A Dual-Channel Vendor-Buyer System with Minimum Purchase

Commitment

Yexin Wang *, Rohit Bhatnagar ", Stephen C. Graves **

'Singapore-MIT Alliance, Nanyang Technological University, Singapore
*Nanyang Business School, Nanyang Technological University, Singapore

3 Sloan School of Management, Massachusetts Institute of Technology, USA

Abstract: In this paper, we consider a dual-channel vendor-buyer system consisting of a
buyer and two vendor-owned facilities: a central distribution center (DC) and a regional
DC. Orders for a single item are delivered through two distinct channels: an indirect
channel, comprising the central DC, the regional DC and the buyer; and a direct channel,
comprising the central DC and the buyer, bypassing the intermediate regional DC. Each
facility periodically replenishes its inventory at a common time interval and safety stock
is carried at each facility to maintain the desired service level. The vendor and buyer
make a minimum purchase commitment (MPC), under which the buyer commits to
purchase a predetermined and fixed quantity through the direct channel in each time
period, and has the option to purchase a flexible quantity through the indirect channel in
each time period, We study the impact of the MPC agreement on the inventory and safety
stock at the vendor and buyer for this dual-channel vendor-buyer system, and introduce a
simulation- based method to estimate this impact for iid normally distributed demand. We
also study an integrated coordination problem in which the vendor and buyer cooperate to
implement the optimal MPC agreement that minimizes total system cost.

Keywords: Inventory; Supply chain management; Minimum purchase commitment;
Coordination

*Corresponding author. Tel: (65) 6790-6235.

Email: arbhatnagar@ntu.edu.sg



1. Introduction

Spurred by the increasing globalization of economic activities in the last two decades, firms
are confronted with several new challenges on the logistics front. As production activities
shift to locations with low labor costs and long-distance deliveries are used for distributing
products to worldwide markets, a crucial imperative for logistics managers is to strive for
efficient and responsive distribution systems by implementing innovative practices such as
cross-docking and merge-in-transit among others. These emerging practices have also

provided impetus to academic researchers to model and optimize the logistics systems.

The research presented in this paper is motivated by the multi-stage distribution system
of a computer printer peripherals manufacturer (see Figure 1). The company operates a
manufacturing factory in Europe and many distribution facilities. Raw materials and
components are manufactured and assembled into bulk products at the factory. These bulk
products are then delivered by sea freight to central DCs (e.g., the central DC for
Asia-Pacific market is located in Singapore), and are customized and packaged into
finished products according to specific regional requirements. From these central DCs, the
finished products are delivered by sea freight to regional DCs (e.g., the regional DC for
China market is located in Shanghai). The finished products are then delivered by trucks to

geographically scattered customers (e.g., retailers and wholesalers).

Figure 1: A multi-stage distribution system

Our discussions with the logistics managers of the firm revealed their keen interest in
implementing new logistics strategies to improve the distribution system performance. The
company has some big customers who regularly place large orders and these orders exhibit
relatively low variability. In the existing distribution system as presented in Figure 1, these
large orders are delivered successively through the central DC and the regional DC as are
all other orders. This distribution strategy ignores the impact of order quantity and
variability and may lead to system inefficiency. To address this issue, we proposed a
logistics strategy to design a more flexible distribution system by treating these large orders

distinctly from the smaller orders.

The company’s regional DCs are located close to the customers in order to provide short
delivery lead times. At these regional DCs, the demands of different customers can be

pooled to achieve economies of scale in inbound transportation to the regional DC from the



central DC. However, our discussions indicated that the firm could reduce its transportation
costs by delivering large orders directly from the central DCs to the customers since it
could then use efficient transportation modes (e.g., full container load by sea freight) over
shorter transportation distances. In addition, the variable operating costs at the regional

DCs could also be reduced since the direct deliveries bypass these facilities.

For the deliveries to the aforementioned big customers, we propose a dual-channel
distribution strategy as follows. A customer can receive orders through two distinct
channels: an indirect channel, where orders are delivered from a central DC to a regional
DC, and then to the customer; and a direct channel, where orders are delivered directly from
the central DC to the customer, bypassing the intermediate regional DC. In addition, we
propose a minimum purchase commitment (MPC) that allows a customer to purchase a
fixed quantity through the direct channel and a flexible quantity through the indirect

channel in each time period.

The proposed dual-channel distribution strategy aims to improve the system performance
as follows. For the proportion of demand that is likely to be certain, regular quantities are
delivered directly from the distant central DC to the customer to achieve low transportation
and operating costs. For the remaining demand that is likely to be uncertain, flexible

quantities are delivered from the nearby regional DC to achieve responsiveness.

The rest of this paper is organized as follows. In Section 2, we review the relevant
literature on inventory models with a MPC agreement. In Section 3, we consider a
traditional single-channel vendor-buyer system, and discuss the optimal replenishment
policy in the standard settings. In Section 4, we introduce a dual-channel vendor-buyer
system, investigate the impact of a MPC agreement on the inventory and safety stock in the
system, and study an integrated coordination problem. In Section 5, we provide a
simulation-based method to analyze the dual-channel vendor-buyer model. In Section 6, we
present numerical cases to demonstrate our analysis and findings. Finally, conclusions,

implications, and future research directions are outlined in Section 7.

2. Literature Review

In this section, we review the literature on inventory models with a MPC agreement, which
restricts a buyer to periodically purchase a minimum quantity regardless of realized

demand.

In one of the earliest works on MPC inventory models, Rosenshine and Obee [15]



considered a situation where a buyer has to carry a high level of safety stock due to a long
replenishment lead time. To eliminate the high level of safety stock, Rosenshine and Obee
[15] studied an MPC inventory model, in which the buyer periodically places a
fixed-quantity order with a long replenishment lead time and has the option to place an
emergency order for a flexible quantity that is delivered instantaneously. They assumed that
the buyer has a limited storage capacity such that any excess inventory has to be sold off at
a salvage price. For discrete demand, the authors used a Markov chain model to determine
the optimal committed quantity and order-up-to level. They showed that the MPC
agreement reduces the buyer’s cost by eliminating safety stock, despite incurring
emergency order costs and salvage costs. Also see Chiang and Guttierrez [6] for related

work.

