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The presence of a third party can affect attempts by two players to cooperate in a three-player, continuous-
alternative, repeated Prisoner’s Dilemma-like game. If the third player is uncooperative, two players may find 
it advantageous to cooperate implicitly, at a level somewhere between full (i.e., three-way) cooperation and full 
defection. We examine this phenomenon of implicit coalitions via two sequential computer tournaments (38 
algorithms in tourney 1, 44 algorithms in tourney 2). In both tournaments, each with a different payoff function, 
the ability to recognize and / or encourage implicit coalitions seems to be a key indicator of success. This result 
holds up in a rest of robustness. We also examine other properties, including those identified earlier by Axelrod 
(1980a, 1980b). 
 
 

MORE THAN TWO PLAYERS 
 
At a time when the superpowers appear to be moving toward some degree of cooperation 

on nuclear weapons, there is a growing concern about the nuclear capability among a 
number of nations in the Middle East (Barnaby, 1987). One concern is whether the presence 
of a noncooperating outside player will encourage or discourage cooperation among the 
superpowers. It is not yet clear how these outside players will affect the level of cooperation 
the superpowers might achieve. 

Consider the dramatic effect of outside players on OPEC. After a decade of highly 
profitable cooperation (collusion) the cartel collapsed, partially because of increased 
production by non-OPEC nations such as the United Kingdom. Member nations began to 
cheat more and more from the agreed price and production guidelines, reaching a climax in 
1986 when Saudi Arabia was no longer willing to be the sole co-operator. Early in 1986, the 
Saudis finally gave up their attempts to maintain cooperation and began increasing output 
and offering price discounts in an attempt to “punish” the United Kingdom. Oil prices 
dropped as low as $8/ barrel. Recently, the Saudis and OPEC have attempted to stabilize 
prices at a more moderate level than before, finally acknowledging the critical role of outside 
nations. 

In another example, firms in the U.S. microelectronics industries, adversely affected by 
the growing influence and economic power of foreign competition, have formed the 
Microelectronics and Computer Technology Corporation to cooperate on basic and applied 
research (Griffin, 1987). Although members risk loss of competitive research advantage 
relative to other U.S. firms, the potential gains may well justify the almost $50 million 
investment. 

Whether or not it is in the social good to encourage such coalitions, it is important to 
understand how coalitions can influence the development of effective strategies in games 



involving more than two players. This article addresses the role implicit coalitions in a 
repeated, generalized Prisoner’s Dilemma (GPD). The classical Prisoner’s Dilemma, a two 
player, two-act game, captures the essential conflict between unilateral incentives (i.e., more 
sales through price discounts) and group incentives (price restraint and higher profits). The 
GPD extends this basic form of conflict to a richer, more complicated setting—an N-player 
game with many possible actions, either discrete (e.g., number of warheads) or continuous 
(e.g., price levels or R&D investment). After formalizing the GPD and motivating implicit 
coalitions, we describe two competitive strategy tournaments in the spirit of Axelrod (1980a, 
1980b). Results of the tournaments illustrate the importance of implicit coalitions in a 
repeated GPD. We describe one strategy that seems to encourage coalitions and we test its 
robustness across a series of environments that vary from very “nice" to very “nasty.” 

 
FORMALIZATION 

 
CLASSICAL PRISONER’S DILEMMA 
 
Over its 30-year lifespan, the PD has been one of the most frequently studied phenomena in 
economics, political science, sociology, and psychology. (See Axelrod, 1984, for a review of 
these and other applications of the PD.) The classic 2 X 2 PD allows each player to either 
cooperate (C) or defect (D). If both players cooperate in a given period, then each is rewarded 
with a payoff of r points. lf one player defects from mutual cooperation, she or he receives 
the temptation payoff of t, while the cooperating player gets the “sucker’s payoff” of s. If both 
choose to defect, then each receives the punishment payoff of p. 

 
 
Player 2 

 C2  D2          
r1=3 
r2=3 

S1=0 
t2=5 

t1=5 
S2=0 

P1=1 
P2=1 

 
Figure I: Classic Prisoner S Dilemma. Subscripts on actions (C, D} and payoffs (t, r, p, s) indicate the player. 

 
Figure 1 illustrates a typical set of payoffs for the 2 X 2 PD. A quick scan of Figure 1 reveals 

that each player has the unilateral incentive to defect, regardless of tire other players 
decision, but if the two players cooperate, both achieve high scores. Thus, if this were a one-
shot game, each would be best off defecting since there would be no incentive to deviate from 
that action. However, if the game were repeated, strategies might change.  

In general, the PD property holds if the payoffs r, t, s, and p must meet certain constraints. 
The essential property, once again, is that each player has a dominant alternative (to defect), 
but if both defect, the resulting payoff (p) is less than the payoff for mutual cooperation (r). 
Specifically, 
 

(1) Regardless of what our opponent does, we are best off defecting. If she or he cooperates we prefer to defect (i.e., 
t >r), and if she or he defects we still favor defection (p>s) 

Player 1 C1 

D1 



(2) Regardless of what option we choose, we are better off if our opponent is lenient and chooses a dominated 
alternative (cooperation). Thus r > s for then we cooperate, and t > P For when we defect. 

(3) Mutual cooperation is always preferred to mutual defection: r > p. 
 

These three sets of inequalities can be combined into one compound inequality: t > r > p > s. 
This is the heart of the PD. When the game is repeated, some researchers add a fourth 
condition to discourage oscillations: 
 

(4) Continued cooperation is better than alternating between cooperation and defection: 2r > t + s. 
 
 
GENER ALIZED PRISONER'S DILEMMA (GPD) 
 

In order to study implicit coalitions among N players we use the PD framework to balance 
unilateral incentives with group cooperation. We do not claim that all conflict situations are 
PD’s; we claim only that many interesting situations are consistent with the PD paradigm. 
Thus we state a set of conditions that apply to N players and that, in the case of two players, 
reduce to the classical PD conditions. 

Several researchers have proposed and analyzed N-player PDs, usually to study the 
behavior of large groups or entire communities. For example, each person finds it easier to 
litter than to carry paper to a wastebasket, but society as a whole is better off if no one litters. 
This scenario is often referred to as the “Tragedy of the Commons,” first proposed by Hard 
in (1968). (See also Hamburger, 1979; Goehring and Kahan, 1976; Taylor, 1976; Dawes, 
1980; and Schelling, 1973.) The primary mode of analysis for many players is the payoff 
functions C(n) and D(n), which describe the payoffs to each cooperator and each defector 
when exactly n parties cooperate. 

While these N-player models are an excellent way to study situations involving many 
players facing a binary alternative, we are more concerned with games involving fewer 
players and more alternatives. For example, we wish to study how two cooperators should 
respond to a defector when all three players have a continuous range of alternatives 
available to them. We seek to determine, among other things, whether they should continue 
to cooperate, switch to defection, or take some action between cooperation and defection. 
To address these issues our generalization must deal with continuous actions. 

We define the GPD in terms of payoffs, P, and actions, A. In particular, let Pi (A1, A2, …, AN) 
be the payoff Io player i if the N players take actions A1 through AN. We assume the payoffs 
are symmetric.1 We define two key actions, the short-term, noncooperative, payoff-
maximizing action, Ad, and the joint-payoff-maximizing action, Ac. Ad and Ac correspond to D 
and C in the classical PD. Each player can maximize its payoffs by choosing Ad, regardless of 
the actions of the other players. At the other extreme, if all players cooperate and choose the 
same action. Ac will maximize joint payoffs. 

