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Abstract—We consider the optimization problem of safety
stock placement in a supply chain, as formulated in [1]. We
prove that this problem is NP-Hard for supply chains modeled
as general acyclic networks. Thus, we do not expect to find
a polynomial-time algorithm for safety stock placement for a
general-network supply chain.

Index Terms— Complexity, safety stock placement, supply
chain planning.

I. INTRODUCTION

In this paper we consider an optimization problem for
determining the placement of safety stocks in a supply chain.
In particular, we consider the problem formulation developed
by Graves and Willems in [1]. This safety stock problem
can be formulated as a problem of minimizing a concave
function over a polyhedron. The general concave minimization «
problem is known to be NP-hard. The proof of this fact can
be found in [2] or in [3]. However, because the safety stock
problem is defined on a particular polyhedron, in some cases
we can still develop a polynomial time algorithm. For example, «

Graves [4] observes that the Simpson’s serial system case can

be solved by a dynamic program. Graves and Willems [1]
develop a dynamic programming algorithm for the spanning
tree networks which runs i@ (N M?), whereN is the number
of nodes andV/ is the maximum replenishment service time,
which is bounded from above b% the sum of the lead times at
each stage of the supply chan;” , T;. .
There has been no complexity results for the problem of
safety stock minimization, except for Shen [5]. In [5] Shen
proves that a similar problem with the upper bounds on the
outbound service times is NP-hard. Here, we prove that the
general problem is also NP-hard.

Il. ASSUMPTIONS AND FORMULATION
A. Assumptions

We state here the assumptions for the model, as introduced
in [1].
o Multi-stage network. We model a supply chain as a
network. Nodes and arcs of the network have natural
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interpretation in terms of the chain. Each node or stage
in the network represents a processing function at which
we can locate a safety stock. We place an arc from node
1 to nodej if the output product of stageis needed as
input for production at stagg. If a node is connected

to several upstream nodes, then the node is an assembly
requiring inputs from each of the upstream nodes. The
nodes are potential locations for holding a safety-stock
of the item processed at the node.

Due to the interpretation of the network we assume that
the network does not have directed cycles. This fact says
that a component once processed in a node does not return
back to the node in an assembly with other components.
Let N be the number of nodes ard be the set of arcs

in the graph representing the chain.

Production lead-times.We assume that each node j has
a deterministic production lead-tin#%, where lead-time

is the total time of production, including queueing, given
that all necessary components are available.

Base-stock replenishment policy.All stages operate
under a periodic-review base-stock policy with a common
review period. We assume that there is no delay in order-
ing, therefore, all the nodes see customer demand once
it occurs in the demand nodes. Based on the observed
demand, each stage replenishes its inventory up to the
base stock level.

Demand processWe assume that external demand oc-
curs only in the demand nodes, which we define to be the
nodes with zero out-degree. We denote the set of demand
nodes adD. For each nodg in D demandd,(t) comes
from a stationary process with average demand per period
-

Any other nodei ¢ D has only internal demand from

its successors. We can calculate the demand in nede
time ¢ by summing the orders placed by its immediate

successors:
di(t) = > 0id;(t),
(i.j)€A
where a scalard;; is associated with each arc and
represents the number of units of upstream component
i required per downstream unjit From this relationship,
we find the average demand rate for the node be

pi= Y O
(i,5)€A
The most important assumption of the model is that

demand is bounded. In particular, for each ngdiere
exists a functionD, (F') for F =1,2,..., M;, such that



