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1. Website Morphing and
Its Limitations

Website morphing customizes the look and feel of
a website to customers’ cognitive styles. The basic
algorithm, developed by Hauser, Urban, Liberali, and
Braun (2009, hereafter HULB), combines Bayesian infer-
ence of latent cognitive-style segments with dynamic
programming optimization to match website designs
to customers. Bayesian inference on a customer’s click-
stream infers probabilities that the customer belongs
to the latent segments. Using these probabilities and
data from past purchases, the dynamic program auto-
matically selects the best look and feel for the website
for each customer. The “morph” assignment is (near)
optimal in the sense that it balances learning about
the best assignment for a segment with the profit
that can be obtained by exploiting current knowledge
of morph-to-segment purchase probabilities. HULB

use data from a “calibration study” to simulate what
would had happened had the BT Group implemented
morphing on its broadband-sales website. HULB esti-
mate that morphing would have increased revenue by
$80 million.

Subsequently, Urban et al. (2014) adapted morphing
to banner advertising. The only modification in the
HULB algorithm was to account for multiple customer
visits to the same website. In a field test with over
100,000 customers viewing over 450,000 banners on
a CNET website, they report that banner morphing
almost doubled click-through rates relative to a ran-
dom assignment of banners. They also conducted a
laboratory test on an automotive information and
recommendation website to test the basic concept of
morph-to-segment matching. The experiment replaced
the automated algorithm with direct measurement in a
four-to-five week longitudinal study. Click-through
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rates on banners, as well as consideration and pref-
erence for Chevrolet-branded vehicles, increased sig-
nificantly when morphs were matched to customer
segments. The Chevrolet application expanded the defi-
nitions of customer segments to include the stage of the
automotive buying process (collecting data, comparing
vehicles, committing to a purchase).

The HULB algorithm, used in the BT Group and
CNET tests, assumes that only the customer’s final
clicks on the website affect the probability of purchase
(or, in the case of banners, click-through rates). The
algorithm assumes further that the act of switching the
look and feel of a website or banner has no effect on
the probability of purchase. And, finally, the algorithm
does not take into account that customers might exit
the website, sometimes after a relatively few clicks.

This paper proposes an improved algorithm that
accounts for three phenomena: the impact of all clicks
on a customer’s experience, switching costs, and ran-
dom exit. We do so by transforming an inherently hard
switching-cost problem, with a curse-of-dimensionality
computational explosion, into a formulation that
accounts for the phenomena and can run between clicks
on a real website. We demonstrate that accounting for
these phenomena can increase performance dramati-
cally. For example, a counterfactual policy simulation,
based on a proof-of-feasibility application to a Japanese
bank website, suggests sales would have increased
relative to random morph assignment. The increase
was 63% of that obtainable by perfect information
and over five times the 12% achievable by the HULB
algorithm. (Systematic simulations, reanalyzing the
HULB application, suggest average improvements of
about 1.8× that of HULB.)

The improved algorithm nests the HULB algorithm
in the sense that it reduces to the HULB algorithm for
specific (and we feel extreme) values of key parameters.
When parameters can be identified from a calibration
study, the algorithm does at least as well as the HULB
algorithm. For many reasonable parameter values, the
improved algorithm outperforms the HULB algorithm
substantially. The improved algorithm almost always
outperforms the HULB algorithm even if parameter
values are chosen incorrectly.

We begin by reviewing the HULB algorithm,
then present the behavioral model, and propose the
improved algorithm. Subsequent sections describe the
synthetic-data analyses and policy simulations based on
a Japanese bank application. We close with a discussion
of unsolved problems.

2. Brief Review of the HULB Website
Morphing Algorithm

This section presents an abridged version of the
HULB website morphing algorithm. To stay consis-
tent, we adopt the notation used by both HULB

and Urban et al. (2014). Appendix A summarizes
all notation. Greater details on derivations are avail-
able in HULB. A user’s guide, code, pseudocode,
example questionnaires, and data are available in
the supplemental material to this paper (available at
http://dx.doi.org/10.1287/mnsc.2014.1961).

2.1. The Constructs of Morphing: Morphs,
Segments, Clickstream, Calibration

We first provide a qualitative overview of the constructs
used in morphing. Detailed examples are available in
both HULB and Urban et al. (2014) and their online
appendices.

2.1.1. Morphs. Morphs refer to alternative imple-
mentations of the overall look and feel of a marketing
instrument such as a website (HULB) or banners (Urban
et al. 2014). For simplicity of notation, this paper focuses
on the look and feel of websites. Creating alternative
morphs imposes a fixed cost on website or banner
design—Urban et al. (2014) report an estimated cost
of $250,000 for the many Chevrolet banners tested.
This fixed cost (and sample size issues discussed later)
means that most applications use a moderate number
of morphs. HULB use eight.

2.1.2. Customer Segments. Customers are classi-
fied into a set of mutually exclusive and collectively
exhaustive segments under the hypothesis that differ-
ent segments respond differently to the morphs. The
BT Group, CNET, and Chevrolet applications classi-
fied customers by cognitive styles; in the Chevrolet
application customers were also classified by the stage
of their buying process. Typically, in a calibration
study prior to implementing the morphing algorithm,
segment membership can be observed with intru-
sive measurement. During day-to-day implementation
on a website, (latent) segments cannot be observed
directly and must be inferred (probabilistically) from
the customer’s clickstream. As with morphs, practical
considerations require that the number of segments be
moderate—16 for the BT Group application, 4 for the
CNET application, and 12 for the Chevrolet applica-
tion. The selection of segments is a modeling decision
as discussed extensively in the market segmentation
literature.

2.1.3. Clickstream. As a customer explores a web-
site in day-to-day operations, we observe the cus-
tomer’s clickstream. In particular, on any webpage,
the customer must choose among a number of links.
Some links are pictures, some are text, some take the
customer to another webpage, some open a comparison
tool, etc. We call these click alternatives, and we observe
the customer’s sequential choice of click alternatives.
So that we might use the customer’s sequential choices
to infer the customer’s segment probabilities, we code
each click alternative by a series of click characteristics.
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For example, HULB code each click alternative by
11 characteristics, some of which are based on evalua-
tion by independent judges (e.g., graphs or text), some
of which code specific targets (e.g., an analytic tool),
and some of which code actions (e.g., post a comment).

2.1.4. Outcomes. Our goal is to maximize an out-
come such as sales (BT Group) or click-through (CNET).
The algorithm works with other binary outcomes such
as aware or not aware, prefer or not prefer, intend to
purchase or not intend to purchase, or a Boolean com-
bination of such measures. The outcome is observed
at the end of the customer’s visit to the website. For
example, a BT Group customer might either purchase
broadband service or leave the website. Typically, we
code a customer as leaving the website if there is
no activity in 30 minutes. The BT Group application
considered only one visit to the website, but the CNET
application used cookies to track multiple visits. In
CNET, a successful outcome occurred if the customer
clicked through on at least one of the visits. Algorithms
seek to assign morphs to customers by maximizing the
time discounted value of successful outcomes from the
current customer and all future customers.

2.1.5. Calibration Study. Prior to implementing
the morphing algorithm in day-to-day operations,
some parameters must be estimated. To obtain data
to estimate these parameters, we recruit a sample
of customers to answer questions before and after
visiting the website. During the calibration study,
morphs are assigned randomly to respondents. These
calibration-study questions enable us to assign cali-
bration customers to segments and estimate a model
that, conditioned on segment membership, predicts
customers’ click-alternative choices as a function of the
characteristics of the click alternatives. Because it is
not feasible to ask such calibration-study questions
for day-to-day visitors, we use a Bayesian model to
estimate day-to-day customers’ latent segment proba-
bilities. We refer to customers in the calibration study
as respondents to avoid confusion.

2.2. Posterior Probabilities of (Latent)
Segment Membership

2.2.1. Notation. Let n index customers, r index
segments, m index morphs, and t index clicks for
each customer. Capital letters R, M , and Tn denote
totals. (We do not need N for customers. We use N
later for a different construct.) Let ctn denote the tth
click by nth customer, and let Ectn = 8c1n1 c2n1 0 0 0 1 ctn9
denote the vector of clicks up to and including the tth
click. At each click choice, the customer faces Jtn click
alternatives as denoted by ctnj, where j indexes click
alternatives. We let ctnj = 1 if customer n clicks the jth
click alternative on the tth click and ctnj = 0 otherwise.
Let Extnj denote the characteristics for click alternative j

faced by customer n on the tth click. Let EXtn be the set
of the Extnj up to an including the tth click for all j = 1
to Jtn. Let ũtnj be the utility that customer n obtains
from clicking on the jth click alternative on the tth click.
Let E�r be a vector of click-alternative-characteristic
preferences for the rth customer segment, and let �̃tnj
be an extreme value error such that ũtnj = Ex′

tnh E�r + �̃tnj.
Let ì be the matrix of the E�r ’s.

2.2.2. Calibration of Preferences for Click-
Alternative Characteristics. In the calibration study, we
observe the customer’s segment, r , the customer’s click-
alternative choices, EcTnn, and the click-alternative char-
acteristics the customer faced at each click-alternative
choice, Extnj. The extreme value error gives us the stan-
dard logit model with the following likelihood for the
nth respondent in the calibration study:

Pr4EcTnn � rn = r1ì1 EXtn5

= Pr4EcTnn � rn = r5=

Tn
∏

t=1

Jtn
∏

j=1

( exp6Ex′
tnj E�r 7

∑Jt
l=1 exp6Ex′

tnl E�r 7

)cntj

0 (1)

The likelihood over all respondents in the calibra-
tion study is simply the product of the individual-
respondent likelihoods. With Equation (1), we obtain
estimates (maximum-likelihood methods) or Bayesian
posteriors (Markov chain Monte Carlo sampling, with
priors) of ì. (HULB use Bayesian posteriors; Urban
et al. 2014 use maximum-likelihood methods.) We
denote the estimates (or the mean of the posterior dis-
tributions, if Bayesian methods are used) by ì̂. Because
morph assignments are made in real time, it is not
feasible to sample from the full posterior distribution
when Bayesian methods are used.

2.2.3. Probabilities That a Customer Belongs to
Each (Latent) Segment. In day-to-day website opera-
tions, we treat ì̂ as known. We observe the customer’s
clickstream, Ec�on, up to the �oth click, and we observe
the relevant click-alternative characteristics, the EX�on

.
We seek to estimate the probability that the nth cus-
tomer belongs to segment r for all r = 1 to R. Denote
these probabilities, after the �oth click, by qrn�o . From
the calibration study we know the unconditional prior
probabilities, Pr0 4rn = r5, that the nth customer belongs
to segment r . (Some websites might recalibrate these
priors periodically.) Given the observed clickstream,
clickstream characteristics, and ì̂, we use Equation (1)
to obtain Pr4Ec�on � rn = r1 ì̂1 EXtn5. Bayes’ theorem pro-
vides the following:

qrn�o 4Ec�on1 ì̂1 EX�on
5

≡ Pr4rn = r � Ec�on1 ì̂1 EX�on
5

=
Pr4Ec�on � rn = r1 ì̂1 EX�on

5Pr04rn = r5
∑R

s=1 Pr4Ec�on � rn = s1 ì̂1 EX�on
5Pr04rn = s5

0 (2)
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Equation (2) (and the imbedded Equation (1)) runs
sufficiently fast on most computers that we obtain the
qrn�o 4Ec�on1 ì̂1 EX�on

5 between clicks on the website.

2.3. Choosing the Optimal Morph If We Knew
the Customer’s Segment

Customer n’s true segment is latent, but we find it
easier to explain the HULB algorithm for a hypothet-
ical case that assumes we know customer n’s true
segment. We relax this assumption in §2.4. Let prmn

be the probability that customer n in segment r , who
experienced morph m, will make a purchase (or other
success criterion). We represent our knowledge, prior to
customer 1, about prm1 with a beta distribution that has
parameters �rm1 and �rm1. Specifically, f14prm1 � �rm11
�rm15∼ p

�rm1−1
rm1 41−prm15

�rm1−1. Define prmn, �rmn, and �rmn

accordingly. After each customer, we update to the
posterior distribution, fn4prmn � �rmn1�rmn1�rmn5, where
�rmn and �rmn are sufficient to summarize data from
customers 1 to n− 1. Because �rmn and �rmn are used
to make decisions about customer n, they do not yet
include observations for customer n.