For simplicity of exposition we first consider games in which Ad is fixed and invariant with 
respect to competitors’ actions. We relax this assumption in the second tournament. In some 
games, cooperation means less action—fewer weapons, less quantity produced, or less 
aggression. In other games, cooperation means more action—more missiles removed from 

                                                            
1 This is not a critical assumption. For example, positive linear transformations that vary by player do not 

affect our analysis. By symmetric we mean Pi (…, Ai, …, Ai) = Pj(…, Aj, …, Aj, …). 
 



the European theater, higher prices, or more joint research. Without loss of generality, we 
consider the latter class of games and assume Ac is less than Ad. Therefore, “high” action is 
taken to mean more cooperative action throughout this article. 

We now define a GPD. Because our players are symmetric, we state the conditions for 
player 1. It is understood that each condition applies to all players. 
 

(1)  As long as A1 > Ad, player 1 increases its short-term payoff by defecting further: 
 

𝜕𝜕𝑃𝑃1
𝜕𝜕𝐴𝐴1

 < 0 for   A1 > Ad 
 
An alternative interpretation is that unilateral movement toward cooperation decreases 
payoffs. This condition generalizes t > r and p > s in the classical PD. Note that by the 
definition of Ad as the payoff maximizing action, we implicitly assume that payoffs decrease 
when actions are decreased below Ad. 
 

(2)  Any move toward unilateral cooperation by an opponent increases the payoff to player 1: 
 

𝜕𝜕𝑃𝑃1
𝜕𝜕𝐴𝐴𝑗𝑗

 > 0 for   j=2, 3 …N 

 
This condition generalizes r > s and t > p. Note that it applies for all feasible actions by all of 
player 1’s competitors. 
 

(3)  Mutual cooperation is profitable. If all players increase their actions by the same amount, all are 
better off (as long as no actions exceed Ac. 

 
𝜕𝜕𝑃𝑃1
𝜕𝜕𝐴𝐴1

+ 𝜕𝜕𝑃𝑃1
𝜕𝜕𝐴𝐴2

+ ⋯+ 𝜕𝜕𝑃𝑃1
𝜕𝜕𝐴𝐴𝑁𝑁

 > 0   𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑐𝑐 for all j 

 
This condition generalizes r > p. Note that we have defined condition 3 for all actions, not 
just symmetric actions and, by the definition of A as the joint-payoff maximizing action, we 
have assumed implicitly that condition 3 reverses for all Aj above Ac. 
 

(4)  We wish to rule out profitable oscillations in an analogy to 2r > i + s There are many possible 
generalization to this condition; we choose a simple one by making it unattractive to take turns 
reducing actions unilaterally, That is, 

 
𝜕𝜕
𝜕𝜕𝜕𝜕

[𝑃𝑃1(𝐴𝐴1 –  𝜕𝜕,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁) + 𝑃𝑃1(𝐴𝐴1,𝐴𝐴2 –  𝜕𝜕, … ,𝐴𝐴𝑁𝑁) + ⋯  +  𝑃𝑃1(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁 –  𝜕𝜕)] 
 

< 0  for  𝐴𝐴𝑑𝑑  ≤  𝐴𝐴𝑗𝑗  –  𝜕𝜕.𝐴𝐴𝑗𝑗  ≤  𝐴𝐴𝑐𝑐 , 𝑗𝑗 =  1, 2, … ,𝑁𝑁. 
 
 
AN EXAMPLE 
 

Our first tournament was framed in terms of a triopoly in which scores correspond to 
profits and the actions are prices. For realism we chose the commonly used "constant 
elasticity” model of consumer response to prices in a differentiated triopoly. The parameters 
of the model, the elasticities, were chosen to be consistent with empirical estimates for a 



variety of markets (e.g., Telser, 1962; Lambin, Naert, and Bultex., 1975; Lambin, 1976; Simon, 
1979). We assumed “constant returns to scale” and chose scaling constants so the payoffs 
were easy to understand. 

 
Specifically, the payoff function we used was (in terms of player 1): 
 

𝑃𝑃1 = 3375𝐴𝐴1−3.5𝐴𝐴2.25𝐴𝐴3.25(𝐴𝐴1 − 1) − 480    (1) 
 
A little calculus (taking the derivative of equation 1 and setting it equal to zero) yields the 
noncooperative payoff-maximizing action, Ad =1.40, which is independent of competitive 
actions. By assuming A1 = A2 = A3, we can solve for the cooperative action, Ac = 1.50. The 
reader can verify that conditions 1 through 4 hold for equation 1. 
 

 
  Player 2 and 3 

 

  A2=A3=Ac     A2=A3=Ad      

P1=20 
P2=P3=20 

P1=3 
P2= P3=21 

P1=29 
P2=P3=11 

P1=12 
P2=P3=12 

 
Figure 2: Example Payoffs When players 2 and 3 Choose Identical Actions. 
 

When we restrict actions to Ad and Ac, the game defined by equation 1 becomes the 
classical PD. Suppose, for the sake of illustration, that players 2 and 3 are committed to 
choose the same action as each other. Figure 2 shows the possible pay offs under this 
restriction. These payoffs, although asymmetric because P1 (Ad, Ac, Ac) ≠ P1 (Ad, Ad, Ac), clearly 
obey the constraints for the classical PD. Of course, this restriction on players 2 and 3 is not 
realistic, nor is it imposed in the tournaments. Figure 2 simply illustrates the close 
relationship between the classical PD and the GPD. 

Before proceeding to our analysis of implicit coalitions, we note one more important 
feature of the GPD model, the envious price. Many researchers have noted that human players 
in experimental PD games often defect in an attempt to beat their rivals rather than to score 
well for themselves. In the GPD, a distinct action, Ae, is associated with this type of behavior. 
The envious action is defined as the action that maximizes one player’s share of total payoffs. 
It is consistent with the notion of difference maximization as discussed by Shubik (1959). Any 
player who misses the main point of the game (i.e., maximize own score) and instead plays 
to maximize share of total payoffs will frequently choose the envious action. In the game 
based on equation 1, the envious action is calculated to be Ae = 15/11 ≈ 1.36. In an oligopoly, 
managers might choose an envious action if they are rewarded on outcomes relative to other 
firms in the industry (i.e., bonuses based on market share). Note that in the short run, players 
rarely have a legitimate incentive to choose Ae. They can always do belter for themselves (in 

Player 1 
A1=Ac 

A1=Ac 



a single period) by raising actions from Ac to Ad. However, Ac might prove useful as a severe 
punishment for noncooperative behavior.2 

 
 

IMPLICIT COALITIONS 
 

Suppose player 3 in a repeated three-player game has chosen a strategy of consistently 
choosing Ad. How should players 1 and 2 react? 

One option is to punish the defector by reciprocating her or his totally noncooperative 
behavior. For example, Axelrod (1981) showed that this type of strategy (ALL-Ad) is a best 
response to itself in the two-player game. But in the multiplayer game, defection in response 
to only one player defecting may be too severe. On the other hand, maintaining two-way 
cooperation at Ac also may not be the best response to a one-player defection. For example, 
in Figure 2, mutual (three-way) defection yields a higher payoff than two-way cooperation 
at Ac, that is, 

 
P1 ( Ad, Ad, Ad) = 12 > 11 = P1 (Ac, Ac, Ad). 

