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Abstract—We report on an industrial project in which we 

developed an inventory model to provide decision support for the 
design and deployment of the field service support system for a 
remanufacturable product. The product was a dialysis unit for 
home use. Each unit that was installed in a home would 
eventually be removed due to failure, or the need for preventative 
maintenance, or the termination of the service. Upon removal, 
each unit was shipped to a central depot for re-manufacturing so 
that it could be returned to service. We develop a model to 
determine the inventory requirements at each regional depot, and 
then describe how to use the model to determine the inventory 
requirements in the two-echelon system consisting of the central 
facility and the regional depots. 
 

Index Terms— inventory planning, remanufacturing, reverse 
logistics, multi-echelon systems, supply chain planning. 

I. INTRODUCTION 
The supply chains for more and more products must now 

accommodate a return process so as to facilitate reuse, in one 
form or another, of the product and its materials. The design of 
a supply chain with a returns process introduces a number of 
new challenges. For instance, these return flows can provide a 
second source of supply if the products can be re-
manufactured and returned to use. As such, inventory 
management must balance procurement of new items from the 
original supplier with replenishment through re-manufacturing 
of returned items.   

In this paper I report on a model developed for the design of 
the field service support system for a piece of medical 
equipment, namely a dialysis unit for home use.  This 
equipment was being developed to allow a person, in need of 
regular medical treatment, to treat themselves in the comfort of 
their home, rather than to have to go to a medical facility for 
the procedure, which is both more expensive and more 
inconvenient.  The equipment was designed to be reused.  
When a unit was removed from a home, for whatever reason, it 
would be re-manufactured and then returned to the inventory 
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for subsequent installation in another home.  
The intent of the work was to develop a model that would 

inform the design of the field service support system. In 
particular, we wanted to determine the amount of inventory 
needed and how it should be deployed. We also were asked to 
determine the workload on the service engineers, as it depends 
on the volume of transactions. Finally, we wanted to be able to 
explore how the inventory and workload requirements depend 
on the key system parameters such as the demand and removal 
rates for the equipment, as well as various lead times. 

In terms of related literature, I would first cite the work on 
inventory models for repairable items (see Nahmias 1981). 
The current paper is similar to this literature in that we assume 
that items can be recovered either through repair or re-
manufacturing. But our model differs from this literature in 
that the demand process (new installations) is composed of an 
independent process from new patients plus an endogenous 
process due to equipment failure and preventative 
maintenance.  There is now an emerging literature on models 
for reverse logistics, within which this paper should fit (see 
Theirry et al. 1995 and Fleischmann et al. 1997 for an 
overview). Toktay et al. (2000) develop an inventory model 
for a remanufacturable product for which key components are 
recycled. A key difference between their work and this paper 
is that we have visibility of the returns process, whereas 
Toktay et al. do not.   

II. BACKGROUND 
The distribution and service for the equipment were to be 

done through a service network consisting of a central facility 
and about 15 regional depots.  The depots were geographically 
distributed across the United States, with each depot having a 
distinct service area and a set of service representatives.  The 
service representatives were responsible for installing the units 
in patients' homes, providing service as needed, and 
disconnecting the units when no longer needed. 

 The field service system provided a variety of service 
transactions.  When a new patient requests a piece of 
equipment, a service representative must install it, and will 
then instruct the patient about the care and use of the unit.  The 
installation time is normally about four hours on site.   Once 
the patient no longer needs the unit, the service representative 
must disconnect the unit, which requires about two hours on 
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site.  Before using this unit again for a new patient, the unit is 
returned to a central facility for refurbishment to ensure that it 
is sufficiently clean and working properly.   

 Sometimes a unit will not function properly at a patient's 
home.  In such cases the service representative returns to the 
patient's home to try to fix the unit; if it were not possible to 
repair the unit on site, then the service representative will swap 
the failed unit with a good unit. The time to diagnose and swap 
a unit is three hours. The failure rate for each unit (i.e., the unit 
cannot be repaired on site by the service rep) is about once 
every two years.  The service representative returns each failed 
unit to the central facility for repair. 

