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These notes supplement Chen and Joslin (2011).

1 Heterogeneous agents economy

The generalized transform can also be used to solve models with heterogeneous agents. The

heterogeneity could be about preferences or beliefs. Earlier work include Dumas (1989) and Jiang

(1996), among others. The stochastic discount factors in the general form of these models will be

implicit functions of stochastic state variables. However, even in these general cases, the generalized

transform can still be applied.

For illustration, we assume that there is a single risky asset in an endowment economy. Two

infinitely-lived agents A and B have time-separable preferences over consumption stream {ct}:

Ui(c) = E0

[∫ ∞
0

ui (ct, t) dt

]
, i = A,B (O1)

We model the dividend process D from the risky asset as part of a general affine jump-diffusion.

Specifically, suppose log dividend dt = ι1 ·Xt, where Xt is a vector that follows the process (7). This

model can easily capture features such as predictability in dividend growth, stochastic volatility, or
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time-varying probability of jumps. For example, to get predictability of dividend growth, we can

assume

ddt = gtdt+ σddW
d
t (O2a)

dgt = κg (g − gt) dt+ σgdW
g
t (O2b)

where gt is the expected growth rate of dividends, which follows an Ornstein-Uhlenbeck process

with long run mean g. The state variable is then given by Xt = [dt gt]
′, and it is straightforward to

verify that X is affine with coefficients implied by the dynamics of dt and gt. Finally, as discussed

in Section 3.2, other non-AJD processes with tractable conditional characteristic functions can be

used for Xt as well.

Assuming markets are complete, we can first solve for the optimal allocations through the social

planner’s problem

max
{CA,CB}

E0

[∫ ∞
0
{uA (CA,t, t) + λuB (CB,t, t)} dt

]
, (O3)

which has constant relative Pareto weight λ and is subject to the market clearing condition

CA,t + CB,t = Ct. For concreteness, consider the case where the agents have power utility and

differ only in their relative risk aversion, ui (c, t) = e−ρtc1−γi/(1− γi), with γA 6= γB. The optimal

allocations can be solved through the planner’s first order conditions and the market clearing

condition. Except for a few special cases,1 agent A’s equilibrium consumption is an implicit function

of aggregate endowment

CA,t = f

(
D

1− γB
γA

t

)
Dt. (O4)

Then, the unique stochastic discount factor in this economy is given by

ξt = e−ρtf

(
D

1− γB
γA

t

)−γA
D−γAt = e−ρtg(dt)e

−γAdt . (O5)

where g is an implicit function that is smooth and bounded. The generalized transform can now be

applied when we use the discount factor to price claims. For example, the price of a zero coupon

1Jiang (1996) shows that the model can be solved in closed form when γA = nγB where n = 2, 3, 4.
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bond that pays one unit of consumption at time T is

B(t, T ) = Et

[
ξT
ξt

]
=

e−ρ(T−t)

f̂(dt)e−γAdt
Et
[
e−γAι1·XT g(ι1 ·XT )

]
, (O6)

where Theorem 1 can be applied to evaluate the expectation in (O6). In case where there is an

explicit formula for g, the transform may be known in closed form. However, even when g does

not have a closed form solution, one will only need to compute ĝ numerically once: this single

calculation can then be used for the valuation of a variety of securities and need not be re-computed

for different horizons.

Besides heterogeneous preferences, the above model framework can also be used to study

heterogeneity in beliefs across agents, provided that the beliefs of the agents satisfy the “affine-

disagreement framework” (Hui Chen and Joslin (2010).)2 We can also extend the model to N > 2

agents, which will only change the functional form of g for the SDF in (O5) (the transform remains

one-dimensional), or to a model of international finance with multiple goods and multiple countries

as in Pavlova and Rigobon (2007).

2 An Affine Model of External Habit

The external habit model of Campbell and Cochrane (1999) is a workhorse in asset pricing that

helps generate a high and time-varying equity premium even though consumption growth is i.i.d.and

has low volatility. Solving this model as well as estimation and forecasting can be challenging due

to the complicated dynamics of the external habit process. In this example, we construct a habit

process based on affine state variables that captures the desired features of the habit model.