 
Fortunately, players I and 2 have other options besides Ad and Ac. They may find it best to 

choose some other action, somewhere between Ad and Ac, that yields payoffs greater than 
three-way mutual defection. If they cooperate properly, their (mutual) motivation is to 
choose an action that maximizes their joint payoff against the defecting third player. We call 
this action the implicit coalition action, Aic. For a three-player game with player 3 as the 
defector, it is defined (for player 1) as:  

 
P1 (Aic, Aic, A3) = max

𝐴𝐴𝑗𝑗
{𝑃𝑃1 (𝐴𝐴𝑖𝑖 , 𝐴𝐴𝑖𝑖 , 𝐴𝐴3)} 

      
In the example above, Aic = l3/9 ≈ 1.444 for any third-player action. In general, the best 
coalition price will depend on the third player’s action, but in the first GPD game it is 
invariant, just like Ad. In an N-player game there are N-2 possible coalition actions 
corresponding to coalitions Of 2, 3, …, N-1 players (One might also wish to define Ad and Ac 
us coalition prices for coalitions of 1 and N players, respectively.) 
  

                                                            
2 Abreu (1986) has recently proposed a class of strategies known as “carrot and stick” strategies that use 
severe punishments (as low as Ac and even lower) as a credible threat to enforce maximally collusive 
behavior. 



 
 A1, = Ac A1= Ac A1 = Ac A1 = Aic A1 = Aic A1= Ad 

 A2 = Ac A2 = Aic A2 = Ad A2 = Aic A2 = Ad A2= Ad 
 

 
  A3 = Ac 

 
 

  A3 = Aic 

 
 
  A3 = Ad 

 
 

 
 
Figure 3: Illustration of Payoffs When Actions Are Limited to Ac , Aic, and Ad . (The first, second, and third lines refer to the payoffs to 

players 1, 2, and 3, respectively.) 
 

Figure 3 illustrates the impact of implicit coalitions. Notice that for a fixed action by player 
3, the best cooperative response by players 1 and 2 is always Aic. Furthermore, the subgame 
between players 1 and 2 is itself a two-player PD in which cooperation becomes Aic while 
defection is still Ad. 

At this point it is clear that there may be some motivation for implicit coalition to form. 
We have not demonstrated whether or not it is advantageous to play strategies that seek to 
form coalitions in repeated games. Nonetheless, we propose three strategies for the repeated 
GPD that recognize and use the concept of implicit coalitions. The first, COALITION, limits 
action to Ac, Aic, Ad. The second, COALENC, uses the continuous nature of the action set to 
encourage coalitions. The third, GEMERIC, is a generalization of the first two and proves 
useful when we describe the tournaments. Without loss of generality, we continue to state 
the algorithms from the perspective of player 1.  

COALITION is the simplest possible implicit coalition strategy. lt begins each game at Ac. 
In later rounds it does the following: 
 

 COALITION:     𝐴𝐴1(𝑡𝑡) = �
 𝐴𝐴𝑐𝑐                   if      𝐴𝐴2 ,  𝐴𝐴3  ≧   𝐴𝐴𝑐𝑐                                                                         
𝐴𝐴𝑖𝑖𝑐𝑐               if  max { 𝐴𝐴2, 𝐴𝐴3 } ≧  𝐴𝐴𝑖𝑖𝑐𝑐   𝑎𝑎𝑎𝑎𝑎𝑎min{ 𝐴𝐴2 , 𝐴𝐴3} <  𝐴𝐴𝑐𝑐    
𝐴𝐴𝑑𝑑                   if      𝐴𝐴2 , 𝐴𝐴3  <   𝐴𝐴𝑖𝑖𝑐𝑐                                                                       

 

 
where A1(t) is player 1 ’s action in round t and A2 and A3 are actions in round t-1. 

COALENC is similar to COALITION, except that it recognizes and tries to take advantage 
of the fully continuous nature of the action set: 
 

COALENC:    𝐴𝐴1(𝑡𝑡) =  �
𝑚𝑚𝑚𝑚𝑎𝑎 𝐴𝐴2,𝐴𝐴3,𝐴𝐴𝑐𝑐}  
𝐴𝐴𝑖𝑖𝑐𝑐                          
𝑚𝑚𝑎𝑎𝑚𝑚 𝐴𝐴2,𝐴𝐴3,𝐴𝐴𝑑𝑑}

    
if  𝐴𝐴2,𝐴𝐴3  ≧  𝐴𝐴𝑖𝑖𝑐𝑐                                                              
if max {𝐴𝐴2,𝐴𝐴3}  ≧  𝐴𝐴𝑖𝑖𝑐𝑐 and min {𝐴𝐴2,𝐴𝐴3}   ≦   𝐴𝐴𝑖𝑖𝑐𝑐 
if  𝐴𝐴2,𝐴𝐴3  ≦  𝐴𝐴𝑖𝑖𝑐𝑐                                                              

  

 
COALENC will maintain total cooperation (at Ac) if both other players cooperate at Ac, and it 
will detect to Ad only if both players defect to (or below) Ad. However, at all other times it will 
hedge toward the implicit coalition price, Aic, by aligning itself with the player closer to Aic. 
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Finally, we acknowledge that more complex responses are possible in the three ranges of 
competitors’ actions. Indeed, such complex algorithms were entered in the tournaments. We 
define GENERIC as a generic implicit coalition strategy where ƒ1 and ƒ2 are general functions 
mapping the actions in t-1 (or earlier) onto the ranges [Ad, Aic] and [Aic, Ac], respectively: 

 

GENERIC:    𝐴𝐴1(𝑡𝑡) =  �
𝑓𝑓2 (𝐴𝐴2,𝐴𝐴3)
𝐴𝐴𝑖𝑖𝑐𝑐              
𝑓𝑓1 (𝐴𝐴2,𝐴𝐴3)

       
if  𝐴𝐴2,𝐴𝐴3  ≧  𝐴𝐴𝑖𝑖𝑐𝑐                                                          
if max {𝐴𝐴2,𝐴𝐴3}  ≧  𝐴𝐴𝑖𝑖𝑐𝑐 and min {𝐴𝐴2,𝐴𝐴3}  ≦  𝐴𝐴𝑖𝑖𝑐𝑐

if 𝐴𝐴2,𝐴𝐴3  ≦   𝐴𝐴𝑖𝑖𝑐𝑐                                                          
 

 
 

THE TOURNAMENT APPROACH 
 

Given the importance of the PD and its extension, the GPD, it is natural to try to find a 
“best" strategy for a GPD game that is repeated over many rounds. (In the repeated game, we 
assume that the payoffs in any one round depend only on the actions in that round, but each 
player can observe the previous actions by his or her competitors.) Unfortunately, as Axelrod 
(1981) showed for the classical PD, there is no single best strategy. Against different sets of 
competitors, different strategies may be best. For example, ALL-Ad is the (unique) best 
response to a pair of players choosing ALL-Ad, but COALITION is a best response (although 
not unique) if competitors are known to be playing COALITION. 

Axelrod (1980a, 1980b) pioneered a methodology to identify strategies for the classical 
PD that perform well against a wide range of competitors. In order to generate a rich 
environment, Axelrod sponsored a contest, inviting game theorists to submit strategies in 
the form of computer subroutines for a repeated PD game. Each entry “played” every other 
entry in a round robin tournament. The objective was to earn the highest total score across 
all games. Entries could be simple or complex; some participants even created strategies that 
tried to identify opponent's strategies and then act appropriately against them. 

The winner was the simplest entry of all, TIT-FOR-TAT which starts cooperatively and in 
each subsequent period does whatever its opponent did in the previous round. Axelrod 
described several key properties that helped distinguish the most successful strategies, such 
as niceness, which means “never be the first to defect.” 

