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Greedoid-Based Non-Compensatory Inference, Supplemental Appendices 

Supplemental Appendix 1: Illustrative Example of Greedoid Dynamic Program 
In the text we illustrate elimination-by-aspects (EBA), acceptance-by-aspects (ABA) and 

lexicographic-by-aspects (LBA) based on SmartPhone profiles.  We provide here a second more-
visual example based on playing cards.   

Figure SA1 
Playing-Card Examples of Lexicographic Heuristic Processes 
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Suppose that we represent playing cards by two letters where S = spades, H = hearts, D = 
diamonds, C = clubs, A = ace and J = jack.  Then, if we look at the acceptance-by-aspects row of 
Figure SA1, the playing cards are ordered as follows. 
 

AS f  JS  AH  AD f  AC  JH f  JD  JC f f f f
 
The greedoid dynamic program algorithm (Algorithm 2) generates the following table. For each 
subset of aspects, we compute the minimum number of errors (see examples in the following 
section), and record the set of aspects that can occur in the last position to achieve this least error.  
We begin with all singleton subsets of aspects, then all doubletons, etc.  Because some aspects 
are linked in features, {A, J} or {S, H, D, C}, there is a redundancy that we would eliminate in 
an efficient code.  For ease of exposition, we retain all subsets in the table below.  
 

Subset s Min Errors J(s) Best Last Aspect 
{H} 6 H 
{D} 8 D 
{C} 10 C 
{S} 0 S 
{A} 3 A 
{J} 13 J 

{H, D} 11 D 
{H, C} 13 C 
{H, S} 2 H 
{H, A} 5 H 
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{H, J} 14 J 
{D, C} 15 C 
{D, S} 4 D 
{D, A} 7 D 
{D, J} 16 J 
{C, S} 6 C 
{C, A} 9 C 
{C, J} 18 J 
{S, A} 0 A 
{S, J} 10 J 
{A, J} 3 J 

{H, D, C} 15 C 
{H, D, S} 3 D 
{H, D, A} 7 D 
{H, D, J} 16 D or J 
{H, C, S} 5 C 
{H, C, A} 9 C 
{H, C, J} 18 C or J 
{H, S, A} 0 H 
{H, S, J} 8 J 
{H, A, J} 5 H or J 
{D, C, S} 7 C 
{D, C, A} 11 C 
{D, C, J} 20 C or J 
{D, S, A} 2 D 
{D, S,  J} 10 J 
{D, A, J} 7 D or J 
{C, S, A} 4 C 
{C, S, J} 12 J 
{C, A, J} 9 C or J 
{S, A, J} 0 J 

{H, D, C, S} 3 C 
{H, D, C, A} 9 C 
{H, D, C,  J} 18 C 
{H, D, S, A} 0 D 
{H, D, S, J} 7 J 
{H, D, A, J} 7 D or J 
{H, C, S, A} 2 C 
{H, C, S, J} 9 J 
{H, C, A, J} 9 C or J 
{H, S, A, J} 0 H or J 
{D, C, S, A} 4 C 
{D, C, S, J} 11 J 
{D, C, A, J} 11 C or J 
{D, S, A, J} 2 D or J 
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{C, S, A, J} 4 C or J 
{H, D, C, S, A} 0 C 
{H, D, C, S, J} 7 C or J 
{H, D, C, A, J} 9 C or J 
{H, D, S, A, J} 0 D or J 
{H, C, S, A, J} 2 C or J 
{D, C, S, A, J} 4 C or J 

{H, D, C, S, A, J} 0 C or J 
 
 
The algorithm first computes all rows of the table for subsets of size 1, then all rows for subsets 
of size 2, etc. This is necessary since computing results for a subset of size k requires using re-
sults from subsets of size k – 1.  
 
Sample Calculations 
 
The following are several calculations that illustrate how each row in the table is computed. 
 
Subset {H} : 
 
 number of errors caused by having aspect H in first position = 6 
 (errors : AH  AS, AH f  JS, JH  AS, JH  JS, JH f  AD, JH  AC) f f f f
 

store J({H}) = 6, with H as optimal last aspect 
 
Subset {H, D} : 
 

cost of having H last : J({D}) + newErrors(H after {D}) = 8 + 5 = 13 
(new errors : AH  AS, AH f  JS, JH  AS, JH  JS, JH f  AC) f f f
cost of having D last : J({H}) + newErrors(D after {H}) = 6 + 5 = 11 
 
store J({H, D}) = 11, with D as optimal last aspect 

 
Subset {S, A} : 
 

cost of having S last : J({A}) + newErrors(S after {A}) = 3 + 0 = 3 
cost of having A last : J({S}) + newErrors(A after {S}) = 0 + 0 = 0 
 
store J({S, A}) = 0, with A as optimal last aspect 

 
Subset {H, D, C} : 
 

cost of having H last : J({D, C}) + newErrors(H after {D, C}) = 15 + 4 = 19 
cost of having D last : J({H, C}) + newErrors(D after {H, C}) = 13 + 4 = 17 
cost of having C last : J({H, D}) + newErrors(C after {H, D}) = 11 + 4 = 15 
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store J({H, D, C}) = 15, with C as optimal last aspect 
 