 After one year of continuous use, a unit must undergo a 
mandatory preventative maintenance (PM); this service is 
performed at the central facility, and is similar to the 
refurbishment that is done on each disconnected unit.  In other 
words, if a unit has been at a patient's home for a full year, and 
has not failed during that year, then the service rep swaps the 
unit with a new or refurbished unit, and returns the removed 
unit to the central facility for preventative maintenance. 

 Each regional depot batch ships its units in need of repair, 
refurbishment and preventative maintenance.  That is, the 
depot will accumulate all of the returned units and send them 
in one load to the central facility to save transportation costs.  
The policy is expressed in terms of the accumulation time, e.g., 
an accumulation time of 14 days means that shipments are 
made once every 14 days to the central facility. 

 Each regional depot controls a base stock of units in order 
to be able to meet customer demand both for new service as 
well as for the replacements (swaps) described above.  The 
central facility replenishes the inventory at each regional depot 
on a one-for-one basis.  Whenever a unit is returned to the 
central facility from the regional depot, the central facility is 
notified and a replacement unit is shipped from the central 
facility to the regional depot.  These replacement units are 
typically not new units, but units that have been refurbished or 
repaired.    

 In order to provide service to the regional depots, the 
central facility maintains an inventory of spares.  Shipments to 
the regional depots are made out of this inventory.  
Furthermore, units that have been refurbished or repaired by 
the central facility are put into this inventory and held until 
needed by one of the regional depots.  

 The primary issue at hand is how much inventory is 
needed in the system to provide a high level of service to the 
customers at the least cost.  A secondary issue is to model the 
workload for the service representatives at each depot, so as to 
plan staff levels. Costs include inventory holding, 
transportation and the cost for the service representatives.    

III. ASSUMPTIONS 
In order to develop a model to examine the inventory 

requirements and service transactions for this system, we state 
a series of assumptions. 

1. We assume that the size of the system is stationary; that 

is, we assume on average, the number of new demands equals 
the number of disconnects or terminations.  Nevertheless, there 
is randomness in the arrival of new customers, and in the 
occurrences of failures and disconnects. 

2. We assume that new demands arrive to the system 
according to a Poisson process. 

3. We assume that both the length of time until a failure and 
the usage duration (time until disconnect) have exponential 
distributions.  One consequence of this assumption is that the 
remaining lifetime (either time until failure or time until 
disconnect) does not depend on the current age of the unit, 
namely the time since last failure or time since installation.   

4. Preventative maintenance is done on a regular basis, once 
a year. 

5. The central facility does all repair, refurbishment and 
preventative maintenance.  For the initial model development 
we assume that the central facility does not maintain any safety 
stock of spare units; hence, each depot is returned the exact 
same unit that it had sent for repair, refurbishment or 
preventative maintenance.  

 Later in the paper we discuss the extension in which the 
central facility holds inventory.  In this case, the replenishment 
time seen by each depot will be reduced. 

6. We assume the transit time to (from) the central facility 
from (to) each depot to be deterministic; the time to the central 
facility from a depot need not be the same as the time from the 
central facility to the depot.  This is a simplification, especially 
for the transit time from the depot to the central facility.  The 
units to be returned to the central facility will experience a 
random delay at the depot, while a batch is being accumulated 
to ship to the central facility.  We discuss later in the paper 
how to extend the analysis to stochastic transit times. 

7. We assume the service time at the central facility to be 
deterministic and the same for all units and for all types of 
service. That is, the time to repair or refurbish a unit or to 
perform a preventative maintenance is the same for all units. 

 
Discussion of Assumptions:   The first two assumptions 

were viewed as reasonable within the context. The demand 
process would be for single units to be installed in individual 
homes, and the assumption of a Poisson process was most 
natural.  As this work examined the deployment of a new 
product, clearly there would be a transitional period in which 
the system was growing; that is, more units would be installed 
than would be removed for some period of time. However, we 
decided to ignore this growth phase and focus on the 
equilibrium phase when the removal rate matched the 
installation rate for new patients.  This was acceptable given 
our purpose to determine the inventory requirements for the 
system and to show how these requirements depend on system 
design and operating parameters. 