Our construction is based on the continuous-time version of the external habit model in Santos

and Veronesi (2010). In an endowment economy, the representative agent’s utility over consumption

stream {Ct} is

E

[∫ ∞
0

e−ρt
(Ct −Ht)

1−γ

1− γ dt

]
, (O7)

2See Section 3 for more discussion on affine differences in beliefs. Bhamra and Uppal (2010) provide a recent
treatment of heterogeneous preferences and beliefs when the underlying uncertainties are i.i.d.
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where Ht is the habit level that is positive and strictly below Ct. The log aggregate endowment

ct = log(Ct) follows the process

dct = µcdt+ σcdWt, (O8)

with constant expected growth rate µc and volatility σc, and we specify the process for Ht later.

The stochastic discount factor is obtained from the marginal utility of consumption for the

representative agent,

mt = e−ρt(Ct −Ht)
−γ = e−ρt−γct

(
Ct −Ht

Ct

)−γ
, (O9)

where we rewrite the SDF as the product of the standard SDF for CRRA utility (e−ρt−γct) multiplied

by a function of the surplus-consumption ratio.

Campbell and Cochrane (1999) specify a heteroskedastic AR(1) process for the surplus-consumption

ratio. Santos and Veronesi (2010) directly model Gt ≡
(
Ct−Ht
Ct

)−γ
with a non-affine process that

is mean-reverting with stochastic volatility. Our approach is different. Instead of modeling the

surplus-consumption ratio or Gt directly, we assume that Gt is a function of a “habit factor” yt,

Gt = g(yt), where yt is stationary and jointly affine with ct. An example for the process of yt is:

dyt = κ(ȳ − yt)dt− σydWt, (O10)

where yt and ct are instantaneously perfectly negatively correlated, which captures the property

that the habit level is solely driven by consumption shocks. The SDF then becomes

m(t,Xt) = e−ρt−γctg(yt). (O11)

One can apply several criteria in choosing the functional form for g, which in turn implies the

dynamics of Gt. First, we need g(y) > 1, because Ht should be between 0 and Ct. Second, we also

need g′(y) ≥ 0, because a negative shock to consumption raises the consumption-surplus ratio and

hence the marginal utility of consumption. Third, a negative shock to consumption ought to reduce
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the habit level, that is, Covt(dCt, dHt) > 0. Fourth, to generate counter-cyclical risk premium,

we would like negative shocks to consumption to raise the conditional Sharpe ratio of the market

portfolio (the price of risk for consumption shocks):

SR(yt) = γσc +
g′(yt)

g(yt)
σy. (O12)

Thus, we need d
dySR(y) = d

dy log(g(y)) ≥ 0.

Finding such a function g is straightforward, and it is clear that it cannot be exponential-affine

in y.3 Suppose the desired range of Sharpe ratio is between γσc and γσc + α for some α > 0. Then,

we can assume

g′(y)

g(y)
=

α

σy
F (y), (O13)

where F is any monotone non-decreasing function with

lim
y→−∞

F (y) = 0, lim
y→+∞

F (y) = 1.

For example, F can be the cumulative distribution function of any real univariate random variable.

Thus, we have a lot of flexibility in choosing the desired shape of F , which in turn decides the

distribution of the conditional Sharpe ratio.

It follows that

g(y) = exp

(
b+

α

σy

∫ y

−∞
F (t)dt

)
, (O14)

which satisfies the criteria we discussed earlier for g provided the constant b is sufficiently large.4 The

SDF in (O11) fits the moment function in Theorem 1 (with an appropriate choice of factorization

as in (16)). This example highlights the power of the generalized transform: rather than specifying

a complicated process for g directly, we can utilize the flexibility in choosing g(y) for some tractable

3In the special case where m(t,Xt) follows the exponential-affine form in ??, one can show that if consumption
shocks are i.i.d.and Xt is affine, the price of consumption shock has to be constant.

4To satisfy the condition Covt(dCt, dHt) > 0, it suffices to have b > γ ln
(

1 + α
γσc

)
.
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process y (such as an affine process).

3 Affine Differences in Beliefs

Models of heterogeneity of beliefs, or equivalently of preferences, can generate rich implications for

trade and affect asset prices in equilibrium (see Basak (2005) for a recent survey). In studying such

economies, aggregation often leads to difficulty in computing equilibrium outcomes. In this example,

we illustrate the use of our main result in solving economies where there is heterogeneity among

agents regarding beliefs (and higher order beliefs) about fundamentals.