1) for any periodt¢ Now, we formulate the probler? of finding the optimal

_ e e .. Quaranteed outbound service tim#s, j = 1,...,N and
Dj(F) 2 dj{t=F+1)+d;(t=F+2)+...+d;(t); inbound service timeSI;, j =1,..., N in order to minimize
2) D;(0) = 0; the total cost of safety stock in the chain.
3) the function is concave and increasing fbr = . N
1., M min 325y hj{D;(SI; +Tj = 85) = (SL; + Tj — Sj)my}
4) D;(F) — Fuj; is increasing in¥, SIj+T1;-8;20, j=1....N
. . . . SZSSI], (Z,]) €A
where M is the maximum replenishment time for node .
j Sj < s4, JeED
i . . j >0, i =1,...
Guaranteed outbound service timesWe assume that 5j,81; 2 0, integer j =1,...,N

node j provides 100% service and promises a guaranteeldere »,; denotes the per-unit holding cost for inventory at
service timeS; to its downstream nodes. This means thatage;.

demandl; (t) that arrives at timeé must be filled at+5,. This is a problem of minimizing a concave function over a
Note, we assume that each non demand npdgiotes polyhedron.

the same service time to each of its downstream nodes
i:(j,1) €A

Also, we impose bounds on the service times for the . .
demand nodes, i.eS; < s;,j € D, wheres; is a Here we determine the complexity of the probl@hstated

given input that represents the maximum service tirﬁ(? section 1I-B. We show that the problem is NP-hard by re-
for the demand nodg. The maximum service time is ucing a known NP-hard problem to the safety stock problem.
a parameter of the model known to the end custom rThe idea of the proof appeared first in the unpublished note
For example, if nodei wants to serve its customers Yy [5]. In this note, the author reduces the Vertex Cover prob-

immediately, the firm has to set = 0. lem, which is known to be NP-complete, to a modification of

Guaranteed inbound service times.Let SI; be the the safety stock problem. The modified problem is essentially

inbound service time for the node We define inbound the same problem as proble?, except ihat each node has
service time to be the time for the nodeto get all of an additional constraint on its outbound service time. The
its inputs from nodes: (i,7) € A and to commence author assumes that the outbound service time for each node
production. We require that 1, > S, for all arcs(i, j) € is 'bounded f'rom. above. That means, for each npcﬁlgre .
A, since stagej cannot start production until all inputsex'StS a service time;, such that the outbound service time is
have been received. We have shown in [6] that,

if th%onstrained as; < s;. Note, that problenP also has similar
objective is to minimize the cost of the safety stock helgevice time constraints, but only for the demand nobes
in the chain, there exists an optimal solution with:

while the outbound service times for the rest of the nodes
are not constrained in this way. However, we have found a
SI]‘ = max Sz
(i,5)€A

way to reduce an instance of the minimum-size Vertex Cover
problem, which is NP-hard, to an instance of probtensuch
All the parameters described here are known except for it a solution of probler® will imply a solution of the Vertex
outbound and inbound service times. These service times &i§er instance.
decision variables for the optimization. We first describe the Vertex Cover problem. A vertex cover
in graph G is a subsetl” of vertices of G such that every
B. Formulation edge ofG is incident to at least one vertex ¥ (see [7]).
SupposeB; is the base stock level for a nogeand I (t) is Then the optimization Vertex Cover problem for a graph is to
inventory inj at time¢. At time ¢, stagej observes demand find a vertex cover of minimum cardinality. This problem is
d;(t) and starts replenishing the demand. It places an order fP-hard.
the input materials to the upstream nodes and replenishes thBlow, we show how to reduce an instaricé€’ of the Vertex
demand at the time+ ST, +T;. However, the node guaranteeg-over problem to an instancg; of problem 7. Suppose,
to satisfy the demand at time+ S;. Therefore, ift +5; < instanceV C is characterized by an undirected gra@hwith
t+ SI; +Tj, the stage has to always store inventory to covéY nodes and\/ edges and we want to find a minimum vertex
the time interval ofSI; 4+ T; — S;. This interval is called the cover. Then we perform the following steps:
net replenishment time and we will see that the inventory thatl) Make a directed graph from G. We can arbitrarily
covers the interval is the base-stock level. assign directions to the edges @f The only condition