Chiang [7] studied the same MPC inventory model as Rosenshine and Obee [15], but
used dynamic programming to derive the optimal storage capacity and order-up-to level.
He assumed average-cost and discounted-cost criteria, and studied backlogged and
lost-sales problems in his paper. Chiang also showed that a convergence approach can be

applied to determine the optimal system parameters with reasonable errors.

Anupindi and Akella [1] investigated the impact of an MPC agreement on order variance.
They considered delivery lead time as a decision variable and assumed that a buyer needs
to pay a price premium to adjust the order quantity above the committed quantity. The
authors showed that the MPC agreement can reduce the variance in the order process to the
supplier and proved that the optimal replenishment policy in a finite planning horizon is the
periodic review order-up-to policy.

Moinzadeh and Nahmias [14] considered a problem similar to Anupindi and Akella [1],
but in a continuous review and infinite planning horizon setting. They showed that the
equations that need to be solved to find the optimal order-up-to level are intractable. The
authors developed a diffusion approximation that is coupled with the solution to a
deterministic version of the problem. They empirically derived a formula for computing the

optimal committed quantity and established its accuracy with numerical tests.

Janssen and de Kok [9] studied an MPC inventory model by considering the fixed
ordering costs, purchase cost and holding cost at the buyer. By showing the equivalence of
the buyer’s inventory level to the waiting time of a GI/G/1 queue, they used the
moment-iteration method introduced in De Kok [8] to approximate the buyer’s inventory
level, and developed an algorithm to estimate the optimal order-up-to level and committed

quantity that minimize the buyer’s cost subject to a desired service level.



Urban [20] used mixed-integer linear programming and network optimization to
formulate an MPC inventory model, where the buyer has limited flexibility to adjust the
order quantity at an extra cost. The author provided a solution methodology for the general
stochastic demand case and for several specific demand distributions. Urban [20] also gave
a numerical analysis to extend the basic problem to a multiple-product, multiple-constraint

problem.

Thomas and Hackman [17] studied an MPC inventory model in a finite horizon with
price-sensitive demand. For iid normally distributed demand, they used a simulation-based
method to approximate the expected inventory level and order quantities at the buyer as
quadratic functions of the committed quantity and the reselling price. They showed that the
approximation method can yield closed-form solutions to decide the optimal policy that

maximizes the buyer’s revenue.

Cheung and Yuan [5] considered an infinite horizon inventory model of a buyer with a
periodic order commitment. The authors considered general discrete demand distributions
and assumed that the buyer could order more than the minimum commitment without
incurring any extra adjustment cost. They formulated a Markov chain to represent the
buyer’s inventory level and used the solution approach to the classical GI/M/1 queue to

derive the steady-state results and obtain the exact closed-form cost function.

Beside the MPC inventory models mentioned above, fotal minimum purchase
commitment (TMPC) inventory models have also received attention in literature. Bassok
and Anupindi [2] considered a TMPC inventory model that requires a buyer to purchase a
minimum cumulative quantity over a finite horizon to satisfy stochastic demand. They
proved the optimality of the dual order-up-to policy given the committed quantity and
showed that the optimal policy can be computed by solving two standard newsboy
problems. Chen and Krass [4] extended the model of Bassok and Anupindi [2] to a more
general setting of non-stationary demand, and different unit prices for the committed

quantity and the remaining quantity.

Tibben-Lemke [18] studied another TMPC inventory model with order quantity
restrictions in each time period. He showed that the computation of the optimal order-up-to
levels is time-consuming. The author provided a heuristic method to derive near-optimal
policies for a range of system parameters. For the relevant literature on inventory models
with other types of supply contracts, we refer the reader to the review papers of Tsay et. al.

[19], Cachon [3] and Kamrad and Siddique [10].

The research outlined in this paper makes several distinct contributions to the existing



literature. First, our MPC inventory model addresses an integrated vendor-buyer
coordination problem, in which the vendor and buyer can cooperate to decide the optimal
committed quantity that minimizes total system cost. All previous studies reported in
literature considered MPC inventory models from the individual perspective of the buyer.
In contrast, our research investigates the impact of the MPC agreement on the inventory
and safety stock at both the vendor and the buyer. Second, we introduce a simulation-based
method to quantitatively estimate the inventory and safety stock levels at the vendor and
buyer. Our method can be easily implemented as compared to models discussed in
literature, e.g. diffusion approximation in Moinzadeh and Nahmias [14] and
moment-iteration method in Janssen and de Kok [9]. While these methods provide
reasonable accuracy in analyzing the MPC inventory model, they need complex modeling
techniques and are computationally demanding. Finally, since our research is motivated by
the real life distribution system of a computer printer peripherals manufacturer, it will

provide useful insights to practitioners from an implementation perspective.

3. A Single-Channel Vendor-Buyer Model

Consider a single-channel vendor-buyer system comprising a buyer and two vendor-owned
facilities: a central DC and a regional DC (see Figure 2). The three facilities periodically
replenish their inventories for a single item at a common review interval. These
replenishment orders are delivered from the central DC to the regional DC, and then to the

buyer.

Figure 2: A single-channel vendor-buyer system

At the buyer, the exogenous customer demand D is iid normally distributed with mean u
and standard deviation (STD) ¢ in each time period. We use n (n=1, 2, 3,..., N) to denote
the index of time period, and use D, to denote the realized customer demand in time period

n. We also assume that the customer demand D does not depend on the selling price.

Safety stock is carried at each facility to maintain the desired service level a at the buyer,
which is defined as the probability that no stockout occurs in any given time period. We
assume that other mechanisms such as the spot market or expediting can be used to fulfill

the demand beyond the service level a.

We will use the base-stock modeling framework introduced by Kimball, whose 1955



manuscript was later reprinted in 1988. Kimball [11] studied a single stage inventory model
with a periodic order-up-to replenishment policy and an assumption of bounded demand.
Kimball showed that the safety stock should be used to satisfy the maximum demand over
the net replenishment lead time, which is defined as the incoming service time plus the
production time at the stage minus the outgoing service time. Using Kimball’s work as a
building block, Simpson [16] considered a serial supply chain and studied the problem of
determining the safety stock at each stage by setting the service times. Simpson also
provided an alternate interpretation of the demand bound as the maximum demand the firm

wants to satisfy from safety stocks.

