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Abstract: In this paper, we consider a dual-channel vendor-buyer system consisting of a 
buyer and two vendor-owned facilities: a central distribution center (DC) and a regional 
DC. Orders for a single item are delivered through two distinct channels: an indirect 
channel, comprising the central DC, the regional DC and the buyer; and a direct channel, 
comprising the central DC and the buyer, bypassing the intermediate regional DC. Each 
facility periodically replenishes its inventory at a common time interval and safety stock 
is carried at each facility to maintain the desired service level. The vendor and buyer 
make a minimum purchase commitment (MPC), under which the buyer commits to 
purchase a predetermined and fixed quantity through the direct channel in each time 
period, and has the option to purchase a flexible quantity through the indirect channel in 
each time period, We study the impact of the MPC agreement on the inventory and safety 
stock at the vendor and buyer for this dual-channel vendor-buyer system, and introduce a 
simulation- based method to estimate this impact for iid normally distributed demand. We 
also study an integrated coordination problem in which the vendor and buyer cooperate to 
implement the optimal MPC agreement that minimizes total system cost. 
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1. Introduction 

Spurred by the increasing globalization of economic activities in the last two decades, firms 

are confronted with several new challenges on the logistics front. As production activities 

shift to locations with low labor costs and long-distance deliveries are used for distributing 

products to worldwide markets, a crucial imperative for logistics managers is to strive for 

efficient and responsive distribution systems by implementing innovative practices such as 

cross-docking and merge-in-transit among others. These emerging practices have also 

provided impetus to academic researchers to model and optimize the logistics systems.  

The research presented in this paper is motivated by the multi-stage distribution system 

of a computer printer peripherals manufacturer (see Figure 1). The company operates a 

manufacturing factory in Europe and many distribution facilities. Raw materials and 

components are manufactured and assembled into bulk products at the factory. These bulk 

products are then delivered by sea freight to central DCs (e.g., the central DC for 

Asia-Pacific market is located in Singapore), and are customized and packaged into 

finished products according to specific regional requirements. From these central DCs, the 

finished products are delivered by sea freight to regional DCs (e.g., the regional DC for 

China market is located in Shanghai). The finished products are then delivered by trucks to 

geographically scattered customers (e.g., retailers and wholesalers). 

 

Figure 1: A multi-stage distribution system 

 

Our discussions with the logistics managers of the firm revealed their keen interest in 

implementing new logistics strategies to improve the distribution system performance. The 

company has some big customers who regularly place large orders and these orders exhibit 

relatively low variability. In the existing distribution system as presented in Figure 1, these 

large orders are delivered successively through the central DC and the regional DC as are 

all other orders. This distribution strategy ignores the impact of order quantity and 

variability and may lead to system inefficiency. To address this issue, we proposed a 

logistics strategy to design a more flexible distribution system by treating these large orders 

distinctly from the smaller orders. 

The company’s regional DCs are located close to the customers in order to provide short 

delivery lead times. At these regional DCs, the demands of different customers can be 

pooled to achieve economies of scale in inbound transportation to the regional DC from the 
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central DC. However, our discussions indicated that the firm could reduce its transportation 

costs by delivering large orders directly from the central DCs to the customers since it 

could then use efficient transportation modes (e.g., full container load by sea freight) over 

shorter transportation distances. In addition, the variable operating costs at the regional 

DCs could also be reduced since the direct deliveries bypass these facilities. 

For the deliveries to the aforementioned big customers, we propose a dual-channel 

distribution strategy as follows. A customer can receive orders through two distinct 

channels: an indirect channel, where orders are delivered from a central DC to a regional 

DC, and then to the customer; and a direct channel, where orders are delivered directly from 

the central DC to the customer, bypassing the intermediate regional DC. In addition, we 

propose a minimum purchase commitment (MPC) that allows a customer to purchase a 

fixed quantity through the direct channel and a flexible quantity through the indirect 

channel in each time period. 

The proposed dual-channel distribution strategy aims to improve the system performance 

as follows. For the proportion of demand that is likely to be certain, regular quantities are 

delivered directly from the distant central DC to the customer to achieve low transportation 

and operating costs. For the remaining demand that is likely to be uncertain, flexible 

quantities are delivered from the nearby regional DC to achieve responsiveness. 

The rest of this paper is organized as follows. In Section 2, we review the relevant 

literature on inventory models with a MPC agreement. In Section 3, we consider a 

traditional single-channel vendor-buyer system, and discuss the optimal replenishment 

policy in the standard settings. In Section 4, we introduce a dual-channel vendor-buyer 

system, investigate the impact of a MPC agreement on the inventory and safety stock in the 

system, and study an integrated coordination problem. In Section 5, we provide a 

simulation-based method to analyze the dual-channel vendor-buyer model. In Section 6, we 

present numerical cases to demonstrate our analysis and findings. Finally, conclusions, 

implications, and future research directions are outlined in Section 7. 

 

2. Literature Review 

In this section, we review the literature on inventory models with a MPC agreement, which 

restricts a buyer to periodically purchase a minimum quantity regardless of realized 

demand.  

In one of the earliest works on MPC inventory models, Rosenshine and Obee [15] 
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considered a situation where a buyer has to carry a high level of safety stock due to a long 

replenishment lead time. To eliminate the high level of safety stock, Rosenshine and Obee 

[15] studied an MPC inventory model, in which the buyer periodically places a 

fixed-quantity order with a long replenishment lead time and has the option to place an 

emergency order for a flexible quantity that is delivered instantaneously. They assumed that 

the buyer has a limited storage capacity such that any excess inventory has to be sold off at 

a salvage price. For discrete demand, the authors used a Markov chain model to determine 

the optimal committed quantity and order-up-to level. They showed that the MPC 

agreement reduces the buyer’s cost by eliminating safety stock, despite incurring 

emergency order costs and salvage costs. Also see Chiang and Guttierrez [6] for related 

work.  

Chiang [7] studied the same MPC inventory model as Rosenshine and Obee [15], but 

used dynamic programming to derive the optimal storage capacity and order-up-to level. 

He assumed average-cost and discounted-cost criteria, and studied backlogged and 

lost-sales problems in his paper. Chiang also showed that a convergence approach can be 

applied to determine the optimal system parameters with reasonable errors.  

Anupindi and Akella [1] investigated the impact of an MPC agreement on order variance. 

They considered delivery lead time as a decision variable and assumed that a buyer needs 

to pay a price premium to adjust the order quantity above the committed quantity. The 

authors showed that the MPC agreement can reduce the variance in the order process to the 

supplier and proved that the optimal replenishment policy in a finite planning horizon is the 

periodic review order-up-to policy. 

Moinzadeh and Nahmias [14] considered a problem similar to Anupindi and Akella [1], 

but in a continuous review and infinite planning horizon setting. They showed that the 

equations that need to be solved to find the optimal order-up-to level are intractable. The 

authors developed a diffusion approximation that is coupled with the solution to a 

deterministic version of the problem. They empirically derived a formula for computing the 

optimal committed quantity and established its accuracy with numerical tests.  

