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Abstract— We consider the optimization problem of safety
stock placement in a supply chain, as formulated in [1]. We
prove that this problem is NP-Hard for supply chains modeled
as general acyclic networks. Thus, we do not expect to find
a polynomial-time algorithm for safety stock placement for a
general-network supply chain.

Index Terms— Complexity, safety stock placement, supply
chain planning.

I. I NTRODUCTION

In this paper we consider an optimization problem for
determining the placement of safety stocks in a supply chain.
In particular, we consider the problem formulation developed
by Graves and Willems in [1]. This safety stock problem
can be formulated as a problem of minimizing a concave
function over a polyhedron. The general concave minimization
problem is known to be NP-hard. The proof of this fact can
be found in [2] or in [3]. However, because the safety stock
problem is defined on a particular polyhedron, in some cases
we can still develop a polynomial time algorithm. For example,
Graves [4] observes that the Simpson’s serial system case can
be solved by a dynamic program. Graves and Willems [1]
develop a dynamic programming algorithm for the spanning
tree networks which runs inO(NM2), whereN is the number
of nodes andM is the maximum replenishment service time,
which is bounded from above by the sum of the lead times at
each stage of the supply chain

∑N
i=1 Ti.

There has been no complexity results for the problem of
safety stock minimization, except for Shen [5]. In [5] Shen
proves that a similar problem with the upper bounds on the
outbound service times is NP-hard. Here, we prove that the
general problem is also NP-hard.

II. A SSUMPTIONS AND FORMULATION

A. Assumptions

We state here the assumptions for the model, as introduced
in [1].

• Multi-stage network. We model a supply chain as a
network. Nodes and arcs of the network have natural
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interpretation in terms of the chain. Each node or stage
in the network represents a processing function at which
we can locate a safety stock. We place an arc from node
i to nodej if the output product of stagei is needed as
input for production at stagej. If a node is connected
to several upstream nodes, then the node is an assembly
requiring inputs from each of the upstream nodes. The
nodes are potential locations for holding a safety-stock
of the item processed at the node.
Due to the interpretation of the network we assume that
the network does not have directed cycles. This fact says
that a component once processed in a node does not return
back to the node in an assembly with other components.
Let N be the number of nodes andA be the set of arcs
in the graph representing the chain.

• Production lead-times.We assume that each node j has
a deterministic production lead-timeTj , where lead-time
is the total time of production, including queueing, given
that all necessary components are available.

• Base-stock replenishment policy.All stages operate
under a periodic-review base-stock policy with a common
review period. We assume that there is no delay in order-
ing, therefore, all the nodes see customer demand once
it occurs in the demand nodes. Based on the observed
demand, each stage replenishes its inventory up to the
base stock level.

• Demand process.We assume that external demand oc-
curs only in the demand nodes, which we define to be the
nodes with zero out-degree. We denote the set of demand
nodes asD. For each nodej in D demanddj(t) comes
from a stationary process with average demand per period
µj .
Any other nodei /∈ D has only internal demand from
its successors. We can calculate the demand in nodei at
time t by summing the orders placed by its immediate
successors:

di(t) =
∑

(i,j)∈A
θijdj(t),

where a scalarθij is associated with each arc and
represents the number of units of upstream component
i required per downstream unitj. From this relationship,
we find the average demand rate for the nodei to be

µi =
∑

(i,j)∈A
θijµj .

The most important assumption of the model is that
demand is bounded. In particular, for each nodej there
exists a functionDj(F ) for F = 1, 2, . . . ,Mj , such that



1) for any periodt

Dj(F ) ≥ dj(t−F +1)+dj(t−F +2)+. . .+dj(t);

2) Dj(0) = 0;
3) the function is concave and increasing forF =

1, . . . ,Mj ;
4) Dj(F )− Fµj is increasing inF ,

whereMj is the maximum replenishment time for node
j.