We use SSp, SSyae, and SS.q to denote the safety stock levels and L, L4 and L.4. to
denote the replenishment lead times at the buyer, the regional DC and the central DC,
respectively. All replenishment lead times are assumed to be deterministic. At each facility

in the single-channel vendor-buyer system, we model the safety stock level as follows:

SS=n oL, (3.1)
where 7, represents the safety factor that is uniquely associated with service level a in the

instance of iid normally distributed demand. Using the safety stock level, we can determine

the order-up-to level as follows:

S=u-L+SS, (3.2)
where the term p-L represents the average demand during the replenishment time L. At the
beginning of each time period, a facility needs to place an order on its upstream facility to

raise the inventory position to the order-up-to level, S. Thus, the order quantity is always

equal to the realized demand in the previous time period.

4. A Dual-Channel Vendor-Buyer Model with Minimum Purchase Commitment

Now consider a dual-channel vendor-buyer system (see Figure 3), in which orders are
delivered through two distinct channels: an indirect channel, in which orders are delivered
from the central DC to the regional DC, and then to the buyer; and a direct channel, in
which orders are delivered directly from the central DC to the buyer, bypassing the

intermediate regional DC.

The buyer replenishes its inventory through the two channels with an MPC agreement as

follows.



Figure 3: A dual-channel vendor-buyer system

At the beginning of time period n, the buyer places a regular order for a predetermined
and fixed quantity Q through the direct channel. The regular order is purchased with a
percentage purchase discount A, which is offered by the vendor to encourage regular orders.
Note that the MPC (or regular order) quantity O should be smaller than the mean demand y;
otherwise the buyer’s inventory level will rise without bound in an infinite horizon. After
placing the regular order, the buyer places no further order if the resulting inventory
position is at or above the order-up-to level S; otherwise the buyer can place a
supplementary order for quantity g, through the indirect channel to raise the inventory
position up to the order-up-to level S. The supplementary order is purchased at the unit

price p, with no purchase discount.

We consider the channel supply cost, and the inventory holding costs at the buyer, and at
the vendor. At each facility, inventory holding cost is incurred in proportion to the average
inventory level and the holding cost rate. We use 4y , hcqe, and h,4. to denote the holding
cost rates at the buyer, the central DC and the regional DC, respectively. For the sake of
simplicity, we assume the same holding cost rate 4, for the inventories of both regular
orders and supplementary orders at the buyer, even though the unit purchase costs are
different. We also assume that the holding cost rate is increasing as material moves down

the supply chain: %.4.< hyq:<hp.

4.1. Channel Supply Cost

The channel supply cost includes the transportation costs, and the operating cost incurred at
the regional DC (e.g. loading/ unloading cost and other handling costs). We assume that the
channel supply cost is incurred in proportion to the quantity delivered through each channel.
We use ¢ and ¢, to denote the channel supply cost rate for the direct channel and for the
indirect channel. We use c¢3 to denote the channel supply cost rate for that part of the
demand that is satisfied by a “backup” mechanism like a spot market or expediting. We use
[ to denote the fill rate that is defined as the proportion of demand that is satisfied from
inventory on hand. Thus, we can express the expected channel supply cost per time period

Ciuppiy as follows.

Coppy =0+, (UB—0)+c;(1- P (4.1)



In (4.1), the first term c;Q represents the cost of supplying the MPC quantity Q through
the direct channel; the second term c,(uf-Q) represents the cost of supplying the average
supplementary order quantity uf-Q through the indirect channel; the third term c;3(1-f)u
represents the cost of supplying the quantity (1-f)u that is satisfied by the “backup” mode.

We can rewrite the expected channel supply cost Cgyppiy as a linear function of the MPC

quantity Q.
Csupply :[czﬂ+c3 (1_,8)],”_(62 _CI)Q 4.2)

In (4.2), we interpret the first term [c,f+c3(1-5)]u as the expected channel supply cost in
the corresponding single-channel system, and the second term (c;-¢;)Q as the channel
supply cost savings by delivering the MPC quantity Q through the direct channel. We
assume that c;<c,, which implies that utilizing the direct channel reduces the channel
supply cost. Utilizing the direct channel reduces the channel supply cost for three reasons:
the transportation distance is shorter, we can use a more efficient transportation mode, and

we can avoid the operating or handling cost incurred at the regional DC.

4.2. Inventory at the Buyer

Under the MPC agreement, the buyer is committed to purchase a minimum quantity Q in
each time period. The buyer’s inventory position /P may thus exceed the order-up-to level
S by an overshoot when the quantity Q is larger than the realized demand during the
previous time period. We refer to this inventory overshoot as surplus inventory and use SI,

to denote the surplus inventory level at the buyer in the time period n. We have

On = Max(Dn—l - SIn—l’ Q) (43)
IP, =Max{S,IP_ +Q—-D, ,} =SS, + Lu+SI, (4.4)
where S =SS, + L, u

As shown above, the buyer’s order quantity O, in time period z is the maximum of the
realized demand D, in time period n-1, net of any surplus inventory in the prior period,
and the MPC quantity Q. If this order quantity exceeds the MPC quantity Q, then the
difference is obtained by placing an order on the regional DC. At the beginning of time
period n, the inventory position /P, includes three components: the surplus inventory SZ,,
the safety stock at the buyer, SSp, and the expected demand during the replenishment lead

time, Lyu. We can approximate the buyer’s average on-hand inventory level I, as

follows.



I,=88,+ Yo u+SI, (4.5)
where we use S/ to denote the expectation of S7,.

From (4.4), we can derive a Lindley type iterative equation (see Lindley [13]) for the

surplus inventory level SI,,.
SI, :Max{O,S]n_1 +Q—Dn_1} (4.6)

Equation (4.6) shows that the surplus inventory S/ depends on the MPC quantity Q and
the stochastic demand D, but is independent of the order-up-to level S. The Lindley type
equation also shows that the surplus inventory level SI is equivalent to the customer
waiting time in a single-stage GI/D/1 queue, where the customers arrive with general
independent inter-arrival times D and are served by a single first-come-first-served (FCFS)
server with deterministic service time Q. Unfortunately, there is no closed-form analytical

solution for the average customer waiting time in a single-stage GI/D/1 queue.