 The third assumption of exponential times is certainly 
driven by a desire for analytical tractability. But at the time of 
the study there were no histories on the failure rates for the 
units, or on the time until a patient disconnects and returns the 



  

unit. In the absence of data, we opted to start with this 
common assumption. 

 The fourth and fifth assumptions were policy decisions.  
One purpose of our work was to explore the implications from 
these decisions.  

We can relax the sixth and seventh assumptions to permit 
random times for transit and service; the critical assumption is 
that units in the replenishment pipeline do not cross (i.e., the 
order in which units are sent to the central facility is 
preserved.).  The assumption that the service times for repair, 
refurbishment and PM are the same is a simplifying 
assumption.  We expect there would be some variation 
depending on the type of service, although the service times 
are all of the same order of magnitude; to distinguish the 
service times in the model requires keeping track of the 
different type of service classes, which adds another level of 
complexity.  We decided to start simple. 

IV. DEPOT SERVICE TRANSACTIONS 
To build the system model, we first examine a single depot, 

and model the field service transactions.  We base the analysis 
on the observation that every installation of a unit will 
eventually result in a removal of the unit; that is, there is a 
balance relationship for the service transactions.  There are 
three types of removal transactions:  removal due to service 
termination; removal due to unit failure; and removal due to 
preventative maintenance.   

Each unit that is installed is eventually removed by one of 
these transactions. We can determine the probability for each 
type of removal transactions. Let � denote the termination or 
disconnect rate for each unit, and � denote the failure rate for 
each unit.  

A unit is removed for maintenance if it operates for one 
year.  This happens if the unit survives a year without a failure 
and without a service termination; the probability of this is: 

                                
� �- +

 e
� �

. (1)   
  
A unit that fails is removed for repair.  The probability that 

an installation results in a failure is the probability that the unit 
doesn't survive a year, times the conditional probability that 
the unit fails given that it either has failed or is terminated: 
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When a household terminates a unit, the unit is removed.  

For each installation, the probability that it is removed as the 
result of a termination is the probability that the unit does not 
survive a year, times the conditional probability that the unit 
terminates given that it either failed or is terminated: 
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We next characterize the number of transactions that a depot 

performs.  We define the following variables: 
 
I  number of installations per year 
P  number of preventative maintenance requests served 

per year 
D  number of terminations or disconnects performed per 

year 
Rp  number of repairs performed per year 
 
Every installation results in a repair if it fails within a year, 

or a disconnect if it is terminated within a year, or a 
preventative maintenance if it survives one year of usage. 
Thus, under the assumption that the system is in steady state, 
we have that the expected number of installations equates to 
the expected number of service transactions: 

             � � � � � � � �.E I E P E D Rp� � �
 (4) 

 
From the probabilities for the removal transactions we have 
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If we assume that the field service system, as a whole, is 

neither expanding nor contracting, then we should have that 
the new installations should match the number of disconnects 
in expectation: 

                               � �   E D� �
 (8) 

 
where � denotes the annual rate of new installations at the 
depot.  From (5) - (8), we then get the steady state values for 
the key service events: 
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From these relations, we can estimate the workload for the 

service representatives for each depot, and determine the 
transportation costs between the central facility and each 
depot. 

V. DEPOT INVENTORY REQUIREMENTS 
The prior analysis characterizes the number of transactions 

at each depot.  In this section we will determine how large of a 
stock of units each depot needs to carry. 

Suppose each depot maintains a base stock of S units.  Each 
unit in the base stock can be in one of three places:  installed at 
a household; as a spare at the depot; or in the service cycle. 
We say that a unit is in the service cycle if it is in transit 
between the depot and the central facility, or in service at the 
central facility, undergoing repair, refurbishment or 
preventative maintenance.   