3.1 General Setup

Suppose there are two agents (A, B) who possess heterogeneous beliefs. There is a state variable Xt

which Agent A believes follows an affine jump-diffusion:

dXt = µAt dt+ σAt dW
A
t + dZAt , (O15)

where µAt = KA
0 +KA

1 Xt, σ
A
t (σAt )> = HA

0 +HA
1 ·Xt, and jumps are believed to arrive with intensity

λAt = λA0 + λA1 ·Xt and have distribution νA (with moment generating function φA). As elaborated

in the examples below, the variable Xt encompass all uncertainty in the economy, including any

time-variation in the heterogeneity of beliefs. For simplicity, we suppose that Agent A’s beliefs are

correct. The method is easily modified to the case where neither agent is correct.

Agent B has heterogeneous beliefs which we shall suppose are equivalent. A broad class5 of such

equivalent beliefs can be characterized as follows. There exists some vector a such that Agent B

believes X follows an affine jump-diffusion satisfying

dXt = µBt dt+ σBt dW
B
t + dZBt , (O16)

where

5More generally, we could consider beliefs of the form eh(xt)−
∫ t
0 e

−h(xs)D1eh(xs)ds. Provided the integral term
remains tractable, the same analysis applies. Compare also the discussion of essentially affine difference of opinions.
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1. µBt = µAt + σAt (σAt )>a

2. σBt = σAt

3. dνB/dνA(Z) = ea·Z/EνA [ea·Z ] or φB(c) = φA(c+ a)/φA(a)

4. λBt = λAt × EνA [ea·Z ]

This difference in beliefs generates a disagreement about not only the drifts of the state variables,

but also the jump frequency and the distribution of jump size.6

This structure implies that the two beliefs define equivalent probability measures which may be

related through the Radon-Nikodym derivative dPB/dPA:

ηt = Et

[
dPB

dPA

]
= exp

(
a ·Xt −

∫ t

0

(
a · µAs +

1

2
‖σAs a‖2 + λAs (φν(a)− 1)

)
ds

)
. (O17)

The variable ηt expresses Agents B’s differences in opinion in that when ηt is high, Agent B believes

an event is more likely than Agent A believes. We refer to ηt as the db-density (‘db’ stands for

“difference in beliefs”) process, which differs from the density defining the risk-neutral measure.

While we specify the differences in beliefs exogenously, this does not preclude agents’ beliefs

from arising through Bayesian updating based on different information sets. For example, when

the state variables and signals follow a joint Gaussian process, Bayesian updating can reduce to a

difference of beliefs in the form of (O17).

Notice that the integral term in the exponent above follows an affine process. Thus, by redefining

X to include the integral term and augmenting a accordingly, we have

ηt = ea·Xt . (O18)

We assume that the agents have time separable preferences:

U i(c) = Ei0

[∫ ∞
0

ui(ct, t)dt

]
, i = A,B. (O19)

6To be precise, as a process ZA = ZB (i.e. the functions Zi : Ω× [0,∞)→ R are the same). Agents disagree about
the probability measures on Ω.
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Suppose also that

1. markets are complete;

2. log of aggregate consumption, ct = log(Ct), is linear in Xt (ct = c ·Xt);

3. agents are endowed with some fixed fraction (θA, θB = 1− θA) of aggregate consumption.

Let ξt denote the stochastic discount factor with respect to Agent A’s beliefs. As in Cox and

Huang (1989), we impose the lifetime budget constraint and equate state prices to marginal utilities

to solve

uAc (CAt , t) = ζAξt , (O20)

uBc (CBt , t) = ζBη−1t ξt , (O21)

where Cit is Agent i’s equilibrium consumption at time t and ζi is the Lagrange multiplier for Agent

i’s budget constraint.

Market clearing then implies

Ct = (uAc )−1(ζAξt) + (uBc )−1(ζBη−1t ξt), (O22)

which implies ξt = h(ct, ηt) for some h. With the additional assumption that ui(c, t) = e−ρt c
1−γ

1−γ ,

this simplifies to

ξt = e−ρt

[(
1

ζA

)1/γ

+

(
ηt
ζB

)1/γ
]γ
C−γt . (O23)

Using g(x) =

[(
1
ζA

)1/γ
+
(
ex

ζB

)1/γ]γ
and Ct = ec·Xt , we finally have

ξt = e−ρtg(a ·Xt)e
−γc·Xt . (O24)

With the stochastic discount factor in this form, we may price any asset with pl-linear payoffs, such
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as bonds and dividend claims, using Theorem 1.7 Our method also applies when the two agents

have different risk aversion (γA and γB). In that case, we can still express h(ct, ηt) in the separable

form as in (O24), and proceed the same way.