Janssen and de Kok [9] studied an MPC inventory model by considering the fixed 

ordering costs, purchase cost and holding cost at the buyer. By showing the equivalence of 

the buyer’s inventory level to the waiting time of a GI/G/1 queue, they used the 

moment-iteration method introduced in De Kok [8] to approximate the buyer’s inventory 

level, and developed an algorithm to estimate the optimal order-up-to level and committed 

quantity that minimize the buyer’s cost subject to a desired service level. 
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Urban [20] used mixed-integer linear programming and network optimization to 

formulate an MPC inventory model, where the buyer has limited flexibility to adjust the 

order quantity at an extra cost. The author provided a solution methodology for the general 

stochastic demand case and for several specific demand distributions. Urban [20] also gave 

a numerical analysis to extend the basic problem to a multiple-product, multiple-constraint 

problem.  

Thomas and Hackman [17] studied an MPC inventory model in a finite horizon with 

price-sensitive demand. For iid normally distributed demand, they used a simulation-based 

method to approximate the expected inventory level and order quantities at the buyer as 

quadratic functions of the committed quantity and the reselling price. They showed that the 

approximation method can yield closed-form solutions to decide the optimal policy that 

maximizes the buyer’s revenue.  

Cheung and Yuan [5] considered an infinite horizon inventory model of a buyer with a 

periodic order commitment. The authors considered general discrete demand distributions 

and assumed that the buyer could order more than the minimum commitment without 

incurring any extra adjustment cost. They formulated a Markov chain to represent the 

buyer’s inventory level and used the solution approach to the classical GI/M/1 queue to 

derive the steady-state results and obtain the exact closed-form cost function. 

Beside the MPC inventory models mentioned above, total minimum purchase 

commitment (TMPC) inventory models have also received attention in literature. Bassok 

and Anupindi [2] considered a TMPC inventory model that requires a buyer to purchase a 

minimum cumulative quantity over a finite horizon to satisfy stochastic demand. They 

proved the optimality of the dual order-up-to policy given the committed quantity and 

showed that the optimal policy can be computed by solving two standard newsboy 

problems. Chen and Krass [4] extended the model of Bassok and Anupindi [2] to a more 

general setting of non-stationary demand, and different unit prices for the committed 

quantity and the remaining quantity.  

Tibben-Lemke [18] studied another TMPC inventory model with order quantity 

restrictions in each time period. He showed that the computation of the optimal order-up-to 

levels is time-consuming. The author provided a heuristic method to derive near-optimal 

policies for a range of system parameters. For the relevant literature on inventory models 

with other types of supply contracts, we refer the reader to the review papers of Tsay et. al. 

[19], Cachon [3] and Kamrad and Siddique [10]. 

The research outlined in this paper makes several distinct contributions to the existing 
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literature. First, our MPC inventory model addresses an integrated vendor-buyer 

coordination problem, in which the vendor and buyer can cooperate to decide the optimal 

committed quantity that minimizes total system cost. All previous studies reported in 

literature considered MPC inventory models from the individual perspective of the buyer. 

In contrast, our research investigates the impact of the MPC agreement on the inventory 

and safety stock at both the vendor and the buyer. Second, we introduce a simulation-based 

method to quantitatively estimate the inventory and safety stock levels at the vendor and 

buyer. Our method can be easily implemented as compared to models discussed in 

literature, e.g. diffusion approximation in Moinzadeh and Nahmias [14] and 

moment-iteration method in Janssen and de Kok [9]. While these methods provide 

reasonable accuracy in analyzing the MPC inventory model, they need complex modeling 

techniques and are computationally demanding. Finally, since our research is motivated by 

the real life distribution system of a computer printer peripherals manufacturer, it will 

provide useful insights to practitioners from an implementation perspective.  

 

3. A Single-Channel Vendor-Buyer Model 

Consider a single-channel vendor-buyer system comprising a buyer and two vendor-owned 

facilities: a central DC and a regional DC (see Figure 2). The three facilities periodically 

replenish their inventories for a single item at a common review interval. These 

replenishment orders are delivered from the central DC to the regional DC, and then to the 

buyer.  

 

Figure 2: A single-channel vendor-buyer system 

 

At the buyer, the exogenous customer demand D is iid normally distributed with mean µ 

and standard deviation (STD) σ in each time period. We use n (n=1, 2, 3,…, N) to denote 

the index of time period, and use Dn to denote the realized customer demand in time period 

n. We also assume that the customer demand D does not depend on the selling price.  

Safety stock is carried at each facility to maintain the desired service level α at the buyer, 

which is defined as the probability that no stockout occurs in any given time period. We 

assume that other mechanisms such as the spot market or expediting can be used to fulfill 

the demand beyond the service level α.  

We will use the base-stock modeling framework introduced by Kimball, whose 1955 
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manuscript was later reprinted in 1988. Kimball [11] studied a single stage inventory model 

with a periodic order-up-to replenishment policy and an assumption of bounded demand. 

Kimball showed that the safety stock should be used to satisfy the maximum demand over 

the net replenishment lead time, which is defined as the incoming service time plus the 

production time at the stage minus the outgoing service time. Using Kimball’s work as a 

building block, Simpson [16] considered a serial supply chain and studied the problem of 

determining the safety stock at each stage by setting the service times. Simpson also 

provided an alternate interpretation of the demand bound as the maximum demand the firm 

wants to satisfy from safety stocks. 

We use SSb, SSrdc, and SScdc to denote the safety stock levels and Lb, Lrdc and Lcdc to 

denote the replenishment lead times at the buyer, the regional DC and the central DC, 

respectively. All replenishment lead times are assumed to be deterministic. At each facility 

in the single-channel vendor-buyer system, we model the safety stock level as follows:  

SS Lαη σ= ⋅ ⋅ ,                                                       (3.

α represents the safety factor that is uniquely associated with service level α in the 

1)  

where η

instance of iid normally distributed demand. Using the safety stock level, we can determine 

the order-up-to level as follows: 

S L SSμ= ⋅ + ,                                                        (3.2) 

where the term μ

A Dual-Channel Vendor-Buyer Model with Minimum Purchase Commitment 

rs are 

inventory through the two channels with an MPC agreement as 

fo

·L represents the average demand during the replenishment time L. At the 

beginning of each time period, a facility needs to place an order on its upstream facility to 

raise the inventory position to the order-up-to level, S. Thus, the order quantity is always 

equal to the realized demand in the previous time period.  

 

4. 

Now consider a dual-channel vendor-buyer system (see Figure 3), in which orde

delivered through two distinct channels: an indirect channel, in which orders are delivered 

from the central DC to the regional DC, and then to the buyer; and a direct channel, in 

which orders are delivered directly from the central DC to the buyer, bypassing the 

intermediate regional DC.  