• Guaranteed outbound service times.We assume that
node j provides 100% service and promises a guaranteed
service timeSj to its downstream nodes. This means that
demanddj(t) that arrives at timet must be filled att+Sj .
Note, we assume that each non demand nodej quotes
the same service time to each of its downstream nodes
i : (j, i) ∈ A.
Also, we impose bounds on the service times for the
demand nodes, i.e.,Sj ≤ sj , j ∈ D, where sj is a
given input that represents the maximum service time
for the demand nodej. The maximum service time is
a parameter of the model known to the end customer.
For example, if nodei wants to serve its customers
immediately, the firm has to setsi = 0.

• Guaranteed inbound service times.Let SIj be the
inbound service time for the nodej. We define inbound
service time to be the time for the nodej to get all of
its inputs from nodesi: (i, j) ∈ A and to commence
production. We require thatSIj ≥ Si for all arcs(i, j) ∈
A, since stagej cannot start production until all inputs
have been received. We have shown in [6] that, if the
objective is to minimize the cost of the safety stock held
in the chain, there exists an optimal solution with:

SIj = max
(i,j)∈A

Si.

All the parameters described here are known except for the
outbound and inbound service times. These service times are
decision variables for the optimization.

B. Formulation

SupposeBj is the base stock level for a nodej andIj(t) is
inventory in j at time t. At time t, stagej observes demand
dj(t) and starts replenishing the demand. It places an order for
the input materials to the upstream nodes and replenishes the
demand at the timet+SIj +Tj . However, the node guarantees
to satisfy the demand at timet + Sj . Therefore, ift + Sj <
t + SIj + Tj , the stage has to always store inventory to cover
the time interval ofSIj + Tj − Sj . This interval is called the
net replenishment time and we will see that the inventory that
covers the interval is the base-stock level.

To provide 100% service level, we requireIj(t) ≥ 0. To
satisfy this requirement, we set the base stockBj equal to
the maximum demand over an interval of lengthSIj + Tj −
Sj , namelyBj = Dj(SIj + Tj − Sj). Hence, the expected
inventory at the stagej is

Dj(SIj + Tj − Sj)− (SIj + Tj − Sj)µj ,

which represents safety stock held at the stagej.

Now, we formulate the problemP of finding the optimal
guaranteed outbound service timesSj , j = 1, . . . , N and
inbound service timesSIj , j = 1, . . . , N in order to minimize
the total cost of safety stock in the chain.

min
∑N

j=1 hj{Dj(SIj + Tj − Sj)− (SIj + Tj − Sj)µj}
SIj + Tj − Sj ≥ 0, j = 1 . . . , N
Si ≤ SIj , (i, j) ∈ A
Sj ≤ sj , j ∈ D
Sj , SIj ≥ 0, integer j = 1, . . . , N

where hj denotes the per-unit holding cost for inventory at
stagej.

This is a problem of minimizing a concave function over a
polyhedron.

III. C OMPLEXITY OF THE PROBLEM

Here we determine the complexity of the problemP stated
in section II-B. We show that the problem is NP-hard by re-
ducing a known NP-hard problem to the safety stock problem.

The idea of the proof appeared first in the unpublished note
by [5]. In this note, the author reduces the Vertex Cover prob-
lem, which is known to be NP-complete, to a modification of
the safety stock problem. The modified problem is essentially
the same problem as problemP, except that each node has
an additional constraint on its outbound service time. The
author assumes that the outbound service time for each node
is bounded from above. That means, for each nodei, there
exists a service timesi, such that the outbound service time is
constrained asSi ≤ si. Note, that problemP also has similar
service time constraints, but only for the demand nodesD,
while the outbound service times for the rest of the nodes
are not constrained in this way. However, we have found a
way to reduce an instance of the minimum-size Vertex Cover
problem, which is NP-hard, to an instance of problemP such
that a solution of problemP will imply a solution of the Vertex
Cover instance.

We first describe the Vertex Cover problem. A vertex cover
in graph G is a subsetV of vertices ofG such that every
edge ofG is incident to at least one vertex inV (see [7]).
Then the optimization Vertex Cover problem for a graph is to
find a vertex cover of minimum cardinality. This problem is
NP-hard.