Despite the lack of a closed-form solution, we can establish some useful properties for

the surplus inventory level S/, when we assume that the demand is normally distributed.

PROPOSITION 1. Given that the stochastic demand D is iid normally distributed in each

time period with parameters u, o and the starting surplus inventory Sl is zero, we can
express the expected surplus inventory SI, in period n as a product of the demand standard
deviation ¢ and a function of the time horizon n and the standardized MPC quantity

z=(u-Q)/o. That is
SI, =0 -k(n,z) (4.7)

Proof. To prove (4.7), we show that the cumulative distribution function for the variable

(Sln / 0') depends only on the time period n and on the standardized MPC quantity z. We

. e . S .
define the complementary cumulative distribution function G, (x) = Pr[ > x} and will
o

show that this function depends only on # and z by induction:

For n =2, we have

G, [x]:PrK&j>x}=Pr[Dl <Q-ox|=®(-x-z), Vx>0 (4.8)
o

where Pr[D, <x]denotes the CDF for the demand in period n, which is assumed to be

normal with parameters i,0, and where ® () is the CDF of the standard normal

distribution N(0, 1).



Now, suppose the induction hypothesis is true for n = 2, ... m. That is, the variable

(Sln / 0') has a unique CDF G,(-) that depends only on n and the standardized MPC quantity
z=(u-Q)/oforn=2, ... m.

For n = m+1, we have

Gt [1] ZP{(%] >X} =Pr[D, < SI, +0-0x] :P{Dm 4 Sy Q—ﬂ_x}
o) o o o

=Pr|:D’" —H< 5L, —Z—x}:—J‘:CD(y—z—x)dGm (y)

(4.9)

Thus, we see that we can express the complementary cumulative distribution function for
(SIy+1/0) in terms of the normal CDF and the complementary cumulative distribution
function for (S7,/0). By the induction hypothesis, we now see that the CDF of (SI,/0)
depends only on the period » and the standardized MPC quantity z. Therefore, Proposition

1 is true.O

PROPOSITION 2. The expected surplus inventory level in period n increases with n, where

we assume that the starting surplus inventory Sy, is zero. When n goes to infinity, the
expected surplus inventory level converges to a constant level that is independent of the

starting surplus inventory level Sl.

Proof. The proof of the convergence of surplus inventory level is the same as the proof
of the convergence of average customer waiting time in a single-stage GI/G/1 queue. We

refer the interested reader to the discussion in Kingman [12].

Based on Propositions 1 and 2, we can write the expected surplus inventory S in a

simple form as follows.
SI =0 -k(z) (4.10)
To determine the expected surplus inventory S7, it is sufficient to know the value of the

coefficient function k(z). As we cannot determine an analytical expression for this function,

we will determine it numerically.

4.3. Safety Stock at the Buyer

As mentioned earlier, at the beginning of time period » the buyer’s inventory position /P,
equals its order-up-to level S plus the surplus inventory SI,. The inventory position

represents what inventory is available to meet demand over the next L, time periods. The

- 11 -



buyer desires to set its order-up-to level S to achieve some desired service level a; thus, we
will set S so that the probability that the inventory position covers the total demand during
the next L, time periods is at least the desired service level a. Compared to the traditional
single-channel system, the buyer will need less safety stock SSj, (or lower order-up-to level
S») to maintain the same service level a due to the surplus inventory in the dual-channel
system. In the following proposition we find that the required safety stock level SS; at the

buyer has a similar property to the surplus inventory level SI.

PROPOSITION 3. Given that the stochastic demand D is iid normally distributed in each

time period with parameters u, o, we can determine the safety stock level at the buyer SSj

by
$S, =o-\L, v, (2), (4.11)

where the function y depends on the service level a and replenishment lead time L, and its

argument is the standardized MPC z = (u—Q)/o .

Proof: We set the order-up-to level S, =SS, + L, so that the following condition holds:

Pr[D,+..+D,, ,<S,+5I,|=a (4.12)

We will show that we can express the left-hand-side as a function of SS, / (a\/fh ), the

replenishment lead time L, and the standardized MPC z.

Dn +"'+Dn+Lh—1 _ﬂLb < Sln +SS;,

N T

Pr[ D, +..+D,, ,<S,+5I,] :P{
(4.13)

~Jol g fe
From the above, we see that we can express the service level as a function of
SS, / (a\/fb ) and of the lead time L,. From proposition 1, we see that the service level

depends on the standardized MPC. We can also argue that the service level is a monotonic

function of the safety stock, from which we can conclude Proposition 3.0

4.4. Safety Stock at the Vendor

We have two vendor-owned facilities: the central DC and the regional DC. At the
beginning of each time period each facility places an order to raise its inventory position to

an order-up-to level. We note that these two facilities observe similar order processes.



The order process at the regional DC is the supplementary order placed by the buyer in
each period. The order process at the central DC is the constant MPC quantity Q, plus the
order placed by the regional DC, which is equal to the supplementary order from the buyer.
Thus, each facility needs to carry a safety stock due to the variability from the buyer’s
supplementary orders, which depends on the MPC. In the following, we focus on

investigating how the MPC agreement affects the safety stock at the regional DC.

At the beginning of time period #, the regional DC receives a supplementary order g,
from the buyer if the regular order quantity O does not raise the buyer’s inventory position

up to the order-up-to level S. We have
q,=D,+SI ,—0-SI,. (4.14)

The regional DC should set its order-up-to level S, to satisfy the total order during

the next L,,. time periods for some desired service level a. We have

qn = D"I + S]

n+l
— —()— m=n+L,.—1 m=n+L,.—1
qn+1 - Dn+1 + Sln+2 Q S1n+1 5 :

— = z qm = Z Dm + SInJrL,dC - Qerc - Sln

uir,, 1~ Dn+er;1 +S1 n+Lyg, 0-51 n+ L1

- Q - SI"I

m=n

Wang [21] has developed an approximation to show that the required safety stock level

SS,4. at the regional DC has a similar property to the safety stock level SS; at the buyer.

Approximation 1. Given that the stochastic demand D is iid normally distributed in each

time period with parameters u, o, we can determine the safety stock level at the regional

DC SSyic by

88,4 =0 Ly @, (2), (4.16)

where the function ¢ depends on the service level o. and replenishment lead time L. and

its argument is the standardized MPCz = (u—Q)/o .

