
 
 

 

  
Abstract—We study inventory allocation and order fulfillment 
policies among warehouses for low-demand SKUs at an online 
retailer. A large e-tailer strategically stocks inventory for SKUs 
with low demand. The motivations are to provide a wide range of 
selections and faster customer fulfillment service. We assume the 
e-tailer has the technological capability to manage and control the 
inventory globally: all warehouses act as one to serve the global 
demand simultaneously. The e-tailer will utilize its entire 
inventory, regardless of location, to serve demand. Thus, given 
the global demand and an order fulfillment policy, there are trade-
offs involving inventory holding costs, transshipment costs, and 
backordering costs in determining the optimal system inventory 
level and allocation of inventory to warehouses. For the case of 
Poisson demand and constant lead time, we develop methods to 
approximate the key system performance metrics like 
transshipment, backorders and average system inventory. We 
then use these results to develop guidelines for inventory stocking 
and order fulfillment policies for online retailers. 
 

Index Terms—Inventory allocation, order fulfillment, low 
demand SKU, online retailers. 
 

I. INTRODUCTION 
large e-tailer strategically stocks inventory for SKUs 
with low demand for several reasons. Xu [1] lists the 
following reasons. 

“One motivation is to provide a wide range of selections, 
since such SKUs actually constitute a significant portion of 
the total SKUs. The second incentive, of course, is to 
provide faster customer fulfillment service. The third 
motivation is to gain a competitive advantage from other 
online retailer. Suppose that an e-tailer only drop-ships the 
low-demand SKUs, its drop-shipper who serves many 
online retailers, may choose to satisfy a competitor’s 
demand. For many of these SKUs, the e-tailer may only 
stock a handful of inventory units across all warehouses. 
Inventory planning for low-demand SKUs is challenging 
because the discrete effect is much more pronounced while 
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the current inventory models often assume all variables are 
continuous.” 
 

Efficient inventory planning and order fulfillment for 
low-demand SKUs is important in the retailing setting. 
Often over 90% of a retailer’s catalog comprises slow 
moving SKUs with demand in the range of 0.2 – 0.8 units 
per week. Therefore, the impact of inventory planning for 
low-demand SKUs is very significant 
 

Research by Xu [1], focused on the effect of inventory 
allocation on outbound transportation costs. Her model 
envisions an e-tailer with several warehouses in the system, 
with the technological capability to manage and control the 
inventory globally: all warehouses act as one to serve the 
global demand simultaneously. Specifically, the e-tailer 
will utilize its entire inventory, regardless of location, to 
serve demand.  Given that the e-tailer stocks a certain 
number of units of inventory in the system, Xu studied how 
best to allocate inventory to warehouses by considering 
outbound transportation costs from the warehouses to 
customers. Their approach produced exact solutions for the 
2-unit 2-location case, but was not tractable for the general 
multi-unit multi-location case. 

 
We extend the work done in [1] by developing methods 

to calculate metrics like transshipment, backorders and 
average system inventory for special cases of demand 
distribution over the locations. We use these exact results 
to develop an approximation for these performance metrics 
for the case of a general demand distribution over the  
locations. We then use these results to develop guidelines 
for inventory stocking and order fulfillment policies for 
online retailers. 

 

II. MODEL 
We start with the N-Unit N-Location problem for a 

single item. Suppose the e-tailer decides to stock exactly 
one unit at each of N warehouses in the system. We want 
to find methods to estimate key performance metrics like 
transshipments, backorders and average system inventory 
for an N-Unit N-Location problem. We start with the 
following assumptions. 
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A-1The system demand process is Poisson with rate λ . 
 
A-2 The demand process is split into N independent 
processes, 1 to N. With probability 1α , a demand arrival is 

from region 1; with probability 2α , a demand arrival is 

from region 2; and so on. The α i are non-negative and 
sum to 1.  
 
A-3 The replenishment lead-time for each warehouse is the 
same constant L. 
 
A-4 The inventory policy is one-for-one replenishment at 
each warehouse: a replenishment is triggered at each 
demand epoch. 
 
A-5 Demand is backlogged when there is no on-hand 
inventory in the system. 
 
In the context of online retailing, the e-tailer can utilize any 
warehouse or fulfillment center to serve the customer 
demand. Specifically, a demand is always served by an on-
hand inventory unit in the system if there is any; if there 
are no on-hand inventory units in the system, the demand is 
served by and triggers replenishment at the warehouse that 
has the next arriving replenishment. We then have the 
following assumptions on how the system operates for all 
stocking scenarios. 
 
