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n most marketing experiments, managerial decisions are not based directly on the estimates of the parameters

but rather on functions of these estimates. For example, many managerial decisions are driven by whether or
not a feature is valued more than the price the consumer will be asked to pay. In other cases, some managerial
decisions are weighed more heavily than others. The standard measures used to evaluate experimental designs
(e.g., A-efficiency or D-efficiency) do not accommodate these phenomena. We propose alternative “managerial
efficiency” criteria (M-errors) that are relatively easy to implement. We explore their properties, suggest practical
algorithms to decrease errors, and provide illustrative examples. Realistic examples suggest improvements of
as much as 30% in managerial efficiency. We close by considering approximations for nonlinear criteria and

extensions to choice-based experiments.

Key words: conjoint analysis; experimental design; product development; efficiency
History: This paper was received June 30, 2005, and was with the authors 2 months for 2 revisions; processed

by Joel Huber.

1. Motivation
Consider the following three stylized examples.'

(1) A manufacturer of consumer electronic devices
is considering five features that might be added to the
device and is planning a conjoint analysis to deter-
mine whether the value of each feature to the con-
sumer is greater than the price that must be charged
based on the marginal cost of providing each feature.

(2) A retailer is considering seven changes in its
store layout and wants to design an experiment
to evaluate the potential changes. This experiment
would be carried out across 50 stores in an experimen-
tal region. Three of those changes are fundamental
and would change completely the layout of the store,
while four are less critical and are easily reversible.
Furthermore, store-layout constraints are such that
the fundamental changes can be implemented only in
pairs.

(3) A manager of a chain of fast-food restaurants
would like to test a new sales training program
and a focus on product bundles in display (both

! The first two examples were inspired by recent applications. The
third was suggested by the area editor.

binary variables). The manager controls two addi-
tional binary variables (sign types and interior décor).
The restaurants are spread around four independent
districts that are homogeneous within but heteroge-
neous between with respect to sales and response to
managerial actions. The manager is focused primar-
ily on the effects of the first two variables and their
interaction. The other variables are of minor interest,
unless they interact with the first two. The manager
is faced with the task of deciding how to design an
efficient experiment to determine which initiatives to
implement and where. Each observation is costly, and
the stakes are high: there is not only the cost of the
initiatives but the potential loss in sales if an initia-
tive fails.

These examples illustrate two related issues. Some
managerial decisions are based on combinations of
the partworth estimates (feature value versus price;
layout changes occurring in pairs) and some man-
agerial decisions are more critical than others (focus
on sales training and display bundles). The electronic
devices manufacturer is concerned with the part-
worths of the features relative to the partworths of
price, and the retailer is most concerned with three
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pairs of partworths representing the three critical fea-
tures taken two at a time. Precision on individual
partworths matters less to these managers. The fast-
food manager is focused on individual partworths
(and their interactions), but this manager wants more
precision on some partworths (and interactions) than
other partworths. Other practical examples include
magazine cover design (as in Conde Nast’s Web-based
system), services packages (as offered by Comcast,
DirecTV, the Dish Network, or Time-Warner Cable),
feature packages (as offered by General Motors, Ford,
and others), advertising copy design, and the design
of panels for sales forecasting (Sinha et al. 2005).

In this paper we illustrate that the standard mea-
sures of efficiency, used to evaluate conjoint analysis
designs and other experimental designs in marketing,
can be modified to take both issues of manage-
rial relevance into account. We introduce revised
error criteria, which we call managerial efficiency
or M-efficiency, and suggest that researchers should
seek designs that are M-efficient rather than effi-
cient by standard measures (D-efficiency, A-efficiency,
or G-efficiency—defined below). We examine proper-
ties of various M-efficiency criteria and suggest algo-
rithms (some existing) that can be used to improve
Me-efficiency. We begin with a brief review of effi-
ciency criteria.