The buyer replenishes its 

llows.  
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Figure 3: A dual-channel vendor-buyer system 

 

At the beginning of time period n, the buyer places a regular order for a predetermined 

and fixed quantity Q through the direct channel. The regular order is purchased with a 

percentage purchase discount λ, which is offered by the vendor to encourage regular orders. 

Note that the MPC (or regular order) quantity Q should be smaller than the mean demand µ; 

otherwise the buyer’s inventory level will rise without bound in an infinite horizon. After 

placing the regular order, the buyer places no further order if the resulting inventory 

position is at or above the order-up-to level S; otherwise the buyer can place a 

supplementary order for quantity qn through the indirect channel to raise the inventory 

position up to the order-up-to level S. The supplementary order is purchased at the unit 

price p, with no purchase discount. 

We consider the channel supply cost, and the inventory holding costs at the buyer, and at 

the vendor. At each facility, inventory holding cost is incurred in proportion to the average 

inventory level and the holding cost rate. We use hb , hcdc, and hrdc to denote the holding 

cost rates at the buyer, the central DC and the regional DC, respectively. For the sake of 

simplicity, we assume the same holding cost rate hb for the inventories of both regular 

orders and supplementary orders at the buyer, even though the unit purchase costs are 

different. We also assume that the holding cost rate is increasing as material moves down 

the supply chain: hcdc< hrdc<hb. 

 

 

4.1. Channel Supply Cost 

The channel supply cost includes the transportation costs, and the operating cost incurred at 

the regional DC (e.g. loading/ unloading cost and other handling costs). We assume that the 

channel supply cost is incurred in proportion to the quantity delivered through each channel. 

We use c1 and c2 to denote the channel supply cost rate for the direct channel and for the 

indirect channel. We use c3 to denote the channel supply cost rate for that part of the 

demand that is satisfied by a “backup” mechanism like a spot market or expediting. We use 

β to denote the fill rate that is defined as the proportion of demand that is satisfied from 

inventory on hand. Thus, we can express the expected channel supply cost per time period 

Csupply as follows. 

( )1 2 3 (1 )supplyC c Q c Q cμβ= + − + − β μ                                      (4.1) 
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In (4.1), the first term c1Q represents the cost of supplying the MPC quantity Q through 

the direct channel; the second term c2(μβ-Q) represents the cost of supplying the average 

supplementary order quantity μβ-Q through the indirect channel; the third term c3(1-β)μ 

represents the cost of supplying the quantity (1-β)μ that is satisfied by the “backup” mode. 

We can rewrite the expected channel supply cost Csupply as a linear function of the MPC 

quantity Q. 

( ) ( )2 3 2 11supplyC c c c cβ β μ= + − − −⎡ ⎤⎣ ⎦ Q

)

                                    (4.2) 

In (4.2), we interpret the first term [c2β+c3(1-β)]μ as the expected channel supply cost in 

the corresponding single-channel system, and the second term (c2-c1)Q as the channel 

supply cost savings by delivering the MPC quantity Q through the direct channel. We 

assume that c1<c2, which implies that utilizing the direct channel reduces the channel 

supply cost. Utilizing the direct channel reduces the channel supply cost for three reasons: 

the transportation distance is shorter, we can use a more efficient transportation mode, and 

we can avoid the operating or handling cost incurred at the regional DC. 

 

4.2. Inventory at the Buyer 

Under the MPC agreement, the buyer is committed to purchase a minimum quantity Q in 

each time period. The buyer’s inventory position IP may thus exceed the order-up-to level 

S by an overshoot when the quantity Q is larger than the realized demand during the 

previous time period. We refer to this inventory overshoot as surplus inventory and use SIn 

to denote the surplus inventory level at the buyer in the time period n. We have 

( 1 1,n n nO Max D SI Q− −= −                                                 (4.3) 

{ }1 1,n n n b b nIP Max S IP Q D SS L SIμ− −= + − = + +                               (4.4) 

where b bS SS L μ= +  

As shown above, the buyer’s order quantity On in time period n is the maximum of the 

realized demand Dn-1 in time period n-1, net of any surplus inventory in the prior period, 

and the MPC quantity Q. If this order quantity exceeds the MPC quantity Q, then the 

difference is obtained by placing an order on the regional DC. At the beginning of time 

period n, the inventory position IPn includes three components: the surplus inventory SIn, 

the safety stock at the buyer, SSb, and the expected demand during the replenishment lead 

time, Lb·μ. We can approximate the buyer’s average on-hand inventory level bI  as 

follows. 
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1
2b bI SS SIμ= + + ,                                                    (4.5) 

where we use SI  to denote the expectation of SIn. 

From (4.4), we can derive a Lindley type iterative equation (see Lindley [13]) for the 

surplus inventory level SIn. 

{ }10,n nSI Max SI Q D−= + − 1n−

PR

                                           (4.6) 

Equation (4.6) shows that the surplus inventory SI depends on the MPC quantity Q and 

the stochastic demand D, but is independent of the order-up-to level S. The Lindley type 

equation also shows that the surplus inventory level SI is equivalent to the customer 

waiting time in a single-stage GI/D/1 queue, where the customers arrive with general 

independent inter-arrival times D and are served by a single first-come-first-served (FCFS) 

server with deterministic service time Q. Unfortunately, there is no closed-form analytical 

solution for the average customer waiting time in a single-stage GI/D/1 queue.  

Despite the lack of a closed-form solution, we can establish some useful properties for 

the surplus inventory level SIn when we assume that the demand is normally distributed.  

OPOSITION 1. Given that the stochastic demand D is iid normally distributed in each 

time period with parameters μ, σ and the starting surplus inventory SI0, is zero, we can 

express the expected surplus inventory SIn in period n as a product of the demand standard 

deviation σ and a function of the time horizon n and the standardized MPC quantity 

z=(μ-Q)/σ. That is 

( ,nSI k n zσ= ⋅ )                                                         (4.7) 

Proof. To prove (4.7), we show that the cumulative distribution function for the variable 

( nSI )σ  depends only on the time period n and on the standardized MPC quantity z. We 

define the complementary cumulative distribution function ( ) Pr n
n

SIG x x
σ

⎡ ⎤= >⎢ ⎥⎣ ⎦
 and will 

show that this function depends only on n and z by induction: 

For n = 2, we have 

[ ] [ ] ( )2
2 1Pr Pr ,       0SIG x x D Q x x z xσ

σ
⎡ ⎤⎛ ⎞= > = ≤ − = Φ − − ∀⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

>               (4.8) 

where [ ]Pr nD x≤ denotes the CDF for the demand in period n, which is assumed to be 

normal with parameters ,μ σ , and where Φ (·) is the CDF of the standard normal 

distribution N(0, 1).  
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Now, suppose the induction hypothesis is true for n = 2, … m. That is, the variable 

( nSI )σ has a unique CDF Gn(·) that depends only on n and the standardized MPC quantity 

z=(μ-Q)/σ for n = 2, … m.  