In some cases, the mapping of a difference-of-opinion model to the standard setting (O17)

is not immediate, and requires a careful choice of the state variable Xt. For example, consider

the setting where the agents believe that (de-trended) aggregate log consumption, ct, follows an

Ornstein-Uhlenbeck process:

dct = κA(θA − ct)dt+ σdWA
t , (O25)

dct = κB(θB − ct)dt+ σdWB
t . (O26)

In this case, the difference in beliefs cannot be dexpressed as in (O17) directly. However, by

considering an augmented state variable we can return to this form. The state variable 〈ct, c2t 〉

follows the process

d

ct
c2t

 =

 κA(θA − ct)

2ctκA(θA − ct) + 1
2σ

2

 dt+

 σ

2ctσ

 dWA
t . (O27)

Since the corresponding 2× 2 conditional covariance matrix, [σ, 2ctσ]>[σ, 2ctσ], is affine in 〈ct, c2t 〉,

it follows that 〈ct, c2t 〉 is an affine process. Moreover, we return to our standard case since PB is

given by the change of measure as in (O17) with

a = σ−2

κBθB − κAθA
1
2(κA − κB)

 . (O28)

More generally, we can have the case where each agent believes that the state of the economy is

summarized by the N -dimensional Gaussian state variables, Xt, and each agent believes that Xt

7The function g is not bounded and in fact does not even define a tempered function. Thus, our theory does not
directly apply. One option is to write g(x) = g−(x)e−x + g+(x)e+x where g±(x) = g(x)1{±x<0}e

∓x. Here g± are
bounded functions whose Fourier transforms can be computed in terms of incomplete Beta functions. Another option
is to write g(x) = g(x)dγe/γg(x)−dγe/γ+1. In this case, the first functional is pl-linear and the second is bounded with
Fourier transform known in terms of Beta functions.

8



satisfies the stochastic differential equation dXt = (Ki
0 +Ki

1Xt)dt+
√
H0dW

i
t . Again by considering

an augmented state variable of the form X̂t = 〈Xt, vech(XtX
>
t )〉 we can return to our standard

setting.8 Such techniques are common in the term structure literature with respect to affine and

quadratic term structure models. The procedure generalizes to accommodate models with stochastic

volatility (AM (N) in the parlance of Dai and Singleton (2000)). Following Duffee (2002), we refer

to this as essentially affine difference of beliefs.

An alternative characterization is to consider the “market price of belief risk”, λt, in analogy to

the usual market price of risk. By defining

λt =

√
H−10 (µBt − µAt ) , (O29)

ηt = e−
∫ t
0 λsdW

A
s − 1

2

∫ t
0 ‖λs‖

2ds . (O30)

When ηt is exponential affine in Xt, this defines an appropriate Radon-Nikodym derivative for our

setting.

3.2 Special Cases

The framework above can accommodate a wide range of specifications with heterogeneity of beliefs

regarding expected changes in fundamentals, likelihood of jumps, distribution of jumps, and

divergence in higher order beliefs. We now provide some examples.

Disagreement about stochastic growth rates. This is the model studied in Dumas, Kurshev,

and Uppal (2009), hereafter DKU. In their model, there is a single dividend process Ct with

time-varying growth rate, but agents A and B have different beliefs regarding the growth rate of the

tree, f̂At and f̂Bt , and ĝt = f̂Bt − f̂At represents the amount of disagreement between B and A.

This model can be mapped into the essentially affine difference in beliefs specification, and our

results can simplify the calculations for the most general model that they consider. First, under

8For a square matrix M , vech denotes the lower triangular entries written as a vector. Usually, only part of the
elements in the extended state vector is needed to maintain the Markov structure.
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Agent B’s probability measure,

d


ct

f̂Bt

ĝt

 =


f̂Bt − 1

2σ
2
c

κ(f̄ − f̂Bt )

−ψĝt

 dt+


σc 0

γB
σc

0

σĝ,c σĝ,s

 dWB
t . (O31)

Next, in order to map the model to our standard setting, we define the augmented state variable

as Xt = 〈ct, log ηt, f̂
B
t , ĝt, ĝ

2
t 〉, where ηt gives the density process: ηt = Et[dP

A/dPB]. The dynamics

of Xt are given by the stochastic differential equation:

dXt = (K0 +K1Xt)dt+ ΣtdW
B
t ,

where

K0 =



−1
2σ

2
c

0

κf̄

0

σ2ĝ,c + σ2ĝ,s


, K1 =



0 0 1 0 0

0 0 0 0 − 1
2σ2
c

0 0 −κ 0 0

0 0 0 −ψ 0

0 0 0 0 −2ψ


, Σt =



σc 0

−ĝt/σc 0

γB/σc 0

σĝ,c σĝ,s

2σĝ,cĝt 2σĝ,sĝt


.