For the purpose of this paper we consider designs
that are not adapted for each individual as in adap-
tive conjoint analysis (ACA) or polyhedral methods,
although M-efficiency criteria can be used, post hoc,
to evaluate the adapted experimental designs. We
begin with metric data and generalize our analysis to
choice data in §7.

2. Classical and Bayesian Definitions
of Efficiency

Researchers (and managers) usually seek experimen-
tal designs such that the estimates of the magnitude
of the experimental treatments, e.g., partworths in
conjoint analysis, have the smallest possible variance.
This goal is achieved by the use of designs that are
orthogonal (i.e., the parameter estimates are uncor-
related) and balanced (i.e., each level occurs equally
often within each factor). However, such designs
are not always feasible or cost effective (Addelman
1962, Kuhfeld et al. 1994). In response, researchers
have defined several measures of efficiency by which
to evaluate designs. These measures are known as
A-efficiency, D-efficiency, and G-efficiency, with the
two most common being A- and D-efficiency (Bunch
et al. 1994, Kuhfeld et al. 1994, Huber and Zwerina
1996, Arora and Huber 2001). These measures have
three characteristics in common. First, if a balanced

and orthogonal design exists, it has maximum effi-
ciency. Second, efficiency is maximized if the cor-
responding type of error is minimized (A-, D-, or
G-error). Third, that error is proportional to a norm
defined on the covariance matrix of the estimates of
the partworths (or experimental treatments). A-errors
are monotonically increasing in the trace of the
covariance matrix, D-errors in the determinant of the
matrix, and G-errors in the maximum diagonal ele-
ment. For metric data, A- and D-errors are defined as

A-error = gtrace((X'X)™")/n,
D-error = gdet((X'X)~")"".

In these definitions, X is the (suitably coded) exper-
imental design matrix, 4 is the number of questions,
and 7 is the number of parameters.

As we move to managerial relevance it is impor-
tant to note that each of the so-called “alphabeti-
cal optimality” criteria can be justified with Bayesian
loss functions (Chaloner and Verdinelli 1995). For
example, if priors are uninformative, A-efficiency
minimizes expected posterior squared-error loss.
D-efficiency maximizes the expected gain in Shan-
non’s information measure from the prior to the pos-
terior—the same criterion used in the U? statistic that
is common in logit analyses. If priors are informative,
we replace X'X with X'X+ R, where >R is the prior
covariance matrix and o? is the measurement error
variance. For ease of exposition we assume uninfor-
mative priors, commenting on the impact of R where
relevant.

3. A Numerical Example

Consider a metric conjoint analysis study, as in the
electronic devices example (first example in §1), with
five binary attributes plus price. The appendix pro-
vides an example of a balanced and orthogonal exper-
imental design (the first column corresponds to the
intercept) and the corresponding covariance matrix of
the parameters. This design minimizes A-errors (as
well as D-errors and G-errors).

Now consider the managerial decisions that must
be made. Assume that the cost of each feature is
$16.50 and that the difference between the low and
high levels of price is $50. In this numerical example
the manufacturer will include a feature in the device
if the consumer values a feature more than a price
reduction of $16.50. Let uy, u,, ..., us represent the
partworths (utilities) for the five features, let u, rep-
resent the partworth of a $50 price reduction, and let
C be an intercept in the estimation.

For suitably scaled partworths, the managerially
relevant willingness-to-pay (WTP) criterion is equiv-
alent to a focus on linear combinations of the part-
worths: my = uy —0.33u,, m, = u, — 0.33u,, ..., ms =
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us — 0.331,.2 We rewrite these goals in matrix form as
follows:

C
[m;] [0 1 0 0 0 0 —0337] |u
m, 001000 —033 U,
my|=[0 0 0 1 0 0 —033]-|us
my 000010 —-033 Uy
 ms| [0 0 0 0 0 1 —033] | us
L ¥y

C

U

U

= Myrp- | U3

Uy

Us

L 4y

The covariance matrix of the estimates of managerial
interest is proportional to M = Myp(X'X) ™ Miyrp
(Judge et al. 1985, p. 57).> As shown in the appendix,
the average variance of the estimates of the manage-
rial quantities is approximately 10% higher than the
average variance of the estimates of the partworths.
Moreover, even though the estimates of the param-
eters are uncorrelated, the estimates of managerial
interest are not. Minimizing A-errors (or D-errors)
ensures that the estimates of the partworths have the
highest possible precision; it does not ensure that the
estimates of managerial interest have the highest pos-
sible precision.