Let �rmn = 1 if the nth customer is in segment r
and makes a purchase after seeing morph m; �rmn = 0
otherwise. (We temporarily add the r subscript to �rmn

to indicate that the segment, r , is known.) Then, because
the binomial outcomes are naturally conjugate to beta
priors, Appendix B shows that �rm1n+1 = �rmn +�rmn and
�rm1n+1 = �rmn + 41 − �rmn5. Normalizing the value of a
purchase to 1.0 implies that the immediate reward we
expect from the nth customer is E6prmn ��rmn1�rmn7=
�rmn/4�rmn +�rmn5.

Assigning the optimal morph to the nth customer is
more complicated than simply maximizing the imme-
diate reward. Whenever we assign a morph m to a
customer in segment r and observe an outcome, we
update the posterior distribution for prmn. The updated
distribution enables us to make better decisions in the
future. The dynamic decision problem must balance
immediate rewards with the knowledge gained that
enables better decisions in the future.

HULB demonstrate that this dynamic decision prob-
lem, for known rn, is the classic multiarmed bandit
problem studied by Gittins (1979). Gittins (1979) proved
that the problem is “indexable” and that the optimal
solution is to compute an index for each arm and
choose the arm with the largest index. (Indexability
has a technical definition, but in lay terms, an “arm”
of a multiarmed bandit is indexable if, when an index
increases, the set of states for which choosing the
arm is optimal does not decrease. Indexability implies
an index strategy is feasible, although it does not
guarantee an index strategy is optimal. Very often an
index strategy is near optimal.) Because the detailed
derivations are available in Gittins (1979), summarized

in HULB, and otherwise widely known, we do not
repeat them here. We repeat only the basic equations.

Let Grmn be the Gittins index for the mth morph
assuming the customer is in segment r , and we have
updated �rmn and �rmn based on all customer purchases
up to but not including the nth customer. If a ≤ 1
is the discount rate from one customer to the next
and if VGittins4�rmn1�rmn1a5 is the value of continuing
with parameters a, �rmn, and �rmn, then Grmn solves the
following Bellman equation:

VGittins4�rmn1�rmn1a5

=max
{

Grmn

1−a
1

�rmn

�rmn+�rmn

[

1+aVGittins4�rmn+11�rmn1a5
]

+
�rmn

�rmn+�rmn
aVGittins4�rmn1�rmn+11a5

}

0 (3)

Intuitively, the right-hand side chooses the maximum of
a fixed “arm” and an uncertain “arm.” The fixed “arm”
pays the expected value Gittins index over all future n.
The uncertain arm pays a unit reward if the outcome
is a success and nothing if it is not. A success occurs
with an expected probability of �rmn/4�rmn +�rmn5. The
uncertain arm also pays the value of continuing to
explore optimally for future n, but discounted by a.
The continuation values account for updating the beta
distribution.

Equation (3) does not have an analytic solution, but
we readily compute the Gittins indices with a simple
iterative numeric algorithm. (We reuse code developed
by Gittins. Code is available in Gittins et al. 2011.) For
a given a, we table Grmn as a function of �rmn and �rmn.
If the segment r were known, the HULB algorithm
would simply look up the Gittins indices for all m and
choose the morph with the largest index.1 This strategy
would lead to the maximum long-term profit taking
both exploration and exploitation into account. In the
special case where we are limited to using the same
website or banner for everyone (R= 15, we can use the
Gittins index algorithm to choose the optimal website
or banner for each n.

2.4. Choosing a Morph When Segments Are
Partially Observable

2.4.1. Partially Observable Markov Decision Pro-
cess. When a customer’s segment is not known with
certainty, the dynamic program changes. Because the
latent segments is only partially observable, the opti-
mization problem requires we solve a partially observ-
able Markov decision process (POMDP). The state
space is Markov because the full history is summarized
by the �rmn’s, the �rmn’s, and the latent segments.

1 As n gets large, Grmn → �rmn/4�rmn +�rmn5. We table �rmn and �rmn

up to the point where this difference is small, that is, to a maximum
of 3,000. Because the function is smooth, we use linear interpolation
for noninteger values. See example in Appendix 3 of HULB.
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2.4.2. Expected Gittins Index. Krishnamurthy and
Mickova (1999) prove that the POMDP is an indexable
decision process. Krishnamurthy and Mickova (1999)
establish further that if we compute the expectation
of the Gittins index over our uncertainty about the
customer’s latent segment and choose the morph that
has the largest expected Gittins index (EGI), then,
in many cases, the EGI policy will be very close to
optimality. More critically, because the EGI is easy
to compute, we can select a (near) optimal morph
in real time (between clicks on the website). HULB
provide simulation evidence that the EGI strategy
works extremely well for website morphing.

Specifically, the EGI algorithm replaces the Gittins
index with the expected Gittins index, EGmn, and
chooses the morph with the largest EGmn, where

EGmn =

R
∑

r=1

qrn�o 4Ec�on1 ì̂1 EX�on
5G

rmn
4�rmn1�rmn1 a50 (4)

The HULB algorithm requires that we choose arbitrar-
ily the click on which to morph. HULB use �o = 10,
and Urban et al. (2014) use �o = 5. Equation (4), with
minor modification, also enables us to choose the best
starting morph for each customer. We simply replace
qrn�o 4Ec�on1 ì̂1 EX�on

5 with qrno, our beliefs about the cus-
tomer’s segment prior to observing any clicks. HULB
use qrno = Pr0 4rn = r5, but it would also be feasible to
use periodic updates.

2.4.3. Updating Beliefs When Segments Are Par-
tially Observable. Updating beliefs when the cus-
tomer’s segment is known is particularly easy because
the binomial distribution and the beta distribution are
naturally conjugate. When the segments are latent,
Appendix B demonstrates that updating is no longer
naturally conjugate. However, we can still update
if we consider “fractional observations”; that is, if
we observe a success, �mn, conditioned on the cus-
tomer having seen morph m, we consider this as a
fractional success for each latent customer segment, r .
(Note that the outcome, �mn, is not conditioned on r
because the segment is latent.) The fractional success is
qrnTn

4EcTnn1 ì̂1 EXTnn
5�mn for each r = 1 to R. The binomial

distribution is well defined for fractional observations
and naturally conjugate to the beta distribution. HULB
update via

�rm1n+1 = �rmn + qrnTn
4EcTnn1 ì̂1 EXTnn

5�mn1

�rm1n+1 = �rmn + qrnTn
4EcTnn1 ì̂1 EXTnn

541 − �mn50
(5)

Updating occurs when the customer leaves the website;
thus we use all clicks, EcTnn. Appendix B provides
complete derivations as well as arguments that these
updating formulae lead to posterior distributions that
converge to a mass point at the true values of the

prm1 true’s as n→ �. HULB provide simulation evidence
that the fractional updating formulae lead to effective
and profitable morph-to-segment assignments. These
simple formulae enable the morphing algorithm to run
in real time between a customer’s clicks on the website.
With future, faster computers, one might improve the
updating formulae.

2.5. Experience with the HULB Algorithm
Website morphing imposes a high initial fixed cost.
The estimated $80 million in incremental revenue for
the BT Group, the observed banner click-through lifts
of 80%–100% for CNET’s context-matched banners,
and the observed 30% lift in Chevrolet brand consider-
ation justify the initial fixed cost for these high-traffic
websites. Morphing also requires high traffic because
of its convergence properties.

A sale by the BT Group to the 4n+ 15st customer is
worth almost as much as a sale to the nth customer.
The HULB example with 100,000 visitors per annum
implies a discount rate of a= 00999999 (HULB, p. 208).
When a is close to 1.0, the optimal strategy includes
substantial exploration. With known segments, HULB
report that their algorithm explored heavily for the
first 1,000 customers; it did not stop exploring until
the 3,000th customer. They illustrate convergence with
their Figure 3 (HULB, p. 209). With 16 equal-sized
segments, the HULB algorithm would likely stabilize
around the 50,000th customer.

Success probabilities for banners are typically much
lower than success probabilities for sales on a morph-
ing website—the order of 0.003 in Urban et al. (2014)
versus 0.38 in HULB. As a result, Gittins indices take
longer to stabilize in banner morphing than in web-
site morphing. Nonetheless, the Urban et al. (2014)
experience is informative. In their application with
100,000 customers, the algorithm stabilized for the
largest segments, but was still exploring for the smallest
segment of approximately 9,000 customers.

The experience by HULB and Urban et al. (2014)
suggest that we should evaluate performance up to
approximately 10,000 customers per segment. Thus, the
four-segment synthetic data experiments in this paper
examine performance from 1 to 40,000 customers per
simulation—10,000 customers per segment.

3. Behavioral Theory Improvements:
Key Assumptions

The HULB algorithm has no way to determine the
click on which to morph. Instead, both HULB and
Urban et al. (2014) choose an arbitrary click. This
limitation would only be optimal if the morph seen
by customers prior to the �oth click had negligible
impact on successful outcomes (sales or click-through).
The implications of this implicit assumption were
never tested.
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Because Gittins’ (1979) solution requires that switch-
ing costs are zero (Banks and Sundaram 1994), and
because bandit problems with switching costs are
often computationally difficult, HULB assumed that
customers experienced no switching costs when the
website morphed. Indeed, without special structure,
switching costs cause the optimization problem to
become NP complete (Jun 2004, p. 526; Ny and Feron
2006, Theorem 1).

To address switching costs and the decision of when
to morph, we specify a theory of customer behavior. To
date, no such theory exists with respect to morphing.
We seek a theory that is parsimonious, captures the
essence of the phenomena, and is sufficiently “con-
jugate” that a when-to-morph (WTM) algorithm is
feasible in real time between clicks on the website. To
the extent that these assumptions can be improved,
our tests are conservative. Future elaborations might
improve website morphing further.

3.1. Assumption 1: Switching Costs
An extensive literature in psychology and marketing
studies the cognitive cost of switching. Papers in psy-
chology, beginning with Jersild (1927), generally study
the cognitive cost of completing a task (e.g., Spector
and Biederman 1976). Meiran (2000) establishes that
switching among methods of response in a computer
task imposes cognitive loads on respondents. In mar-
keting, switching costs are well established in many
sales contexts (e.g., Weiss and Anderson 1992), appear
to apply for cognitive costs (Jones et al. 2000, 2002),
and affect purchase intention. For websites, Balabanis
et al. (2006, p. 217) suggest that “cognitive search costs
in online shopping environments can be significant,”
and Johnson et al. (2003, p. 63) report that “perceived
switching costs 0 0 0 create a cognitive ‘lock-in’ ” for web-
sites. It is likely that the cognitive costs of switching
morphs reduce the benefit of matching a website’s look
and feel to a customer segment.

The cost of switching is salient with a hypothetical
example. Suppose that the initial morph for the nth
customer is graphical and focused. The nth customer
experiences this morph and learns to search based on
a graphical-focused look and feel. Now suppose that
subsequent clicks by the customer suggest instead that
the best morph is verbal and general. If we were to
switch morphs, the customer might become confused
and have to relearn his or her search strategy. Although
the verbal-general morph might have been best for the
customer had the website had those characteristics from
the beginning, it may not be best after the customer has
learned to use a graphical-focused website. In general,
it is such path dependence that makes switching-cost
optimization problems NP complete.

Additive switching cost are common in the literature,
and algorithms exist (e.g., Banks and Sundaram 1994,

Dushochet and Hongler 2006, Jun 2004), but additive
switching costs impose path dependence and make it
infeasible to determine when to morph in real time. On
the other hand, a multiplicative switching cost can be
factored out in a Bellman equation. As we demonstrate
below, we can solve a problem with multiplicative
switching costs in real time. Specifically, we assume
that a switch in the look and feel of the website lowers
the customer’s purchase probability. The switch lowers
the purchase probability by a factor of �, where � ≤ 1.
In this formulation, the HULB algorithm is a special
case that assumes � = 1.