Argument: We set the order-up-to level S, =SS, +(u¢—-0Q)L, . so that the following

condition holds:
Prlg,+..4q,,, <5, |=« (4.17)

Based on (4.15) and (4.17), we will argue that we can express the left-hand-side as a
function of SS,, / (o4/L,,.) , the replenishment lead time L, and the standardized MPC z.



Pr[qn tot Gy, 4 S Srch

=Pr D”’ tot D’“'erf_l + SI’“'LW B QL”dC B SIH B /Uerc < SSrdc + (/l B Q)erc — lLlerc (4 1 8)
L G\/erc O-\/erc
P _Dn +"'+Dn+L -1 _ILIerc < Sln _S171+L +SSm'c
=Pr rdc < rdc
L o erc o erc

To develop the approximation, suppose that we assume that (SI,-S7,,, ) / o
independent of the demands D, ,...,D,,, ;. From proposition 1, we know the cumulative

distribution function for the variable S/, depends on the time period n» and on the
standardized MPC quantity z. Thus, the cumulative distribution function for the variable

(81,-581,., ) /O' depends only on the time period n, the lead time L,;. and the

standardized MPC quantity z. We define the complementary cumulative distribution

S]n - SInJrL,dC

function H,, (x)= Pr[ > x}. With the assumption of independence we can

o

rewrite equation (4.18) by the following approximation

Pr|:qn oty <SSy :I ]8 ( 2 5;77 Loy, ( ) (4.19)

rdc

From the similar argument as the proof of Proposition 3, we can conclude

Approximation 1.0

The central DC’s order process is the same as that for the regional DC, plus the constant
MPC quantity Q. Thus we can also use this approximation for the required safety stock

level §S.4.. We use the index v to denote either vendor-owned facility, and we have
SS,=0\[L,0,, (2), (4.20)

Comparing equations (4.13) and (4.18), we can observe that for the same lead time the
vendor requires higher safety stock to maintain a given service level than the buyer does.

That is
Por, (2) 2V, (2) (4.21)

From the above analysis, however, it is still not clear whether the MPC agreement can
reduce the safety stock level at the vendor, since the demand process D and surplus
inventory level S7, depend on each other in (4.18). We can get some intuitive insights from

the following scenarios:

(). If the total demand realized during the time periods n to nt+L,-1, is “large” and



greater than expected, the surplus inventory S/, is more likely to be zero. Thus, the total

order quantity Z D, —SI, is smaller than the total demand quantity Z D, ifSI >0.

(IT). If total demand realized during the time periods # to n+L,-1, is “small” and less than

expected, the surplus inventory S/, is more likely to be positive. Thus, the total order

quantity ZDm 81, + 81 is larger than the total demand quantity

n+L,

> D, ifSI,,, —SI,>0.

n+L,

Thus, in the dual-channel vendor-buyer system, the order process observed at the vendor
is less variable or smoother than that in the single-channel vendor-buyer system and,
consequently less safety stock is required at each vendor facility to maintain the same

service level.

4.5. Integrated Vendor-Buyer Coordination Problem

We now consider an integrated vendor-buyer coordination problem, in which the buyer and
vendor can fully cooperate with each other to decide the MPC quantity O that minimizes

total system cost. We express the expected system cost Cyy as follows.
1
C,, = {[czﬂ +o(1- ,6):' pu—(c,—¢ )Q} + (E,u +8I+S8S,)h, +SS .0, +SS. .1, (4.22)

The first term in (4.22), represents the system supply cost. The second term represents the
buyer’s inventory holding cost, which includes the cycle inventory cost 0.5u4;, the surplus
inventory cost SI-/p, and the safety stock cost SSp-/,. The last two terms represent just the
safety stock costs at the regional DC and central DC. Furthermore, we can rewrite the
expected system cost Cyy, as a function of the standardized MPC quantity z by substituting

O = u—zo and replacing the safety stock and surplus inventory terms as follows.

C,.(2)= {(Q —¢,)(1- ) +¢, +%hb } + a{(c2 —e)z+| K@)+ Ly, )]k,
Lo, Ohte + Lt @0, (Do}

(4.23)

Then, the objective of an integrated coordination problem is to find the optimal

standardized MPC z" that minimizes the expected system cost Cys(2).

z' =argmin C,,(2) (4.24)

0<z<1



Below, we outline the effects of the system parameters on the optimal solution z .

1. Effect of demand parameters u and o

From the expression of the expected system cost Cy, (4.23), we observe that the first
term is proportional to the demand mean x but remains constant when the standardized
MPC quantity z varies, and the second term is a product of the demand standard deviation ¢
and a value that does not depend on the demand parameters ¢ and ¢. Thus, the optimal

solution z* is independent of the demand parameters x and o.

1. Effect of channel supply cost rates c; and c;

The channel supply cost rates ¢; and ¢, contribute to the expected system cost C, in that
the cost savings per unit (c;-c;) can be obtained by supplying the product through the direct
channel. When the value of (c;-c;) increases, the optimal MPC quantity O* should increase
and, consequently, the optimal standardized MPC quantity z* decreases.

1I1. Effect of holding cost rate h

From the previous analysis, we know that the MPC agreement increases the inventory
level at the buyer and decreases the inventory levels at the regional DC and central DC.
Thus, the optimal solution z increases when the holding cost rate 4, increases, and
decreases when the holding cost rate /4,4, or 4.4 increases.

One important issue in the integrated coordination problem is to allocate the benefit
between the vendor and buyer so that each party is willing to participate in implementing
the integrated coordination. By setting z= /o we can use (4.23) to compute the
expected system cost without a MPC, i.e., when O = 0. We use II to denote the amount of
the savings that needs to be shifted from the vendor to the buyer under an equal allocation

scheme. We have
1 1 P 1
= —ok(2)h, = \L,0| Vo, ( ARReIN +(e-a)(u-o2)

1 1 —
+ 5 LRDC o l:(pa,L,d( (%) B ¢a,er(, (Z)j| hrdc + E Lcdc o |:¢a,Lm (%) o ¢a,L(,{,E (Z):| hcdc

In (4.25), the first two terms represent half of the increase in the buyer’s cost, and the last

(4.25)

three terms represent half of the decrease in the vendor’s cost. When the profit allocation is
in the form of purchase discount, the vendor should offer a purchase discount for the MPC

quantity OQ* at the percentile A defined as

A= % (4.26)
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5. Simulation-Based Approximation Method

Based on our analysis in Section 4, the surplus inventory coefficient function A(z) and the
safety stock coefficient functions ,(z) and ¢, (z) are invariant for any case where the
demand D is iid normally distributed. We now introduce a method to use simulation to
estimate these coefficient functions, which can then be used to quantitatively analyze the

dual-channel vendor-buyer system.