A-6 When a customer arrives and its closest warehouse has 
on-hand inventory, then its closest warehouse serves the 
demand and triggers a replenishment. 
 
A-7 When a customer arrives and its closest warehouse 
does not have inventory on-hand, the system will assign 
the demand to another warehouse if there is on-hand 
inventory elsewhere in the system.  A warehouse with on-
hand unit is chosen according to an order fulfillment 
policy, P, to serve demand; this assignment triggers 
replenishment for the chosen warehouse. 
 
A-8 If a customer arrives and the system has no on-hand 
units, then the policy is to assign the demand to the 
warehouse with the next arriving unassigned 
replenishment. This assignment triggers another 
replenishment for the chosen warehouse. 
 
Note that assumption A-8 is possible because we assume 
deterministic supply lead-times, so we know exactly when 
all future replenishments arrive. Also, assumption A-7 and 
A-8 are analogous to an emergency transshipment. 
 

Notation 
DL : Random variable for the system demand  

    over the lead time. E[DL]= λL 
SI : Random variable for the on-hand system inventory 

   SI = (N - DL)+ 

 
We define the following probabilistic events: 
Fi,j : Event that an order from region i is filled immediately  

 from on-hand stock at warehouse j 
Bi,j : Event that an order from region i is backordered and  

 filled subsequently from a replenishment to   
warehouse j 
  

Ai,j : Event that an order from region i is filled from  
  warehouse j. Hence, , , ,= ∪i j i j i jA F B  

 
The system performance metrics such as the fill rate and 

average inventory can be calculated for general cases if DL 
is known.  

 
System fill rate = 1 - Pr[DL≥N] 
 

Average system inventory = ∑
=

=×
N

i

iSIi
1

]Pr[  

 
However, the amount of transshipment depends on the 

demand distribution across the regions and the order 
fulfillment policy in the system. Sections III and IV 
estimate the transshipment for special cases of balanced 
demand and extreme demand distribution for a specific 
order fulfillment policy. We specify a service failure metric 
and a method to estimate transshipment for general demand 
distribution in Section V. In Section VI, we compare the 
performance of various order fulfillment policies. We 
discuss future research directions and conclusions in 
Section VII. 

 

III. BALANCED DEMAND CASE 
We first analyze the case in which each of the N-
warehouses faces a demand rate of λ/N from its local 
region. We consider the order fulfillment policy as stated 
in A-6 and A-7, with the feature that if a customer arrives 
and its closest warehouse does not have inventory on-hand, 
but one or more of the other warehouses do have inventory 
on hand, then a warehouse with on-hand unit is randomly 
chosen (with equal probability) to fill the order. We call 
this policy P1. 
 
Result 1: 
The probability that an order from region i is filled from 
warehouse j immediately from stock under the above 
condition is given by: 



 
 

 

 
The probability that an order from region i is backordered 
and filled from a replenishment to warehouse j under the 
above condition is given by: 

 
The results follow from application of the Total Probability 
Theorem, and properties of the Poisson process. The key 
insight used here is that since demand arrival is Poisson 
with equal rates for each region, for a given level of system 
inventory, each inventory state is equally likely. For 
example, if N=3 and SI=2, then the inventory states (1,1,0), 
(1,0,1) and (0,1,1) are equally likely to occur. Hence, 
conditioned on SI=2, we can argue that the probability that 
a demand from region 1 is served from warehouse 1 is 

1,1Pr | 2 2 3⎡ ⎤= =⎣ ⎦F SI , as this will happen for inventory 

states (1,1,0) and (1,0,1).  Similarly, conditioned on SI=2, a 
demand from region 1 is served by warehouse 2 or 3 only 
if the inventory state is (0,1,1), where each warehouse has 
an equal probability; thus, we have 

1,2 1,3Pr | 2 Pr | 2 1 6⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦F SI F SI . 

 
A customer order is back-ordered if and only if none of the 
warehouses in the system has inventory, i.e, SI=0. Again, 
since demand is Poisson with equal rates for each region, 
when the system inventory is 0, each warehouse is equally 
likely to have the next arriving unassigned replenishment 
unit. Thus: 

 
With the above results, we can find the probability a 
demand in region i is served by a transshipment from 
warehouse j: Pr[Fi,j]+Pr[Bi,j] for i ≠j.  
 

IV. EXTREME DEMAND CASE 

We now suppose that all demand originates from one 
region, e.g., 1 1α = , while 0α =j for j=2,..N 

 
We now analyze the case where one of the N-

warehouses faces a demand rate of λ from its local region, 
while the other warehouses do not face any demand but 
still carry inventory. The order fulfillment policy for this 
analysis is P1, as described in Section III. 