For n = m+1, we have 

[ ] [ ]

( ) ( )

1
1

0

Pr Pr Pr

           Pr

m m
m m m

m m
my

SI D SI QG x x D SI Q x x

D SI z x y z x dG y

μ μσ
σ σ

μ
σ σ

+
+

∞

=

⎡ ⎤ − −⎛ ⎞ ⎡= > = ≤ + − = ≤ +⎜ ⎟⎢ ⎥
m

σ σ
⎤−⎢ ⎥⎝ ⎠ ⎣⎣ ⎦

−⎡ ⎤= ≤ − − = − Φ − −⎢ ⎥⎣ ⎦ ∫

⎦

PR

 

(4.9) 

Thus, we see that we can express the complementary cumulative distribution function for 

(SIm+1/σ) in terms of the normal CDF and the complementary cumulative distribution 

function for (SIm/σ). By the induction hypothesis, we now see that the CDF of (SIn/σ) 

depends only on the period n and the standardized MPC quantity z. Therefore, Proposition 

1 is true.  

OPOSITION 2. The expected surplus inventory level in period n increases with n, where 

we assume that the starting surplus inventory SI0, is zero. When n goes to infinity, the 

expected surplus inventory level converges to a constant level that is independent of the 

starting surplus inventory level SI0.  

Proof. The proof of the convergence of surplus inventory level is the same as the proof 

of the convergence of average customer waiting time in a single-stage GI/G/1 queue. We 

refer the interested reader to the discussion in Kingman [12]. 

Based on Propositions 1 and 2, we can write the expected surplus inventory SI in a 

simple form as follows. 

( )SI k zσ= ⋅                                                              (4.10) 

To determine the expected surplus inventory SI, it is sufficient to know the value of the 

coefficient function k(z). As we cannot determine an analytical expression for this function, 

we will determine it numerically.   

 

4.3. Safety Stock at the Buyer 

As mentioned earlier, at the beginning of time period n the buyer’s inventory position IPn 

equals its order-up-to level S plus the surplus inventory SIn. The inventory position 

represents what inventory is available to meet demand over the next Lb time periods. The 
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buyer desires to set its order-up-to level S to achieve some desired service level α; thus, we 

will set S so that the probability that the inventory position covers the total demand during 

the next Lb time periods is at least the desired service level α. Compared to the traditional 

single-channel system, the buyer will need less safety stock SSb (or lower order-up-to level 

Sb) to maintain the same service level α due to the surplus inventory in the dual-channel 

system. In the following proposition we find that the required safety stock level SSb at the 

buyer has a similar property to the surplus inventory level SI.  

PROPOSITION 3. Given that the stochastic demand D is iid normally distributed in each 

time period with parameters μ, σ, we can determine the safety stock level at the buyer SSb 

by 

, ( )
bb b LSS L zασ ψ= ⋅ ⋅ ,                                               (4.11) 

where the function ψ depends on the service level α and replenishment lead time Lb. and its  

argument is the standardized MPC ( )z Qμ σ= − .   

 
Proof: We set the order-up-to level b bS SS Lbμ= + so that the following condition holds: 

1Pr ...
bn n L b nD D S SI α+ −⎡ + + ≤ + =⎣ ⎤⎦                            (4.12) 

We will show that we can express the left-hand-side as a function of (bSS Lσ )b , the 

replenishment lead time Lb and the standardized MPC z. 

( )

1
1

0

...
Pr ... Pr b

b

n n L b n b
n n L b n

b

b
n

y b b

D D L SI SSD D S SI
L L

SSy dG y
L L

μ

σ σ

σ

+ −
+ −

∞

=

b

⎡ ⎤+ + − +⎡ ⎤+ + ≤ + = ≤⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

⎛ ⎞
= − Φ +⎜ ⎟⎜ ⎟

⎝ ⎠
∫

       (4.13) 

From the above, we see that we can express the service level as a function of 

(bSS Lσ )b  and of the lead time Lb. From proposition 1, we see that the service level 

depends on the standardized MPC. We can also argue that the service level is a monotonic 

function of the safety stock, from which we can conclude Proposition 3.□ 

 

4.4. Safety Stock at the Vendor 

We have two vendor-owned facilities: the central DC and the regional DC.  At the 

beginning of each time period each facility places an order to raise its inventory position to 

an order-up-to level. We note that these two facilities observe similar order processes.  
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The order process at the regional DC is the supplementary order placed by the buyer in 

each period.  The order process at the central DC is the constant MPC quantity Q, plus the 

order placed by the regional DC, which is equal to the supplementary order from the buyer. 

Thus, each facility needs to carry a safety stock due to the variability from the buyer’s 

supplementary orders, which depends on the MPC.  In the following, we focus on 

investigating how the MPC agreement affects the safety stock at the regional DC. 

At the beginning of time period n, the regional DC receives a supplementary order qn 

from the buyer if the regular order quantity Q does not raise the buyer’s inventory position 

up to the order-up-to level S. We have 

n n n 1q D SI Q SI+= + − − n

A

.                                             (4.14) 

The regional DC should set its order-up-to level Srdc to satisfy the total order during 

the next Lrdc time periods for some desired service level α. We have 

1

1 1
1 1 2 1

1 1 1

              
          

... ... ... ...                                       
 

rdc rdc

rdc rdc rdc rdc

n n n n

m n L m n L
n n n n

m m
m n m n

n L n L n L n L

q D SI Q SI
q D SI Q SI

q D

q D SI Q SI

+

= + − = + −
+ + + +

= =

+ − + − + + −

= + − − ⎫
⎪= + − − ⎪⇒ =⎬= ⎪
⎪= + − − ⎭

∑ rdcn L rdc nSI QL SI++ − −∑

(4.15) 

Wang [21] has developed an approximation to show that the required safety stock level 

SSrdc at the regional DC has a similar property to the safety stock level SSb at the buyer. 

pproximation 1. Given that the stochastic demand D is iid normally distributed in each 

time period with parameters μ, σ, we can determine the safety stock level at the regional 

DC SSrdc by 

, ( )
rdcrdc rdc LSS L zασ ϕ= ⋅ ⋅ ,                                             (4.16) 

where the function φ depends on the service level α and replenishment lead time Lrdc. and 

its argument is the standardized MPC ( )z Qμ σ= − .   

Argument: We set the order-up-to level ( )rdc rdc rdcS SS Q Lμ= + − so that the following 

condition holds: 

1Pr ...
rdcn n L rdcq q S α+ −⎡ ⎤+ + ≤ =⎣ ⎦                                (4.17) 

Based on (4.15) and (4.17), we will argue that we can express the left-hand-side as a 

function of (rdc rdcSS Lσ ) , the replenishment lead time Lrdc and the standardized MPC z. 
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1

1

1

Pr ...