In some managerial situations a 10% change in
managerial precision is minor and traditional “alpha-
betical optimization” is sufficient. In other situations
where the value of the correct decision is high or sam-
pling costs are high, this change in precision can be

2WTP is the amount the consumer is willing to pay for the feature,
calculated as the price change that is needed to “buy” the utility of
the feature. If the utilities of no features and base price are scaled
to zero, the criterion becomes u,;($50/u,). WTP > $16.50 requires
that u;($50/u,) > $16.50, which is equivalent to u; — 0.33u, > 0.
Working with the difference of two random variables is easier than
their ratio—the ratio of two noncentral normal variates. Using dif-
ferences also likely reduces variance. Empirical evidence suggests
that the two measures (ratio and difference) are highly correlated
and that differences fit consumer choices slightly better than ratios
(Hauser and Urban 1986).

3 We restrict ourselves to full rank designs, X, where all partworths
are estimable. Efficiency measures can be defined for singular X
matrices, but many of the difficulties of such definitions are beyond
the scope of this paper. See Sibson (1972).

important. For example, we have been involved in
specialized pharmaceutical studies where respondent
incentives are $250 per respondent and more than 50
respondents must be screened to find a respondent
in the target category. The total cost per respondent
is close to $450.* With a typical target sample of
300 respondents, a 10% change in efficiency is worth
approximately $13,500; a 30% gain, as in one of our
illustrative examples, is $40,500. Over many studies,
such costs are substantial.

4. Defining M-Efficiency

We begin by generalizing standard efficiency mea-
sures and then examining their relationship to
Bayesian loss functions. By defining errors with
respect to a norm on SM we obtain the following
measures of managerial efficiency for suitably coded
X matrices (we denote the number of estimates of
managerial interest by 1,,):°

M -error =g trace(M(X'X)"'M') /n,;,
Mp-error = g det(M(X'X) ' M)/,

M,- and Mp-errors shift focus by considering the
covariance matrix of the estimates of managerial inter-
est rather than that of the partworths. The concepts
of orthogonality and balance may be generalized
as well: We say that a design is M-orthogonal if
MX'X) M’ is diagonal, and M-balanced if all the
diagonal elements of this matrix are equal. Intuitively,
a design is M-orthogonal (respectively, M-orthogonal
and M-balanced) if it is orthogonal (respectively,
orthogonal and balanced) in the managerial quantities.

It is important to note that, unlike A- and D-errors,
M,- and Mp-errors are not minimized by designs that
are M-orthogonal and M-balanced. Recall that for A-
and D-errors, “if a balanced and orthogonal design
exists, then it has optimum efficiency” (Kuhfeld et al.
1994, p. 546). This does not generalize to M,-errors or
Mp-errors. In particular, a design can be M-orthogonal
and M-balanced but not maximally M,-efficient or
Mp-efficient. We provide an example in a techni-
cal appendix at http://mktsci.pubs.informs.org (on
the Marketing Science website). Kuhfeld et al.’s (1994,

*Cost estimates from market research professionals. Because effi-
ciency is proportional to a norm on variance, a 10% change in
efficiency implies a reciprocal change in sample size necessary to
obtain the same precision.