We let N(t) denote the number of units installed at 
households at time t, and let R(t) be the number of units in the 
service cycle at time t. Both N(t) and R(t) are random 
processes. 

By assumption, if a depot has a base stock of S units, then 
there are S - N(t) - R(t) units in spares at the depot.  We desire 
to set S so that there is a very low probability of there being no 
spare units at the depot when a unit is needed for installation.  
Thus, with high probability a service representative should be 
able to complete a transaction requiring an installation, 
whether it is for a new service or as a replacement due to a 
failure or PM. 

At a depot, for a given value of S, both N(t) and R(t) depend 
on S, since S effectively constrains how many units can be 
installed or in the service cycle at any point in time, i.e., N(t) + 
R(t) � S.  However, to determine S, we will ignore this 
dependence and will model N(t) and R(t) as if they were not 
constrained by S.  In effect we will model these two variables, 
assuming that there is always ample stock available at the 
depot.  Then we will propose to set S, so that the assumption 
of ample stock is approximately true.  For instance, we will set 
S so that there is a high fill rate; that is, the probability that 
N(t) + R(t) �S is high, say 0.98. [An alternative interpretation 
is to assume that we can delay or backorder requests for 
installations.] 

Since we assume that new installations occur as a Poisson 
process at rate �, and that the mean time until a household 
disconnects its service is 1/�, then we can model N(t) as the 
occupancy level of an M/G/∞ system.  By the assumption of 
ample stock, a new installation never waits for a unit to 
become available.   In steady state, then, N(t) is a Poisson 
random variable with mean �/�. [Note that we do not require 
the assumption of an exponential distribution of time until 
termination here, but we did use this assumption for (1) – (3) 
and the development thereafter.] 

To model R(t), we need to describe the process for repair or 
refurbishment or preventative maintenance.  A unit that has 
been removed from the field is shipped from the depot back to 
the central service facility where it undergoes servicing.  Upon 
completion of its service, a unit is returned to the depot.  We 
assume that the total time to service a unit, including 
transportation time, is a constant �.  We term � to be the length 
of the service cycle for a unit.  We will consider later the cases 
when the service cycle is stochastic, such as would occur when  
the central facility holds a safety stock. 

 We will use the following key property for determining S: 

         � � � � � � � �,N t R t N t I t t� � � � � � � � �
 (13) 

where  I (t, t + �) denotes the number of installations 
performed over the time interval (t, t + �].   

To show (13), consider each unit that is in use at time t, i.e., 
part of N(t).  At time t + �� each unit will either still be in use 
or have been removed for maintenance, repair, or a 
disconnection.  If it has been removed, it will enter the service 
cycle.  Since the service cycle is a fixed length �, a unit 
removed in the time interval (t, t + �] is still in the service 
cycle at time t + �.  Thus, we have that each installed unit at 
time t, N(t), is either part of N(t +��) or R(t +��) at time t +��.   
And each unit that is installed during the time interval (t, t + �] 
either is in use at time t + � or has entered the service cycle by 
time t + � and is still there.  Thus we have the inequality: 

         � � � � � � � �, .N t R t N t I t t� � � � � � � � �
 

Furthermore, each unit in use at time t + � was either in use 
at time t and has not been removed in the time interval (t, t + �] 
or was installed in the time interval (t, t + �] and has not been 
removed by time t + �.  Similarly, each unit in the repair or 
refurbishment cycle at time t + � was either in use at time t and 
has been removed in the time interval (t, t + �] or was installed 
in the time interval (t, t + �] and was subsequently removed 
prior to time t + �.  Thus, we have the inequality: 

         � � � � � � � �, ,N t R t N t I t t� � � � � � � � �
 

which completes the argument for (13).  Thus, at time t + �, the 
number of units in use or in the service cycle equals the 
number of units in use at time t, plus all installations within the 
time window (t, t + �]. 

To use (13) we need to model I (t, t + �).  The installations 
over the interval (t, t + �] consist of new installations plus 
replacements due to unit failures or PM's.   