IIl. COMPLEXITY OF THE PROBLEM

To provide 100% service level, we requife(t) > 0. To
satisfy this requirement, we set the base stétkequal to
the maximum demand over an interval of length; + 7, —
S;, namely B; = D;(SI; +T; — S;). Hence, the expected
inventory at the stagg is

D;(SI; +T; — 8;) = (S1; + T — Sj)py

which represents safety stock held at the stage

that has to be satisfied while doing so is that the directed
graph has to have no directed cycles. One way to satisfy
this condition is by following a simple algorithm. We
first create set/ with all of the nodes and an empty set
L. We then choose nodec U and assign the direction

to each arqi,j), 7 € U from node: to nodej. After

that we move nodeé to the setl. and remove all the
edges(i,j). Then we pick another node frofi and
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GraphG for the problemV C. Fig. 3. An example of the safety stock function.

Next, we assign the per-unit cost of a safety stock:

L L i=1,...,N
iT1I N+1, i=N+1

The lead times for the nodes are:

E{l,i:LuwN

0, i=N+1

Finally, the service times promised to the end customers
are 1, i.e.,s; = 1 for all demand nodes. As in the
Graph(:” for the problem. formulation of problemP, by demand nodes we mean
the nodes with zero outdegree, including nadet 1.

The procedure described above polynomially transforms
graph G to an instanceP; of the safety stock placement

roblem?P. Now, we show that an optimal solution of problem
direction of each edge such that the nodes in thelset' ! determines an optimal solution of the Vertex Cover problem

are predecessors of the nodes in thelset C for graph(.

As in the supply chain network, we will call the nodes emma 1. Suppose we have instanég of the safety stock
with zero outdegree as demand nodes. problem?. Then it is optimal to hold no stock in nodé+ 1.
Create a new nodeWe create a new nod® + 1 such Proof:

that every non demand nodehas an edgéj, N + 1) We first show that the feasible region is not empty by
directed fromj to N+-1. Let us denote the directed graphconstructing a solution with the cosf. Such solution is

with the new node a&/’. Figure 1 shows an example of Sni1 =1, SIns1 = 1;

an undirected grapl/, while Figure 2 shows one way S, =0,SI; =1fori<N.

to transform the graph into graph’. -

repeat the procedure until the $éis empty. This simple
algorithm will produce a directed graph wifti directed
edges in polynomial time, since at each step we set t

. . . The solution is feasible. Indeed, the nonnegativity of net
Assign parameters.We define the safety stock function ; ! ) -
) L2 replenishment timeS1; + T; — S; is satisfied for each node.
for each node of the grap@’. For simplicity, we call g k
the safety stock at each nodas Each demand nodg including nodeN +1, hass; < 1. Alsp,
for each arc(i, j), S; = 0 and SI; = 1, hence,S; < SI; is
S8i(rs) = Di(7:) — pa(m) also true. Therefore, the solution is feasible and the feasible
a\Ti) = HilTi) = HalTe)s region is not empty. We note also, that the solution gives cost
N, since each node< N contributes cost 1 and nodg + 1
contributes 0 to the overall cost.
Now, we prove the statement of the lemma. Indeed, we

WherETi =SL+T;,—S;.
Then we require tha$'S;(r;) is continuous, concave and

satisfies notice that the total value of the safety stock cost in all the
0, =0 nodes other thanV + 1 is at mostN. This is due to the
SSi(r)=4 1, n>1 (1) fact that the maximum of the safety stock functioi;(7)
VT, 0<m<l1 is 1 and holding cosh; = 1 for all i« = N + 1. All the
unknown variables in the optimal solution take discrete values
Without loss of generality, we can assume that the1,2,.... Therefore, if a node # N + 1 holds non zero

function is /7, on the interval(0,1), sincer; takes stock, then the holding cost in the node is 1.

only integer values. The most important properties of On the other hand, if nodé&’ + 1 holds any stock, then

the function are that it is equal to O whepn= 0 and 7xy; = 1 or 2 or.... Thus, in this case the value of the
is equal tol for all the other integer; > 1. Figure 3 safety stock functionSSy11(7n+1) = 1 and it contributes

shows an example of the safety stock function. N + 1 to the total holding cost, sincey1 = N + 1.