®The statistics literature has examined linear weightings of the
covariance matrix. It is easy to demonstrate that My-errors are a
version of the general D ,-optimality criterion introduced by Sibson
(1972), who examines a variety of duality theorems with respect
to D4-optimality. We are unaware of any subsequent applications.
See also summary in Silvey (1980). Chaloner and Verdinelli (1995)
allow covariance weighting for Bayes A-optimality but do not tie
their A matrix to the managerial focus implied by M.
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pp. 548-549) caution for A- and D-errors is even
more relevant for M,- and Mp-errors: “Preserving
orthogonality at all costs can lead to decreased effi-
ciency. Orthogonality was extremely important in the
days before general linear model software became
widely available. Today, it is more important to con-
sider efficiency when choosing a design.” Despite this
caveat, M-orthogonality and M-balance remain attrac-
tive properties and usually tend to decrease M,- and
Mp-errors.

Defining efficiency with respect to M addresses
our first goal, enabling managers to focus on com-
binations of partworths rather than the partworths
themselves. However, M,- and Mp-errors, like A-
and D-errors, do not explicitly enable managers to
place different weights on different decisions. As
defined, M,-error implicitly weighs the precision of
each combination equally.® Mj-error weighs the pre-
cisions equally and, because the determinant is the
product of the eigenvalues of the managerial covari-
ance matrix, tends to favor equal precisions among
the combinations. We allow differential weighting by
defining M, -errors, a generalization of M,-errors. For
brevity and focus, for the remainder of this paper, we
focus on M,- and M, -errors, leaving generalizations
to Mp-errors to other researchers.” 8

We define weights, {w;};c1,. ), that allow the man-
ager to accept less precision on the estimates of some
managerial quantities in exchange for more precision
on others. Let W be the diagonal matrix such that
W,; = w;. We define M,-errors as follows:

trace(WM (X' X))t M’) M, - aM

M, -error =g trace(W) =q TP

where o is the variance of the estimate of the ith
managerial partworth combination. M,-error is a spe-
cial case of M,-error where all the weights are equal.

We leave the choice of the weights {w;};cy, . 4,
to the manager or researcher, potentially adding a
layer of complexity to the application of M-efficiency.

¢ However, one can implicitly achieve differential focus by rescaling
the rows of M. Our definition of M;-errors, below, makes differen-
tial weighting explicit and should make it easier for managers to
specify differential weighting.

7For example, M,,-errors might be based on a weighted sum of
the logarithms of the eigenvalues of M(X'X)?M'. The algorithms
we explore for M,-errors are extendable to such definitions of
M, p-errors. However, it might be difficult to tie this definition to
an easy-to-define loss function.

8 We note also that, if M is square and full rank, a design X that
minimizes D-errors also minimizes Mp-errors because det(X,) =
det(M(X'X)'M') = det(M)det((X'X)~')det(M’). Because M is
fixed, this last expression is minimized if det((X'X)™') is min-
imized. Fortunately, the relationship between M,-errors (or
M, -errors) and A-errors is more interesting, even if M is square and
full-rank.

Simulations (below) suggest that changing the focus
from individual partworths to combinations of part-
worths has a larger impact on efficiency than allowing
differential weights for the precisions of these combi-
nations. Thus, the selection of weights might be less
critical managerially than the selection of combina-
tions of partworths on which to focus.

Like A- and D-errors, the M,- and M,-error cri-
teria might be justified with Bayesian loss functions
(Chaloner and Verdinelli 1995). Let us assume that our
objective is to minimize a measure of estimation error
captured by the following quadratic loss function:

E(z (M), — (M) )

= E[(Mii — M) W(Mii — Mi)]
= E[(ii — i)y M'WM(ii — )],

where 1 is the vector of partworths, @ is an esti-
mator for i, and the expectation is over a prior
distribution on i and the respondent’s possible
answers. If we assume a diffuse prior on 1, this loss
function is proportional to trace(M'WM(X'X)™!) =
trace(WM(X'X)'M'), i.e., it is proportional to M-
error (M -error is obtained if W =I). For informative
priors, we replace X'X with X'X +R.