5.1. Surplus Inventory Coefficient Function k(z)

We conducted simulations using VBA programming in Microsoft Excel  to estimate the

long-term surplus inventory coefficient function 4(z) with the following parameters:

- In each time period, the demand D is iid normally distributed with a mean u of 400 and
a standard deviation ¢ of 100.

- The MPC quantity Q varies between [300, 400] with an increment of 1; that is, the
standard MPC quantity z varies between [0, 1] with an increment of 0.01.

- The simulation horizon N is 20,000. Each simulation trial includes 1,000 random runs,
and these trial results have a 99% confidence interval that is at most within 1% of their
mean. The simulation results of the surplus inventory coefficient function k(z) are presented

in Table 1.

k(z) | .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.00 | 79.45 40.19 2333 15.83 11.98 9478 7.794 6.591 5.687 5.005
10 | 4.443 3968 3.608 3.305 3.028 2.785 2.571 2398 2.246 2.099
20 | 1.964 1.848 1.743 1.651 1.561 1.475 1.399 1.333 1.269 1.211
30 | 1.152 1.103 1.055 1.010 0.969 0.928 0.891 0.856 0.822 0.791
40 | 0.761 0.733 0.706 0.681 0.656 0.632 0.610 0.590 0.571 0.550
S50 | 0.531 0.514 0.498 0.483 0.466 0.451 0.437 0.424 0.411 0.398
.60 | 0.386 0.375 0.363 0.353 0.342 0.332 0.322 0.312 0.303 0.295
70 | 0.287 0.278 0.270 0.263 0.256 0.249 0.242 0.235 0.228 0.223
.80 | 0.216 0.211 0.205 0.199 0.194 0.189 0.184 0.179 0.174 0.169

90 | 0.165 0.161 0.156 0.152 0.148 0.144 0.141 0.137 0.133 0.130

Table 1: Simulation results for the surplus inventory coefficient function A(z)

Given the simulation results presented in Table 1, we can use a linear interpolation
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method to estimate the expected surplus inventory level S7 by assuming a linear function of

k(z) between any two neighboring z values given in Table 1. We have

Z;

k(z)=k(z,)+

Z —

[ K(z))=k(z)]. (5.1)
Zj —Z
where z; and z; are the two neighboring values for z in Table 1.

The simulation results for surplus inventory function k(z) are shown in Figure 4

Figure 4: Surplus inventory coefficient function k(z)

From the above figure, we can make the following observations about the surplus
inventory coefficient function (z).

(D). The surplus inventory coefficient function k(z) is exponentially increasing as the
standardized MPC quantity z decreases to zero. This exponential trend can be interpreted as
follows. Decreasing MPC quantity z increases the probability of the MPC quantity O being
larger than demand D and consequently increases the probability of the surplus inventory
being built up over consecutive time periods. The accumulation of surplus inventory results

in the exponential trend of the surplus inventory coefficient function (z).

(IT). The surplus inventory coefficient function k(z) is equal to 4.43 and 0.130 when the
standardized MPC quantity z is 0.1 and 0.99. We view this as a reasonable range for our
choice of z. For smaller values of z, the function grows dramatically; for larger values of z,
there is very little reduction possible. Thus, we assert that a reasonable MPC quantity Q

should fall in the range of [u-o, 1-0.10].

5.2. Safety Stock Coefficient Functions y(z) and ¢(z)

We also conducted simulations to estimate the long-term safety stock coefficient functions

y(z) and ¢(z) using the following parameters:

- In each time period, the demand D is iid normally distributed with the mean u of 400
and the standard deviation ¢ of 100.

- The MPC quantity Q varies between [300, 390] with an increment of 1; that is, the
standard MPC quantity z varies between [0.1, 1] with an increment of 0.01.

- For each safety stock coefficient function, we consider the service levels a of [98%,

95%, 90%] and the lead times L of [1, 3, 5, 7, 15, 25].



- The simulation horizon N is 20,000. Each simulation trial includes 1,000 random runs,
and these trial results have a 99.5% confidence interval that is at most within 1% of their

mecan.

In Table 2 and 3, we give the simulation results of the safety stock coefficient functions

Wogw,1(2) and @ogy; 1(2).

z) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.10 1.273 1317 1358 1.394 1.426 1.455 1.482 1507 1.531 1.552
.20 1.572 1.591 1.608 1.624 1.639 1.654 1.668 1.681 1.693 1.705
.30 1.716 1.726 1.737 1.746 1.756 1.765 1.773 1.782 1.789 1.797
40 1.804 1.811 1.818 1.824 1.831 1.837 1.842 1.848 1.854 1.859
.50 1.864 1.869 1.874 1.878 1.883 1.887 1.891 1.895 1.899 1.903
.60 1.907 1910 1.914 1918 1.921 1924 1.927 1930 1.933 1.936
.70 1.939 1.942 1.944 1947 1.950 1.952 1.954 1.957 1.959 1.961
.80 1.963 1.965 1967 1.969 1.971 1973 1975 1977 1979 1.981
.90 1.982 1984 1986 1.987 1.989 1.990 1.992 1.993 1994 1.996

Table 2: Simulation results for the s safety stock coefficient functions yoge, 1(2)

p(z)| .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.10 | 1.210 1.257 1.301 1.340 1.374 1.406 1.435 1.462 1.486 1.509
20 | 1.530 1.550 1.569 1.586 1.603 1.619 1.633 1.647 1.659 1.672
30 | 1.684 1.695 1.706 1.716 1.725 1.735 1.744 1.753 1.761 1.769
40 | 1.777 1784 1.792 1.799 1.805 1.812 1.818 1.825 1.831 1.837
S50 | 1.843 1.848 1.853 1.858 1.863 1.868 1.872 1.877 1.881 1.885
.60 | 1.889 1.893 1.897 1901 1.904 1.908 1.911 1914 1917 1.921
70 | 1.924 1.927 1930 1.932 1.935 1.938 1.940 1.943 1.945 1.948
.80 | 1.950 1.953 1955 1.957 1959 1962 1.964 1966 1.968 1.970
90 | 1.972 1974 1976 1977 1979 1981 1.982 1984 1.985 1.987

Table 3: Simulation results for the s safety stock coefficient functions @oge, 1(z)

Using the same linear interpolation method, we can estimate the expected safety stock
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coefficient functions. The simulations results in Table 2 and 3 are also show in Figure 5.