From this we conclude that if nod®& + 1 holds stock, cover assignmendr v.c. assignmendf the safety stock prob-
the total cost is at leasV + 1. If the node does not hold lem. A v.c. assignment is a distribution of the safety stock in
any stock, then the cost of holding inventory is at md&t the nodes of a graph such that for each(arg) the assignment
Therefore, we conclude that nodé+ 1 holds no stock in an implies holding stock iri or in 5 or in both. We notice, that for
optimal solution. [0 the problemP;, a v.c. assignment of the safety stock creates a
vertex cover of grapliz. This is because the cost of holding
stock in a node is always one, which is equivalent to putting
the node into the vertex cover set. However, in the safety stock
problem setting, we refer to the v.c. assignment and in the VC

Lemma 2. Suppose we have instanég of the safety stock
problem”P. Then in an optimal solution for each nodén the
networkG’ we haveS; < 1.

Proof: problem setting - to the vertex cover.
The statement of the lemma follows from lemma 1, where _
we showed that for nod& + 1, 7y 41 = SIni1 + Tvyr — Lemma 4. Suppose we have a directed graghand safety

Sni+1 = 0. Then, sincely,; = 0 and Sy4q < sy+1 < 1, stock problem?; on G' = GU{N + 1} as described above.
we haveSIy,; < 1. From the constraints of the problemThen for each v.c. assignment of safety stockothere exists

P;, S; < SI; for all the arcs(i,j) in G’. Therefore, since @ feasible solution of the safety stock problémn

each non-demand node is connected to nvde 1, we have, Proof:

S; < 1 for all non-demand nodes. Also, we know that for each To prove the lemma we consider a v.c. assignment and
demand nodg, S; < 1, which we imposed by constructionexplicitly construct a feasible solution of the safety stock
of problem P;. Therefore, we can conclude that for each nod&oblem. We consider any nodeof graphG. Depending on

i, S; < 1. O the v.c. assignment, the node holds or does not hold safety

, stock inq.
Lemma 3. Suppose we have instanég of the safety stock

problem P. Then, in an optimal solution, for each arc ° If there is zero stock in, we setS; =0, 5; = 1.

(i,7), 1,7 # N + 1 it is impossible to have values far, « If there is nonzero s_tock in, we setSI; =1, S; =0.
and 7; such thatSS;(7;) = 0 and SS;(r;) = 0. To complete the solution for all the nodes of probldtn
I;roof: Y we setSIyy; =1and Sy = 1.

In lemma 2, we showed that each optimal solution of The solution is feasible. First, we see that for every demand

problem P; satisfiesS; < 1. Suppose now there is an ard'0dei, S; < s; = 1. Itis also obvious thaSl; +T;—5; 2 01s
(i, ), i # N+1 such thatSS;(r;) — 0 andS5; (r;) = 0. That satisfied for this solution. In the zero stock case, the solution
w\11) — g\ly) — Y-

is, e suppose; = SI,+T,—S; — 0 andr; = ST;+T—S; — givesSI; +T; —S; =0+1—1=0 and indeed implies zero
0 ' Then ST. o g, _lT} L é 1< jl _ 1J_ 6 Sijnce stock. In the nonzero stock case, it satisfis + 7, — S; =
. J J V. J — - .

SI; > 0,we haveSI; = 0. BecauseS; < SI; =0, S; = 0. 1+1-0 :E] and 'mﬁl'ei sr':oclflsi(z) — ;Sh P
However, SI; + T; — S; = SI; + 1 = 0 by assumption and Next, we have to check that the constrait< SI; for any

SI; > 0. Therefore, we found a contradiction, which prove§rC (i, j) is satisfied. IndegdSINH imposes a constraint on
the lemma all the outbound service timeS; < 1,i ¢ . The proposed
solution clearly satisfies the constraint.