... ( )Pr

...
Pr

rdc

rdc rdc

rdc rdc

n n L rdc

n n L n L rdc n rdc rdc rdc rdc

rdc rdc

n n L rdc n n L rdc

rdc rdc

q q S

D D SI QL SI L SS Q L L
L L

D D L SI SI SS

L L

μ μ μ
σ σ

μ

σ σ

+ −

+ − +

+ − +

⎡ ⎤+ + ≤⎣ ⎦
⎡ ⎤+ + + − − − + − −

= ≤⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤+ + − − +

= ≤⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.18) 

To develop the approximation, suppose that we assume that ( )
rdcn n LSI SI σ+−  is 

independent of the demands Dn ,…, 1rdcn LD + − .  From proposition 1, we know the cumulative 

distribution function for the variable SIn depends on the time period n and on the 

standardized MPC quantity z. Thus, the cumulative distribution function for the variable 

(
rdcn n LSI SI ) σ+−  depends only on the time period n, the lead time Lrdc and the 

standardized MPC quantity z. We define the complementary cumulative distribution 

function ( ), Pr rdcL x
⎡ ⎤

⎣ ⎦
rdc

n n
n L

SI SI
H x

σ
+−

= >⎢ ⎥ . With the assumption of independence we can 

rewrite equation (4.18) by the following approximation  

( )1 ,
0

Pr ...
rdc rdc

rdc
n n L rdc n L

y rdc rdc

SSyq q S dH
L Lσ

∞

+ −
=

⎛ ⎞
⎡ ⎤+ + ≤ = − Φ +⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
∫ y              (4.19) 

From the similar argument as the proof of Proposition 3, we can conclude 

Approximation 1.□ 

The central DC’s order process is the same as that for the regional DC, plus the constant 

MPC quantity Q.  Thus we can also use this approximation for the required safety stock 

level SScdc. We use the index v to denote either vendor-owned facility, and we have  

, ( )
vv v LSS L zασ ϕ= ⋅ ⋅ ,                                               (4.20) 

Comparing equations (4.13) and (4.18), we can observe that for the same lead time the 

vendor requires higher safety stock to maintain a given service level than the buyer does. 

That is 

, ,( ) ( )
vL Lzα α b

zϕ ψ≥                                                     (4.21) 

From the above analysis, however, it is still not clear whether the MPC agreement can 

reduce the safety stock level at the vendor, since the demand process D and surplus 

inventory level SIn depend on each other in (4.18). We can get some intuitive insights from 

the following scenarios: 

(I). If the total demand realized during the time periods n to n+Lv-1, is “large” and 
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greater than expected, the surplus inventory 
vn LSI + is more likely to be zero. Thus, the total 

order quantity  is smaller than the total demand quantitymD SI−∑ n mD∑  if . 0nSI >

(II). If total demand realized during the time periods n to n+Lv-1, is “small” and less than 

expected, the surplus inventory 
vn LSI +  is more likely to be positive. Thus, the total order 

quantity  is larger than the total demand quantity 

if . 

vm n nD SI SI +− +∑
0

vn L nSI+ − >

L

mD∑ SI

Thus, in the dual-channel vendor-buyer system, the order process observed at the vendor 

is less variable or smoother than that in the single-channel vendor-buyer system and, 

consequently less safety stock is required at each vendor facility to maintain the same 

service level.  

 

 

4.5. Integrated Vendor-Buyer Coordination Problem 

We now consider an integrated vendor-buyer coordination problem, in which the buyer and 

vendor can fully cooperate with each other to decide the MPC quantity Q that minimizes 

total system cost. We express the expected system cost Csys as follows. 

( ) ( ){ }2 3 2 1
11 ( )
2sys b b rdc rdc cdc cdcC c c c c Q SI SS h SS h SS hβ β μ μ= + − − − + + + + +⎡ ⎤⎣ ⎦   (4.22) 

The first term in (4.22), represents the system supply cost. The second term represents the 

buyer’s inventory holding cost, which includes the cycle inventory cost 0.5µhb, the surplus 

inventory cost SI·hb, and the safety stock cost SSb·hb. The last two terms represent just the 

safety stock costs at the regional DC and central DC. Furthermore, we can rewrite the 

expected system cost Csys as a function of the standardized MPC quantity z by substituting 

Q zμ σ= −  and replacing the safety stock and surplus inventory terms as follows. 

( )( ) {
}

3 2 1 2 1 ,

, ,

1( ) 1 ( ) ( ) ( )         
2

               ( ) ( )

b

rdc cdc

sys b b L b

rdc a L rdc cdc a L cdc

C z c c c h c c z k z L z h

L z h L z h

αμ β σ ψ

ϕ ϕ

⎡ ⎤ ⎡ ⎤= − − + + + − + +⎢ ⎥ ⎣ ⎦⎣ ⎦

+ +
 

(4.23)   

Then, the objective of an integrated coordination problem is to find the optimal 

standardized MPC z* that minimizes the expected system cost Csys(z). 

*

0 1
arg min ( )sys

z
z C

< ≤
= z                                                       (4.24) 
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Below, we outline the effects of the system parameters on the optimal solution z*. 

I. Effect of demand parameters μ and σ 

  From the expression of the expected system cost Csys (4.23), we observe that the first 

term is proportional to the demand mean μ but remains constant when the standardized 

MPC quantity z varies, and the second term is a product of the demand standard deviation σ 

and a value that does not depend on the demand parameters μ and σ. Thus, the optimal 

solution z* is independent of the demand parameters μ and σ.  

II. Effect of channel supply cost rates c1 and c2 

  The channel supply cost rates c1 and c2 contribute to the expected system cost Csys in that 

the cost savings per unit (c2-c1) can be obtained by supplying the product through the direct 

channel. When the value of (c2-c1) increases, the optimal MPC quantity Q* should increase 

and, consequently, the optimal standardized MPC quantity z* decreases. 

III. Effect of holding cost rate h 

  From the previous analysis, we know that the MPC agreement increases the inventory 

level at the buyer and decreases the inventory levels at the regional DC and central DC. 

Thus, the optimal solution z* increases when the holding cost rate hb increases, and 

decreases when the holding cost rate hrdc or hcdc increases. 

One important issue in the integrated coordination problem is to allocate the benefit 

between the vendor and buyer so that each party is willing to participate in implementing 

the integrated coordination. By setting z μ σ=  we can use (4.23) to compute the 

expected system cost without a MPC, i.e., when Q = 0. We use Π to denote the amount of 

the savings that needs to be shifted from the vendor to the buyer under an equal allocation 

scheme. We have 

( ), , 2 1

, , , ,

1 1 1( ) ( ) ( ) ( )
2 2 2
1 1   ( ) ( ) ( ) ( )
2 2

b b

rdc rdc cdc cdc

b b L L b

RDC a L a L rdc cdc a L a L cdc

k z h L z h c c z

L z h L

α α
μσ σ ψ ψ μ σσ

μ μσ ϕ ϕ σ ϕ ϕσ σ

⎡ ⎤Π = − − + − −⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡+ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣
z h⎤⎥⎦

 (4.25) 

In (4.25), the first two terms represent half of the increase in the buyer’s cost, and the last 

three terms represent half of the decrease in the vendor’s cost. When the profit allocation is 

in the form of purchase discount, the vendor should offer a purchase discount for the MPC 

quantity Q* at the percentile λ defined as 

*Qλ Π=                                                                 (4.26) 
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5. Simulation-Based Approximation Method 

Based on our analysis in Section 4, the surplus inventory coefficient function k(z) and the 

safety stock coefficient functions ψα,L(z) and φα,L(z) are invariant for any case where the 

demand D is iid normally distributed. We now introduce a method to use simulation to 

estimate these coefficient functions, which can then be used to quantitatively analyze the 

dual-channel vendor-buyer system.  