Fortunately, multiplicative switching costs have
descriptive advantages. First, because predicted out-
comes, prmn’s, are bounded between 0 and 1, a multi-
plicative factor does not violate that bound, whereas
an additive factor might. Second, although untested,
we expect that the amount by which a low probability
is lowered by a switching cost will be less than the
amount by which a high probability is lowered by a
switching cost. For example, suppose a switch lowers
prmn from 0.900 to 0.810. A comparable proportional
cost would lower prmn from 0.090 to 0.081, whereas a
comparable additive cost would lower prmn from 0.090
to 0.000. Likely the former is more realistic.

One might generalize � to assume that �mm′ is a
function of the morphs from which and to which the
customer switches. We leave that generalization to
future research because (1) it would introduce severe
state dependence that would likely make the dynamic
program infeasible, (2) it would introduce a substantial
measurement burden requiring a large number of
parameters (56 parameters in the BT Group application
and 132 parameters in the Chevrolet application), and
(3) the HULB algorithm treats morphs as independent.
Nonetheless, morph-specific switching costs are an
interesting and challenging extension.

3.2. Assumption 2: The Impact of Being
Exposed to Multiple Morphs

The HULB algorithm assumes that only the last morph
affects purchase probabilities. Implicitly, morphs prior
to the switch have zero impact on purchase probabilities.
However, suppose that the system morphs after the
10th click and the customer makes a purchase decision
after the 20th click. There is no reason to assume
that the first 10 clicks have less impact than the last
10 clicks. The last 10 clicks may have more impact
(recency), less impact (primacy), or equal impact. To
allow various assumptions, we assign weights, wt , to
clicks to account for the differential impact of early
versus late morphs. Let Ew be the vector of these weights.
(Section 3.5 discusses other models.) Setting wt =w
for all t implies equal impact. Setting wt equal to an
increasing (decreasing) function of t assigns greater
impact to later (earlier) morphs. The HULB algorithm
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assumes a special case for Ew. In particular, the HULB
algorithm implicitly sets wt equal to zero for t ≤ �o and
wt =w for t > �o.

In equation form, if customer n sees morph mtn

at the tth click (or the tth observation period), we
generalize the HULB assumption to

prn =
∑

t

wtprmtn
0 (6)

To keep the number of wt’s small, we allow t to index
observation periods that may be one click or more than
one click. We normalize the impact weights so that
they sum to 1.0 over clicks (or observation periods).
Switching costs, when relevant, apply for all t in
Equation (6).

3.3. Assumption 3: Variation in the Number of
Clicks for Each Customer’s Visit

Some customers find the information they need quickly,
make a purchase decision, and exit the website. Other
customers visit many areas of the website, gather
extensive information, and leave later. We cannot
assume, nor do the data support, an assumption that all
customers stay for all observation periods. The number
of clicks does not seem to be particularly correlated
with either the morph given or the purchase probability,
but rather reflects the (unobservable) information needs
of the customer.

Let �tn be the probability that customer n leaves on
the tth click given that customer n has already made
t− 1 clicks. For example, before we observe the first
click, we expect the customer to leave after that click
with probability �1n, to leave after the second click
with probability 41 −�1n5�2n, to leave after the third
click with probability 41 −�1n541 −�2n5�3n, and so on.
For each possibility, we normalize the effective impact
weights, w′

t , to account for the number of clicks before
exit. This model generalizes the implicit assumptions
of HULB that �tn = 0 for t < Tn and �Tn1n

= 1 for some
Tn � �o.

The only datum we observe for each customer is
the click at which he or she leaves; thus we need a
reasonably parsimonious model that balances nonsta-
tionarity over t with heterogeneity over n. In §6.6 we
demonstrate how to estimate the parameters of the
model from the calibration study. Recall that morphs
are assigned randomly during the calibration study.
We obtain maximum-likelihood estimates based on the
observed times of exit.

3.3.1. Model 1: Heterogeneity over Customers.
Model 1 assumes that �tn is beta distributed over
customers with parameters �� and �� but indepen-
dent of t: f�4�tn � ��1��5 ∼ �

��−1
tn 41 −�tn5

��−1. Given
this assumption, we can readily calculate the prob-
ability that a randomly chosen customer will leave

after any given click. We obtain the predicted proba-
bility of leaving by integrating out the heterogeneity.
For example, simple calculus provides the probabil-
ity of leaving after the first click as ��/4�� + ��5,
the probability of leaving after the second click as
����/64�� +�� + 154�� +��57, after the third click as
����4�� + 15/64�� +�� + 254�� +�� + 154�� +��57, etc.
Using these values, we calculate the probability that a
customer remains on the website through the tth click.

3.3.2. Model 2: Homogeneity over Customers, But
Nonstationarity over Clicks. Assume �tn = �t for all n.

3.3.3. Model 3: Hybrid Model. Respondents might
remain on the website for some initial clicks, but, after
those initial clicks, revert to a different �tn that is
heterogeneous in n (as in Model 1).

3.3.4. Model 4: Extensions. We might assume that
exit probabilities depend on the customer’s segment,
the terminal morph, or the morph history, e.g., �trm,
�trmm′ , etc. For example, �trmm′ might be a function of
the dissimilarity between morph m and morph m′.
These extensions complicate the optimization challenge
and are left to future research.

3.4. Selecting Values of the Tuning Parameters
The switching discount (�5 and the impact weights
( Ew5 are tuning parameters in the more generalized
algorithm. They must be selected before the algorithm
is used to morph a website (in day-to-day operations).
The time of exit is easy to observe in the calibration
study. We estimate the parameters of a model for
exit probabilities (�tn’s) using standard methods. (Exit
seems more tied to the customer’s information needs
than the morph given; hence calibration data are likely
sufficient for these parameters.)

The tuning parameters, � and Ew, require either man-
agerial judgment or experiments during the calibration
study. In a calibration study, segment membership
is measured directly, therefore the true rn is known
among calibration respondents. Applications to date
vary morphs randomly over customers to estimate the
priors, prm1. A more complex experimental design might
vary morphs randomly over customers and randomly
switch morphs within customers. With a sufficient sam-
ple size, estimates of the tuning parameters, �̂, Êw, and
the p̂rm1’s, are all identified from observed customer
outcomes (sales or click-throughs). For example, if there
are eight morphs, four segments, and four observation
periods, we need to estimate 37 parameters (32 p̂rm1’s,
4 ŵt’s, and �̂5. For each segment, some customers see
one morph for all periods. Some customers see two
morphs with switches varied over t = 1, 2, or 3. A full
factorial would be 8 × 4 (single morph combinations)
plus 8 × 7 × 4 × 3 (two morph combinations) for a total
of 704 combinations—more than enough to identify
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37 parameters. If a feasible algorithm could be devel-
oped to account for different �mm′ ’s, they, too, would be
identified, albeit with a large sample size requirement.

We might also update the tuning parameters after
initial experience on the website, say, after observing
50,000 customers. Although the optimal morph alloca-
tions are based on the assumed values of the tuning
parameters, we might still identify �̂ and Êw based
on the likelihood principle. See related discussions in
Hauser and Toubia (2005) and Liu et al. (2007). Basi-
cally, in vivo, a morphing algorithm will have assigned
various morphs to consumers at various time periods
and will have done so based on known rules from
known data. We observe �mn for every consumer who
was so assigned. If the likelihood principle is assumed,
it should be feasible to estimate � and Ew. Future algo-
rithms might also explore optimal experimentation
to learn the tuning parameters while learning about
the prmn’s.

3.5. Alternative Assumptions
Making the decision of when (whether, how often) to
morph is a challenging optimization problem. We must
solve the problem optimally or near optimally, and
we must do so in real time between customer clicks.
Modeling switching costs, impact weights, and exit
probabilities with separable functions enables rapid
solutions. We believe our assumptions are simple,
realistic, flexible, and well matched to the data available
in website-morphing applications. However, other
assumptions are possible. For example, we might make
� an increasing function of the clicks before a switch
and a decreasing function of the clicks after a switch,
or we might allow � to depend on the number of
prior switches. Equation (6) might be replaced by a
nonlinear function. Either � or Ew might be modeled as
heterogeneous over segments or over customers.

All website morphing applications to date used
clicks rather than clock time because clock time adds
unobserved variance due to network speed, distrac-
tions while browsing, and variations in reaction time.
Although clicks are correlated with clock time in our
field experiment (�= 00571 p < 0001), future applications
might model �, Ew, and �tn as functions of clock time
rather than clicks. With experience and new research,
we might find one or more of these extensions feasible
and profitable. For now, we believe our assumptions are
reasonable, robust, and generalize website morphing.

4. When to Morph: Explicit
Endogenous Decisions on Timing

The HULB algorithm identifies the best morph to
give to each customer based on a fixed number of
customer clicks. We can do better with an algorithm
that determines endogenously the number of clicks
to observe before morphing. The improved WTM
algorithm also allows, but does not require, more

than one change in morphs. In this section, t indexes
observation periods that may be more than one click.

4.1. Dynamic Decision Problem
Figure 1 illustrates the WTM decision problem for the
case where the customer makes a purchase (or leaves
the website) after four observation periods. (The theory
applies when the number of observation periods is a
random variable; four morphs is just an illustration.)
Specifically, during observation period tn, the website
displays morph mtn. The respondent makes clicks,
ctn, while exploring the website, and we update our
beliefs about the customer’s segment, qrn4Ectn1 ì̂1 EXtn5.
Using the new information, and anticipating more
information from subsequent decision periods, we
decide which morph, mt+11n, to display in the next
decision period. To keep track of morph changes, we
define ãm′

tnt
as an indicator variable such that ãm′

tntn
= 1

if we change to morph m′
tn for customer n in period t.

With this notation, the total number of morph changes
for customer n is Ntn =Nt−11n+

∑

m′
tn
ãm′

tntn
. We represent

the purchase decision by �n = 1 if the customer makes
a purchase and �n = 0 if the customer does not make a
purchase. We dropped the m subscript from HULB’s
�mn to allow for the fact that more than a single morph
may have affected outcomes for customer n.

Figure 1 illustrates the basic dilemma. The longer we
wait to morph, the more clicks we observe. More clicks
enable us to identify better customer n’s segment and,
hence, the best morph for customer n. However, when
the impact weights imply that early morph experience
affects purchase probabilities or if the customer is
likely to leave early, we want to get to that best morph
as rapidly as feasible. The problem is compounded
because switches are costly.

4.2. Formulating a Feasible Bellman Equation
Optimizing morph decisions for the problem in Figure 1
is challenging. It is even more challenging when embed-
ded within a dynamic program to learn the best morph
to assign for each customer segment (as in HULB). For
example, Asawa and Teneketzis (1996, p. 329) caution:
“inclusion of a switching penalty drastically changes the
nature of the bandit problem 0 0 0 0 The optimal policy
is not given by an index rule anymore.” Although
heuristics exist using multiple indices (e.g., Dusonchet
and Hongler 2006), the number of indices explodes
exponentially in a morphing problem were there are,
potentially, tens of thousands of costly switches (one or
more switches for each customer).