The number of new installations over a time window of 
length � is a Poisson random variable with mean ���.   

The number of replacements over (t, t + �] is a superposition 
of the failure processes for the installed units, truncated by the 
annual PM refurbishments, and does not have a simple 
characterization, as it depends on the value of N(t) and new 
installations within the time window.  As an approximation, 
we first ignore the possibility that a new installation in (t, t + �] 
could also result in a subsequent replacement in this interval; 
this is reasonable as the length of the transit time is on the 



  

order of a few weeks, and the time between removals is on the 
order of several months.  Second, we assume that the expected 
number of replacements over (t, t + �] is proportional to N(t).  
Thus, we approximate the expected number of replacements 
over the interval (t, t + �] by p�� N(t), where p is an unknown 
constant denoting the expected number of replacements per 
installed unit  per year. 

By combining the two types of installations, we have that 
the expected number of installations over the interval (t, t + �] 
is given by: 
                            � �.p N t�� � �  

Finally we approximate I (t, t + �) to be a Poisson random 
variable with the above mean. 

For some justification, we note that the new installation 
process is Poisson, and the replacement process is a 
superposition of the replacement processes for the installed 
base of N(t) units. 

To determine p, we note that the above expression implies 
that the expected installation rate is 
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Then we can equate this to the expected installation rate, 

given by (9), to find: 
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For a given value of N(t) = n, we thus assume that I (t, t + �) 

is Poisson with mean 
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We now use this result to characterize N(t) + I (t, t + �).  

Conditioned on N(t) = n, we find the mean and variance: 
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� � � � � �[ , ]   Var N t I t t N t n np� � � � � �� � �
 

where p is given by (14).  Now using the fact that N(t) is 
Poisson with mean �/�, we find the unconditioned mean and 
variance: 

[ ( ) ( , )]   pE N t I t t � � �
� � � � � �� �

� �  (15) 

� �
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But, from (13), we observe that  (15) and (16) provides the 

steady-state mean and variance for N(t+�) + R(t+�), or 
equivalently N(t) + R(t),  since the choice of t is arbitrary.   
We observe that the variance is larger than the mean, where 
the difference depends upon the value of p�, the expected 
number of replacements per installed unit over the service 
cycle.  For the case at hand, p� will be fairly small (always less 
than 0.2) and hence the variance will be modestly larger than 
mean.  Indeed, we have found that the distribution of N(t) + 
R(t) is very Poisson-like, albeit more variable. 

We now propose to set S for each depot such that S > N(t) + 
R(t) with high probability.  Provided that the expectation of 
N(t) + R(t) is of modest size, e. g., at least 30, the distribution 
of N(t) + R(t) can be  reasonably approximated by a normal 
distribution.  From the mean and variance of N(t) + R(t) given 
by (15)-(16), we can then easily set S to achieve a desired 
coverage level or fill rate. 

VI. EXAMPLE 
 To illustrate the model, we provide an example with 

representative numbers from the application. In Table 1, we 
provide the inputs.  We illustrate the model with three possible 
rates for new installations, as might be seen by a regional 
depot.  The firm estimated that there was a probability of 0.6 
that a patient would disconnect within one year; from this and 
the assumption of exponentially-distributed termination times, 
we find the disconnect rate.  Similarly, the firm estimated that 
there was a probability of 0.5 that a unit would fail in any 
given year; with the assumption of exponentially-distributed 
failures, we find the failure rate. For the example we assumed 
a service cycle of twenty-one business days (five days at 
central facility, plus sixteen days for round-trip transit plus 
accumulation time at the depot), with 250 days per year. 