A second tournament was run soon after the first tournament’s results were tallied. This 
time Axelrod received 62 entries from participants, representing a wide range of ages, 
disciplines, and geographic Origins. The winner, once again, was TIT-FOR-TILT, suggesting 
that its first-round victory was no fluke. The second tournament reconfirmed the importance 
of niceness; Axelrod also identified pivotal properties such as forgiveness (i.e., do not be too 
severe when punishing opposing defections), provocability (i.e., never let an opposing 
defection go unacknowledged), and lack of envy (i.e., do not intentionally try to reduce 
competitors’ scores). In essence, cooperation can be achieved based upon appropriate 
reciprocity. Axelrod’s tournaments have provoked praise and criticism, but they have raised 
a number of interesting ideas. We seek to apply the tournament methodology to study 
implicit coalitions in the GPD. 
  



MITCSI: THE FIRST 
GPD TOURNAMENT 

    
 In November 1984 we announced our first tournament (named, MITCSI for MIT 
Competitive Strategy Tournament), similar in design to Axelrod’s second tournament but 
featuring the Generalized Pisoner’s Dilemma. The game was posed as a managerial problem 
with price as I he sole strategic variable. Each game in the tourney was the repeated GPD 
game defined in equation 1 with three programmed strategies choosing actions each period 
from a continuous range. As in Axelrod’s tournament, each possible grouping of entries 
engaged in five repeated games, and the overall winner was the strategy that amassed the 
highest total score across all games in which it participated. Contestants were given full 
information about the payoff function used, and in every game each player had access to the 
past actions of all three players in that game. Entries were submitted in the form of FORTRAN 
IV subroutines. 

By July 1985, we had received over 40 algorithms (including several duplicates) from a 
diverse group of participants around the world. The field of entrants included economists, 
political scientists, game theorists, marketing academics, and managers. Several universities 
and major corporations submitted the best and most creative entries they found after 
running their own mini tournaments. Thus the pool of algorithms available for this first 
empirical analysis of the GPD contains a wide variety of creative efforts from some very 
strategically minded people. 

 
DESCRIPTION OF ENTRIES 
 

Many entrants, having learned Axelrod’s lessons, attempted to generalize TIT-FOR-TAT. 
Six strategies recognized implicit coalitions and incorporated the implicit coalition action, 
Aic, into their algorithms. We label these algorithms IC for implicit coalition. Several IC entries 
fit into the GENERIC framework, including some that used very complex functions form and 
ƒ1 and ƒ2 involving many of the previous decisions of each competitor, not just their most 
recent actions. 

Most algorithms tried to incorporate continuous alternatives, but participants did so in a 
variety of ways, including: 

 
MIN:  Start at AC. In all subsequent rounds, choose the minimum of your competitors’ action from the 

previous rounds. 
MAX:  Start at AC. In all subsequent rounds, choose the maximum of your competitors’ action from 

the previous rounds. 
AVG:  Start at AC. In all subsequent rounds, choose the average of your competitors’ action from the 

previous rounds. 
 

Each of these strategies leads to very different types of behavior. MAX is extremely 
forgiving but not highly provocable. (Recall that “higher" action is more cooperative.) Two 
MAXs, playing together against a nasty competitor, will remain at Ac, ignoring the 
exploitative moves by the third player. On the other hand, MIN is extremely competitive, and 
raises its action only if both competitors do so first. AVG is the most moderate of the three, 



trying to balance forgiveness and provocability at the same time. (Axelrod himself entered 
AVG into the tournament.) 
  A slightly more complicated generalization of TIT-FOR-TAT is MXCM (pronounced 
“maxcum”) which also starts at Ac, but in later rounds mimics the previous action of the 
strategy (not including itself) with the greatest cumulative score at that point in the game. 
Thus MXCM does not attempt to use the previous action of both competitors – it considers 
only the stronger of the two (in terms of cumulative score) and adopts the passive mimicking 
strategy, just like TIT-FOR-TAT in the two-player game. Like AVG, MXCM is both provocable 
and forgiving since it follows any action made by the leading strategy. However, MXCM is 
distinguished from AVG because it is able to ignore ineffective strategies. In contrast, AVG 
will always give equal weight to the actions of both competitors, regardless of how well they 
perform. 
 Other entrants made no attempt to generalize TIT-FOR-TAT. Some used different 
variants of a strategy suggested by Friedman (1971) that begins each game at Ac and stays 
there until any competitor defects, in which case it goes to Ad and stays there for all 
subsequent rounds. We label this type of strategy XTRM. 
  A few participants chose constant strategies (e.g., always cooperate [ALL-Ac], always 
defect [ALL- Ad], or always be envious [ALL- Ae] ), or random (RND) strategies that chose 
actions randomly from the range [Ad, Ae] or used a random walk technique. Hence most of 
the algorithms could be classified into one of eight broad categories: MIN, MAX, AVG, MXCM, 
IC, XTRM, constant action, or RND. 
 Beyond these general descriptions of strategy types, the entries differed due to 
specific tactics or feature that were frequently employed. For example: Following Axelrod 
(1984), strategies that start the game cooperatively and are never the first to cut action 
below Ac are termed nice, as opposed to nasty strategies, which can be the first to defect. 
 Self-awareness allows strategies to consider the previous decisions of all three players 
(not just the two competitors) when choosing actions. This feature tended to reduce cycling 
and echo effects. 
 Many strategies restricted their actions to the range [Ad, Ac], since there is no way to 
increase payoffs by choosing actions outside of this range. Strategies that were willing to go 
below Ad or above Ac are known as unbounded. 

Some strategies tried to induce cooperation by raising actions slightly above the level 
specified by a general strategy type (e.g. play MIN but add a few units to the minimum 
action). These strategies have action-raising initiative. On the other hand, some strategies 
have action-cutting initiative, that is, they were willing to go below the specified action level, 
usually in an attempt to punish an earlier cut made by a competitor. 

Finally, several strategies occasionally used the envious action Ac to try to outscore their 
competitors (rather than maximizing their own scores). 

These descriptions are admittedly vague. The actual implementation of some of these 
features can vary greatly from strategy to strategy. For instance, action-raising algorithms 
can vary the magnitude and frequency of their increases. For ease of exposition, we ignore 
fine-grained differences among algorithms, since the mere presence of a particular feature 
was generally more important than the manner in which it was implemented. 
 
 
 



RESULTS AND INTERPRETATION 
 

Table 1 presents a summary of the strategies and their performances. The strategies are 
tanked by their average score per round. For comparison, mutual cooperation pays 20 units 
per period to each player, while each period of mutual defection (i.e., all three players 
choosing Ad) yields approximately 12 units to each player. (See Figure 3 for additional payoff 
comparisons.) 

The winning algorithm, entered by Terry Elrod of Vanderbilt University, was the simplest 
possible IC strategy, COALITION. Recognizing implicit coalitions proved to be the single most 
important factor in the tournament. The top four algorithms in the tournament recognized 
the coalition properly, and all six IC strategies finished in the top 10 overall. Another 
interesting factor was how the strategies dealt with the continuous nature of the actions. 
Most entrants used simple heuristics (e.g. MIN, MAX, AVG) to address this problem, with 
varying degrees of success. The standard averaging strategy (i.e. nice, bounded AVG with no 
self-awareness, envy, or action-raising/-cutting initiative) finished in sixth place, easily 
beating standard MAX (ranked eleventh) and standard MIN (twelfth). 