The problem is further compounded when Bayesian
updating is used to identify customer segments. Each
switch presents new click opportunities, which cus-
tomers choose probabilistically based on their (latent)
customer segment and the morph decision. We might
anticipate how our decisions in observation period t
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Figure 1 When-to-Morph Decision Problem (Example Customer, Four-Period Illustration)

m1n m2n m3n m4n

Observe
clicks

tn = 1 tn = 2 tn = 3 tn = 4

Observe
clicks

Observe
clicks

Observe
clicks

m1n m2n m3n m4n

Purchase
decision, �n ,
if leave after

tn = 4

c1n → qrn(c1n)’s c2n → qrn(c1n , c2n)’s c3n → qrn(c1n , c2n , c3n)’s c4n → qrn(c1n , c2n , c3n , c4n)’s

Reduce purchase
probability by factor

of � if m2n ≠ m1n

Reduce purchase
probability by factor

of � if m3n ≠ m2n

Reduce purchase
probability by factor

of � if m4n ≠ m3n

Impact
weight, w1

Impact
weight, w2

Impact
weight, w3

Impact
weight, w4

Leave after period
with probability �1n

Leave after period
with probability �2n

Leave after period
with probability �3n

Leave after period
with probability �4n

Notes. Choose morph (mtn) at each decision period to maximize sales, �n . The qrn ’s are also a function of ì̂ and EXtn . Some arguments are suppressed in this
figure to avoid complexity.

affect the observations that update qrn4Ec�n1 ì̂1 EX�n5 for
� > t. This problem quickly becomes intractable. We
need to finesse the explosion in the number of potential
click paths. Finally, any solution must take into account
that customers leave stochastically between observation
periods.

We address these challenges with an algorithm that
runs between a customer’s clicks on the website. Our
solution recognizes that the two decisions, morph-to-
segment assignment (HULB) and when to morph, are
based on learning and optimization that occur over
vastly different time scales. The HULB optimization is
based on learning from observed outcomes of tens of
thousands of customers, whereas the WTM optimiza-
tion problem is based on learning customer segments
from clicks within a customer’s visit. Because Gittins
indices, Grmn, summarize the rewards from optimal
assignment in all future periods (and are only updated
when a customer exits), the indices remain constant
between clicks and serve to summarize the value of
assigning morph m to customer n. This heuristic strat-
egy is analogous (but not identical) to optimal solutions
in the branching bandit literature. (We expand these
intuitive arguments in §4.2.5.)

To make the WTM algorithm feasible between clicks,
we exploit the likelihood principle. Specifically, after
the tth observation period, the best Bayesian estimate
of customer n’s purchase probabilities after all obser-
vation periods (EcTnn) is based only on clicks up to
and including the tth observation period (Ectn). This
principle enables us to finesse the explosion in click
opportunities that is dependent on our decisions for
customer n after observation period t. To formulate

the Bellman equation, we consider carefully what we
know about customer n’s segment, when we know it,
and how this affects the future.

4.2.1. Immediate Reward. The first simplification
comes from linear impact weights, which enable us
to separate outcomes by observation period. The
second simplification comes from the multiplicative
nature of switching costs, which enables us to fac-
tor them out. The third simplification comes when
we recognize that, independently of future clicks,
our best estimate at t of the terminal probabili-
ties, qrn4EcTnn1 ì̂1 EXTnn

5, is qrn4Ect−11n1 ì̂1 EXt−11n5. In other
words, the qrn4Ect−11n1 ì̂1 EXt−11n5 represent our expec-
tations over all future clicks. With these simplifi-
cations, we write the expected immediate reward,
EIR4mtn1mt−11 Ect−11n1 ì̂1 EXt−11n5, as

EIR
(

mtn1mt−11n1 Ect−11n1 ì̂1 EXt−11n

)

= �ãmtnwtn

∑

r

Ectn1 ct+11n10001cTn � Ect−11n
qrn4EcTn1 ì̂1 EXTnn

5Grmtn

= �ãmtnwt

∑

r

qrn4Ect−11n1 ì̂1 EXt−11n5Grmtn
0

4.2.2. Value of Continuing Optimally. To formu-
late the value of continuing optimally, we recognize
that the evolution of qrn4Ec�n1 ì̂1 EX�n5 depends on the
true customer segment. However, at period t (and even
at period Tn5, we are uncertain about the true segment.
We have an expectation over rtrue1n for the purchase
probabilities, and we have an expectation over rtrue1n

for the evolution of qrn4Ec�n1 ì̂1 EX�n5 for � ≥ t.
To keep track of these expectations, we temporarily

write the evolution of the clicks as conditioned on rtrue1n.
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If m∗
t+11n4rtrue5 is the morph we would choose at t + 1 if

the true segment for customer n was rtrue1n, then the
continuation value is

Vt+1

(

m∗

t+11n4rtrue1n51mtn1 Ect−11n1 ì̂1 EXt−11n � rtrue1n

)

≡ max
mt+11n

Ectn1 ct+11n10001cTn � Ect−11n
Vt+14mt+11n1mtn

1 Ect−11n1

ctn1 ct+11n1 0 0 0 1 cTnn1 ì̂1 EXTnn
� rtrue1n50

But rtrue1n is not known when we are making the
decision at t, so we account for this dependence for
� ≥ t by taking an expectation over this unknown
variable at t; that is, we take an expectation over the
true segments when we compute the continuation
value for � ≥ t. Going forward to any observation
period, � , under the assumption that the true seg-
ment is rtrue1n, we would like to anticipate how the
qrn4Ec�n1 ì̂1 EX�n5 will evolve for any future sequence
of morphs. However, in practical situations, the state
space is so large that we cannot anticipate the future
clickstream for � ≥ t. At the start of the tth decision
period, our best estimate of customer n’s segment
probabilities over all future clickstream paths remains
qrn4Ect−11n1 ì̂1 EXt−11n5. In other words, V� depends on
Ect−11n for � ≥ t. Backward induction does the rest.

Putting it all together enables us to optimize the
current period’s morph, mtn, by backward induc-
tion using a computationally rapid Bellman equa-
tion. Naturally, we keep track of the ãm�n�n

’s for
� ≥ t when we compute the conditional values,
V�4m

∗
�n1m�−11n1 Ec�−11n1 ì̂1 EX�−11n � rtrue1n = s5:

Vt4m
∗

tn1mt−11n1Ect−11n1ì̂1 EXt−11n5

=max
mtn

{

�ãmtnwt

∑

r

qrn4Ect−11n1ì̂1 EXt−11n5Grmtnn

+
∑

s

[

qsn4Ect−11n1ì̂1 EXt−11n5

·Vt+14m
∗

t+11n1mtn
1Ect−11n1ì̂1 EXt−11n �rtrue1n=s5

]

}

0

(7)

4.2.3. Variation in the Number of Periods for Each
Customer’s Visit. Purely for ease of exposition, we
derived the WTM Bellman equation assuming a fixed
number of observation periods. It is relatively simple
to generalize the Bellman equation for variation in
the number of periods for each customer’s visit. The
assumption of §3.3 provides the separability necessary.
Let ën4S � t− 15 be the probability that customer n is
still at the website at observation period S given that
customer n was at the website at observation period
t − 1. The expectation over customers is ë̄ 4S � t − 15
because we do not know customer n’s exit probability
prior to observing an exit. Using any of the random-
exit models in §3.3, we calculate this probability via

ë̄ 4S � t − 15= En6
∏S

s=t41 −�ns57. The random exit (r0e0)
Bellman equation is then the following equation, where
the impact weights are renormalized to reflect the
periods in which the customer remains on the website:

Vt

(

m∗

tn1mt−11n1Ect−11n1ì̂1 EXt−11n �r0e0
)

=max
mtn

{

�ãmtnwt

∑

r

qrn4Ect−11n1ì̂1 EXt−11n5Grmtnn
ë̄ 4t � t−15

+
∑

s

[

qsn4Ect−11n1ì̂1 EXt−11n5

·Vt+14m
∗

t+11n1mtn
1Ect−11n1ì̂1 EXt−11n1r0e0 �s5

]

·ë̄ 4t+1 � t5

}

0 (8)

4.2.4. Modified Bayesian Updating. The HULB
algorithm assumes that only the last morph seen by
customer n affects the probability of a successful out-
come for customer n. For real-time computation, HULB
treated the observed outcome, �mn, as a series of frac-
tional outcomes as determined by the (latent) segment
probabilities, qrn4EcTnn1 ì̂1 EXTnn

5. The WTM algorithm is
based on a more general behavioral assumption that
allows impact weights for all observation periods. We
therefore generalize the updating procedure (Equa-
tion (5), §2.4.3). As demonstrated in Appendix B, we
can generalize HULB and treat each combination of a
period and a latent segment as a fractional observation.

Let �mnt = 1 if customer n saw morph m dur-
ing the tth observation period, and let �mnt = 0
otherwise. The fractional observation for period t,
morph m, and segment r is based on the �mnt, the
impact weights wt , the switching-cost penalty, and
qr4EcTnn1 ì̂1 EXTnn

5. Appendix B motivates the following
(practical) updating equations:

�rm1n+1 = �rmn + qr 4EcTnn1 ì̂1 EXTnn
5�NTn

·

( Tn
∑

t=1

�mntwt

)

�n1

(9)
�rm1n+1 = �rmn + qr 4EcTnn1 ì̂1 EXTnn

5�NTn

·

( Tn
∑

t=1

�mntwt

)

41 − �n50

4.2.5. Motivation for Expected Gittins Index
Decoupling. The WTM optimization (Equations (7)
and (8)) is feasible because we decoupled the decision
on when to morph for a customer from optimal experi-
mentation between customers. We cannot prove that
decoupling retains the near optimality of the expected
Gittins index, but we can examine the synthetic-data
experiments and the Japanese bank counterfactual.
The WTM algorithm does quite well relative to the
HULB algorithm and relative to an upper bound of
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perfect information. The WTM algorithm achieves a
net present value that is 60%+ of that achieved by
perfect information. No algorithm could do better than
perfect information.

There are intuitive reasons to believe that decoupling
will be near optimal. First, the observed �n cannot
affect the decision of when to morph for customer n.
The Gittins indices, Grmn’s, and the distributions of the
purchase probabilities, prmn’s, are updated after customer
n leaves the website. Second, the WTM decision is
based on learning about a customer’s segment during
a visit, whereas the morph-to-segment decision (HULB)
is based on learning about the purchase probabilities
using the terminal segment-membership probabilities.
Third, learning through Gittins indices happens many
orders of magnitudes slower than decisions of when
to morph. Empirical evidence (§2.5) suggests that
Gittins indices stabilize after 40,000–100,000 customers
depending on the number of morphs and segments.
On the other hand, decisions about when to morph
depend on clickstream observations on the order of
fractions of a single customer’s website visit. Fourth,
decoupling is analogous (but not equivalent) to the
“branching bandits” literature, where researchers have
proven that it is often optimal to replace the uncertain
outcome of an indexable decision process with its
Gittins index (Bertsimas and Niño-Mora 1996, Tsitsiklis
1994). For example, Weber (1992) analyzes a “super
process” in which an initial bandit process has rewards
that are themselves bandit processes. To solve the
superprocess dynamic program optimally, Weber (1992)
replaces the outcome of each secondary bandit process
with its Gittins index. He then uses those indices as
rewards when computing the indices for the arms in
the primary bandit process.

At minimum, we expect the WTM algorithm will
provide substantial improvements relative to the HULB
algorithm. We examine the magnitude of such improve-
ments in §5.

4.3. Summary of the Algorithmic Improvements
The HULB algorithm has proven successful on
calibration-study-based synthetic data representing the
BT Group website and for a field experiment morphing
banners on CNET. However, the HULB algorithm
assumes that only the last morph matters, that there
are no switching costs, and that customers do not
leave the website randomly. Our proposed WTM algo-
rithm generalizes the HULB algorithm to address those
issues. The algorithm is based on a series of behavioral
assumptions that we feel are reasonable and capture
the relevant phenomena. The WTM algorithm runs
in real time between clicks on a website and iden-
tifies when to morph while retaining the ability to
allocate the best morph to each customer. The WTM
algorithm requires “tuning” parameters for impact

weights and switching costs. The tuning parameters
can be estimated with a sufficiently large sample in
the calibration study. Lacking a calibration study, the
parameters can be set by managerial judgment. We now
examine the WTM algorithm with synthetic data and
with a counterfactual policy simulation based on a
proof-of-feasibility application.

5. Synthetic Data Experiments
If customers are described accurately by the behav-
ioral assumptions, the principle of optimality suggests
that the WTM algorithm will outperform the HULB
nested algorithm. We use synthetic data experiments
to examine the amount of the improvement. We also
examine robustness by comparing the HULB algorithm
to the WTM algorithm when the WTM algorithm uses
incorrect values of the tuning parameters.