 
Annual new 
installation rate ��

Disconnect 
rate ��

Failure rate 
��

Service 
cycle time ��

75, 90, 135 0.916 0.693 0.084 
 Table 1: Input parameters for example 
 
In Table 2, we present the outputs. The top four rows of the 

table give the expected number of transactions per year, as 
given by (9) – (12); one can translate these outputs into the 
workload for service representatives, and hence find the 
number required for the depot.   We then compute the 
expected number of units in use, and the expectation and 
variance of N(t) + I(t, t+�), as given by (15) – (16). By the 
equivalence (13), we then have the first two moments for N(t) 
+ R(t), the number of units in use or in the service cycle.  We 
can then use these two moments to prescribe a base stock level 
to satisfy a service target. In the table we report the base stock 
needed for a 98% fill rate ( z = 2.05), under the assumption of 
the normal approximation.  

 
 � = 75 � = 90 � = 135 
E[I] 164.7 197.6 296.4 
E[P] 32.9 39.5 59.3 



  

E[D] 75.0 90.0 135.0 
E[Rp] 56.7 68.1 102.1 
E[N(t)] 81.9 98.2 147.3 
E[N(t) + I(t, t+�)] 95.7 114.8 172.2 
Var[N(t) + I(t, t+�)] 111.4 133.7 200.6 
Base Stock S 117.3 138.5 201.3 

Table 2: Outputs for example 

VII. STOCHASTIC LEAD-TIMES 
 We now assume that the time to replenish the regional 

depot from the central facility is stochastic.  In particular, we 
continue to assume that the central facility does not maintain 
any safety stock of spare units; hence, each unit that is sent for 
repair, refurbishment or preventative maintenance returns to 
the depot from which its service cycle originated.  But now we 
will assume that the service cycle, which is the sum of the 
accumulation time at the depot, the round-trip transit time from 
the depot to the central facility and back, plus the service time 
at the central facility, is a random variable. 

 We model the lead time as being generated by an 
exogenous, sequential supply system, in the terminology of 
Zipkin (2000) In particular, we assume there is a stochastic 
process L(t), corresponding to the virtual lead time at time t. 
That is, L(t) is the lead time for any service cycle initiated at 
time t.  We assume that L(t) is independent of N(t), the number 
of units in use; consequently, L(t) is independent of the 
number of units in service at time t. We also assume that L(t) 
is independent of the process for new installations.  Finally, we 
assume that t + L(t) is non-decreasing, and thus, that there is 
no order-crossing. 

 The development of the inventory model for the case of a 
stochastic lead-time parallels that for the case of a 
deterministic lead-time.  We can rewrite the equivalence (13) 
as: 

� �� � � �� � � � � �� �, .N t L t R t L t N t I t t L t� � � � � �
(17) 

To characterize the first two moments for the right-hand-
side of (17), we first condition on both N(t) = n and L(t) = �: 
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where p is given by (14).  We now use the fact that N(t) is 
Poisson with mean �/�, and that L(t) and N(t) are independent 
to find the unconditioned mean and variance: 
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As before, we note from (17) that (18) and (19) provide the 

steady-state mean and variance for N(t+L(t)) + R(t+L(t)).   We 
observe that the variance is larger than the mean, where the 
difference depends directly upon the variance of the lead-time. 
We use (18)-(19) to set the base stock S for each depot. For 
instance, we can approximate the distribution of N(t) + R(t) by 
a normal distribution with mean and variance given by (18) 
and (19).  We then set the base stock S such that the 
probability that S > N(t) + R(t) meets the desired coverage 
level. 

VIII. SAFETY STOCK AT CENTRAL FACILITY 
 We now describe how to extend the analysis to permit the 

central facility to hold a safety stock. As such, we develop an 
approximate multi-echelon model in the spirit of the extensive 
literature in this area (see Axsater 1993, and Federgruen 
1993). The central facility maintains a base stock of spare 
units, call it S0, in order to provide service to the regional 
depots.  The central facility replenishes the inventory at each 
regional depot on a one-for-one basis. Whenever a regional 
depot returns a unit to the central facility, it will notify the 
central facility and the central facility will ship a replacement 
to the regional depot. When the returned unit reaches the 
central facility, the unit enters the service process, for repair, 
refurbishment, or preventative maintenance. Upon completion 
of the service, the unit becomes part of the available stock for 
the central facility.    