 

5.1. Surplus Inventory Coefficient Function k(z) 

We conducted simulations using VBA programming in Microsoft Excel™ to estimate the 

long-term surplus inventory coefficient function k(z) with the following parameters: 

- In each time period, the demand D is iid normally distributed with a mean μ of 400 and 

a standard deviation σ of 100. 

  - The MPC quantity Q varies between [300, 400] with an increment of 1; that is, the 

standard MPC quantity z varies between [0, 1] with an increment of 0.01. 

  - The simulation horizon N is 20,000. Each simulation trial includes 1,000 random runs, 

and these trial results have a 99% confidence interval that is at most within 1% of their 

mean. The simulation results of the surplus inventory coefficient function k(z) are presented 

in Table 1.  

k(z) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.00 79.45 40.19 23.33 15.83 11.98 9.478 7.794 6.591 5.687 5.005 

.10 4.443 3.968 3.608 3.305 3.028 2.785 2.571 2.398 2.246 2.099 

.20 1.964 1.848 1.743 1.651 1.561 1.475 1.399 1.333 1.269 1.211 

.30 1.152 1.103 1.055 1.010 0.969 0.928 0.891 0.856 0.822 0.791 

.40 0.761 0.733 0.706 0.681 0.656 0.632 0.610 0.590 0.571 0.550 

.50 0.531 0.514 0.498 0.483 0.466 0.451 0.437 0.424 0.411 0.398 

.60 0.386 0.375 0.363 0.353 0.342 0.332 0.322 0.312 0.303 0.295 

.70 0.287 0.278 0.270 0.263 0.256 0.249 0.242 0.235 0.228 0.223 

.80 0.216 0.211 0.205 0.199 0.194 0.189 0.184 0.179 0.174 0.169 

.90 0.165 0.161 0.156 0.152 0.148 0.144 0.141 0.137 0.133 0.130 

Table 1: Simulation results for the surplus inventory coefficient function k(z) 

 

Given the simulation results presented in Table 1, we can use a linear interpolation 
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method to estimate the expected surplus inventory level SI by assuming a linear function of 

k(z) between any two neighboring z values given in Table 1. We have 

( ) ( ) ( ) ( )i
i j

j i

z zk z k z k z k z
z z
− ⎡≈ + −⎣− i ⎤⎦ ,                                     (5.1) 

where zi and zj are the two neighboring values for z in Table 1.  

The simulation results for surplus inventory function k(z) are shown in Figure 4  

 

Figure 4: Surplus inventory coefficient function k(z) 

 

From the above figure, we can make the following observations about the surplus 

inventory coefficient function k(z).  

    (I). The surplus inventory coefficient function k(z) is exponentially increasing as the 

standardized MPC quantity z decreases to zero. This exponential trend can be interpreted as 

follows. Decreasing MPC quantity z increases the probability of the MPC quantity Q being 

larger than demand D and consequently increases the probability of the surplus inventory 

being built up over consecutive time periods. The accumulation of surplus inventory results 

in the exponential trend of the surplus inventory coefficient function k(z). 

(II). The surplus inventory coefficient function k(z) is equal to 4.43 and 0.130 when the 

standardized MPC quantity z is 0.1 and 0.99. We view this as a reasonable range for our 

choice of z. For smaller values of z, the function grows dramatically; for larger values of z, 

there is very little reduction possible. Thus, we assert that a reasonable MPC quantity Q 

should fall in the range of [μ-σ, μ-0.1σ].  

 

5.2. Safety Stock Coefficient Functions ψ(z) and φ(z) 

We also conducted simulations to estimate the long-term safety stock coefficient functions 

ψ(z) and φ(z) using the following parameters:  

- In each time period, the demand D is iid normally distributed with the mean μ of 400 

and the standard deviation σ of 100. 

  - The MPC quantity Q varies between [300, 390] with an increment of 1; that is, the 

standard MPC quantity z varies between [0.1, 1] with an increment of 0.01.   

  - For each safety stock coefficient function, we consider the service levels α of [98%, 

95%, 90%] and the lead times L of [1, 3, 5, 7, 15, 25]. 
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  - The simulation horizon N is 20,000. Each simulation trial includes 1,000 random runs, 

and these trial results have a 99.5% confidence interval that is at most within 1% of their 

mean.  

In Table 2 and 3, we give the simulation results of the safety stock coefficient functions 

ψ98%,1(z) and φ98%,1(z). 

 

Ψ(z) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.10 1.273 1.317 1.358 1.394 1.426 1.455 1.482 1.507 1.531 1.552 

.20 1.572 1.591 1.608 1.624 1.639 1.654 1.668 1.681 1.693 1.705 

.30 1.716 1.726 1.737 1.746 1.756 1.765 1.773 1.782 1.789 1.797 

.40 1.804 1.811 1.818 1.824 1.831 1.837 1.842 1.848 1.854 1.859 

.50 1.864 1.869 1.874 1.878 1.883 1.887 1.891 1.895 1.899 1.903 

.60 1.907 1.910 1.914 1.918 1.921 1.924 1.927 1.930 1.933 1.936 

.70 1.939 1.942 1.944 1.947 1.950 1.952 1.954 1.957 1.959 1.961 

.80 1.963 1.965 1.967 1.969 1.971 1.973 1.975 1.977 1.979 1.981 

.90 1.982 1.984 1.986 1.987 1.989 1.990 1.992 1.993 1.994 1.996 

Table 2: Simulation results for the s safety stock coefficient functions ψ98%,1(z) 

 

φ(z) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.10 1.210 1.257 1.301 1.340 1.374 1.406 1.435 1.462 1.486 1.509 

.20 1.530 1.550 1.569 1.586 1.603 1.619 1.633 1.647 1.659 1.672 

.30 1.684 1.695 1.706 1.716 1.725 1.735 1.744 1.753 1.761 1.769 

.40 1.777 1.784 1.792 1.799 1.805 1.812 1.818 1.825 1.831 1.837 

.50 1.843 1.848 1.853 1.858 1.863 1.868 1.872 1.877 1.881 1.885 

.60 1.889 1.893 1.897 1.901 1.904 1.908 1.911 1.914 1.917 1.921 

.70 1.924 1.927 1.930 1.932 1.935 1.938 1.940 1.943 1.945 1.948 

.80 1.950 1.953 1.955 1.957 1.959 1.962 1.964 1.966 1.968 1.970 

.90 1.972 1.974 1.976 1.977 1.979 1.981 1.982 1.984 1.985 1.987 

Table 3: Simulation results for the s safety stock coefficient functions φ98%,1(z) 

 

Using the same linear interpolation method, we can estimate the expected safety stock 
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coefficient functions. The simulations results in Table 2 and 3 are also show in Figure 5.  