5.1. Reanalysis of the HULB BT Group Simulations
HULB tested their algorithm with synthetic data cho-
sen to mimic behavior on the BT Group website. In
particular, they used the p̂rm estimated from the calibra-
tion data to create prm1 true’s. If morph m was assigned
to a customer in segment r after the first �o clicks,
HULB drew a binomial outcome based on prm1 true and
updated accordingly. To simulate Bayesian segment
identification, HULB drew customer click-alternative
choices with Equation (1) using the ì̂ estimated from
the calibration data (up to 20 webpages and 16 click
alternatives per webpage). The qrn�o 4Ec�on1 ì̂1 EX�on

5 were
based on the simulated clickstream and Equation (2).

We begin by reexamining the HULB BT Group simu-
lations. We examine a hypothetical world in which there
are four observation periods of five webpages each
(20 webpages as in the HULB simulations). Data are
generated with � = 0095 and Ew = 400251002510025100255.
We compare the proposed WTM algorithm with the
HULB algorithm, which implicitly assumes � = 1 and
Ew = 401010115. This example illustrates that there exists
at least one case where the WTM algorithm substan-
tially improves revenue. Because the calculated rewards
include switching costs, the rewards in Table 1 are
smaller than those reported by HULB.

We select four customer segments and simulate
10,000 customers from each segment (a total of 40,000
synthetic customers per simulation). Visual inspec-
tion of the Grmn plots indicates that 10,000 synthetic
customers per segment are sufficient to observe per-
formance for finite n and at (or near) convergence.
Although the variance over simulations is small, we
simulate each algorithm 10 times and take the average.

Table 1 summarizes the relative improvements. We
report the net present value of the rewards using the
discount factor from HULB, a= 00999999. We also report
the rewards over the last of 40,000 synthetic customers
as an indication of the rewards after the Grmn’s have
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Table 1 Reanalysis of BT Group Website Morphing (with Switching Costs and Impact Weights)

Reward at Percent improvement Net present value Percent improvement
convergencea in rewardb (%) (NPV)c in NPVd (%)

Baseline for no morphing 003171 000 003108 000
Website morphing

Website morphing (HULB) 003392 3304 003306 3006
Website morphing with improved algorithm 003567 6000 003442 5106

Perfect information (n → �5e 003831 10000 003754 10000

Notes. For these comparisons, switching costs are � = 0095. Impact weights are Ew = 400251002510025100255.
aRewards for the last 400 customers out of 40,000 customers.
b(Reward due to algorithm − reward at no morphing)/(reward due to perfect information − reward at no morphing).
cNet present value of the rewards divided by the number of periods.
d(NPV due to algorithm − NPV at no morphing)/(NPV due to perfect information − NPV at no morphing).
eThis is the upper bound. Applications do not have perfect information on either customer segments or purchase probabilities.

converged to the prmn’s. The relative improvement
in the net present value of rewards is substantial
(51.6% for WTM versus 30.6% for HULB). The relative
improvement is even larger at convergence (60.0% for
WTM versus 33.4% for HULB).

HULB (p. 212) report that a 1% increase in sales on
the BT Group website is worth approximately $4 million
in revenue. Based on this valuation, the improvement
due to the HULB algorithm over random allocation is
approximately $25.5 million. The improvement of the
WTM over the HULB algorithm is worth approximately
$17.5 million.

5.2. Systematic Comparisons Using a Full-Factorial
Design for Tuning Parameters

We examine whether the WTM algorithm improves
outcomes for a wide range of switching costs and
impact weights. We vary switching costs systematically
from � = 0080 to � = 1. We choose � = 0080 as a lower
value because HULB report an improvement of approx-
imately 20%. Such an advantage would not be sufficient
if � < 0080. The upper value corresponds to the HULB
implicit assumption. We vary impact weights system-
atically from equally valuing all observation periods
(wt =w ∀ t5 to favoring only the last observation period
(wt = 0 ∀ t < Tn1 wTn

= 15. Specifically, we vary Ew over
the following values: (0.25, 0.25, 0.25, 0.25), (0.10, 0.15,
0.25, 0.50), (0.02, 0.05, 0.18, 0.75), and 401010115. We
plot performance for n = 1 to 40,000 at increments
of 400 to illustrate both small-sample properties and
properties near the convergence of the Grmn’s. We do
not test sensitivity to random exit (�5 because the
tuning parameters for random exit are easy to infer
from the calibration data (as in §6.6). The discount rate,
a, is determined directly from the firm’s discount rate
and the number of website visitors per year.

Table 2 and Figure 2 compare the net present value
of projected revenues and the values of revenue at
convergence, for the WTM algorithm compared with
the HULB algorithm. We report comparisons for all
20 (5 × 4) combinations of � and Ew. Projected rev-
enues are averaged over 10 replications—a total of
400 simulations and 16 million synthetic customers.

In Figure 2, the vertical axes are the projected rev-
enue per customer with the revenue for a success
normalized to 1.0. The horizontal axes are the number
of synthetic customers reported every 400th customer.
In all cases, both algorithms converge smoothly. By
40,000 synthetic customers, convergence is usually
complete. (For some values of the tuning parame-
ters, revenues are still increasing slowly at 40,000. It
is unlikely we would gain further insight beyond
40,000 synthetic customers per experimental cell.) The
case where the WTM algorithm matches the HULB
algorithm, � = 1 and Ew = 401010115, is shown in the
lower right. As predicted, the WTM and HULB algo-
rithms perform identically. In all other cases, the WTM
algorithm performs better than the HULB algorithm—
sometimes substantially better. Improvements in the net
present value average 1.78 times higher. They vary from
1.19 at � = 1, Ew = 400021000510018100755 to an almost
fourfold increase of 3.89 at � = 0080, Ew = 401010115.
Increases at convergence are less dramatic, but still
substantial. Ratios vary from 1.17 to 2.17 with an
average of 1.59.

Table 2 provides insight on when the additional
complexity of WTM has the largest impact. The relative
increase is most sensitive to switching costs, with
the largest increase when switching costs are largest.
The effect of impact weights varies and interacts with
switching costs. For modest switching costs, the relative
increase is largest for equal impact weights. For large
switching costs, the relative impact is largest when the
impact weights favor the last period. Overall, the effect
of impact weights is less than that of switching costs.

5.3. Robustness Tests When the WTM Tuning
Parameters Differ from True Values

We now compare projected revenues when the WTM
algorithm assumes incorrect values of the tuning param-
eters. Our synthetic data experiments are illustrative.
A full-factorial crossing all misspecifications with all
true values would require (4 × 5) × (4 × 5) = 400 cases
for a total of 2,000 simulations and 320 million synthetic
respondents. Such a large number of simulations would
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be hard to display and provide little additional insight.
Instead we select 12 interesting cases and examine
whether the WTM algorithm is reasonably robust to
parameter misspecification. We provide our code so
that other researchers might run synthetic data experi-
ments for other true and/or assumed values of the
tuning parameters (see the supplemental material).
Our 10-replicate analyses are based on an additional
240 simulations and 9.6 million synthetic customers.

Figure 3 displays the results. The first five plots hold
Ew constant, match Ew to the implicit assumptions of

HULB, and vary �. We set �true = 0095. In all cases, the
WTM algorithm outperforms the HULB algorithm. The
upper left plot suggests that when �true = 0095, it is
better to misspecify the tuning parameter (� = 0080,
WTM) than to assume there are no switching costs
(� = 1, HULB).

The next four plots hold � constant, match � to
the implicit assumptions of HULB, and vary Ew. We
set Ewtrue = 400101001510025100505. The WTM algorithm
outperforms the HULB algorithm. Finally, the last three
plots favor the HULB algorithm. Whereas �true and
the Ewtrue match the HULB assumptions, � and the Ew
in WTM are misspecified. The HULB algorithm does
slightly better, as anticipated, but not by much. The
loss due to using a misspecified WTM algorithm is
much smaller than the loss due to ignoring switching
costs and impact weights.

The 12 plots are indicative. If �true and Ewtrue differ
from the values assumed in the WTM and HULB
algorithms, then the WTM algorithm does substantially
better than the HULB algorithm. If �true and Ewtrue match
the HULB algorithm, but � and Ew are misspecified in
the WTM algorithm, then the HULB algorithm does
only slight better. These results suggest that the WTM
algorithm is likely robust to misspecification. This is
likely the case because the HULB algorithm assumes
extreme values for the tuning parameters: the HULB
algorithm assumes no switching costs (� = 15 and
ignores all but the last observation period (wt = 0 for
all but t = Tn5. As is often the case in modeling, it is
better to attempt to model phenomena, even if done
so imprecisely, than it is to ignore the phenomena
altogether (e.g., Little 1966, 1970).

Naturally, results might change for different p̂rm’s
and other values of �true or ŵtrue. We expect WTM to
perform particularly well when the website is designed
so that we learn the customer’s segment substantially
faster than �o. The effect would be particularly strong
when there are substantial differences by segment in
the effects of the morphs on outcomes. We see one such
case in the next section. The website was designed so
that segments could be identified quickly.
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Figure 2 Proposed Algorithm (WTM) vs. HULB as Switching Costs, �, and Impact Weights, Ew , Vary
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Figure 3 Representative Sensitivity Analyses
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� = 0.80, �true = 0.95

w = (0, 0, 0, 1) [WTM and true]

� = 1, �true = 0.95

w = (0, 0, 0, 1) [WTM and true]

� = 0.95, �true = 1
w = (0, 0, 0, 1) [WTM and true]

� = 1 [WTM and true]
w = (0.25, 0.25, 0.25, 0.25)

wtrue = (0.10, 0.15, 0.25, 0.50)

� = 1 [WTM and true]
w = (0, 0, 0, 1)

wtrue = (0.10, 0.15, 0.25, 0.50)

� = 1 [WTM and true]
w = (0.10, 0.15, 0.25, 0.50)

wtrue = (0, 0, 0, 1)

� = 1 [WTM and true]
w = (0.02, 0.05, 0.18, 0.75)

wtrue = (0, 0, 0, 1)

� = 1 [WTM and true]
w = (0.10, 0.15, 0.25, 0.50)

wtrue = (0.10, 0.15, 0.25, 0.50)

� = 1 [WTM and true]
w = (0.02, 0.05, 0.18, 0.75)

wtrue = (0.10, 0.15, 0.25, 0.50)

� = 0.85, �true = 0.95

w = (0, 0, 0, 1) [WTM and true]

� = 0.90, �true = 0.95

w = (0, 0, 0, 1) [WTM and true]

� = 0.95, �true = 0.95

w = (0, 0, 0, 1) [WTM and true]

� � �

���

Note. This figure shows the results when true values of switching costs, �, and impact weights, Ew , do not match assumptions in the WTM algorithm.
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6. Proof-of-Feasibility Implementation
to a Japanese Bank Website

The WTM algorithm requires that we solve a dynamic
program between clicks (or observation periods) while
customers are actively using a website. In this section,
we use data from a Japanese Bank website to examine
whether evaluating when to morph is feasible in real
time on a real website. We also examine whether the
WTM-versus-HULB comparisons using BT Group data
can be replicated using p̂rm values from another website.
This section also provides a roadmap to the practical
implementation of morphing.

6.1. Context: Suruga Bank’s Card-Loan Website
In Japan, customers prefer “card loans” rather than
carrying a balance on their credit cards. (Japanese banks
do not allow overdrafts.) The borrower receives a cash
card with a balance of ¥3–¥5 million and pays interest
when the funds are withdrawn. The terms of card
loans vary among banks and are often confusing. Some
banks offer low interest and high limits, but a more
difficult screening process, whereas other banks offer
higher interest and lower limits, but an easier screening
process. In 2006–2007, the leading card loan banks
were Orix, which spent ¥13.6 billion, mostly on banner
advertising, and Acom, which spent ¥10.9 billion,
mostly on television advertising ($1 ≈ ¥95 in that time
period).