 

TABLE 1 
Official MITCS1 Results 

Rank Entrant 
Strategy 

Type Features1 
Average Score  

per Round 
1 Terry Elrod  IC       17.182 
2 (anonymous)  IC  S U R  E 17.172 
3 Avraham Beja & Shlomo Kalish  IC  S   C  17.172 
4 Steve Shugan  IC       17.157 
5 (MIT)2  AVG3  S     17.157 
6 Gary A. Lines  AVG       17.104 
7 (MIT)  MIN  S  R   17.063 
8 Steve Shugan  IC  S     17.014 
9 Beja & Kalish  IC  S   C  16.927 
10 (MIT)  MXCM  S     16.914 
11 Terry Elrod, John Roberts  MAX       16.879 
12 Gary Gaeth & Gerard Tellis, Terry Elrod, Gary A.Lines  MIN       16.851 
13 James M. Lattin  MAX  S  R   16.830 
14 John A.Cadley  XTRM    R   16.720 
15 Steve Borgatti  MIN  S     16.682 
16 Steve Borgatti  MIN     C  16.523 
17 John A. Cadley  XTRM       16.519 
18 (MIT)  4   U    16.389 
19 RobertbAxelrod  AVG   U    16.335 
20 John Roberts  AVG5   U    16.305 
21 Barbara Bruner & James Olver  AVG N S   C  16.127 
22 Robert F. Bordley  MIN   U    15.976 
23 Robert E. Marks  XTRM6   U   E 14.535 
24 Robert E. Marks  XTRM6   U   E 14.497 
25 James M. Lattin  ALL-AC       14.351 
26 Shlomo Maital  MXCM N  U    13.944 
27 Beja & Kalish  RND2 N S     13.809 
28 Robert E. Marks  8 N  U   E 13.763 
29 Steve Borgatti  MIN N S   C  13.740 
30 Roland Rust, Robert F. Bordley,, John Roberts  ALL-Ad N      13.637 
31 Beja & Kalish  RND7 N S     13.575 
32 (MIT)  RND9 N      13.447 
33 Shlomo Maital  MXCM N  U    13.384 
34 Robert F. Bordley  MIN N  U    12.918 
35 Kenneth L. Stott, Jr.Francis J. Vasko & Floyd E. Wolf  ALL-AC N S U R  E 12.151 
36 Robert E. Marks  ALL-AC N  U   E 9.909 
37 (anonymous)  MIN10 N  U R   9.684 
38 (anonymous)  AVG11   U R C  9.643 
          (continued) 



           
           

TABLE 1 Continued 
NOTES: 

(1) Default features  include niceness, no self-awareness, bounded actions, no action-raising or cutting initiative and no 
envy. Exceptions are noted as N for nastiness, S for self-awareness, U for unbounded actions, R for action-raising 
initiative, C for action-cutting initiative, and E for envy. 

(2) (MIT) denotes an algorithm entered by a member of the MIT community that was not eligible to win the tournament. 
Post-tournament testing indicates that the inclusion of these entries does not affect the ordering of the top 
algorithms. 

(3) Weighted average of all three players, actions, using cumulative scores as weights. 
(4) Mimics previous move of one opponent on odd rounds. other opponent on even rounds. 

 
(5) Geometric mean of opponents’ previous actions. 
(6) Stays at Ac for two opposing defections before going to Ae. 
(7) Random walk centered around ½ (Ac + Ad ) . 
(8) Mimics actions of one opponent chosen at start of game: actions limited to range(Ac , Aic ) 
(9) Uniform random variable between Ad and Ac. 
(10) Only algorithm to introduce action increase above Ac. 
(11) Only algorithm to introduce action increase cuts below Ac. 

 
Several of the descriptive features were highly influential. First and foremost is niceness, 

reconfirming the findings of Axelrod. Nice algorithms were able to reap great benefits by 
avoiding the short-term temptation to defect. The best nasty strategy played standard AVG 
most of the time, but would occasionally make small cuts as long as both competitors 
remained at Ac. If either competitor responded to these cuts, this strategy would return to 
standard AVG for the remainder of the game, this clever form of exploitation helped make 
this algorithm far more successful than other nasty entries, but still could not provide any 
better than a twenty-first place finish. 

Other important features were boundedness and lack of envy. Only one successful 
algorithm ever exhibited envious behavior, but that strategy (ranked second) would only go 
to Ac if both competitors were at or below Ae in the previous round, a fairly rare occurrence. 
Perhaps if this second-ranked strategy did not try to battle envious competitors on their 
terms, it might have been able to win the tournament. 

The value of bounded actions can be seen by comparing standard AVG and MIN (ranked 
sixth and twelfth, respectively) to their equivalent but unbounded counterparts (ranked 
nineteenth and twenty second, respectively). Boundedness was worth nearly 0.70 units per 
round to AVG and nearly 0.90 units per round to MIN, 

Several entrants found self-awareness to be a blessing. For example, some strategies, 
unlike TIT-FOR-TAT, considered their own previous decisions in determining future actions, 
for example, averaging across all three players (ranked fifth), and three-player MXCM (tenth 
place). But self-awareness was a curse to others, including those who used it as a ratchet on 
actions. The algorithms ranked eighth and fifteenth, for example, only let their actions move 
downwards, regardless of the cooperative gestures made by their competitors. 

Little can be said about the effectiveness of action-raising and action- cutting initiative. 
Some of the nice, bounded entries were able to encourage cooperation and discourage 
cheating with appropriate rewards and penalties, but these successes were counterbalanced 
by the unsuccessful strategies that brought on their own demise by raising or cutting actions 
too much at the wrong times. 

 
 
 



TABLE 2 
Revised MITCS1 Results 

 

New 
Rank Entrant 

Old 
Rank 

Strategy 
Type Features1 

Average Profits  
per Round 

1 COALENC -  IC       17.353 
2 Terry Elrod 1  IC       17.257 
3 (anonymous) 2  IC  S U R  E 17.249 
4 Avraham Beja & Shlomo Kalish 3  IC  S   C  17.245 
5 Steve Shugan 4  IC       17.235 
6 (MIT)2 5  AVG3  S     17.225 
7 Gary A. Lines 6  AVG       17.175 
8 (MIT) 7  MIN  S  R   17.136 
9 Steve Shugan 8  IC  S     17.101 
10 Beja & Kalish 9  IC  S   C  17.000 

NOTES: 
(1) Default features include niceness. no self-awareness, bounded actions, no action-raising or -cutting initiative. and no envy. 

Exceptions are noted as N for nastiness, S for self-awareness, U for unbounded actions, R for action- raising initiative, C for 
action-cutting initiative, and E for envy. 

(2) (MIT) denotes an algorithm entered by a member if the MIT community. 
(3) Weighted average of all three players action, using cumulative scores as weights. 

 
Table 1 seems to depict a tight three-way battle for first place. However, it should be noted 

that each algorithm played in nearly 1,000 three-player matches in each of the five games in 
the tournament. This information, combined with the fact that each match lasted 
approximately 200 rounds, implies that each strategy chose actions in nearly I million total 
rounds. Thus a difference of .01 units on a payoff-per-round basis is equivalent to a 10,000 
units difference in total score. 
 
AN ALTERNATIYE CHAMPION 
 

The winning algorithm, COALITION, was the only highly ranked strategy that did not 
acknowledge the continuity of actions. Apparently, none of its top rivals could use the 
continuous nature of the action space enough to overcome the winner’s discrete simplicity. 
However, this does not imply that the task is impossible; COALENC, described earlier, would 
have easily won the tournament had it been entered. 

Table 2 shows the top 10 entries in the revised tournament with COALENC included. Note 
that the relative rankings of the original strategies are unchanged, although average scores 
have increased because of the presence of the cooperative newcomer. The margin of victory 
for the new algorithm is quite significant; the gap between first and second place is larger 
than the margin between second and seventh place.  