It is easy to check that the local conditional variance of Xt, ΣtΣ
>
t , is affine in Xt so this represents

an affine process.9 Then, it is immediate that ηt takes the form of (O17) with a = 〈0, 1, 0, 0, 0〉.

DKU show that in their setting a number of equity and fixed income security prices take the

form E0[e
α·Xtg(β · Xt)] where g(x) = (1 − eax)b for some (α, β, a, b). They use two methods to

compute this moment. First, when b ∈ N, g can be expanded directly and reduced to log-linear

functionals. Then the moments can be computed by well-known methods. For more general cases,

they compute the moment in two steps: first recover the forward density of β ·X through a Fourier

inversion of the conditional characteristic function, and then evaluate the expectation using the

9DKU exploit the fact that in this particular case the ODE determining the conditional characteristic function for
some variables can be computed in closed form by standard methods. However, in general there is little additional
complication to solve the usual ODE by standard numerical methods.
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density. The formula (A58-A61) in DKU is essentially

E0[e
α·Xtg(β ·Xt)] =

1

2π

∫
b∈R

ĝ(b)

∫
s∈R

eibsE0[e
(α−isβ)·Xt ]ds db. (O32)

This formula requires a double integral, thus increasing the dimensionality of the problem. As

Theorem 1 shows, our generalized transform method will only require a single integral to compute

this moment. If we consider the generalization g(β1 ·Xt, β2 ·Xt), the trade-off becomes a somewhat

tractable 2-dimensional integral with our method versus a highly intractable 4-dimensional integral

by using an extension of the DPS method.

Disagreement about volatility. Suppose that dividends have stochastic volatility. Under Agent

A’s beliefs:

d

 ct

Vt

 =

 ḡ

−κV Vt

 dt+

√√√√√√
 σd 0

0 0

+

 σcV Vt 0

0 σV V Vt

dWA
t . (O33)

Here σd is the lowest conditional variance of log dividends, while Vt represents the degree to which

volatility is above the lowest level.

Agent B disagrees about the dynamics of volatility. According to his beliefs:

d

 ct

Vt

 =

 ḡ

−(κV − b)Vt

 dt+

√√√√√√
 σd 0

0 0

+

 σcV Vt 0

0 σV V Vt

dWB
t . (O34)

For example, when b > 0, Agent B believe that volatility mean reverts more slowly. Using

a = 〈0, b/σ2V V 〉 we get the db-density as in (O17).

Disagreement about momentum. Consider a model with stochastic growth in consumption.

Let ct be the log consumption, gt be the expected growth rate. Also, let et be an exponential
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weighted moving average of past growth rates:

et =

∫ t

−∞
e−b(t−s)gsds. (O35)

Agent A correctly believes that the expected growth rate of log consumption is gt. Under her

beliefs:

d


ct

gt

et

 =


gt

κ(ḡ − gt)

gt − bet

 dt+


σc 0

0 σg

0 0

 dWA
t . (O36)

Agent B believes that growth is due to two components: (1) a mean-reverting component, gt

and (2) a counteracting momentum component through et.

d


ct

gt

et

 =


gt + cet

κ(ḡ − gt)

gt − bet

 dt+


σc 0

0 σg

0 0

 dWB
t . (O37)

Fixing the past, for large enough deviations from the steady-state, the mean-reverting component

will dominate. However, for small deviation from the steady state, Agent B will believe that past

deviations from the steady state lead to larger future deviations from the state steady. In this way

we can view Agent B as possessing a conservatism or “law of small numbers” bias.

This example represents a special case of the essentially affine difference of beliefs.