Suruga Bank is a Japanese commercial bank in the
greater Tokyo area. Unlike most commercial banks,
it focused on retail banking for more than 20 years.
Suruga began a virtual bank in 1999, one of the first
Japanese banks to do so. By 2008, its online presence
had grown to 10 virtual branches and 8 virtual alliances
(Tokoro 2008, p. 7). In that time period, Suruga was
less well-known than other Japanese banks, spend-
ing approximately 1/10th that of Acom and Orix on
advertising (¥1.4 million; Tokoro 2008, p. 17). As part
of an overall strategy to reach more customers, Suruga
developed a customer advocacy website on which
it presented the best products from all competitors.
By using a strategy of openness and honesty, Suruga
sought to demonstrate that its products (low inter-
est rates, high limits, but a careful screening process)
would meet the needs of many customers. Suruga’s
managers found website morphing intriguing and
authorized a small-scale field experiment.

6.2. Customer Segments and Estimated
Click-Characteristic Preferences

We began with a calibration study to identify cognitive-
style segments and estimate customers’ preferences
for click-alternative characteristics. In March 2008,
5,454 customers were drawn from a panel of customers
maintained by Interface Asia. Of these, 3,340 were
not interested in card loans or did not meet the age

Table 3 Estimation of Click-Characteristic Preferences 4ì̂5

Holistic Impulsive
vs. analytic vs. deliberative

Cognitive and cultural characteristics
Pictures and graphs 0088 −1024
Technical, detailed content −0066 1070
Textual content 1010 −1028
Options and alternatives −0013 1096
Popular trends 0011 −0072
“You-directed” language 0045 −3061
Hierarchical images 0024 −0051

Functional characteristics
Provide information −0053 1056
Analytic tool −0060 −1044
Graphical elements −0089 2073

Website areas
Advisor −0038 5019
Fast solutions −0070 4085
Learn information 0011 1089
Forum 0037 2048

Notes. Results are based on a maximum-likelihood logit analysis of Equation (1).
�2

42 = 2150505 and U2 = 3309%. Constants not shown.

requirements. Those who qualified (2,114 respondents)
were offered ¥200 and invited to visit an experimental
website and complete a survey. Of these, 502 respon-
dents (23.7%) completed the calibration survey, which
included a requirement to browse the website for
at least 2.5 minutes and for at least 10 clicks.

By analyzing answers to the questions that were
chosen to measure cognitive styles, we identified four
segments as defined by two bipolar (ipsative) multi-
item scales. The 2 × 2 categorization was impulsive
versus deliberative and holistic versus analytic. We
estimated the segment-specific click-characteristic pref-
erences, ì̂, from customers’ observed clickstreams.
Table 3 reports ì̂ for the 14 click-alternative charac-
teristics that were tracked. The cognitive and cultural
characteristic values were based on ratings by six inde-
pendent judges who were blind to the hypotheses of
the research (reliability, 0.84). The functional character-
istics and website areas were binary variables. The logit
model (Equation (1)) was strongly significant (p < 00001)
and explained 33.9% of the uncertainty (U 2 = 003395
based on 2,827 click observations. The estimated ì̂
was intuitive. For example, impulsive visitors prefer
links to fast solutions, advisors, and forums, but not
analytic tools or “content directly addressed to you.”

6.3. Website Design
Website designers (native Japanese speakers) developed
four morphs that varied on the number of graphs,
the amount of technical content, the amount of tex-
tual content, the number of options and alternatives
presented, the amount of content on popular trends,
the amount of “you-directed” content, formal versus
informal Japanese language, and hierarchical versus
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Figure 4 Example Screens from the Suruga Bank Website

egalitarian images. Although the designers did their
best to develop morphs that would be more effective
for specific segments, the best morph for each seg-
ment is determined automatically by the morphing
algorithm. The website designers also developed click
alternatives that would help identify segment mem-
bership. For example, on the opening page (Figure 4,
first panel), customers enter the site by choosing one
of two pictures. The pictures are designed to appeal
to different customer segments. In another example,
customers choose from six ways to obtain information
(Figure 4, second panel) with the hope that different
segments will choose different paths. To avoid an obvi-
ous demand artifact, the website was not identified as
a Suruga Bank website. We expected that these design
features would enable the Bayesian engine to identify
customer segments more rapidly than was possible
with the BT Group website.

6.4. Outcome Measure and Tuning Parameters
Because we were unable to sell card loans in the experi-
ment, the algorithm maximized customers’ requests for
more information. In particular, �n = 1 if the customer
clicked on “send me more information.” The tuning
parameters were set conservatively by managerial
judgment (�̂ = 00991 ŵt =w ∀ t5.

6.5. Sample Used in the Suruga
Proof-of-Feasibility Application

In November–December 2009 Suruga recruited cus-
tomers from the Interface Asia panel. Screening and
incentives were similar to those in the calibration
study—the initial response rate was 22.1%. After screen-
ing on interest in card loans and age requirements,
10,182 out of 13,696 potential respondents were declared
not eligible for the study. The remaining 3,514 were
directed to the card-loan site, of which 1,997 explored
the website for at least 241/25 minutes and 10 clicks
(56.9%). Of these customers, 1,395 completed pre- and
postvisit questionnaires providing valid data (70.1%).

This is a net completion rate of 39.7% and an overall
completion/response rate of 8.8%. The market research
provider, Applied Marketing Science, Inc., reports that
such overall rates are typical of complex Web-based
studies. Of the 1,395 completions, 1,061 respondents
experienced website morphing (a when-to-morph algo-
rithm, test condition), and 334 experienced a static
website (control condition). This was not a sufficient
sample for either the HULB algorithm or the WTM
algorithm to converge. However, it was sufficient to
establish that it was feasible to decide when to morph
within a customer’s visit. On measures such as ease of
use, providing relevant information, helpful to deci-
sions, trustworthy, and recommendation, the morphing
website did as well as the static website (no significant
differences on 15 evaluative scales). Had the sample
size been larger, perhaps the morphing website would
actually have done better.

6.6. Analysis of the Random Time to Exit
We use the Suruga experience to examine which random-
exit model would have fit the data best. For each
respondent we observe the observation period in which
the respondent left the website. These data are plotted in
Figure 5 as a solid black line. The dashed red line plots
the performance of a homogeneous model (�tn = � for
all t, n, where � is determined by maximum-likelihood
estimation). The homogeneous model explains 79.6%
of the uncertainty (U 2 = 007965, but visual inspection
suggests a kink for the first observation period. To
model the kink, we fit a hybrid homogeneous model
(�tn =�1 if t = 1, but �tn =� otherwise) as shown by
the green fine-dashed line in Figure 5(a). The fit is
significantly better (�2

1 = 5800, p < 00015 and explains
almost all of the uncertainty (U 2 = 009685.

We next examine the heterogeneous model described
in §3.3.1. Using the functional invariance property
of maximum-likelihood estimation, we reparameter-
ized the model to estimate En6�7=��/4�� +��5 and
Z� ≡ 4�� +��5. The maximum-likelihood estimate of
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Figure 5 Model Comparison—Random Exit 4�tn5

(a) Homogeneous models (b) Heterogeneous models
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En6�̂7 is 00346, however, the maximum-likelihood esti-
mate of Z� appears to diverge. The likelihood was still
increasing at Ẑ� > 501000. The resulting heterogeneous
model is indistinguishable from a homogeneous model
(�2

1 û 01p > 00905. We also fit a hybrid heterogeneous
model with �̂1 = 0030271En6�̂7= 004251 and Ẑ� > 501000
for t > 1. The hybrid heterogeneous model was signifi-
cantly different than the heterogeneous model (�2

1 = 5800,
p < 00015 and indistinguishable from the hybrid homo-
geneous model (�2

1 û 05. The heterogeneous models are
plotted in Figure 5(b).

In the Suruga data, a hybrid homogeneous model
of random exit appears to fit the data best. A fully
time-varying model (�tn = �t5 is significantly better
than a hybrid homogeneous model (�2

4 = 1100, p = 0003),
but the slight increase in U 2 on a sample of 1,395
respondents may not be worth the sacrifice in par-
simony. We estimated these models a posteriori to
demonstrate that future applications could readily fit
descriptive models using only the calibration data.

6.7. Descriptive Statistics for the
Time to a Morph Change

If initial morphs were assigned randomly, then we
would expect the initial morph to be optimal for

Figure 6 Suruga Bank Experiment: Descriptive Statistics
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roughly 25% of the respondents. However, both the
HULB and WTM algorithms assign the initial morph
based on the expected Gittins indices using the prior
probabilities that customer n belongs to each seg-
ment. If an algorithm works well, we expect the initial
morphs to be optimal for more than 25% of the respon-
dents, especially when one segment is larger than the
others. (For Suruga, the largest segment was approx-
imately 43.2% of the respondents.) Furthermore, to
avoid switching costs, the WTM algorithm may keep
the initial morphs if the expected improvement in the
expected Gittins index is small.

Performance was consistent with these expectations.
The implemented WTM algorithm stayed with the
initial morph roughly half of the time. Of those respon-
dents who experienced morph changes, most experi-
enced a single change; very few experienced three or
more changes (Figure 6). Figure 6 also suggests that,
empirically, the WTM algorithm was able to identify
the morph changes rapidly. The majority of morph
changes were made after the first period, with decreas-
ing numbers in subsequent periods. This is consistent
with a website designed explicitly to identify customer
segments rapidly.
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6.8. Attempted Comparison Between a
WTM Algorithm and a Static Website

To evaluate performance, we collected measures that
were not maximized by the algorithm: consideration,
preference, and purchase likelihood. Consideration was
a binary consider-or-not measure, preference was a
100-point constant sum scale, and purchase likelihood
was measured on an 11-point scale as in Juster (1966).
All measures reflect that a customer will not prefer
or purchase from Suruga Bank if they do not first
consider Suruga Bank. We also attempted to correct
for premeasures, but because Suruga Bank was not
known for card loans at the time of the application,
only 70 respondents considered Suruga Bank in the
premeasures. Unfortunately, because the sample size
was small relative to the synthetic-data experiments
and Urban et al. (2014), none of the measures were
significantly different between the test and control cells.
The results are available in the supplemental material.

6.9. Counterfactual Policy Simulations
with Suruga Morph × Segment
Purchase Probabilities

Although the Suruga Bank experiment ran for only
1,395 customers, we can run a counterfactual policy
simulation in which there are 40,000 customers in each
of three experimental cells—WTM, HULB, and random
assignment. We use the same code that reproduced the
HULB simulations (Table 1, §5.1) except that we use
the p̂rm from the Suruga Bank implementation. Table 4
reports the results. HULB is substantially better than
random assignment, and WTM is substantially better
than HULB. In this case, the improvement due to WTM
(63%) is almost 5× that of HULB. WTM does well
because, for the counterfactual policy simulation, it is
better to morph much earlier than the HULB default.
The p̂rm differ among morphs more for the Suruga
Bank website than they do for the BT Group website.
Although a devil’s advocate might argue that a revised
earlier-morphing HULB might perform better than

Table 4 Counterfactual Reanalysis of Suruga Bank Experiment If Run to Convergence Using the When-to-Morph Algorithm and
Observed Morph×Segment Probabilities

Reward at Percent improvement Net present Percent improvement
convergencea in rewardb (%) value (NPV)c in NPVd (%)

Baseline for no morphing 000632 0 000619 0
Website morphing

Website morphing (HULB) 000688 13 000667 12
Website morphing with improved algorithm 000912 66 000882 63

Perfect information (n → �5e 001055 100 001034 100

Notes. Switching costs are � = 0095. Impact weights are Ew = 400251002510025100255. ì̂ is as in Table 1.
aRewards for the last 400 customers out of 40,000 customers.
b(Reward due to algorithm − reward at no morphing)/(reward due to perfect information − reward at no morphing).
cNet present value of the rewards divided by the number of periods.
d(NPV due to algorithm − NPV at no morphing)/(NPV due to perfect information − NPV at no morphing).
eThis is the upper bound. Applications do not have perfect information on either customer segments or purchase probabilities.

the tested HULB, such an insight was made possible
by the dynamic program in the WTM algorithm and
would be hard to know a priori without the analyses
in this paper.