5. Algorithms to Generate M-Efficient

Designs

Most existing algorithms that minimize A- or D-errors
are discrete optimization methods that can be adapted
readily to the managerial criteria. Researchers can
develop M-efficient designs with Dykstra’s (1971)
sequential search method, Mitchell and Miller’s (1970)
simple exchange algorithm, Mitchell’s (1974) DET-
MAX algorithm, or Cook and Nachtsheim’s (1980)
modified Federov algorithm (see Kuhfeld et al. 1994
or Kuhfeld 2005 for a review). We illustrate the
generation of M-efficient designs using the modi-
fied Federov algorithm. This algorithm starts with a
design X° and, for each row i in sequence (start-
ing with i = 1), computes whether efficiency can be
improved by replacing X; with each possible row not
currently in the design. If more than one exchange
increases efficiency, the exchange that leads to the
greatest improvement is performed. The algorithm
iterates until no further improvement is possible.

M ,-Errors

We first examine the improvements possible for M
matrices that focus precision on managerial issues
(My-errors). We applied the algorithm to generate
M ,-efficient designs corresponding to 1,000 randomly
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generated square M matrices.” The M,-error of the
final design was, on average, 9.1% lower than the
M, -error of the initial orthogonal design (85.7% of the
improvements were between 5% and 15%).

We improve the algorithm’s performance slightly
by modifying its starting point. Note that any design
proportional to XM is M-orthogonal and M-balanced
if X is balanced and orthogonal (X'X = gI). Specif-
ically, M(M'X'XM)™'M' = MM 'qI(M')"'M' = ql.
Intuitively, right multiplying X by M makes the
design orthogonal and balanced in the estimates of
managerial interest, rather than the initial parameters.
If XM has noninteger elements, we round the ele-
ments to the closest “admissible” integers or combi-
nations of integers. Using XM as a starting solution
and applying the modified Federov algorithm to 1,000
randomly generated M matrices as above, the aver-
age improvement is 9.2% relative to the orthogonal
design X—small but significant improvements rela-
tive to starting with X (p < 0.05).

It is interesting that the design XM alone (with-
out applying the modified Federov algorithm) might
decrease M ,-errors relative to X, as illustrated in the
appendix. Let X and Myyp be as in §3 (see also the
appendix). Because in this case there are fewer man-
agerial issues than partworths, we obtain a full-rank
square matrix My by augmenting Myp (we select
the extra rows such that all entries of XM, are
between —1 and 1 and all integrality constraints are
satisfied).!® The new design Xyp has an M,-error
equal to the (optimal) A-error of the original design
X (Myrp(Xiyrp Xwrp) " Miypp versus (X'X) '—see the
appendix). This M,-error is 9.8% lower than for X
(Myrp (Xiyrp Xwrp) ™ Miyrp versus Mypp(X'X) ™ Miyrp—
see the appendix). Qualitatively, relative to the orig-
inal design X, the improved design Xyp does not
set price to its extreme levels, but rather closer to the
“cost” of providing features (as embedded in Myp).
Doing so increases the variance of the price part-
worth, but lowers the variance of the estimates of
managerial interest. This managerial focus contradicts

®The row and column of M corresponding to the intercept were
set to 0, except for the first element of the first row, which was set
to 1. All other elements of M were independent and identically dis-
tributed (i.i.d.) as uniform variates between —1 and +1. We re-drew
the matrix M until its conditioning number was less than 30. (If
we impose no constraint on the conditioning number, the average
improvement is 15.6%.) The starting point of the algorithm was the
orthogonal design X from the appendix.

10 Although in the previous simulations integrality constraints
applied to all columns of all design matrices (and were enforced
by rounding the elements of XM), in this example the last column
corresponds to price and might take continuous values between —1
and +1.

common wisdom of setting continuous factors to their
extreme levels to minimize A- (or D-) errors.!!