Disagreement about higher order beliefs. Heterogeneity in higher order beliefs can affect

asset prices as well. We can inductively proceed in defining beliefs:

ĝit = Agent i’s beliefs about the growth rate of consumption

ĝijt = Agent i’s beliefs about Agent j’s belief about the growth rate of consumption

We can consider the state variable Xt = [ct, ĝ
A
t , ĝ

B
t , ĝ

AB
t , ĝBAt ]. Suppose that Xt follows a
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Gaussian process under both agents beliefs. Agent A’s beliefs are such that

d



ct

ĝAt

ĝBt

ĝAB

ĝBA


dt =



ĝAt

κA(θ − ĝA)

κB(θ − ĝB)

κAB(ĝB − ĝAB)

κBA(ĝA − ĝBA)


dt+ ΣdWA

t . (O38)

Here, the fourth and fifth components of the drift say that Agent A believes that the higher order

beliefs (both his beliefs about Agent B and Agent B’s beliefs about him) are correct in the long run,

but may have short run deviations.

Again, this model represent a special case of the essentially affine disagreement.

Disagreement about the likelihood of disasters. Suppose that log consumption, ct, has

constant growth with IID innovations with time-varying probability, λt, of rare disaster. Let

Xt = [ct, λt]. Under Agent A’s beliefs,

dXt =

 gA

−κλλt

 dt+

 σc 0

0 σλ
√
λ

 dWA
t + dZAt , (O39)

where ZAt are jumps in ct which occur with intensity λ0 +λt and distribution ν. Suppose that Agent

B’s beliefs are specified by the db-density of form (O17) with a = 〈b, 0〉. Then, Agent B’s beliefs

will be

dXt =

 gA + bσ2c

−κλλt

 dt+

 σc 0

0 σλ
√
λ

 dWB
t + dZBt , (O40)

where jumps arrive with intensity λBt = EνA [ea·Z ](λ0 + λt) and have distribution νB with Radon-

Nikodym derivative dνB/dνA(Z) = ea·Z/EνA [ea·Z ].

In this sense, Agent B is more optimistic about the future growth both in terms of (1) higher

expected growth rates, (2) lower likelihood of disasters, (3) less severe losses conditional on there

13



γ 6 ρ̄`,d -30.3%
ρ 1% σ̄` 5.4%
g 1.5% σ̄d 11.1%

S 80% σ∞(ρ`,d) 9.8%
a 1

3 σ∞(σ`) 0.0018%
κs 0.0231 σ∞(σd) 0.017%
κV 0.0693 σSS(V ) 1.07

Table 1: Parameters. This table gives the parameters and moments used to calibrate the model. The left

column gives the preference parameters and conditional mean parameters for the process. The right column

gives the conditional moments used to calibrate the parameters (Σ0,Σ1). The first three calibration moments

refer to the steady state values. The next three refer to the conditional volatility of the conditional moments

evaluated at the long run mean of V . σ(σd) is the steady state volatility of σd. V̄ is normalized to be one.

being a disaster.

4 Labor income risk

This section provides more details on the calibration and analysis of the model with time-varying

labor income risk.

The parameters are summarized in Table 1 and are calibrated as follows. We set the long-run

mean growth rate of labor income and dividends to 1.5%. We specify the long run labor income

share, S̄, to be 75%. As the covariance parameters (Σ0 and Σ1) are difficult to directly interpret, we

calibrate them by considering their effect on the volatility of labor income, the volatility of dividends,

and their correlation. We set the parameters so that when Vt is at its long run mean V̄ (which

is normalized to be one), (σ`,t, σd,t, ρ`,d,t) are given by σ̄` = 5.4%, σ̄d = 11.1%, and ρ̄`,d = −30.3%

respectively. Note that due to CRRA utility, our model presents the equity premium-risk free rate

puzzle (Mehra and Prescott (1983)), and we choose our parameterization to generate higher premium

with reasonable risk aversion by slightly overstating the volatility of labor income relative to the

data, with the ratio of dividend to labor income volatility qualitatively similar to Lettau, Ludvigson,

and Wachter (2008). We also calibrate the volatility of (σd, σ`, ρ`,d) when Vt is at its long run mean,

which we denote with by σ∞(σd) = 1.7bp, σ∞(σ`) = 0.18bp, and σ∞(ρ`,d) = 9.8%. Finally, we

calibrate the volatility of V in the steady state distribution, which we denote by σSS(V ), to be 1.07.