 
Consider the demand arrival process with 1 1α = . We 

define a renewal as occurring whenever an order is filled 
by warehouse 1 either immediately from stock or as a 
backorder. We define the inter-renewal interval (Mt) as the 
number of demands that occur between  renewal epochs. 
Then the counting process that looks at the number of 
orders served by warehouse 1, is a renewal process, and Mt 
are IID RVs for renewals occurring at t.  
 
 
Result 2: 
The probability that an order from region 1 is filled from 
warehouse 1 immediately from stock under the above 
condition is given by: 

 
The probability that an order from region 1 is backordered 
and filled from a replenishment to warehouse 1 under the 
above condition is given by: 

 
The results follow from application of the Total Probability 
Theorem and Renewal-Reward Theory [2]. 
Define a reward function, R(n) = 1 if order n is served by 
warehouse 1. Then, by the Key Renewal Theorem,  
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However, E[R(t)] is the expected rate of reward 
accumulation, which in this model, is the probability of an 
order being assigned to warehouse 1 to be fulfilled either 
immediately from stock or from a replenishment unit when 
it arrives. Hence, the result follows. 
 For the other warehouses, we can show that  
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As explanation, we note that the fill rate from the non-
local warehouses to serve demand in region 1 equals the 
system fill rate, net of the fill rate from warehouse 1; by 
symmetry, we then divide the total fill rate associated with 
the non-local warehouses equally across these N-1 
warehouses. Similarly we find the probability that a non-
local warehouse serves a backordered demand from region 
1. 
 
With the above results, we can find the probability a 
demand in region i is served by a transshipment from 
warehouse j: Pr[Fi,j]+Pr[Bi,j] for i ≠j.  
 

V. INTERPOLATION METHOD 
For other cases of demand, exact solutions could not be 

found either by similar methods or using the method in [1]. 
We expect that Pr[Fi,i] to be monotonically decreasing 
with α i  for a given system demand rate, λ  (provided that 
demand in all other regions remains proportional, and the 
order fulfillment policy in place is P1). Thus, we propose to 
approximate the Pr[Fi,i] for other cases of demand using 
some form of monotonic interpolation Using the known 
results for 1 and 1α α= =i i N ,  we considered a linear  
interpolation and exponential interpolation approximation 
for Pr[Fi,i] using the values of Pr[Fi,i] for the balanced and 
extreme demand distribution cases. We compared this 
approximation with Monte-Carlo simulation results for 
Pr[Fi,i]. A sample case for a 4-unit 4-warehouse scenario 
with λ=1 and L=3 is shown below: 

 
 TABLE I: COMPARISON OF SIMULATION AND INTERPOLATION RESULTS 
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 Fig 1: Comparison of Simulation and Interpolation Results 
 
We observe that the exponential approximation performs 

slightly better than the linear approximation. In general, the 
approximations are both reasonably good, within 5% of the 
simulation results. Furthermore, the error seems systematic 
with the approximation overestimating Pr[Fi,i] when 

[ ]1 ,1α ∈i N  and underestimating Pr[Fi,i] when 

[ ]0,1α ∈i N  . 

 
However, this approximation method does not account 

for the effects due to the demand distribution across the 
warehouses. For instance, consider a 3-unit 3-location 
scenario. If 1 2 30.33, 0.67, 0,α α α= = = then the 

1,1 1 2 3Pr | 0.33, 0.67, 0α α α⎡ ⎤= = =⎣ ⎦F  is clearly not 

equal to 1,1 1 2 3Pr | 0.33, 0.33, 0.33α α α⎡ ⎤= = =⎣ ⎦F .  We 

expect that this approximation performs bests when local 
demand faced at the other warehouses is equal. If demand 
at other warehouses is not equal, then under order 
fulfillment policy P1, the approximation overestimates the 
probability of local order fulfillment from stock. 
 

We define another performance metric, Service Failure, 
as the probability that an order is not  filled immediately by 
its local warehouse.  

 
Service Failure for region i, SFi = 1- Pr[Fi,i] 
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We can estimate the Service Failure for the system quite 

accurately using the above formula despite the errors in 
estimating Pr[Fi,i]. This is due to the cancellation of the 
systematic errors in the approximation of Pr[Fi,i] as some 

[ ]1 ,1α ∈i N while other [ ]0,1α ∈i N .  