Figure 5: Safety stock coefficient functions woge, 1(z) and @ogo, 1(2)

From the above figure, we observe that the required safety stock levels are increasing
when the standardized MPC quantity z increases. In addition the required safety stock
coefficient converges to 2.055, which is the safety stock coefficient to maintain a service
level of 98% in the traditional single-channel vendor-buyer system. Further details of the

simulation can be found in Wang [21].

5.3 Quadratic Approximation

Using the linear interpolation method discussed in Section 5.1 and 5.2, we can
quantitatively estimate the impacts of the MPC agreement on the dual-channel
vendor-buyer system. In some circumstances, however, an analytical method might still be
desirable or necessary. We introduce a quadratic approximation method to estimate the
three coefficient functions k(z), v, (z) and ¢,(z) as piece-wise quadratic functions, which

have the following structure:

k(z)~ Az +Bz+C,, Vze(Z,Z,,] (5.2)
Yer, (z2)~ ,{ll;jm’Lbz2 + B:/ja’Lbz + C;/’a,Lb , Vze(Z.,Z.] (5.3)
goa,Lv (Z) ~ ‘/‘lgzr),oz,L‘,Z2 + B(:),a,L‘,Z + C;,a,Lv > VZ € (Zr s Zr+1] (54)

where all the values of 4, B, C are constant in the three ranges (Z,, Z,+,]: (0.1, 0.2], (0.2, 0.3]
and (0.3, 1]. We conducted regression on the simulation results of the coefficient functions
k(2), w9s25.1(2), Qose,;3(z) and @yse;5(z). The regression parameters are given in Table 4, and

the quadratic approximation functions are presented in Figures 6 and 7.
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k(z) Wosu1(2)  ©9s8%3(2)  @9s95(2)

A" 165.45 -14.07 -10.763  -10.089
0.1<z<0.2 B'  -73.48 7.138 5.602 5.172
c' 10.08 0.704 0.989 1.107

A% 32.50 -3.976 -3.053 -3.098
02<z<03 B> 2428 3.410 2.662 2.552

552 1.051 1.271 1.353
A 3.63 -0.533 -0.419 -0.359
03<z<1.0 B -5.69 1.058 0.825 0.696
C¢ 2.48 1.463 1.598 1.676

Table 4: Simulation results for the s safety stock coefficient functions @ogy, 1(z)

Figure 6: Quadratic approximation functions of 4(z)
Figure 7: Quadratic approximation functions of wgss; 1(2), p9s2;.3(z) and @ose; s(z)

Given these approximation functions, we can estimate the total system cost C(z) as a

piece-wise quadratic function of the standardized MPC quantity z as follows.

r [ r [ r [ r 2
Csys (Z) O (Ak hb + Lb + 1 ,a,L,;+lhb + erc A(p,a,L,.dE hrdc' + Lcdc Aqa,a,L(‘dL, hcdc )Z

+o((es=c)+B{hy+B) .\ b+ By, B, hu)z

v,a,L,+1 ¢.a,L,,

+[ (=) (1= B) + e, +0.51h, + Ch, +C;

v,a,L,+1

I+ Cht i+ Chr |

o,0,L, . @,a,L.. " “cdc

(5.5)
which has a quadratic structure as follows:

C (z)~A z22+B z+C’

sys sys Sys sys 2

Vze(Z.,Z, ] (5.6)

According to our discussion in Section 5.1, it is not likely that the optimal standardized

MPC quantity z falls outside of the range of [0.1, 1.0]. Thus, we only need to compare the

limits and the value of B / 24;, ineachrange of (Z,, Z,+;]; we have

r r r r
- [(Cz —¢)+ By, + B, hy, + B(p,a,L,.dC g + qu,a,Lcdc Dy :I

2 (Al:hb Y L, + lAl;,a,L,,th + \/g (;,a,Lm,(, hrdc + \/E (/r),a,LM hcdc )

oL, +1

B, / 24, =

’ Z* E(Zr’ZrH]
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(5.7)

The equation (5.7) supports the observations stated in Section 4.4 that the optimal solution
z* is independent of the demand parameters u and o, and the optimal solution z* decreases

when the channel supply cost rates difference (c,-c;) increases

6. Numerical Cases

In this section, we present a numerical study for a dual-channel vendor-buyer system with

the following parameters as a base case.

- At the buyer, the product has an iid normally distributed demand D (1000, 400) per week.
The demand D is independent of the selling price, which is $30.

- Through the indirect channel, the buyer purchases the product at the price P of $27. For

the orders delivered through the direct channel, a discount A is offered.

- The product has cumulated product costs of $27, $23, and $22 at the buyer, the regional
DC, and the central DC, respectively.

- Holding cost is incurred based on an annual interest rate of 25% and 50 weeks in a year.

- Channel supply cost rates are ¢;=$0.8 for the direct channel, and ¢,=$1.2 for the indirect
channel. For the purpose of simplicity, we also assume that ¢;=$1.2 for the “backup”

channel.
- Each location replenishes its inventory every week.
- At the buyer, the target service level « is 98%.

- The net replenishment lead time at the central DC L4 1s 5 weeks, at the regional DC L,y

is 3 weeks and at the buyer L, is 0 week.

For the system described above, we investigated the effects of different system

parameters on the optimal solution z.
L. Effect of demand parameters u and o

We have four numerical cases with demand parameters of [(¢=1000, 6=400), (x=1000,
0=450), (=800, 6=500), (u=800, 6=550)]. The total system cost Cj,, for each case is shown

in Figure 8.