More importantly, the success of this algorithm is not very sensitive to variations in the 
competitive environment. Extreme changes, such as doubling the presence of all nasty 
entries, usually cannot unseat this new winner. Many of the procedures that Axelrod used to 
demonstrate the robustness of TIT-FOR-TAT have been applied to this tournament, with 
strong results favoring COALENC. 
 

  



MITCS2: THE SECOND 
GPD TOURNAMENT 

 
One of the unique aspects of the payoff function used in MITCS1 is separability, which 

leads to unique, invariant values for Ad and Aic. Because the implicit coalition action never 
changes, it is relatively easy for coalition-seeking algorithms to achieve their goal. In more 
general situations, the best action for a coalition should depend on the actions of 
noncoalition players. For example, the coalition response to an envious player might be 
harsher (i.e., lower coalition action) than the coalition response to a small defection. (Recall 
once again that higher action is defined as more cooperative). With this in mind, we sought 
to determine whether the success of COAUTION and COALENC was unique to the payoff 
function and competitive environment of MITCS1, or whether it could be replicated in an 
environment that is potentially less favorable to implicit coalitions. 

Soon after we completed the analysis of MITCS1, we announced a second tournament, 
MITCS2, with the following payoff function: 

 
∏ = 200(8 − 6𝐴𝐴1 + 𝐴𝐴2 +  𝐴𝐴3)(𝐴𝐴1 − 1) − 180 1      (2) 

 
Equation 2 corresponds to a linear demand function in economics. As before, payoffs are 
symmetric and the equation satisfies the GPD conditions. The scaling constants were chosen 
to match closely the payoffs in MITCS1; full cooperation (A1 = A2 = A3 = Ac) pays 20 units per 
player per round, and full defection (A1 = A2 = A3 = Ad) pays 12 units per player per round. 

The key difference between MITCS1 and MITCS2 is that the short-term payoff-maximizing 
action (Ad) and the implicit coalition action (Aic) now depend on competitors’ actions. 
Specifically, for fixed competitive actions, 

 
𝐴𝐴1𝑑𝑑 = 14+ 𝐴𝐴2+ 𝐴𝐴3

12
       (3) 

 
𝐴𝐴1𝑖𝑖𝑐𝑐 = 𝐴𝐴2𝑖𝑖𝑐𝑐 = 13+ 𝐴𝐴3

10
       (4) 

 
For example, if player 3 chooses ALL-1.40, then 𝐴𝐴1𝑖𝑖𝑐𝑐 = 𝐴𝐴2𝑖𝑖𝑐𝑐 = 1.440. However, if player 3 
chooses ALL- Ad via equation 3, then 𝐴𝐴3𝑑𝑑 ≈ 1.407, and 𝐴𝐴1𝑖𝑖𝑐𝑐 ≈ 𝐴𝐴2𝑖𝑖𝑐𝑐 ≈ 1.441. All entrants were 
aware of MITCS1 and the success of COALITION and COALENC. Each subset of three entries 
was matched for five games of 200 rounds3 and the winner was the strategy with the highest 
total (or average) payoffs. 

 
TOURNAMENTS RESULTS 
 

By fall of 1986, 32 entries had been submitted to MITCS2. Five strategies were thrown out 
due to coding errors or illegal tactics. The remaining 27 entries were combined with 11 
strategies carried over (some with slight modifications) from MITCS1. These strategies were 
                                                            
3 Since no entries used any explicit end-game maneuvers, the game length was fixed at 200 rounds For all 
games. 



included again because they led to interesting pricing behavior in the original tournament. 
Finally, suggestions from other individuals who did not wish officially to participate led to 6 
more submissions, thus rounding out the field of 44 unique entries. 

A brief description of each entry is shown in Table 3, where the entries  
are ranked by average scores per round. 
 

TABLE 3 
 MITCS2 Official Results 

 

Rank Entrant Strategy 
Type1 

N= 
Nasty 

Lower 
Bound 

Mean 
Score per 

Round 
Description2 

1 Robert E. Marks COALENC  Ad 17.097 Aic  = (26 + A2 + A3)  / 20 

2 
Robert L. 
Bishop, Tony 
Haig 

COALENC  1.4 17.096 Original COALENC (with  Aic = 13/9) 

3 Paul R. Pudaite COALENC  1.4 17.091 Aic = (13 +  A3)/10; looks back two rounds 
4 John Hulland COALENC  1.4 17.085 Aic = (13 +  A3)/10 
5 Neil Bermann COALENC  Ad 17.084 Aic = (13 +  A3)/10 
6 Tony Haig COALENC  Ad 17.075 Aic = (13 +  A3)/10; looks back two rounds 
7 James M. Lattin COALENC  Ad 17.065 Aic =1.44 
8 (MITCS1 # 7)3 MIN.R  Ad 17.064 Standard MIN with random 2c price increases  

9 Scott A. Neslin AVG.S  1.4 17.063 Linear leaning model; complex averaging 
procedure 

10 Scott A. Neslin AVG.S  1.4 17.042 Variation of #9 above (i.e., different 
parameters) 

11 -4 MXCM.S  Ad 17.025 Mimics previous price of second-best firm 

12 Robert L. Bishop COALENC  Ad 16.993 Aic =13/9; uses max{ A2, (193 +  A3)/10} when  
A2 <  Aic 

13 ---- AVG  Ad 16.989 Gradually shifts from MAX to MIN as game 
progresses 

14 (MITCS1 # 5) AVG.S  Ad 16.970 Weighted average of all 3 players’ previous 
prices 

15 - AVG.S  Ad 16.968 Unweighted average of all 3 players’ previous 
3 prices 

16 Karel Najman AVG.S   16.964 Unweighted average of all 3 players’ previous 
prices 

17 (MITCS1 # 6) AVG  Ad 16.932 Standard AVG; average of opponents previous 
prices 

18 James M. Lattin -  Ad 16.932 Complex adaptive learning model 

19 (MITCS1 # 11) MAX  1.4 16.926 Standard MAX; maximum of opponents’ 
previous prices 

20 Karel Najman AVG  - 16.908 Unbounded AVG 

21 Terry Elrod COALITION  1.4 16.907 Same as official winner of MITCS1 but with  Aic 
= 85/59 

22 James M. Lattin MIN  1.4 16.887 Plays AVG in round 2, MIN thereafter 
23 (MITCS1 # 21) COALENC N Ad 16.765 Modified version of top nasty  entry in MITSC1 

24 Neil Bermann COALITION  Ad 16.754 COALITION with varying  Aic;  Aic = (13 +  
A3)/10 

25 Chris Jones MIN  - 16.707 Standard MIN; minimum of opponents’ 
previous prices 

26 (MITCS1 # 10) MXCM.S  Ad 16.679 Mimics previous price of best (most 
profitable) firm 

27 Karel Najman MIN  1.4 16.567 Unbounded MIN 

28 (MITCS1 # 17) XTRM  Ad 16.187 Play Ac until anyone cuts price; play  Ad 
thereafter 

 



(continued) 
 

Rank Entrant Strategy 
Type1 

N= 
Nasty 

Lower 
Bound 

Mean 
Score per 

Round 
Description2 

29 - AVG N Ad 16.162 Start at 1.4 then play AVG 
30 - AVG N 1.4 15.992 Weighted AVG with random weights 
31 James M. Lattin MAX N 1.4 15.776 Start at 1.4 then play MAX 
32 Karel Najman ALL-1.44 N 1.4 15.719 Always choose 1.44 