7. Summary and Challenges
The HULB website-morphing algorithm has proven to
increase outcomes with both synthetic data (BT Group
application) and in the field (Urban et al. 2014), but it
ignores switching costs, the impact of premorph clicks,
and random exit. The WTM algorithm generalizes the
HULB algorithm to allow more realistic assumptions.
The WTM algorithm runs in real time between clicks
on a website. Synthetic data analyses of two data
sets suggest that the WTM algorithm can improve
outcomes substantially if the tuning parameters are
set properly. The algorithm appears to be reasonably
robust to misspecification of the tuning parameters.
Furthermore, the Suruga Bank application suggests
that it is feasible on a real-world website to determine
when to morph in real time.

There remain many challenges. (1) Large-sample
empirical applications might (a) parse the incremental
value of the WTM algorithm relative to the special
case of HULB and (b) calibrate the values of the
switching-cost and impact-weight tuning parameters.
(2) Improved theory might (a) establish optimality prop-
erties for the linkage between the morph-to-segment
and when-to-morph optimizations and (b) improve
“fractional-observation” updating of the posterior distri-
butions of the prmn’s. (3) Improved algorithms might
(a) relax assumptions of multiplicative switching costs,
additive impact weights, and independent website exit;
(b) model network externalities such as the ability of
customers to share knowledge of a website’s look and
feel; (c) allow for switching costs that depend on the
multiple morphs (�mm′ 5; and (d) allow exit probabilities
that depend on segments, final morphs, or morph
history (�trm, �trmm′ , etc.).
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Appendix A. Notation Used in This Paper
and in Appendix B

a The amount by which we discount a sale to
customer n+ 1 relative to customer n

B4�1�5 Beta distribution with parameters � and �
ctnj Indicator variable to indicate whether customer n

chooses click alternative j at t
ctn Customer n’s clicks in the tth observation period;

n may be suppressed
Ectn Customer n’s clicks up to and including the tth

observation period, 8c1n1 c2n1 0 0 0 1 ctn9.
EGmn Expected Gittins index for mth morph for cus-

tomer n
EIR Expected immediate reward (used in the when-

to-morph Bellman equation)
f 4· � ·5 Posterior distribution; specific distribution when

arguments are specific; sometimes subscripted
by n

Grmn Gittins index for rth segment and mth morph for
customer n; n may be suppressed

HULB Hauser, Urban, Liberali, and Braun (2009)
j Indexes click alternatives (links)

Jtn The number of click alternatives faced by cus-
tomer n on the tth click

m Indexes morphs
mtn Morph that customer n sees in observation

period t
m∗

tn Optimal morph for customer n in observation
period t

M Number of morphs available from which to
choose

n Indexes customers
nob Number of customers in an observation period;

used in Appendix B
nob1 rm Number of consumers in an observation period

who were in segment r and saw morph m
prmn Probability that customer n in segment, r , pur-

chases when shown morph m
Pr0 4rn = r5 Prior probability that customer n belongs to

segment r
qrn4Ect−11n1 ì̂1 EXt−11n5 Probability that customer n is in seg-

ment r

qrn Shorthand for qrnTn4EcTnn1 ì̂1 EXTnn
5; used in Ap-

pendix B
qrn4s5 Shorthand for qrnTn 4EcTnn1 ì̂1 EXTnn

� rtrue = s5; used
in Appendix B

r Indexes customer segments
R Number of customer segments

rtrue1n Customer n’s true segment (used derive the
when-to-morph dynamic program)

s Used in summations
S Observation period (used in random exit equa-

tion)
Ss Set of customers in the last nob customers whose

true segment is s; used in Appendix B.
t Indexes observation periods

Tn Number of observation periods for customer n
ũtnj Utility customer n obtains from clicking on the

jth click alternative on the tth click
Vt4m

∗
tn1mt−11n1 Ect−11n1 ì̂1 EXt−11n1Nt−11n5 Continuation value

function for when-to-morph decision
VGittins4�rmn1�rmn1 a5 Continuation value function when cal-

culating the Gittins index
wt Impact weight for the tth observation period
Ew Vector of the wt’s; Êw if estimated from the cali-

bration data
WTM When-to-morph algorithm; proposed generaliza-

tion of the HULB algorithm
Extnj Vector of characteristics of the jth click alternative

up to the tth click of customer n
EXtn Set of all Extnj’s for all clicks up to an including

click t, 8Ex1nj1 Ex2nj1 0 0 0 1 Extnj9 ∀ j = 1 to Jtn
Z� Equal to �� +��

Ẑ� Maximum-likelihood estimate of Z�

�rmn Parameter of the beta distribution used to model
uncertainty over prmn

�rmn Parameter of the beta distribution used to model
uncertainty over prmn

�� Parameter of a beta distribution used to model
heterogeneity in exit probabilities

�� Parameter of a beta distribution used to model
heterogeneity in exit probabilities

� Discount for switching from one morph to
another; after a switch, the probability of a pur-
chase is reduced by a factor of � (�̂ if estimated
from the calibration data)

�n Indicator variable to indicate whether customer
n makes a purchase; used in the when-to-morph
algorithm when multiple morphs (might) affect
outcomes

�nm Indicator variable to indicate whether customer n
makes a purchase given that customer n saw
morph m after a switch; used in HULB

�rmn Indicator variable to indicate whether customer n
makes a purchase given that customer n is in
known segment r and saw morph m; used in
Appendix B.

ãm′
tntn

Indicator variable to indicate if we change to
morph m′

tn in period t for customer n
En6�̂7 Maximum likelihood estimate of ��/4�� +��5

�̃tnj Extreme value error; used to model customer n’s
preference for click alternatives
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�mnt Indicator variable to indicate if customer n saw
morph m in observation period t

è Used to indicate summation, not a variable
� Used as a variable for summation and for ranges

of t
�o In HULB, the number of clicks observed prior to

a morph
�tn Probability that customer n does not continue in

the tth observation given the customer was on
the website in the t + 1st observation period

ën4S � t−15 Probability customer n is still on the website in
observation period S given the customer was on
the website in observation period t − 1

ë̄ 4S � t − 15 Expectation of ën4S � t − 15 over customers
E�r Vector of preference weights for the Extnj for the

rth segment
ì Matrix of the E�r

ì̂ Estimate of ì (either maximum likelihood or
Bayesian mean posterior)

� Used as a variable for summation in Appendix B
to sum over customers beyond n

Appendix B. Full-Probability Model and
Updating Formulae

B.1. Review of Updating for Gittins Indices
Notation follows the text. If we knew the customer’s segment,
r , and the customer saw the same morph, m, for the entire
visit, then the relevant posterior probability after customer n
would be prmn, the probability that customer n in segment r
who saw morph m would make a purchase. We assume that
the prior distribution for prmn is beta as given by

fn4prmn ��rmn1�rmn5=B4�rmn1�rmn5p
�rmn−1
rmn 41−prmn5

�rmn−11 (B1)

where �rmn and �rmn are parameters of the beta distribution,
and B4�rmn1�rmn5 is the beta function.

We now observe whether or not customer n makes a
purchase. Let �rmn = 1 if customer n in known segment r
made a purchase and �rmn = 0 otherwise. The data likelihood
is then given by a binomial distribution:

fn4�rmn � prmn5= p�rmn
rmn 41 − prmn5

1−�rmn 0 (B2)

Combining Equations (B1) and (B2), the posterior distribu-
tion for prm1n+1 is proportional to

fn−14prm1n+1 � �rmn1�rmn1�rmn5

∼ p
�rmn+�rmn−1
rm1n+1 41 − prm1n+15

�rmn+41−�rmn5−10 (B3)

Equation (B3) is again a beta distribution. Thus we have the
updating equation as given by

�rm1n+1 = �rmn + �rmn1

�rm1n+1 = �rmn + 41 − �rmn50
(B4)

We easily extend the formal updating to the case where
we observe nob additional customers before we update (read
nob as “n observed”). In this case we have a binomial data
likelihood and we allow a more general definition of �rmnob
as the number of purchases made by the nob customers that
follow the nth customer. Following similar steps, the posterior

distribution is also a beta distribution with parameters
given by

�rm1n+nob
= �rmn + �rmnob

1

�rm1n+nob
= �rmn + 4nob − �rmnob

50
(B5)

Because updating for the Gittins index is naturally con-
jugate, computations are simple and rapid. It is feasible to
update after every customer or observation period. Further-
more, by comparing Equations (B4) and (B5) it is obvious that
we obtain the same posterior distribution at the 4n+nob5th
customer whether we update sequentially using Equation (B5)
or update all nob customers at one time.

B.2. Review of Updating for the HULB Hidden
Markov Model

HULB extend Gittins updating to a situation where we do
not know the customer’s segment, but rather have estimates,
qrnTn 4EcTnn1 ì̂1 EXTnn

5, that customer n belongs to segment r for
each possible segment. HULB continue to assume that the
customer saw a single morph, m, for a sufficient fraction of
the visit that we need only consider the effect of morph m
on customer n’s purchase. With these assumptions, the
probability, pmn, that customer n who saw morph m makes a
purchase is given by

pmn =

R
∑

r=1

qrnTn 4EcTnn1 ì̂1 EXTnn
5prmn0 (B6)

HULB assume a beta prior distribution as in Equation (B1).
For indexability, HULB assume that each r , m-arm of the
bandit process is independent. Independent arms imply
that the prior distributions are independent over r and m.
The joint prior distribution generalizes Equation (B1) to
become Equation (B7) prior to observing �mn. For simplicity
of notation, we let E�mn and E�mn be the vectors of parameters
(over r):

fn4prmn � E�mn1 E�mn5

=

R
∏

r=1

B4�rmn1�rmn5p
�rmn−1
rmn 41 − prmn5

�rmn−10 (B7)

The data likelihood is binomial and generalizes Equation (B2):

fn4�rmn � prmn5 = p�mn
mn 41 − pmn5

1−�mn

=

( R
∑

r=1

qrnTn 4EcTnn1 ì̂1 EXTnn
5prmn

)�mn

·

(

1 −

R
∑

r=1

qrnTn 4EcTnn1 ì̂1 EXTnn
5prmn

)1−�mn

0 (B8)

We extend the analysis to allow updating after nob cus-
tomers. Unlike in the single-armed case, the analysis does
not simplify. Specifically, each customer has a different set of
qrnTn 4EcTnn1 ì̂1 EXTnn

5 values based on that customer’s unique
clickstream. Thus, the data likelihood is now given by Equa-
tion (B9), where � is notation for use in the product so that it
does not conflict with n or nob :

fn+nob
4�rmnob

� prm1nob
5

=

n+nob
∏

�=n+1

{( R
∑

r=1

qr�T� 4EcT� �1 ì̂1 EXT� �
5prm1n+nob

)�m�

·

(

1 −

R
∑

r=1

qr�T� 4EcT� �1 ì̂1 EXT� �
5prm1n+nob

)1−�m�
}

0 (B9)
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Equation (B9) uses the substitution in Equation (B6) for
prm1n+nob

for all � in the product. This implies that the poste-
rior distribution after observing nob additional customers is
given by Equation (B10):

fn+nob

(

prm1n+nob
� E�mn1 E�mn1�rmnob

)

∼

n+nob
∏

�=n+1

{( R
∑

r=1

qr�T� 4EcT� �1 ì̂1 EXT� �
5prm1n+nob

)�m�

·

(

1 −

R
∑

r=1

qr�T� 4EcT� �1 ì̂1 EXT� �
5prm1n+nob

)1−�m�
}

·

R
∏

r=1

p
�rmn−1
rm1n+nob

41 − prm1n+nob
5�rm1n−10 (B10)

B.2.1. The Infeasibility of Using This Posterior Distri-
bution for Website Morphing. If we knew every customer’s
segment, the qr�T� 4EcT� �1 ì̂1 EXT� �

5 would be either 0 or 1, and
Equation (B10) would become naturally conjugate. When the
qr�T� 4EcT� �1 ì̂1 EXT� �

5 are 0 or 1, we obtain the same updating
formulae as in Equation (B5).