M, -errors

We next explore the improvements possible for M
matrices that focus on managerial issues and W matri-
ces that imply that some managerial issues are more
important than others. We randomly generated 1,000
square M matrices as above and, in addition, gener-
ated a W matrix for each M. The w;s were drawn from
an iid. uniform distribution on [0, 1]. We applied
the modified Federov algorithm (using XM to gener-
ate a starting point). To compare the impact of focus
(M) versus importance (W) we also generated equally
weighted designs (generated under the assumption
that W =1). We evaluate M,-error using the “correct”
weights, W.

Using M -error and the “correct” W, the algorithm
produced a design that was, on average, 14.4% better
than the orthogonal design (A-efficient design). Using
the algorithm with an “incorrect” set of managerial
weights, W = I, but evaluating the design using the
“correct” weights W, the algorithm produced a design
that was still better than the orthogonal design in
95.6% of the cases, the average improvement being
8.9%.!? These simulations suggest that focusing pre-
cision on the managerial quantities has a greater
impact than weighting these managerial quantities. It
appears that M;-errors might be moderately robust
with respect to the manager’s choice of weights.

Illustrative Example—Fast-Food Manager
We further illustrate the use of M-efficiency for a man-
ager of a chain of fast-food restaurants, who is inter-
ested in four factors and four districts (third example
from §1):

* x; (binary): existence of a training program

* x, (binary): focus on product bundles in display

(“display bundles” for short)

* x; (binary): sign type

* x, (binary): interior décor

* X; (four levels): district fixed effect
We consider two related problems. In the first prob-
lem the manager is more interested in some effects
than others (W). In the second, the manager also
prefers to focus on combinations of factors (M and
W). We highlight the approach and results here and
refer the reader to the technical appendix for details.

1 One exception to common wisdom is Kanninen (2002), who
reduced D-errors for choice-based designs by dropping an integrality
constraint and setting one feature to a nonextreme level.

12Recall that this 8.9% measures improvements in M,-errors. The
earlier 9.2% was improvements in M,-errors.
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Different W. Suppose the manager wishes to exam-
ine the effects of x; and x, and their interactions with
the other factors and the districts: x; *xx,, X, X3, X, %Xy,
Xy % X5, X, * X5, and x, % x5 % x,. This represents the
manager’s judgment that the training program might
interact with display bundles, that display bundles
might interact with sign type and interior décor (with
a potential three-way interaction between these three
variables), and that both the training program and
display bundles might interact with districts. In that
case, the effect of the M matrix is only to select a
subset of all possible effects. We represent differen-
tial focus with weights on the precision of the more
important managerial quantities: the parameters asso-
ciated with x;, x,, x; % x, are three times the weights
of the other nine interactions.

Let us assume that the number of restaurants to
be included in the experiment is 24, a number that
favors traditional measures of efficiency. We used
the %Mktex macro in SAS to generate a D-efficient
design that allows the estimation of the interactions
of interest (Kuhfeld 2005)."> We then used the mod-
ified Federov algorithm to generate an M;-efficient
design. The algorithm achieved a 5.1% improvement
in M;-errors (compared to the D-efficient design).!*

Different M and W. For the second problem we
assume that, due to budget constraints, the man-
ager can implement at most one of the main fac-
tors (training program or display bundles) and that
he or she plans to set the sign type and interior
décor to their (known) more desirable levels. In this
case, the managerial quantities of interest are the
effects on sales of three alternative feature combina-
tions (no change, training program only, display bun-
dles only). Because of potential interactions with the
four districts we obtain 12 managerial quantities. As
a further illustration we assume that more restau-
rants are located in the first district, such that the
precisions of the corresponding estimates are three
times more important to the manager. These assump-
tions imply a different focus and a different set of
weights. Applying the modified Federov algorithm
now provides a design that reduces M-errors by
30.5% (relative to the D-efficient design). These reduc-
tions are consistent with our simulations; that is, a
larger improvement if we change focus as well as
weight. The larger decrease is larger than average but
within the range of the simulations.