Taken together, these 7 moments (along with the simplifying assumption that innovations to V are
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Figure 1: Simulated distributions. Panels A and B plot the simulated distributions of the volatility

factor
√
Vt and labor share Lt/Ct.

uncorrelated with innovations to either ` or d) fix the free parameters in Σ0 (3 parameters) and Σ1

(4 parameters). Under this calibration, when V is at the highest (lowest) decile, the volatility of

labor income is 6% (5%), the volatility of dividends is 16%(6%) and their correlation is -10% (-80%).

The volatility parameters where chosen to qualitatively match the variation found in Figure 4.

Next, we investigate the price of risk for shocks to dividends and labor income, which are

transparent and helpful for our understanding of the risk premiums on financial wealth and human

capital. From the stochastic discount factor, we can compute the price of dividend risk, which is

defined as the risk premium for one unit exposure to dividend shocks:

PRdt =
γcovt(ct, dt)

σd,t
= γ

(
Lt
Ct
ρtσ`,t +

(
1− Lt

Ct

)
σd,t

)
, (O41)

where ct is log consumption; σ`,t and σd,t are the conditional volatilities of labor income and

dividends, with their dependence on the volatility factor Vt captured by the time subscripts. On the

one hand, holding Vt constant (so that σ`,t, σd,t, and ρt are all constant), the price of dividend risk

will rise as labor share falls as long as σd,t > ρtσ`,t (for example, when dividends are more volatile

than labor income or when their correlation is negative), which is the composition effect highlighted
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in SV. On the other hand, holding labor share fixed, as Vt increases, the volatility of labor income,

dividends, and the correlation between the two will increase. All three factors contribute to raise

the price of dividend risk. Intuitively, investors become more reluctant to hold financial assets either

when there is less labor income to buffer the financial shocks (lower labor share), or when labor

income becomes a worse hedge against the financial shocks (higher correlation or higher volatility of

labor income).

Finally, if the correlation between labor income and dividends is sufficiently negative and the

labor share is sufficiently high, the price of dividend risk can become negative. This is because when

the investor is heavily exposed to labor income risk and ρt is close to −1, bad news for dividends will

tend to be accompanied by good news to labor income, which causes consumption to rise (opposite

to dividends).

Similarly, the price of labor income risk measures the risk premium for one unit exposure to

labor income shocks:

PR`t =
γcovt(ct, `t)

σ`,t
= γ

(
Lt
Ct
σ`,t +

(
1− Lt

Ct

)
ρtσd,t

)
. (O42)

Provided that σ`,t > ρtσd,t (for example, when the correlation is very small or negative), the price

of labor income risk will rise with labor share. Also, holding the labor share constant, the price of

labor income risk unambiguously falls as the correlation and volatilities fall.

Figure 2 shows the quantitative effects of the labor share and correlation (volatility) on the price

of dividend risk and labor income risk. First, we show how the volatilities of labor income, dividends,

and the correlation between the two are tied to the volatility factor Vt. As Panel A shows, both

the volatility of labor income and dividends are monotonically increasing in the volatility factor,

although dividend volatility varies significantly more than does labor income. This property is an

important feature of our model, which is also consistent with the data. In Panel B, the conditional

correlation between labor income and dividends is also monotonically increasing in the volatility

factor. Since the volatilities and correlation are all monotonic functions of the volatility factor Vt,

without loss of generality we use the correlation ρt in place of Vt in the plots for the remainder of

the paper.
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Figure 2: Price of dividend risk and labor income risk. Panel A and B plot the conditional

volatility of labor income (σ`,t), dividends (σd,t), and the conditional correlation between the two (ρt), as

functions of
√
Vt. Panels C and D plot the conditional price of dividend and labor income risk PRd

t and PR`
t

as function of labor share Lt/Ct and correlation ρt.

As Panels C and D show, holding the correlation constant, the price of dividend risk is decreasing

in labor share, while the price of labor income risk is increasing in the labor share. When holding

the labor share constant, both prices of risk increase with the correlation between labor income and

dividends (the volatility factor). These features are consistent with our analysis above.

Notice also that while the price of dividend risk is always falling as the labor share rises,

the decline is less pronounced when the correlation (volatility) is small. For example, when the

correlation is -0.1, the price of dividend risk falls from 0.36 to 0.06 as labor share rises from 0.6 to

0.9; when the correlation is -0.8, price of dividend risk falls from 0.01 to -0.17 for the same increase
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in labor share. The opposite is true for the price of labor income risk. From (O41) and (O42) we see

that the sensitivity of PRdt to Lt/Ct is σd,t − ρtσ`,t, which is increasing in Vt under our calibration,

whereas the sensitivity PR`t to Lt/Ct is σ`,t − ρtσd,t, which is decreasing in Vt under our calibration.