When the segments are not known with certainty, the
qr�T� 4EcT� �1 ì̂1 EXT� �

5 are not 0 or 1, and we have the full summa-
tion in Equation (B10). We no longer have naturally conjugate
updating; hence, fn+nob

4nob � E�mn1 E�mn1�rmnob
5 is not a beta

distribution, even when nob = 1. If we were only interested in
the posterior distribution of prm1n+nob

, it might be feasible
to discretize prm1n+nob

and use Equation (B10) to compute
numerically the marginal posterior distribution for prm1n+nob

,
perhaps after integrating out the prm′1n+nob

values for m′ 6=m.
Computations will not be rapid between customers on a
high-traffic website, but it might be feasible to compute the
posterior distributions at the end of each day and use the
updated distributions for the following day.

However, even if we chose to compute the posterior
distribution offline, we must use the posterior distributions
to compute the indices (via a dynamic program) to assign
morphs. HULB exploit the property that the Gittins index
for beta-binomial updating is particularly simple and can
be easily tabled for �rmn and �rmn. They table the indices
based on updated �rmn and �rmn and look them up as needed.
It is not feasible to resolve Gittins’ (1979) dynamic program
after each customer. Morphing when customer segments
follow a hidden Markov model is indexable, as proven by
Krishnamurthy and Mickova (1999), and indexability does
not depend on the fact that the posterior is an analytic
distribution. Unfortunately, we know of no way to compute
the index sufficiently rapidly when the posterior distribution
is defined numerically.

B.2.2. Practical Solution: Fractional Observations. To
obtain a feasible solution, HULB make a heroic independence
assumption and use the concept of fractional observations.
We first note that the binomial distribution, a probability mass
function, can also be interpreted as a probability density func-
tion for fractional observations. We then interpret the outcome
variable, �mn, as a combination of fractional outcomes for each
potential customer segment, r , and treat the fractional out-
comes as if they were independent over r . In particular, the
fractional outcomes become �rmn = qrnTn 4EcTnn1 ì̂1 EXTnn

5�
mn

∀ r .

Using this interpretation and the shorthand notation qrn =

qrnTn 4EcTnn1 ì̂1 EXTnn
5, the data likelihood becomes2

fn4qrn�mn � prmn5= p
qrn�mn
rmn 41 − prmn5

qrn41−�mn50 (B11)

We continue to use Equation (B1) as the prior distribution,
which gives Equation (B12) as the posterior distribution:

fn+14prm1n+1 � �rmn1�rmn1 qrn�rmn5

∼ p
�rmn+qr1n�mn−1
rm1n+1 41 − prm1n+15

�rmn+qrn41−�mn5−10 (B12)

With fractional observations, the posterior distribution
is naturally conjugate, and the updating equations become
(HULB, Equation (2), p. 210), using full notation,

�rm1n+1 = �rmn + qrnTn 4EcTnn1 ì̂1 EXTnn
5�mn1

�rm1n+1 = �rmn + qrnTn 4EcTnn1 ì̂1 EXTnn
541 − �mn50

(B13)

B.3. Extending the HULB Updating Formula to Switching
Costs, Impact Weights, and Multiple Morphs

Once we accept the concept of fractional observations
as a practical means to retain the structure of expected
Gittins index updating, we can extend Equation (B13) to
account for switching costs, impact weights, and multi-
ple morphs. No new derivations need to be introduced.
We simply substitute the new fractional observations into
Equations (B12)–(B15). The new concepts are that the switch-
ing costs, impact weights, and multiple morphs may affect
customer n’s purchase probabilities.

First, customer n does not see morph m for the entire
website visit; customer n sees morph m for those periods in
which the morphing algorithm selects morph m. The effect
on purchasing is proportional to the impact weights for
the periods in which morph m was shown. As defined
in the text, �mnt = 1 if morph m is shown to customer n
in observation period t, and wt is the impact weight for
observation period t. The probability is also affected by
whether or not a switch in morphs occurs in the period
as summarized by ãmtntn

. The new fractional observation
becomes qr 4EcTnn1 ì̂1 EXTnn

54
∑T

t=1 �
ãmtntn�mntwt5.

With the revised definition of a fractional observation, the
revised updating formula becomes Equation (B14), which
is Equation (9) in the text. The data likelihood and the
posterior distributions generalize Equations (B11) and (B12)
as expected:

�rm1n+1 = �rmn + qr 4EcTnn1 ì̂1 EXTnn
5�NTn

( Tn
∑

t=1

�mntwt

)

�n1

(B14)

�rm1n+1 = �rmn + qr 4EcTnn1 ì̂1 EXTnn
5�NTn

( Tn
∑

t=1

�mntwt

)

· 41 − �n50

The updating formulae in Equation (B14) are practical
because they maintain a naturally conjugate beta posterior
distribution, because it can be computed quickly, and because,
using arguments similar to those in §B.4, it should converge
to the true values, prm1 true, when the assumed model of
behavior is correct.

2 We examine in §2.4 why the updating formulae are still likely to
converge, and we present evidence of convergence from the synthetic
data experiments.
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B.4. Motivation of Why Fractional Observations Are a
Good Approximation

The trick of fractional observations requires that we assume
a level of independence that we know is violated. Despite
this assumption, both the HULB algorithm and the WTM
algorithm improve outcomes substantially with synthetic
data—the HULB algorithm relative to a static website and
the WTM algorithm relative to the HULB algorithm. In this
section we motivate why that is likely that fractional observa-
tions are a good approximation. Our arguments are not a
formal proof, and they do not rule out the algorithms getting
trapped in local minima; rather they suggest why we expect
the fractional-observation updating formulae to converge
to prm1 true.

For simplicity of notation, consider the HULB assumptions
of � = 1 and Ew = 401010115. We are interested situations where
the data overwhelm the priors; that is, assume we observe
nob1m customers where nob1m is sufficiently large: nob1m �
∑R

r=14�rm1 +�rm15. Let Srm be the set of customers whose true
segment is r and who saw morph m. We continue to use
the shorthand notation, qrn = qrnTn 4EcTnn1 ì̂1 EXTnn

5, and define
qrn4s5 = qrnTn4EcTnn1 ì̂1 EXTnn

� rtrue = s5. Under the conditions
that the data overwhelm the priors, the HULB updating
formulae (Equation (B13)) become (for all r and m5

�rmnob
=

nob1m
∑

n=1

qrn�mn =

R
∑

s=1

∑

n∈Ssm

qrn4s5�mn1

�rmnob
=

nob1m
∑

n=1

qrn41 − �mn5=

R
∑

s=1

∑

n∈Ssm

qrn4s541 − �mn50

(B15)

We now take expected values:

En6�rmnob
7=

R
∑

s=1

∑

n∈Ssm

qrn4s5psm1 true1

En6�rmnob
7=

R
∑

s=1

∑

n∈Ssm

qrn4s541 − psm1 true50

(B16)

Under the assumption that customers are homogeneous
within true segments such that qrn4s5= qr 4s5, we recognize
that

En6�rmnob1m
7 =

R
∑

s=1

qr 4s5nob1 smpsm1 true = qr 4r5nob1 rmprm1 true

+
∑

s 6=r

qr 4s5nob1 smpsm1 true1

En6�rmnob1m
7 =

R
∑

s=1

qr 4s5nob1 sm41 − psm1 true5

= qr 4r5nob1 rm41 − prm1 true5

+
∑

s 6=r

qr 4s5nob1 sm41 − psm1 true50

(B17)

If the first term dominates (the term containing qr 4r5),
the beta posterior will converge to a point mass at prm1 true
as nob1m gets large. It will converge to a point mass
because both En6�rmnob

7 and En6�rmnob
7 are the order of nob1m.

Furthermore, prmnob1n
= E6�rmnob1m

7/8E6�rmnob1m
7+E6�rmnob1m

79,
which approach prm1 true when the first term dominates
(because qr 4r5nob1 rm drops out).

There are two forces that make it likely that, as nob1m

gets large, the first term is much larger than the remaining
terms for the morphs that are chosen for segment r . First,
if ì̂ is well estimated and the logit model does a good job
in predicting customer segments, then qr 4r5� qr 4s5 ∀ s 6= r .
Second, as the algorithm gets better at identifying the best
morph for segment r (and if there is sufficient variation in
morphs that different morphs are best for different segments),
then nob1 rm∗

r
� nob1 sm∗

r
for s 6= r . (m∗

r is the best morph for
segment r .) If the algorithm is indeed close to optimal, m∗

r

will be chosen for segment r . Convergence will be best for
optimal segment x morph matches, and especially for those
morphs that are shown many times. (Because it is likely that
psm∗

r
≤ prm∗

r
, we can also argue that convergence will be from

below. Details are available in the supplemental material.)
It is an empirical question whether these two forces are

sufficiently strong so that fractional updating converges. For-
tunately, synthetic-data experiments and empirical experience
suggest that the HULB algorithm and the generalized algo-
rithm, which also relies on fractional-observation updating,
lead to improved outcomes and the ability to match morphs
to segments. For the synthetic-data experiments in §5, we can
compare the true purchase probability values, prm1 true values,
to the posterior means. With � = 1 and Ew = 401010115, we test
the HULB updating formulae in Equation (B13). For this case,
the mean absolute percent error is approximately 0.028, which
is 8.7% of the average true probability. As the number of
customers gets large, the algorithm tends toward identifying
the optimal morph for each segment; hence we gain the most
information about optimal segment × morph matches (r and
m∗

r 5. When we look at optimal segment × morph matches,
the error reduces to 5.8% of the average true probability.
This reduces to 0.5% when we require a morph to have been
shown to customers at least 2,000 times.

We examine Equation (B14) with � = 0095 and Ew =

400251002510025100255. For this case, the mean absolute per-
centage error is approximately 0.0318, which is 10.0% of the
average true probability. When we look at the optimal morph
for each segment, the error reduces to 7.3% of the average true
probability. This reduces to 3.4% when we require a morph
to have been shown at least the equivalent of 2,000 times (i.e.,
2,000Tn total periods). The mean absolute error decreases
further when morphs are shown even more often. We see
similar patterns for � = 0080 and Ew = 400251002510025100255.

Appendix C. Supplemental Material Available at
http://dx.doi.org/10.1287/mnsc.2014.1961

C.1. Synthetic Data and Counterfactual Code and
Pseudocode (Tables 1, 2, 4; §5, §6.9)

• Pseudocode and R code with which to run the 40,000
synthetic-customer simulations using specified values for p̂rm,
�, and Ew

• Spreadsheet with the values of p̂rm for the BT Group
simulations and the Suruga Bank counterfactual policy
simulation

C.2. WTM Code for Suruga Bank Application (§6)
• R code (that reproduces original PHP code) that was

called by the Suruga Bank website to determine the morph-
to-segment match and when to morph
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C.3. Data from Suruga Bank Experiment (Figure 6, §6)
• Table comparing insignificant measures of consideration,

preference, and purchase likelihood
• Excel spreadsheet for comparison table
• Excel spreadsheet that produced the descriptive statistics

(Figure 6)
• Excel spreadsheet for site-evaluation measures

C.4. Japanese with English Translations of Suruga
Bank Questionnaires (§6)

• Japanese with English translation of the questionnaire
used in the calibration study

• Japanese with English translation of the questionnaire
used to obtain evaluative measures for the Suruga Bank
experiment

C.5. Demonstration That Fractional Updating Will Likely
Converge from Below (Appendix B)

• Short derivation to illustrate why fractional updating
will likely converge from below

C.6. User’s Guide to Implementation of Morphing,
Including When to Morph

• A user’s guide on how to implement morphing includ-
ing both morph-to-segment assignment and the decision
on when to morph; user’s guide relies on citations to this
paper, HULB, and Urban et al. (2014) to provide a practical
roadmap to morphing.
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