Now, we show how to reduce an instanceV C of the Vertex
Cover problem to an instancePi of problem P. Suppose,
instanceV C is characterized by an undirected graphG with
N nodes andM edges and we want to find a minimum vertex
cover. Then we perform the following steps:

1) Make a directed graph from G. We can arbitrarily
assign directions to the edges ofG. The only condition
that has to be satisfied while doing so is that the directed
graph has to have no directed cycles. One way to satisfy
this condition is by following a simple algorithm. We
first create setU with all of the nodes and an empty set
L. We then choose nodei ∈ U and assign the direction
to each arc(i, j), j ∈ U from nodei to nodej. After
that we move nodei to the setL and remove all the
edges(i, j). Then we pick another node fromU and
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Fig. 1. GraphG for the problemV C.
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Fig. 2. GraphG′ for the problemPi.

repeat the procedure until the setU is empty. This simple
algorithm will produce a directed graph withM directed
edges in polynomial time, since at each step we set the
direction of each edge such that the nodes in the setL
are predecessors of the nodes in the setU .
As in the supply chain network, we will call the nodes
with zero outdegree as demand nodes.

2) Create a new node.We create a new nodeN + 1 such
that every non demand nodej has an edge(j, N + 1)
directed fromj to N+1. Let us denote the directed graph
with the new node asG′. Figure 1 shows an example of
an undirected graphG, while Figure 2 shows one way
to transform the graph into graphG′.

3) Assign parameters.We define the safety stock function
for each node of the graphG′. For simplicity, we call
the safety stock at each nodei as

SSi(τi) = Di(τi)− µi(τi),

whereτi = SIi + Ti − Si.
Then we require thatSSi(τi) is continuous, concave and
satisfies

SSi(τi) =





0, τi = 0
1, τi ≥ 1√

τ i 0 < τi < 1
(1)

Without loss of generality, we can assume that the
function is

√
τ i on the interval(0, 1), since τi takes

only integer values. The most important properties of
the function are that it is equal to 0 whenτi = 0 and
is equal to1 for all the other integerτi ≥ 1. Figure 3
shows an example of the safety stock function.
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Fig. 3. An example of the safety stock function.

Next, we assign the per-unit cost of a safety stock:

hi =
{

1, i = 1, . . . , N
N + 1, i = N + 1

The lead times for the nodes are:

Ti =
{

1, i = 1, . . . , N
0, i = N + 1

Finally, the service times promised to the end customers
are 1, i.e.,si = 1 for all demand nodesi. As in the
formulation of problemP, by demand nodes we mean
the nodes with zero outdegree, including nodeN + 1.

The procedure described above polynomially transforms
graph G to an instancePi of the safety stock placement
problemP. Now, we show that an optimal solution of problem
Pi determines an optimal solution of the Vertex Cover problem
V C for graphG.

Lemma 1. Suppose we have instancePi of the safety stock
problemP. Then it is optimal to hold no stock in nodeN +1.

Proof:
We first show that the feasible region is not empty by

constructing a solution with the costN . Such solution is

• SN+1 = 1, SIN+1 = 1;
• Si = 0, SIi = 1 for i ≤ N .

The solution is feasible. Indeed, the nonnegativity of net
replenishment timeSIi + Ti − Si is satisfied for each node.
Each demand nodei, including nodeN +1, hasSi ≤ 1. Also,
for each arc(i, j), Si = 0 and SIj = 1, hence,Si ≤ SIj is
also true. Therefore, the solution is feasible and the feasible
region is not empty. We note also, that the solution gives cost
N , since each nodei ≤ N contributes cost 1 and nodeN +1
contributes 0 to the overall cost.

Now, we prove the statement of the lemma. Indeed, we
notice that the total value of the safety stock cost in all the
nodes other thanN + 1 is at mostN . This is due to the
fact that the maximum of the safety stock functionSSi(τ)
is 1 and holding costhi = 1 for all i 6= N + 1. All the
unknown variables in the optimal solution take discrete values
0, 1, 2, . . .. Therefore, if a nodei 6= N + 1 holds non zero
stock, then the holding cost in the node is 1.