13 D-efficiency in this example includes main effects as well as the
interactions of interest. We compare the M-efficient design to a
D-efficient and not an A-efficient design because the %Mktex macro
does not work with A-efficiency. Note however that Mj-errors are
also lower for the M, -efficient design compared to the D-efficient
design.

4 We ran the algorithm with five different random starting points
and retained the most M,-efficient design. This was necessary
because the D-efficient design was locally optimal.

6. Generalization to Nonlinear

Managerial Quantities

Linear combinations of partworths (including inter-
actions) can be used to represent many important
managerial decisions, but some managers might wish
to model nonlinear functions directly, such as prof-
itability or market share.’® Suppose that the manage-
rial quantities are given by m; = fi(uq, ..., u,), m, =
fluy, oo uy), .o, my, = f, (4,...,u,) and assume
that the manager has prior beliefs on the value of .
Such priors, used frequently in choice-based conjoint
analysis, can be obtained through pretests (Huber and
Zwerina 1996, Arora and Huber 2001) or interviews
with managers (Sandor and Wedel 2001). They may
be captured by point estimates (Huber and Zwerina
1996, Arora and Huber 2001) or by continuous sub-
jective probability distributions (Sandor and Wedel
2001). In theory, one can define loss functions with
respect to the m;s, specify full prior distributions,
model the data likelihood, and obtain a design to min-
imize posterior loss. However, “approximations must
typically be used because the exact expected utility is
often a complicated integral” (Chaloner and Verdinelli
1995, p. 284). We suggest a practical way to approxi-
mate M-efficiency for such functions.'®

Consider first a point prior estimate #° on ii. Using
a first-order Taylor’s series expansion, we have

my fi(ud, u3, ..., ul) (uy —ul)
m;, N fz(“?/ u, ..., ”2) M (uy — uj)
m, fu (U3, 15, ., u)) (u, — )

+ higher-order terms,

where the ijth element of M s (af,./auj)(ﬁo). The
approach used in this paper can then be applied using
“’_ or M -errors. In the case of a prior described by

a continuous distribution g, M,- and M;-errors may
be defined as

M 4-error = / (M -error) g (1) du®
mﬂ

M, -error = [ (M -error) g (1) du.
nr

7. Generalization to Choice-Based
Conjoint Designs

In choice-based conjoint designs the covariance

matrix, Q7!, is given by: Q7' = (Z'PZ)~!, where Z

is a probability-centered design matrix and P is a

> We thank the area editor for suggesting this extension.

1¢In contrast, the Bayesian experimental design literature typically
approaches nonlinear problems by maximizing the expected Fisher
information matrix.
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diagonal matrix of choice probabilities. A-, D-, and G-  Appendix

errors are then defined with respect to Q~' (Huber Orthogonal and balanced design, X:

and Zwerina 1996, p. 308; Arora and Huber 2001, p.

274). For example, we have!” F4+1 41 -1 -1 -1 -1 —17
D-error(choice) = det((Z'PZ)"H)'/", t -1+ -1+ 41+l

1 1 1 1 -1 1 1
A-error(choice) = trace((Z'PZ) ") /n. oA L

+1 -1 -1 +1 +1 -1 +1

Following the arguments in this paper, the asymp- +1 +1 +1 -1 +1 +1 -1
totic covariance matrix of the managerial quantities ol 1 41 o1 a1 a1
is SM_ = M(Z'PZ)"'M’, and we define M,- and g | A
M, -errors analogously. The algorithms employed +1 +1 -1 -1 +1 -1 +1
to derive M-efficient designs generalize readily to 41 -1 -1 -1 -1 41 -1

choice data. We provide an example in the techni-
cal appendix, again using WTP as the estimates of -1 41 -1 -1 -1 +1
managerial interest. We obtain a D-efficient design +1 -1 +1 +1 -1 -1 -1
from the balanced and orthogonal design X in
the appendix by cyclically generating alternatives
as in Arora and Huber (2001) and Huber and L+1 -1 -1 +1 +1 +1 -1
Zwerina (1996). The M-efficient design obtained from

the design Xyrp (also in the appendix) improves  Managerial quantities:

My-errors by 9.8% and Mp-errors by 8.4%.