From the lemma, we conclude that for each &igcj) : Now, consider nodé € G. Because the solution is a v.c.
i, # N + 1, in an optimal solution, at least one notler j assignment, if node has zero stock, all the nodes connected
holds safety stock. Therefore, the nodes with positive safaty i have to have nonzero stock. That means;j ifE G is
stock form a vertex coveV’ for the graphG. Moreover, by downstream of, SI; = 1 and constraint = 5; < SI; = 1is
construction of the cost function, each node that holds safesatisfied. If node is upstream of, S; = 0 and the constraint
stock contributes cost 1 to the objective function of the safety= S; < SI;, = 0 is satisfied again.
stock problem. Therefore, the objective function value is equallf node i € G has nonzero stock, then the solution again
to the cardinality of the vertex covéf. By solving the safety does not violate the constraint. Indeed, as we showed before,
stock problem, we find the minimum cost of safety stock; < 1 for any node in graptG, therefore,SI; = 1 does
which equals the cardinality of a vertex cover of gragh not violate constraints§7; > S; for all arcs(j,7) . Because

To prove that we find a minimum vertex cover by solvingI; > 0, S; = 0 does not violate constraini$; < SI; for all
the safety stock problen®;, we only need to prove that thearcs(i, j).
minimum of problemP; does not depend on the orientation of Therefore, we conclude that the solution is feasible and this
the graph. Step 1 assigns the orientation to gi@mrbitrarily, proves the lemma. O
which determines the demand nodes and the relationshi

between the variables. If arg, ;) is directed from node feasible solution of the safety stock problem. Since every v.c
to nodej, then the corresponding constraint $ < S1I;. . t of th fot tyk bFI) LT lent t yv.c.
If, however, the orientation were reversed, the constraint ggsignment of the safety stoc p:od GT]'S ?quwa entlo a
S; < SI;. Therefore, the problems are different and can i\ﬁertex cover on grapi:, we conclude that or every v_ertex
ver of graphG we can always find a feasible solution of

theory give different solutions. Consequently, we have to shdiy

that they indeed give the same solutions independent of t%ré)blemPi.

orientation. Corollary 1. Suppose we want to find a minimum vertex cover
For the purposes of the next lemma, we definewhdex on an undirected grapliy. Then, we can transform the problem

Fi_emma 4 shows, that for every v.c. assignment, there is a



into problemP; and solve the problem optimally to obtain a
minimum vertex cover, independent of the orientation assigned
during the transformation.

Proof:

By lemma 3, an optimal solution of problen®; is a
v.c. assignment orz with cost K. Suppose, there exists a
transformation of’C' problem into problenP; with different
orientation and with strictly smaller cost’ < K. But the
solution of problemP/ is a v.c. assignment ot as well.
Therefore, by lemma 4 there exists a solution of problém
with the same cosk”’, which contradicts optimality of.

We conclude that for any orientation of grapgh problem
P; gives an optimal solution to th&C problem. O

Corollary 1 shows that by solving the safety stock problem
optimally, we solve the Vertex Cover problem for the graph
G. We can conclude now that problefis NP-hard.

IV. CONCLUSION

Previous work has developed efficient algorithms for re-
stricted versions of problem P. For instance, Graves and
Willems [1] give a dynamic programming algorithm for span-
ning tree networks which runs i@(N M?). However, it has
not been known as to whether or not such algorithms exist
for problem P defined on a general network. In this paper, we
provide a proof that problem P is NP-hard. Thus, we cannot
expect to develop a polynomial-time algorithm for problem
P for general-network supply chains. As a consequence one
would want to consider approximate solution procedures,
and/or enumerative algorithms such as branch and bound.
Indeed, there has been recent encouraging research on both
counts, e.g., [6], [8], and [9].
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