On the other hand, if nodeN + 1 holds any stock, then
τN+1 = 1 or 2 or . . .. Thus, in this case the value of the
safety stock functionSSN+1(τN+1) = 1 and it contributes
N + 1 to the total holding cost, sincehN+1 = N + 1.



From this we conclude that if nodeN + 1 holds stock,
the total cost is at leastN + 1. If the node does not hold
any stock, then the cost of holding inventory is at mostN .
Therefore, we conclude that nodeN + 1 holds no stock in an
optimal solution.

Lemma 2. Suppose we have instancePi of the safety stock
problemP. Then in an optimal solution for each nodei in the
networkG′ we haveSi ≤ 1.

Proof:
The statement of the lemma follows from lemma 1, where

we showed that for nodeN + 1, τN+1 = SIN+1 + TN+1 −
SN+1 = 0. Then, sinceTN+1 = 0 and SN+1 ≤ sN+1 ≤ 1,
we haveSIN+1 ≤ 1. From the constraints of the problem
Pi, Sj ≤ SIi for all the arcs(i, j) in G′. Therefore, since
each non-demand node is connected to nodeN + 1, we have,
Si ≤ 1 for all non-demand nodes. Also, we know that for each
demand nodej, Sj ≤ 1, which we imposed by construction
of problemPi. Therefore, we can conclude that for each node
i, Si ≤ 1.

Lemma 3. Suppose we have instancePi of the safety stock
problem P. Then, in an optimal solution, for each arc
(i, j), i, j 6= N + 1 it is impossible to have values forτi

and τj such thatSSi(τi) = 0 and SSj(τj) = 0.
Proof:

In lemma 2, we showed that each optimal solution of
problem Pi satisfiesSi ≤ 1. Suppose now there is an arc
(i, j), i 6= N+1 such thatSSi(τi) = 0 andSSj(τj) = 0. That
is, we supposeτi = SIi+Ti−Si = 0 andτj = SIj+Tj−Sj =
0. Then SIj = Sj − Tj = Sj − 1 ≤ 1 − 1 = 0. Since
SIj ≥ 0,we haveSIj = 0. BecauseSi ≤ SIj = 0, Si = 0.
However,SIi + Ti − Si = SIi + 1 = 0 by assumption and
SIi ≥ 0. Therefore, we found a contradiction, which proves
the lemma

From the lemma, we conclude that for each arc(i, j) :
i, j 6= N + 1, in an optimal solution, at least one nodei or j
holds safety stock. Therefore, the nodes with positive safety
stock form a vertex coverV for the graphG. Moreover, by
construction of the cost function, each node that holds safety
stock contributes cost 1 to the objective function of the safety
stock problem. Therefore, the objective function value is equal
to the cardinality of the vertex coverV . By solving the safety
stock problem, we find the minimum cost of safety stock
which equals the cardinality of a vertex cover of graphG.

To prove that we find a minimum vertex cover by solving
the safety stock problemPi, we only need to prove that the
minimum of problemPi does not depend on the orientation of
the graph. Step 1 assigns the orientation to graphG arbitrarily,
which determines the demand nodes and the relationship
between the variables. If arc(i, j) is directed from nodei
to node j, then the corresponding constraint isSi ≤ SIj .
If, however, the orientation were reversed, the constraint is
Sj ≤ SIi. Therefore, the problems are different and can in
theory give different solutions. Consequently, we have to show
that they indeed give the same solutions independent of the
orientation.

For the purposes of the next lemma, we define thevertex

cover assignmentor v.c. assignmentof the safety stock prob-
lem. A v.c. assignment is a distribution of the safety stock in
the nodes of a graph such that for each arc(i, j) the assignment
implies holding stock ini or in j or in both. We notice, that for
the problemPi, a v.c. assignment of the safety stock creates a
vertex cover of graphG. This is because the cost of holding
stock in a node is always one, which is equivalent to putting
the node into the vertex cover set. However, in the safety stock
problem setting, we refer to the v.c. assignment and in the VC
problem setting - to the vertex cover.