 

Figure 5: Safety stock coefficient functions ψ98%,1(z) and φ98%,1(z) 

 

From the above figure, we observe that the required safety stock levels are increasing 

when the standardized MPC quantity z increases. In addition the required safety stock 

coefficient converges to 2.055, which is the safety stock coefficient to maintain a service 

level of 98% in the traditional single-channel vendor-buyer system. Further details of the 

simulation can be found in Wang [21].  

 

5.3 Quadratic Approximation 

Using the linear interpolation method discussed in Section 5.1 and 5.2, we can 

quantitatively estimate the impacts of the MPC agreement on the dual-channel 

vendor-buyer system. In some circumstances, however, an analytical method might still be 

desirable or necessary. We introduce a quadratic approximation method to estimate the 

three coefficient functions k(z), ψα,L(z) and φα,L(z) as piece-wise quadratic functions, which 

have the following structure:  

2
1( ) ,     ( , ]r r r

k k k r rk z A z B z C z Z Z +≈ + + ∀ ∈                                   (5.2) 

2
, , , , , , ,( ) ,    ( , ]

b b b b

r r r
L L L L rz A z B z C z Z Zα ψ α ψ α ψ α 1rψ +≈ + + ∀ ∈                        (5.3) 

2
, , , , , , ,( ) ,       ( , ]

v v v v

r r r
L L L L rz A z B z C z Z Zα ϕ α ϕ α ϕ αϕ 1r+≈ + + ∀ ∈                       (5.4) 

where all the values of A, B, C are constant in the three ranges (Zr, Zr+1]: (0.1, 0.2], (0.2, 0.3] 

and (0.3, 1]. We conducted regression on the simulation results of the coefficient functions 

k(z), ψ98%,1(z), φ98%,3(z) and φ98%,5(z). The regression parameters are given in Table 4, and 

the quadratic approximation functions are presented in Figures 6 and 7. 
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Table 4: Simulation results for the s safety stock coefficient functions φ98%,1(z) 

 k(z) ψ98%,1(z) φ98%,3(z) φ98%,5(z) 

 A1 165.45 -14.07 -10.763 -10.089 

0.1 0.2z< ≤  B1 -73.48 7.138 5.602 5.172 

 C1 10.08 0.704 0.989 1.107 

 A2 32.50 -3.976 -3.053 -3.098 

0.2 0.3z< ≤  B2 -24.28 3.410 2.662 2.552 

 C2 5.52 1.051 1.271 1.353 

 A3 3.63 -0.533 -0.419 -0.359 

0.3 1.0z< ≤  B3 -5.69 1.058 0.825 0.696 

 C3 2.48 1.463 1.598 1.676 

 

 

Figure 6: Quadratic approximation functions of k(z) 

 

Figure 7: Quadratic approximation functions of ψ98%,1(z), φ98%,3(z) and φ98%,5(z) 

 

Given these approximation functions, we can estimate the total system cost Csys(z) as a 

piece-wise quadratic function of the standardized MPC quantity z as follows.  

( ) 2
, , 1 , , , ,( ) 1

b rdc cdc

r r r r
sys k b b L b rdc L rdc cdc L cdcC z A h L A h L A h L A h zψ α ϕ α ϕ ασ +≈ + + + +

( )
( )( )

2 1 , , 1 , , , ,

3 2 1 , , 1

             ( )

              1 0.5
b rdc cdc

b

r r r r
k b L b L rdc L cdc

r r
b k b L b

c c B h B h B h B h z

c c c h C h C h C

ψ α ϕ α ϕ α

ψ α ϕ

σ

β μ μ μ

+

+

+ − + + + +

+ − − + + + + + , , , ,rdc cdc

r r
L rdc L cdch C hα ϕ α⎡ ⎤+⎣ ⎦

 

(5.5) 

which has a quadratic structure as follows: 

2
1( ) ,  ( , ]r r r

sys sys sys sys r rC z A z B z C z Z Z +≈ + + ∀ ∈                                (5.6) 

According to our discussion in Section 5.1, it is not likely that the optimal standardized 

MPC quantity z* falls outside of the range of [0.1, 1.0]. Thus, we only need to compare the 

limits and the value of 2r r
sys sysB A−  in each range of (Zr, Zr+1]; we have 

( )
2 1 , , 1 , , , , *

1

, , 1 , , , ,

( )
2 ,  ( , ] 

2 1
b rdc cdc

b rdc cdc

r r r r
k b L b L rdc L cdcr r

sys sys r rr r r r
k b b L b rdc L rdc cdc L cdc

c c B h B h B h B h
B A z Z Z

A h L A h L A h L A h
ψ α ϕ α ϕ α

ψ α ϕ α ϕ α

+
+

+

⎡ ⎤− − + + + +⎣ ⎦− = ∈
+ + + +
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 (5.7) 

The equation (5.7) supports the observations stated in Section 4.4 that the optimal solution 

ependent of the demand parameters μ and σ, and the optimal solution z* decreases 

 this section, we present a numerical study for a dual-channel vendor-buyer system with 

s as a base case. 

 

red. 

.8 for the direct channel, and c2=$1.2 for the indirect 

ch

ch

 buyer, the target service leve

z* is ind

when the channel supply cost rates difference (c2-c1) increases 

 

6. Numerical Cases 

In

the following parameter

- At the buyer, the product has an iid normally distributed demand D (1000, 400) per week. 

The demand D is independent of the selling price, which is $30. 

- Through the indirect channel, the buyer purchases the product at the price P of $27. For 

the orders delivered through the direct channel, a discount λ is offe

- The product has cumulated product costs of $27, $23, and $22 at the buyer, the regional 

DC, and the central DC, respectively.  

- Holding cost is incurred based on an annual interest rate of 25% and 50 weeks in a year. 

- Channel supply cost rates are c1=$0

annel. For the purpose of simplicity, we also assume that c3=$1.2 for the “backup” 

annel. 

- Each location replenishes its inventory every week. 

- At the lα is 98%. 

c is 5 weeks, at the regional DC Lrdc 

is  

emand parameters of [(μ=1000, σ=400), (μ=1000, 

σ=  The total system cost Csys for each case is shown 

in

Figure 8: Effect of demand mean μ and STD σ  

- The net replenishment lead time at the central DC Lcd

3 weeks and at the buyer Lb is 0 week.

For the system described above, we investigated the effects of different system 

parameters on the optimal solution z*.  

I. Effect of demand parameters μ and σ 

We have four numerical cases with d

450), (μ=800, σ=500), (μ=800, σ=550)].