33 (MITCS1 # 26) MXCM N Ad 15.264 Start at 1.4 then mimic previous price of best 
opponent 

34 - XTRM  1.4 15.226 Choose 1.4 for 2 rounds after a price cut, then 
return to  Ac 

35 (MITCS1 # 35) ALL-Ad.R N 1.4 14.512 Raise price above  Ad if profits exceed 
opponents’ profits  

36 Peter J. Brock AVG N 1.4 14.126 Start at 1.4 then choose average of  Ad and ( A2 
= A3 ) /2 

37 Paul R. Pudaite - N - 14.033 Choose  A1 = (6 + A2 +  A3 )/6 to maximum joint 
profits 

38 Karel Najman ALL-Ad N Ad 13.979 Start at 1.5; thereafter choose  Ad 
39 Paul R. Pudaite ALL-Ad N Ad 13.854 Start at 17/12; thereafter choose  Ad 
40 Peter J. Brock ALL-Ad N Ad 13.734 Start at 1.4; thereafter choose  Ad 
41 James M. Lattin ALL-1.39 N 1.39 13.213 Always choose 1.39 

42 Peter J. Brock ALL- Ad. C N -- 13.089 Choose  A1 = (7- A2 - A3)/6 to hurt non-ALL-Ad 
players 

43 (MITCS1 # 32) RANDOM N 1.333 12.817 Uniform random variable between 1.333 and 
1.5 

44 (MITCS1 # 36) ALL-Ad N - 11.754 Act enviously, i.e., maximize share of industry 
NOTES: 
(1) The basic strategy types are defined in the descriptions and in the text. The suffix “S” refers to each strategy with self-

awareness. the “R” refers to strategies with action-cutting initiative. 
(2) Players 3 is assumed to be less cooperative of players 2 and 3. 
(3) This denotes a strategy that was an official entry in MITCS1. The number refers to its ranking in that tournament. 
(4) This denotes a strategy based on an informal suggestion 
 

Table 3 shows two striking patterns. Most of the COALENC generalizations cluster toward 
the top, and 15 out of the 16 bottom entries are nasty (i.e., willing to initiate defections). One 
pattern that is not immediately obvious, however, is the possible link between the success of 
the COALENC entries and the method of choosing a value of Aic. 

The winning entry, submitted by Robert Marks of the Australian Graduate School of 
Management, features an unusual type of coalition action. It uses equation 4 to calculate an 
Aic against player 3 and averages this action with an Aic calculated against player 2. Thus, for 
instance, if A2 = 1.50 and A3 = 1.40, this algorithm would act like COALENC with Aic = (1.44 * 
1.45) / 2 = 1.445, as compared to a Aic of 1.44 that equation 4 would suggest (and most 
COALENC entries would use). 

At first glance this may seem like an inefficient rule, since it will often lead to coalitions 
with an action slightly above the “optimal” Aic. But notice which routine came in a close 
second: the original version of COALENC with Aic = 13/ 9 = 1.444…, This is also a relatively 
high (i.e., more cooperative) coalition action; it will exceed the Aic suggested by equation 4 
whenever the noncooperative player is below 1.444…. A pattern emerges: The top two 
strategies consistently choose higher coalition actions than any of the other COALENC 
entries. As further evidence, note that the “worst of the best,” entry 7, will generally choose 
the lowest Aic, 1.440. 



We briefly summarize some of the other results of interest. First, notice the rather 
mediocre performance of the entries that attempt to generalize COALITION, as compared to 
its sterling performance in MITCS1. Part of this drop can be attributed to the different mix of 
strategies in MITCS2 compared to MITCS1: With the presence of more sophisticated entries 
(such as the COALENC generalizations), the discrete pricing policy begins to hurt 
COALITION. This is particularly true when action-cutting exists at moderate levels. But much 
of COALITION’s drop is due to the new payoff function: Without a fixed Aic to rely on, any 
coalition seeker must be more flexible and forgiving in trying to establish a successful 
coalition. 

Another prominent result from M1TCS 1 was the need for a lower bound on one’s actions. 
Most entrants to MITCS2 recognized this idea and used one of two lower bounds—fixed at 
1.40 or floating (Ad). The results in Table 3 show no significant advantage for one method or 
the other. For example, entries 4 and 5 are exactly the same except for their lower bounds, 
and in each of the five constituent games in the tourney, these entries finish with nearly 
identical scores. This finding should not be considered too surprising; after all, when action 
cutting is severe enough to require bounded actions, Ad is usually quite close to 1.40 anyway. 

Finally, another result worth mentioning is the relative performance of three standard 
algorithms. In MITCS2, just as in MITCS1, AVG (entry 17) earns higher payoffs than MAX 
(entry 19), and both beat out MIN (entry 25). The value of having bounded actions can be 
seen once again by comparing entries 17 to 20 and 25 to 27. Boundedness does not appear 
to be as valuable as in MITCS1, but this is only because of the smaller number of extreme 
action cutters. Only three entries (41, 43, and 44) ever initiate cuts below 1.40. 
 
A NEW ALTERNATIVE CHAMPION 
 

MITCS2 confirms the importance of the implicit coalition phenomenon but suggests that 
algorithms can be fine-tuned to achieve greater payoffs. In fact, the higher the target coalition 
action, the better the algorithm seems to perform. We call this new property magnanimity. 
The success of the magnanimous entries seems to result from the fact that a high Aic is less 
likely to be viewed as a noncooperative action. In contrast, a less magnanimous algorithm (e. 
g., entry 7) often will be mistaken for a defector. Matchups between entry 7 and discrete 
COALITION strategies with higher Aic’s will quickly degenerate into (Ad, Ad, Ad) behavior 
because the two potential cooperators cannot agree on a coalition action. Of course, there is 
a limit to magnanimity; too high a coalition action allows an algorithm to be exploited. 

To generate a slightly more magnanimous strategy, we included another potentially 
beneficial property, self-awareness, into the Aic calculation. If cooperative players 
incorporate their own previous actions in determining which Aic to choose, the resulting 
coalition action will lend to be higher and more stable. (It is higher whenever A1 > (A2 > 
A3)/2.) Furthermore, a common Aic calculation would avoid the possibility of different 
subsets of players seeking different coalition actions. We believe that these two effects would 
cause environments with general payoff functions to become more like the MITCS1 world, 
where stable coalitions are easily established and maintained. 
  



TABLE 4 
 Revised MITCS2 Results 

 

 
Our new strategy, named CEAVG3 (for coalition encourager, based on the average of all 3 

coalition actions), is still a COALENC strategy; only the coalition reaction function is different. 
In CEAVG3, instead of calculating and averaging our Aic against players 2 and 3, we perform 
the same task with respect to all three players. The new coalition reaction function, therefore, 
is 
 

𝐴𝐴1𝑖𝑖𝑐𝑐 = 39 + 𝐴𝐴1+ 𝐴𝐴2+ 𝐴𝐴3
30       (5) 

 
Although the coalition actions and payoffs for the new strategy are only slightly higher 

than those of entry 1, this small increase combined with the moderating influence of the 
lagged A1 term helps the new strategy to achieve a first-place finish when placed among the 
MITCS2 entries. Table 4 shows the revised payoff figures. (Only the top five entries are 
shown; the overall standings are barely affected by the presence of the new strategy.) 

Since CEAVG3 is a COALENC strategy, its behavior (and payoffs) will often be 
indistinguishable from the other COA LENCs. However, in the cases in which these entries do 
differ, CEAVG3 does well enough to win the revised MITCS2 tournament by a relatively 
comfortable margin. 
 