 
We approximate the probability of a backorder filled by 

its local warehouse, Pr[Bi,i], as being almost equal for each 
warehouse in the system, then: 

 

α1 - 
Region 1 

orders filled 
from WH1 

stock 1.0 0.80 0.60 0.50 0.40 0.30 0.25 0.20 0.10 0.05
Simulation 0.196 0.220 0.250 0.272 0.291 0.316 0.328 0.339 0.370 0.376
Linear 
approx 0.195 0.231 0.267 0.285 0.303 0.321 0.330 0.339 0.357 0.366
Exp approx 0.195 0.224 0.258 0.277 0.297 0.318 0.330 0.342 0.367 0.380
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Thus, we can estimate the probability of transshipment 

for each region and for the system as: 

,Pr[ ]= −i i i iTS SF B  

1
α

=

= ×∑
N

i i
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TS TS  

 
We compared these estimates of Service Failure and 

Transshipment for the system with Monte-Carlo 
simulation results obtained over different Fill Rates, 
system configurations and demand distribution spreads. 
We find a generally good fit with errors below 5% for 
the most part. 

 
TABLE II: SERVICE FAILURE APPROXIMATION ERROR PERCENTAGE 

(RELATIVE TO SIMULATION RESULTS) 
Statistics taken over 100 simulation runs of 500k orders 

 
 

TABLE III: TRANSSHIPMENT APPROXIMATION ERROR PERCENTAGE 
(RELATIVE TO SIMULATION RESULTS) 

Statistics taken over 100 simulation runs of 500k orders 

 

VI. ORDER FULFILLMENT POLICIES 
 

We have only considered the order fulfillment policy, 
P1, in the previous cases due to its tractability. However, 
we find that other order fulfillment policies can perform 
better than P1 in terms of reducing the Transshipments in 
the system, without affecting the Average System 
Inventory and Backorders.  

 
We consider two other types of Order Fulfillment 

policies that have the same rules as stated in A-6 and A-7, 
but now with a different fulfillment policy when a 
customer arrives and its closest warehouse does not have 
inventory on-hand.   When one or more of the other 

warehouses do have inventory on hand, then a warehouse 
with an on-hand unit is chosen by a certain rule to fill the 
order. In the first type of policy, say P2, the warehouse is 
randomly chosen but with higher probabilities for 
warehouses facing lower local demand rates. In the second 
type of policy, say P3, the warehouse is chosen from a 
priority list that orders the warehouses according to their 
local demand rates, with lower local demand having a 
higher priority. Results from Monte-Carlo simulation 
indicate that policy P3 has the best system-wide 
performance in terms of total transshipments but results in 
more variability in the local performance measures. 
Overall, there was not a significant difference in system 
performance between these policies. 

 

VII. CONCLUSION 
 

We have extended the work done in [1] by developing 
methods to calculate performance metrics like 
transshipment, backorders and average system inventory 
for special cases of the demand distribution across the 
locations. We have also developed approximations for 
these metrics in the case of general demand distribution 
across the locations for N-units N-locations. Comparing 
these approximations with Monte-Carlo simulation results 
indicate that these are good estimates. We are currently 
using these performance metrics to develop guidelines for 
inventory stocking and order fulfillment policies for online 
retailers, i.e, given a certain system demand rate and lead 
time, we intend to develop guidelines for the optimal 
inventory holding configuration across the warehouses and 
the optimal order fulfillment policy to service demand. 
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Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.14 -0.08 -0.36 -0.06 -0.95 -2.12 -0.70 -2.63 -5.18
96% 0.14 -0.06 -0.21 0.02 -0.75 -1.63 -0.56 -2.18 -4.04
90% 0.19 0.01 -0.16 0.08 -0.51 -1.16 -0.38 -1.58 -2.94
80% 0.16 0.04 -0.07 0.12 -0.30 -0.73 -0.27 -1.17 -1.93
70% 0.14 0.06 -0.01 0.10 -0.20 -0.47 -0.15 -0.71 -1.30
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Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.02 -0.12 -0.37 -0.16 -0.95 -2.10 -0.70 -2.59 -5.13
96% -0.02 -0.14 -0.25 -0.09 -0.76 -1.61 -0.51 -2.09 -3.94
90% 0.00 -0.08 -0.20 -0.05 -0.52 -1.15 -0.30 -1.47 -2.82
80% -0.01 -0.06 -0.11 0.01 -0.33 -0.71 -0.16 -1.06 -1.79
70% 0.00 -0.03 -0.05 -0.01 -0.20 -0.46 -0.07 -0.60 -1.18
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