 The inventory in the base stock S0 can be in one of three 
places – in-transit from a regional depot back to the central 
facility, in service at the central facility, or in stock at the 
central facility.  When there is a replenishment request, the 
central facility will ship a unit immediately, provided it has 
one in stock. When it does not have a unit in stock, the central 
facility delays shipping (i.e., backorders) the replenishment 
request until a unit becomes available. 

 When the central facility holds an inventory, the 
replenishment lead-time seen by a regional depot is uncertain, 
as it depends on whether or not there is stock on hand when a 
request is made. The actual distribution of the depot lead-time 
is a function of the base stock at the central facility.  Once we 
characterize the lead-time, we can find the inventory required 
at the depot, as shown in the prior section, to meet a specified 
service target. Thus, for a given base-stock level at the central 
facility, we can find the base-stock levels at the regional 
depots. We then search over possible values for the central 
facility’s base stock to find the setting that minimizes the total 



  

inventory in the system. 
 Let Li(t) denotes the virtual lead-time at time t for depot i. 

For notational convenience, we’ll drop the time index t. We 
can express the lead-time as follows: 
                       � �0i i iL S� � � �  

where �I is the one-way transit time from the central facility to 
depot i, and �i(S0) is the delay at the central facility in filling a 
replenishment request, which is a function of the base stock. 
We will assume for ease of presentation that the transit time is 
a known constant; however, the delay is a random variable.  
Thus,  

                  � � � �0i i iE L E S� � � �� �� 	  (20) 

                   � � � �0 .i iVar L Var S� �� �� �  (21) 

 
Thus, if we can model the first two moments for the delay at 

the central facility, then we use (20) – (21) in (18) – (19) to 
find the base stock required at each depot. 

 There are various ways to model the delay at the central 
facility, depending upon what is assumed about the demand 
(return) process and about the service processes. (see Axsater 
1993 and Federgruen 1993) We illustrate here how we 
approached this in the context of the application.   

We assume that the aggregate return process seen by the 
central facility could be modeled as a Poisson process with 
rate 	 given by: 

                           i
i

i
p� ��
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 �
�  

where p is given by (14), and we assume that each depot 
experiences the same disconnect rate � and failure rate �, and 
has a rate �i for new installations.  

 We assume that the time to return a unit from the depot, 
plus the time to service it is the same for all depots and all 
types of service, and is given by a constant 
.  As justification 
for this assumption, we found that the depots had comparable 
return times, since much of this was the time to accumulate a 
shipping load. And the time to service a unit (including 
queuing) once it arrived would be roughly the same for all 
units.  However, the total time for return and service was 
stochastic, whereas we assume it is a constant for the purposes 
of modeling the inventory requirements. 

Suppose we number the return events according to the order 
in which they are initiated. Then, under a first-in, first-out 
dispatch rule, the central facility will use the nth unit that is 
returned to fill the replenishment request associated with the S0 
+ nth return.  There is a delay whenever the S0 + nth return 
occurs before the nth unit can be returned and serviced; that is, 
there is a delay if the time between the occurrence of nth return 
and that for the S0 + nth return is less than the time to return 
and service the nth unit, namely 
. Indeed we can express the 
delay as  

                          � � � �0 0i S T �

� � ��  (22) 

where T0 is a random variable equal to the interarrival time for 
the occurrence of S0 returns to the central facility.  

 With the assumption that the return process is a Poisson 
process with rate 	, then T0 has a gamma distribution with 
parameters S0 and 	; thus, T0 has mean E[T0] = S0/	 and 
variance Var[T0] = S0/	�����For a candidate base stock S0, we 
can use (22) to find the moments for the delay, which we input 
to (20) – (21) to find the moments for the depot lead time. We 
can then use (18) – (19) to determine the base stock at each 
depot to satisfy a service target. We then search over possible 
values for the base stock S0 for the central facility to find the 
solution that minimizes the total system inventory. 
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