+1 +1 +1 +1 +1 -1 -1

010000 —0337
8. Summary and Future Research 0010700 -033
We suggest easy-to-implement criteria to focus exper- Myp=[0 0 0 1 0 0 -033
imental designs on estimates of managerial interest 000010 —033
when (1) managerial decisions are based on combi-
nations of conjoint partworths or experimental treat- (000001 -033]

ments, and/or (2) some managerial decisions are
more crucial than others. We extend (and improve Covariance matrix of the parameter estimates:
slightly) existing algorithms to develop experimental

designs that minimize M,- or M,-errors and obtain S = (X X)"!

improvements of as much as 30%. Our simulations

. [0.0833 0 0 0 0 0
suggest that improvements are greater when the man-
ager seeks to change his or her focus than when 0 0083 0 0 0 0
the manager seeks to weight criteria differentially. 0 0 0.0833 0 0 0
M-efficiency can be generalized to choice-based exper- =
. . . . 0 0 0 0.0833 0 0
iments and can approximate nonlinear managerial
criteria. 0 0 0 0 0.0833 0

Future research might further extend, adapt, and Lo 0 0 0 0 0.0833 ]

generalize traditional measures of efficiency to take
into account recent developments in the conjoint anal-
ysis literature. For example, efficiency measures could
be developed for recently proposed optimization-
based estimation methods (Cui and Curry 2005,

Covariance matrix of the managerial estimates under X:
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Evgeniou et al. 2005). Measures of efficiency could be [0.0924 0.0091 0.0091 0.0091 0.00917
developed to evaluate adaptiye design algorithm.s or 00091 0.0924 0.0091 0.0091 0.0091
to account for the endogeneity of adaptive designs

(Hauser and Toubia 2005, Toubia et al. 2003). Finally, = | 0.0091 0.0091 0.0924 0.0091 0.0091
efficiency measures could be generalized to account 0.0091 0.0091 0.0091 0.0924 0.0091
for parameter dynamics (Liechty et al. 2005). | 0.0091 0.0091 00091 0.0091 0.0924 |

M, -error(X) =1.1089
17In this definition we follow the literature and drop the constant, g,
which does not affect any optimization. Mp-error(X) =1.0908
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Augmented matrix of managerial quantities:

1 0 0 0 0 O 0 7
010 0 0 -0.33
001000 -033
Mjwp=[0 00 1 0 0 -033
000010 -033
000 O0O0T1 -033
L0 O 0O 0O 0O 0 0.01 ]
Managerial design, Xyp:
r+1 +1 -1 -1 -1 -1 0.98 7
+1 -1 41 -1 +1 +1 -0.32
+1 +1 41 +1 -1 +1 -0.98

+1 -1 -1 41 +1 -1 0.34
+1 +1 +1 -1 +1 +1 -1.00
+1 +1 -1 +1 -1 +1 -0.32
+1 +1 -1 -1 +1 -1 034
+ -1 -1 -1 -1 +1 098
+ -1 +1 -1 -1 -1 1.00
+ -1 +1 +1 -1 -1 032
—1.00
—0.34

Covariance matrix of the managerial estimates under Xyp:

M - (Xiyrp - Xwe) ™ - Miyrp

Xwrp =

+1 +1 +1 +1 +1 -1

L+1 -1 -1 +1 +1 +1

0.0833 0 0 0 0

0 0083 0 0 0

=| o 0 00833 0 0

0 0 0 00833 0
L0 0 0 0  0.0833

M -error(Xyp) = 1.00
Mp-error(Xyp) = 1.00
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