 Figure 8.  
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From the above figure, we observe that the total system cost Csys is a convex function of 

th

ameters (μ = 1000, σ = 400), we have  

e standardized MPC quantity z and is exponentially increasing when the value z gets 

close to zero. This trend is mainly due the exponentially increasing surplus inventory cost. 

For all four cases, the optimal standardized MPC quantity z* is 0.248. This confirms our 

previous analysis that the optimal standardized MPC quantity z* is independent of the 

demand parameters μ and σ. 

For the case of demand par

- The optimal value z* of 0.248 and the optimal MPC quantity Q* of 900. 

- The minimum system cost *
sysC is $1392 per week. The total system cost for the case of   

- T y is $80.5 per week. 

k. 

t savings is $360 per        

- The safety stock holding costs at central DC, regional DC, and buyer are $176, $139, 

- the benefit between the buyer and vendor, a purchase discount of 

II

 channel supply cost rates parameters of [(c1=0.8, 

c2

Figure 9: Effect of channel supply cost rates c1 and c2  

 

e observe that the optimal standardized MPC quantity z* decreases when the channel 

su

III. Effect of holding cost rates hb and hcdc 

no MPC agreement is $1744 per week; thus direct delivery of 900 units results in a 

system cost savings of $352 per week. 

he holding cost for the surplus inventor

- The cycle inventory holding cost at the buyer is $67.5 per wee

- The channel supply cost is $840 per week and the supply cos

week. 

and $89 per week. 

To equally allocate 

0.26 $/unit should be offered for the regular orders. 

. Effect of channel supply cost rates 

We studied four numerical cases with

=1), (c1=0.8, c2=1.2), (c1=0.8, c2=1.4), (c1=0.8, c2=1.6)]. The total system cost Csys for 

each case is shown in Figure 9. 

 

W

pply cost difference (c2-c1) increases, and consequently, the optimal MPC quantity Q* 

increases. When the standardized MPC quantity z increases, the system cost difference is 

increasing mainly due to the increasing cost difference in supplying product in cost c2.  
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In Figure 10, we demonstrate the effect of the holding cost rate hb on the optimal 

so

sults, we observe that the optimal solution z* increases when 

ho

Figure 10: Effect of holding cost rate hb 

 

 Figure 11, we demonstrate the effect of holding cost rate hcdc on the optimal solution 

z* 

Figure 11: Effect of holding cost rate hcdc  

 

 addition, we use the quadratic approximation parameters to derive the expression of 

th

A B C 

lution z* in the integrated coordination model. The four sets of parameters are [(hb=5), 

(hb=6), (hb=7), (hb=8)].  

From the numerical re

lding cost rate hb increases, which confirms our analysis in Section 4.5. 

 

In

in the integrated coordination model. The four sets of parameters are [(hcdc =5), (hcdc =6), 

(hcdc =7), (hcdc =8)]. We observe that the optimal standardized MPC quantity z* increases 

when the holding cost rate hcdc decreases.  

 

In

e total system cost for the case of demand (1000, 400). The quadratic parameters are 

given as follows. 

0.1 0.2z< ≤  6324.4 -2467.2 1637.6 

0.2 0.3z< ≤  992.27 -503.77 1456.7 

0.3 1.0z< ≤  98.57 44.083 1372.5 

Table 5: Qua ratic p  

 

he approximation and simulation results are shown in Figure 12.  

Figure 12: Quadratic approximation functions of total system cost Csys(z) 

 

rom the above figure, we see that the quadratic approximation function fits the 

sim

d arameters for total system cost

T

 

F

ulation results well within the range of [0.1, 0.8] and the error grows when the 

standardized MPC quantity z approaches 1. The minimum total system cost occurs in the 
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interval z∈(0.2, 0.3), and the optimal standardized MPC quantity z* should take the value 

of ( )2 22 0.254sys sysB A− =  and the estimated optimal system cost Csys is $1392 per week. 

Co al simulation result of [z*=0.248, Csys=1392], the quadratic 

approximation method results in a solution that is very close to the optimal solution.  

 

mpared to the optim

 

. Conclusions 

e consider a dual-channel vendor-buyer system in which the buyer can 

 the literature by incorporating the vendor-buyer coordination 

vel. 

A 

7

In this paper, w

replenish its inventory through two distinct channels: an indirect channel, which is 

characterized by short lead time and high channel supply cost; and a direct channel, which 

is characterized by long lead time and low channel supply cost. We propose a minimum 

purchase commitment (MPC) agreement; that is, the buyer commits to purchase a 

predetermined and fixed quantity through the direct channel in each time period, and has the 

option to purchase a flexible quantity through the indirect channel in each time period. We 

study the impacts of the MPC agreement on the inventory, safety stock and cost of each 

facility in the dual-channel vendor-buyer system, and develop a simulation-based method to 

estimate these impacts.  

This paper contributes to

issue into the traditional dual-channel inventory model. The analysis presented in this 

research can serve as a building block and a decision support tool for several aspects of 

vendor-buyer coordination, supply chain network design, supply strategy development, and 

supply contracts negotiation. It can also provide insights for a vendor to compete for a 

single sourcing agreement; that is, the vendor could design a dual-channel MPC supply 

contract to provide both economies of scale and substantial flexibility that make it 

unfavorable for the buyer to consider an alternate vendor. This research can also be applied 

to global supply chain management issues in which global suppliers offer a cheaper price, 

but require long lead times because of the long shipping distances. Therefore, these 

suppliers are contracted with a stable replenishment quantity; in situations where the 

magnitude of demand is larger than expected, a more expensive domestic supplier is used. 

The models assist in allocating the purchase volume between these supply options.  

In this paper, we assumed that safety stock is carried to maintain a desired service le

reasonable future research direction could be to consider fill rate as the performance 

measure in these models. Our assumption of stationary and price-insensitive demand could 
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be inapplicable for cases of seasonal products or short planning contexts. When the demand 

is price sensitive, the vendor and buyer can cooperate in determining both the MPC 

quantity and the selling price that maximize the total system revenue. Thus, incorporating 

non-stationary and/or price-sensitive demand in the dual-channel vendor-buyer 

coordination problem represents an important future research direction. 
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Figure 1: A multi-stage distribution system 

 

 

 

 

 

Figure 2: A single-channel vendor-buyer system 
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Figure 3: A dual-channel vendor-buyer system 

 

 

Figure 4: Surplus inventory coefficient function k(z) 
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Figure 5: Safety stock coefficient functions ψ98%,1(z) and φ98%,1(z) 

 

 

Figure 6: Quadratic approximation functions of k(z) 
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Figure 7: Quadratic approximation functions of ψ98%,1(z), φ98%,3(z) and φ98%,5(z) 

 

 

 

Figure 8: Effect of demand mean μ and STD σ 
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Figure 9: Effect of channel supply cost rates c1 and c2 

 

 

Figure 10: Effect of holding cost rate hb 
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Figure 11: Effect of holding cost rate hcdc 

 

 

Figure 12: Quadratic approximation functions of total system cost Csys(z) 
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