Both results follow from the fact that the volatility of dividend income σd,t rises significantly faster

with Vt than does the volatility of labor income σ`,t, as illustrated in Panel A of Figure 2.

Panels C and D also show that the decline in the prices of dividend risk and labor income risk

with correlation (and volatility) is more pronounced when labor share is lower. Since σd,t rises

significantly faster with Vt than σ`,t and even ρtσ`,t, a lower labor share will make the price of

dividend risk more sensitive to changes in the volatilities and correlation between labor income and

dividends.

Next, we return to assess whether changing covariance can account for the changing relationship

between labor income share and expected excess returns in Figure 3. Specifically, our model predicts

that the labor income share has little effect on the equity premium when consumption volatility

and the correlation between labor income and dividends are low.

In Table 2, we formally examine the difference of return predictability with labor share in the

two samples using regressions of long-horizon excess returns on lagged labor shares. The specific

form of the regression is

rxt,t+K = β0(K) + β1(K)
Lt
Ct

+ εt+K , (O43)

where rxt,t+K is the cumulative excess return on the market over K quarters, and we consider

K = 4, 8, 12, 16. For each regression, we report the point estimates of β1(K), the NeweyWest

corrected t-statistics (with the number of lags equal to 2K, as in SV), the Hansen-Hodrick corrected

t-statistics and the adjusted R2.

The regression results are consistent with what we have inferred from Figure 3. Labor share

significantly predicts long-horizon returns with a negative sign in the period 1947-1990, which

confirms the findings of SV. In the post-1990 period, the regression coefficients on labor share

become positive, although they are statistically non-significant at all horizons when using the

Hansen-Hodrick standard errors. Based on the moving-window estimates of consumption volatility

and correlation between labor income and dividends in Figure 4, volatilities and correlation are both
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Table 2: Return Forecasting Regressions. Dependent variable: cumulative excess return on the

market over various horizons (quarters). Predictive variable Lt/Ct: share of labor income to consumption.

The first set of t-stats is the Newey-West adjusted t-statistics, with the number of lags double the forecasting

horizon. The second set of t-stats is the Hansen-Hodrick adjusted t-statistics using the same number of lags

as the Newey-West t-stats.

Panel A: 1947-1990 Panel B: 1991-2010

4 8 12 16 4 8 12 16

Lt/Ct -1.042 -2.440 -4.257 -6.263 3.621 7.233 11.342 15.791
t-stat (NW) -1.890 -3.664 -4.367 -4.396 1.948 2.185 2.569 3.637
t-stat (HH) -1.086 -1.401 -1.900 -2.330 1.295 1.406 1.531 1.724
Adj. R2 0.041 0.125 0.270 0.406 0.101 0.214 0.286 0.363

higher pre-1990, which according to our model implies a stronger composition effect (risk premium

falls as labor share rises) during this period. As both the volatilities and correlation become smaller

in the second sample, the composition effect should indeed become weaker.

On the other hand, in Table 2 the point estimate of the regression coefficients are economically

large and significantly positive at longer horizons with respect to the Newey-West standard errors.

What could explain such a possible change in the predictive power of labor share? It is possible

that some variable that is driving the risk premium on stocks has become correlated with labor

share (or happens to be correlated in the relatively short sample). For example, observe that over

this period, labor share and covariance are generally positively correlated in Figure 4. In this case,

according to Figure 5, decreasing share may be associated with decreasing risk premium due to

declining correlation, despite the reverse univariate relationship where covariance is held fixed. Put

differently, our covariance variable, Vt, may represent a variable which is correlated with both the

regressor and the residual in (O43), resulting in biased estimates. Other risks factors may also be at

play as well. For example, the correlation between labor share and the consumption-wealth measure

CAY (see Lettau and Ludvigson (2001)) is −0.15 over the period 1952-2010, but jumps to 0.6 in

the period 1990-2010. Thus, the fact that CAY predicts the equity risk premium with a positive

sign can help explain the regression results in the post-1990 period as well. These possibilities could

be explored further by expanding our framework to include the additional covariates.
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