TEST OF ROBUSTNESS 
 

No tournament can tell us which single strategy is truly “best,” or which set of strategies 
will do well in the widest set of environments. But a series of tournaments coupled with some 
reasoning can raise some valid hypotheses and insights. 

COALENC strategies did well in both MITCS1 and MITCS2, but these tournaments 
represent relatively “nice" environments. To deter- mine the sensitivity of COALENC 
strategies to environments, we performed a test of robustness, similar to the post-
tournament work of Axelrod (1984). We generated 200 new environments using different 
combinations of the MITCS2 entries. We first used a stepwise procedure to identify a subset 
of eight representative entries that faithfully reproduce the overall payoffs and standings of 
MITCS2, using only a small fraction of the full tournament. The eight representatives (7, 16, 
20, 23, 28, 33, 37, and 41) form an environment involving 36 games with each of the MITCS2 
entries but yield overall average payoffs that have a correlation coefficient of 99.49% with 
the scores from the full tournament (5, 175 games per entry). 
  

Rank Entrant Strategy 
Type1 

N= 
Nasty 

Lower 
Bound 

Mean 
Score per 

Round 
Description2 

1A CEAVG3 COALENC  Ad 17.170 Aic  = (39 + A1+ A2 + A3 ) / 30 
1 Robert E. Marks  COALENC  Ad 17.163 Aic  = (26 + A2 + A3 )  / 20 

2 Robert L. Bishop, 
Tony Haig COALENC  1.4 17.160 Original COALENC (with  Aic = 13/9) 

3 Paul Pudiate COALENC  1.4 17.156 Aic  =( 13 +  A3 )/ 10; looks back two rounds 
4 John Hulland COALENC  1.4 17.149 Aic  =( 13 +  A3 )/ 10 



TABLE 5 
 Strategy Performance in Simulated Environments 

entry score entry score entry score entry score entry score 
11 16.186 1A 16.866 1A 17.364 1A 17.833 12 18.867 
1A 16.162 2 16.861 2 17.357 2 17.826 21 18.821 

2 16.159 1 16.860 1 17.356 1 17.825 1A 18.780 
1 16.155 3 16.859 3 17.352 3 17.822 2 18.774 
3 16.150 4 16.853 9 17.351 5 17.817 1 18.774 
4 16.144 5 16.852 4 17.346 4 17.816 11 18.771 
5 16.143 6 16.841 5 17.346 8 17.809 3 18.766 
6 16.132 7 16.839 10 17.343 6 17.806 5 18.762 
7 16.106 8 16.819 8 17.337 9 17.804 4 18.761 
9 16.105 9 16.818 -6 17.335 7 17.800 24 18.757 

 
 

   Nastiest   Moderately 
Nasty         Mid - range  Moderately 

Nice           Nicest 

 
To generate each stimulated environment, we took random combinations of each of the 

eight representatives, also accounting for the residuals between the actual and mini 
tournament payoffs. This procedure was repeated 200 times, thereby producing a wide 
range of environments. 

As a proxy for the niceness or nastiness of each environment, we use the average payoffs 
across all 45 entries. The 200 environments are sorted by this index and broken into five 
equal-sized groups. We ranked the score for each strategy within each group. Table 5 
summarizes the results by giving the top 10 finishers in each environment. For ease of 
reference, the basic strategy types are shown below for each listed entry. (The entry 
numbers refer to MITCS2 rankings.) 

Table 5 shows a clear, consistent pattern supporting the results of Tables 3 and 4. The top 
strategies are very stable in moderate environments and fall only slightly in more extreme 
cases. It is encouraging to see that the COALENC entries perform so well even in very nasty 
environments. Even in the single nastiest environment, where over 60% of the random 
weight is allocated to the nasty representatives, four COALENC entries finish in the top 10, 
and only one nasty strategy finishes in the top 25. 

One surprise that emerged out of the simulations is entry 11. This strategy is based on a 
very unusual notion: It identifies the second-best player in each game (in terms of cumulative 
payoffs) and mimics that player’s previous action. This rule adapts very well to extreme 
environments (good or bad) since it goes along with coalitions in a most magnanimous way 
(good in nice environments) but never initiates coalition behavior (good in nasty 
environments). If we look at alternative measures of performance, such as number of first-

entry type entry type entry type 
1A COALENC 5 COALENC 10 AVG. S 
1 COALENC 6 COALENC 11 MXCM. S 
2 COALENC 7 COALENC 12 COALENC 
3 COALENC 8 MIN. R 21 COALITION 
4 COALENC 9 AVG. S 24 COALITION 



place finishes in the 200 simulations, then 11 appears to be even stronger. It is the winner in 
50 of the environments, more than any other MITCS2 entry.4  

 
 

SUMMARY 
 

This article has examined the role of implicit coalitions in a generalized prisoner’s 
dilemma. We find the GPD interesting because it extends the classical PD to more realistic 
situations of more than two (but not many) players and it gives players the option of 
choosing actions from a continuous set. When we extend the PD to the GPD we find the 
possibility of implicit coalitions, that is, coalitions of cooperating players in an otherwise 
unfriendly world. We also expect, intuitively, that strategies that use tire continuous nature 
of the action space will do better than those that do not. 

We tested our conjectures in two three-player GPD’s, as described by equations 1 and 2. 
Our methodology was that of computer tournaments. In both tournaments, implicit 
coalitions proved to be the key feature that distinguished the most successful strategies (in 
terms of average score). In MITCS1 a simple discrete COALITION strategy won and other 
coalition strategies fared well. However, a specific coalition-encouraging strategy, COALENC, 
would have won had it been entered. In MITCS2, several different variants of COALENC did 
surprisingly well, especially considering the differences in the payoff function from MITCS1 
to MITCS2. Among the COALENC entries, magnanimity seemed to distinguish the very best 
algorithms. Finally, COALENC strategies held up very well in a variety of hypothetical 
environments, although at least one alternative algorithm did well in the nastiest of 
environments. Despite the fine showing of CEAVG3 and the other COALENC entries, we dare 
not make our claims too strong. The GPD is a rich and complex problem and our tournaments 
only begin to tap its complexity. Nonetheless, we do feel confident that implicit coalitions are 
important and should be considered in any situation modeled by a GPD. 

As in all research, interesting questions remain. Beyond the obvious questions of more 
than three players, alternative payoff functions, and still more complex algorithms, we feel 
that further investigation of magnanimity and further exploitation of continuous action are 
warranted. Algorithms that have greater adaptability to recognize competitors deserve 
attention. 

One interesting theme that emerged was that it often pays to be more cooperative than a 
simple one-for-one matching policy (such as TIT- FOR-TAT) would suggest. For example, in 
the second tournament, magnanimity implies that strategies should shade toward being 
more cooperative when choosing implicit coalition actions. Even in COALENC, when both 
actions are below Aic, the strategy chooses the more cooperative action of the other two 
players. Further investigation of this theme should prove fruitful. 

Beyond computer tournaments, there are possibilities for GPD experiments on human 
subjects and descriptive research to determine which real-world conflict situations are best 
modeled by OPDs and implicit coalitions. Finally, we view implicit coalitions as an excellent 

                                                            
4 Although entry 11 is most adept at winning, it does have its bad moments. It finishes out of the top ten 
40.5% of the time, including a low of twenty-ninth place in one environment. CEAVG3, for comparison, is far 
more robust with only 15.5% of its ranking below the top ten, never lower than fifteenth place. 



concept to examine the overlap (or differences) in the approaches used by cooperative and 
noncooperative game theory to study multiple player conflict situations.5 
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