Lemma 4. Suppose we have a directed graphG and safety
stock problemPi on G′ = G ∪ {N + 1} as described above.
Then for each v.c. assignment of safety stock onG, there exists
a feasible solution of the safety stock problemPi.

Proof:
To prove the lemma we consider a v.c. assignment and

explicitly construct a feasible solution of the safety stock
problem. We consider any nodei of graphG. Depending on
the v.c. assignment, the node holds or does not hold safety
stock in i.

• If there is zero stock ini, we setSIi = 0, Si = 1.
• If there is nonzero stock ini, we setSIi = 1, Si = 0.

To complete the solution for all the nodes of problemPi,
we setSIN+1 = 1 andSN+1 = 1.

The solution is feasible. First, we see that for every demand
nodei, Si ≤ si = 1. It is also obvious thatSIi+Ti−Si ≥ 0 is
satisfied for this solution. In the zero stock case, the solution
givesSIi + Ti − Si = 0 + 1− 1 = 0 and indeed implies zero
stock. In the nonzero stock case, it satisfiesSIi + Ti − Si =
1 + 1− 0 = 2 and implies stockSSi(2) = 1.

Next, we have to check that the constraintSi ≤ SIj for any
arc (i, j) is satisfied. Indeed,SIN+1 imposes a constraint on
all the outbound service timesSi ≤ 1, i /∈ D. The proposed
solution clearly satisfies the constraint.

Now, consider nodei ∈ G. Because the solution is a v.c.
assignment, if nodei has zero stock, all the nodes connected
to i have to have nonzero stock. That means, ifj ∈ G is
downstream ofi, SIj = 1 and constraint1 = Si ≤ SIj = 1 is
satisfied. If nodej is upstream ofi, Sj = 0 and the constraint
0 = Sj ≤ SIi = 0 is satisfied again.

If node i ∈ G has nonzero stock, then the solution again
does not violate the constraint. Indeed, as we showed before,
Sj ≤ 1 for any node in graphG, therefore,SIi = 1 does
not violate constraintsSIi ≥ Sj for all arcs(j, i) . Because
SIj ≥ 0, Si = 0 does not violate constraintsSi ≤ SIj for all
arcs(i, j).

Therefore, we conclude that the solution is feasible and this
proves the lemma.

Lemma 4 shows, that for every v.c. assignment, there is a
feasible solution of the safety stock problem. Since every v.c.
assignment of the safety stock problemPi is equivalent to a
vertex cover on graphG, we conclude that for every vertex
cover of graphG we can always find a feasible solution of
problemPi.

Corollary 1. Suppose we want to find a minimum vertex cover
on an undirected graphG. Then, we can transform the problem



into problemPi and solve the problem optimally to obtain a
minimum vertex cover, independent of the orientation assigned
during the transformation.

Proof:
By lemma 3, an optimal solution of problemPi is a

v.c. assignment onG with cost K. Suppose, there exists a
transformation ofV C problem into problemP ′i with different
orientation and with strictly smaller costK ′ < K. But the
solution of problemP ′i is a v.c. assignment onG as well.
Therefore, by lemma 4 there exists a solution of problemPi

with the same costK ′, which contradicts optimality ofK.
We conclude that for any orientation of graphG, problem

Pi gives an optimal solution to theV C problem.

Corollary 1 shows that by solving the safety stock problem
optimally, we solve the Vertex Cover problem for the graph
G. We can conclude now that problemP is NP-hard.

IV. CONCLUSION

Previous work has developed efficient algorithms for re-
stricted versions of problem P. For instance, Graves and
Willems [1] give a dynamic programming algorithm for span-
ning tree networks which runs inO(NM2). However, it has
not been known as to whether or not such algorithms exist
for problem P defined on a general network. In this paper, we
provide a proof that problem P is NP-hard. Thus, we cannot
expect to develop a polynomial-time algorithm for problem
P for general-network supply chains. As a consequence one
would want to consider approximate solution procedures,
and/or enumerative algorithms such as branch and bound.
Indeed, there has been recent encouraging research on both
counts, e.g., [6], [8], and [9].
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