Figure 8: Effect of demand mean i« and STD o
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From the above figure, we observe that the total system cost Cjyis a convex function of
the standardized MPC quantity z and is exponentially increasing when the value z gets
close to zero. This trend is mainly due the exponentially increasing surplus inventory cost.
For all four cases, the optimal standardized MPC quantity z is 0.248. This confirms our
previous analysis that the optimal standardized MPC quantity z is independent of the

demand parameters u and o.
For the case of demand parameters (¢ = 1000, o = 400), we have

- The optimal value z* of 0.248 and the optimal MPC quantity Q" of 900.
- The minimum system cost Cs*ys is $1392 per week. The total system cost for the case of

no MPC agreement is $1744 per week; thus direct delivery of 900 units results in a

system cost savings of $352 per week.
- The holding cost for the surplus inventory is $80.5 per week.
- The cycle inventory holding cost at the buyer is $67.5 per week.

- The channel supply cost is $840 per week and the supply cost savings is $360 per

week.

- The safety stock holding costs at central DC, regional DC, and buyer are $176, $139,
and $89 per week.

- To equally allocate the benefit between the buyer and vendor, a purchase discount of

0.26 $/unit should be offered for the regular orders.
11. Effect of channel supply cost rates

We studied four numerical cases with channel supply cost rates parameters of [(¢;=0.8,
c=1), (¢/=0.8, c»=1.2), (¢;=0.8, c=1.4), (¢;=0.8, c;=1.6)]. The total system cost Ci,, for

each case is shown in Figure 9.

Figure 9: Effect of channel supply cost rates ¢; and ¢,

We observe that the optimal standardized MPC quantity z* decreases when the channel
supply cost difference (c;-c;) increases, and consequently, the optimal MPC quantity O*
increases. When the standardized MPC quantity z increases, the system cost difference is

increasing mainly due to the increasing cost difference in supplying product in cost c,.

1II. Effect of holding cost rates hyand h.4.
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In Figure 10, we demonstrate the effect of the holding cost rate /4, on the optimal
solution z' in the integrated coordination model. The four sets of parameters are [(/;=5),
(hy=6), (hs=T), (h=8)].

From the numerical results, we observe that the optimal solution z increases when

holding cost rate 4, increases, which confirms our analysis in Section 4.5.

Figure 10: Effect of holding cost rate 4,

In Figure 11, we demonstrate the effect of holding cost rate /.4 on the optimal solution
Z" in the integrated coordination model. The four sets of parameters are [(Acq. =5), (hcac =6),
(heae =7), (heae =8)]. We observe that the optimal standardized MPC quantity z* increases

when the holding cost rate /4.4 decreases.

Figure 11: Effect of holding cost rate /4.

In addition, we use the quadratic approximation parameters to derive the expression of
the total system cost for the case of demand (1000, 400). The quadratic parameters are

given as follows.

A B C
0.1<z<0.2 63244  -2467.2 1637.6
02<z<03 99227  -503.77 1456.7
03<z<1.0 98.57 44.083 1372.5

Table 5: Quadratic parameters for total system cost

The approximation and simulation results are shown in Figure 12.

Figure 12: Quadratic approximation functions of total system cost Ciy,(z)

From the above figure, we see that the quadratic approximation function fits the
simulation results well within the range of [0.1, 0.8] and the error grows when the

standardized MPC quantity z approaches 1. The minimum total system cost occurs in the
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interval ze (0.2, 0.3), and the optimal standardized MPC quantity z* should take the value
of (—B,2

s / 2Afys): 0.254 and the estimated optimal system cost Cyy is $1392 per week.
Compared to the optimal simulation result of [2*20.248, C,s=1392], the quadratic

approximation method results in a solution that is very close to the optimal solution.

7. Conclusions

In this paper, we consider a dual-channel vendor-buyer system in which the buyer can
replenish its inventory through two distinct channels: an indirect channel, which is
characterized by short lead time and high channel supply cost; and a direct channel, which
is characterized by long lead time and low channel supply cost. We propose a minimum
purchase commitment (MPC) agreement; that is, the buyer commits to purchase a
predetermined and fixed quantity through the direct channel in each time period, and has the
option to purchase a flexible quantity through the indirect channel in each time period. We
study the impacts of the MPC agreement on the inventory, safety stock and cost of each
facility in the dual-channel vendor-buyer system, and develop a simulation-based method to

estimate these impacts.

This paper contributes to the literature by incorporating the vendor-buyer coordination
issue into the traditional dual-channel inventory model. The analysis presented in this
research can serve as a building block and a decision support tool for several aspects of
vendor-buyer coordination, supply chain network design, supply strategy development, and
supply contracts negotiation. It can also provide insights for a vendor to compete for a
single sourcing agreement; that is, the vendor could design a dual-channel MPC supply
contract to provide both economies of scale and substantial flexibility that make it
unfavorable for the buyer to consider an alternate vendor. This research can also be applied
to global supply chain management issues in which global suppliers offer a cheaper price,
but require long lead times because of the long shipping distances. Therefore, these
suppliers are contracted with a stable replenishment quantity; in situations where the
magnitude of demand is larger than expected, a more expensive domestic supplier is used.

The models assist in allocating the purchase volume between these supply options.

In this paper, we assumed that safety stock is carried to maintain a desired service level.
A reasonable future research direction could be to consider fill rate as the performance

measure in these models. Our assumption of stationary and price-insensitive demand could

-25-



be inapplicable for cases of seasonal products or short planning contexts. When the demand
is price sensitive, the vendor and buyer can cooperate in determining both the MPC
quantity and the selling price that maximize the total system revenue. Thus, incorporating
non-stationary and/or price-sensitive demand in the dual-channel vendor-buyer

coordination problem represents an important future research direction.
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Figure 7: Quadratic approximation functions of wogss 1(z), @9s2%.3(z) and @ggs 5(z)
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Figure 8: Effect of demand mean # and STD &
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Figure 9: Effect of channel supply cost rates ¢; and ¢;
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Figure 10: Effect of holding cost rate A,
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Figure 12: Quadratic approximation functions of total system cost Cyy,(z)

-33-




