have so far opted to leave the detailed description given below out of the

appendix.

Step 1: Construct the model-implied mapping between market leverage and

credit spread. We use Monte-Carlo simulation method to compute the total credit spread

for a given maturity and aggregate state on a grid of log cash flow level. We then translate

the cash flow level to its model-implied market leverage level through the analytical solution

to the model. This gives us a scattered plot of credit spread over market leverage. We then

fit a piece-wise hyperbolic curve to the scatters to derive the model-predicted credit spread

over the continuous range of market leverage. The result is presented in Figure 3 as the solid

line. Consistent with the findings in the previous literature as David (2008), Bhamra, Kuehn,

and Strebulaev (2010); credit spread is a convex function of the market leverage in the model.
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This means, due to the dispersion in market leverage for a given rating class (See figure 2),

average credit spread of the firms for a given rating class will be bigger than the credit spread

of the average firm in that group; and the former is empirically observed and therefore shall

be the target of our calibration.

Step 2: Matching with the empirical distribution of market leverage in Com-

pustat data. We compute the market leverage (i.e. book debt over the sum of market

equity and book debt) of each Compustat firm-quarter observation where we have the rating

information. We report the leverage distribution by rating class in Figure 2. We then compute

the model-implied credit spread for each empirical firm-quarter observation using the fitted

curve we constructed in Step 1. This gives a credit spread value the model predicts for each

firm-quarter observation in the data.

Step 3: Aggregation by macro state, maturity and rating class. For a given rating

class and maturity, we aggregate all model-implied spreads first by quarter then by aggregate

state (Note: We define a quarter to be in the B state if any of its three months is classified

as a NBER recession month) to arrive at the model implied moments reported in Table 2.

We used the same method in computing the model-implied moments on default probability

and structural liquidity-default decomposition.

3 Calibration With Lower Liquidity Shock Intensities

While we think the broader interpretation of liquidity shocks helps justify the approach of

matching liquidity shock intensity with corporate bond market turnover to some extent, we

also consider an alternative calibration to demonstrate the sensitivity of our results to this

concern. In the new calibration, both ξG and ξB are reduced by half. Then, we recalibrate

the three free parameters N,χG, χB by targeting the 6 bid-ask spread moments (as discussed

in Point 1).

The results from this calibration are reported in Table 2. The re-calibrated model still does

a good matching the moments of bid-ask spreads, but the total credit spreads and bond-CDS
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spreads become significantly lower. The reason is that lowering liquidity shock intensities, all

else equal, raises bid-ask spreads (see also Table 4 in the main text on this point). To reduce

the bid-ask spreads, the calibration then reduces the holding costs by lowering N,χG, χB,

which, together with lower liquidity shock intensities, reduce the bond-CDS spreads and total

credit spreads. We also show the decomposition of these re-calibrated total credit spreads in

Table 3. The pure-default components of the spreads under the calibration is similar to the

original calibration, while the pure liquidity component, default-driven liquidity component,

and the liquidity-driven default components all roughly drop by half.

These findings show that our model’s performance is indeed sensitive to the calibration of

ξG, ξB. Put differently, they show that in order to jointly explain the bid-ask spreads and

bond-CDS spreads, our model calls for relatively high levels of liquidity shock intensities.

4 Dollar Decomposition

We decompose corporate bond prices into 4 components in a similar way as we decompose

the spreads. Specifically, consider the following 5 different bond prices:

1. BNL: The price of a default-free bond in a setting without any liquidity frictions, with

maturity T , face value F , and annualized coupon rate c equal to the risk-free rate r.

This bond will be priced at par, BNL = F .

2. B: The price of the same default-free bond in the presence of liquidity frictions.

3. P : The price of the T -year defaultable bond in the presence of liquidity frictions, using

the default policy computed from the benchmark model.

4. PNL: The price of the T -year defaultable bond in a setting without any liquidity

frictions, but keeping the default policy the same as the benchmark model.

5. PDEF : The price of the T -year bond in a setting without any liquidity frictions, with an

updated default policy that is optimal for the firm in the absence of liquidity frictions.
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Table 2: Comparison of benchmark to re-calibrated ξ = 0.35, 0.5 case (10 year bonds).
The “benchmark” case is our benchmark calibration. The “ ξ = 0.35, 0.5” is when we halve the
liquidity shock intensities in both states, and recalibrate the remaining parameters. Thus, this is
not a comparative statics exercise.

Panel A. Credit spreads (bps)

State G State B

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

benchmark 86 122 182 301 136 185 261 404
ξ = 0.35, 0.5 58 89 143 252 96 136 201 327

Panel B. Bid-Ask Spreads (bps)

State G State B

Superior Investment Junk Superior Investment Junk

benchmark 40 47 61 114 137 186
ξ = 0.35, 0.5 40 48 62 109 135 186

Panel C. Bond-CDS Spreads (bps)

State G State B

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

benchmark 48 53 61 60 69 79 92 107
ξ = 0.35, 0.5 22 24 26 61 31 35 40 42
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Table 3: Structural Decomposition for 10-Year Bonds Across Ratings for re-calibrated
ξ = 0.35, 0.5 case. We perform the structural liquidity-default decomposition for a 10-year bond,
given rating and aggregate state, and then aggregate over the empirical leverage distribution in
Compustat. The reported credit spreads are relative to the risk-free rate.

Rating State
Credit Structural Decomposition
Spread Pure Def Liq → Def Pure Liq Def → Liq

Aaa/Aa

G 43 20 0.5 21 3
(%) (45) (1) (47) (6)
B 56 22 1 29 4

(%) (39) (2) (52) (7)

A

G 74 47 1 21 6
(%) (63) (2) (28) (8)
B 96 56 3 29 9

(%) (58) (3) (30) (10)

Baa

G 128 94 3 21 10
(%) (74) (2) (16) (8)
B 161 110 5 29 18

(%) (68) (3) (18) (11)

Ba

G 237 194 6 21 17
(%) (82) (3) (9) (7)
B 287 219 8 29 31

(%) (76) (3) (10) (11)

23



The price gap between the default-free bond and defaultable bondBNL−P can be viewed as

the “value lost” due to default and liquidity. With the set of 5 prices (BNL, B, PDEF , PNL, P ),

we can now decompose the total gap BNL − P into 4 components:

BNL − P = ∆P pureDEF + ∆PLIQ→DEF + ∆P pureLIQ + ∆PDEF→LIQ (54)

where

∆P pureDEF = BNL − PDEF (55)

∆PLIQ→DEF = (BNL − PNL)−∆P pureDEF (56)

∆P pureLIQ = BNL −B (57)

∆PDEF→LIQ = (PNL − P )−∆P pureLIQ (58)

After conducting the decomposition at firm level (separately for the good and bad

aggregate states), we average the results across firms within each rating class to get the

average decompositions by ratings.
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