Note that we do not compute costs for all 3! = 6 permutations of {H, D,C}. Instead we “try” each 
aspect in the last position and simply look up the best possible cost for the aspects preceding the 
last aspect (which was computed during an earlier step). 
 
Subset {H, D, C, S, A, J} : 
 

cost of having H last : J({D, C, S, A, J}) + newErrors(H after {D, C, S, A, J}) = 4 + 0 = 4 
cost of having D last : J({H, C, S, A, J}) + newErrors(D after {H, C, S, A, J}) = 2 + 0 = 2 
cost of having C last : J({H, D, S, A, J}) + newErrors(C after {H, D, S, A, J}) = 0 + 0 = 0 
cost of having S last : J({H, D, C, A, J}) + newErrors(S after {H, D, C, A, J}) = 9 + 0 = 9 
cost of having A last : J({H, D, C, S, J}) + newErrors(A after {H, D, C, S, J}) = 7 + 0 = 7 
cost of having J last : J({H, D, C, S, A}) + newErrors(J after {H, D, C, S, A}) = 0 + 0 = 0 
 
store J({H, D, C, S, A, J}) = 0, with C and J as optimal last aspects 

 
Because J({H, D, C, S, A, J}) = 0, it means that there exists an order of aspects that is 100% con-
sistent with the profile preferences 
 

AS f  JS  AH  AD f  AC  JH f  HD f  JC f f f
 
Extracting the Optimal Solutions  
 
To construct the consistent aspect orders, we work backwards starting from the set of all aspects 
{H, D, C, S, A, J} and seeing which aspects can occur in the last position. For this example, C or 
J can occur last, i.e., the aspect orders have the following patterns: 
 

{H, D, S, A, J}  C f
{H, D, C, S, A} f  J 

 
When aspect C is last, we then consider how to optimally order the remaining aspects that pre-
cede C, i.e., {H, D, S, A, J}. Looking up this subset in the table, we find that aspect D or J can 
occur in the next to last position: 
 

{H, S, A, J}  D f  C f
{H, D, S, A}  J f  C f

 
Continuing in this fashion, we can construct all possible consistent aspect orders.  
 

S  A f  J  H  D f  C f f f
S  A f  H  J  D f  C f f f
S  A f  H  D  J f  C f f f
S  A f  H  D  C  J f f f f

 
Finally, we eliminate redundant aspects.  For example, because {A, J} make up a feature, once 
we know that A is in an order, we do not need J.  Similarly, because {S, H, D, C} make up the 

4 



Greedoid-Based Non-Compensatory Inference, Supplemental Appendices 

feature of “suit,” once we know that A, H, and D are in an aspect order, we do not need C.  
Based on these relationships, we eliminate J and C to get the unique order: 
 

S f  A H  D f f
 

This aspect order reproduces the profile order with zero error. 
 

Supplemental Appendix 2: Predictive Ability of q-compensatory Benchmarks 
 In the text we plot holdout predictive ability (percent pairs predicted; hit rate) for 

HBRL(q) as estimated on the SmartPhone data.  That plot is repeated here. We also plot holdout 

predictive ability for LINMAP(q) and for the Lenk, et. al. (1996) computer data.  

Figure SA2 
Holdout Predictive Ability as a Function of q 

0%

20%

40%

60%

80%

1 2 4 6 8 10 infinity

q

Sm
ar

tP
ho

ne
s 

(H
B

R
L)

Holdout Percent Pairs Holdout Hit Rate
LBA Holdout Pairs LBA Hit Rate   

0%

20%

40%

60%

80%

1 2 4 6 8 10 infinity

q

S
m

ar
tP

ho
ne

s 
(L

IN
M

A
P)

Holdout Percent Pairs Holdout Hit Rate
LBA Holdout Pairs LBA Hit Rate  

(a) SmartPhones, HBRL     (b) SmartPhones, LINMAP 

0%

20%

40%

60%

80%

100%

1 2 4 6 8 10 infinity

q

Co
m

pu
te

rs
 (L

en
k,

 e
t. 

al
., 

HB
RL

)

Holdout Percent Pairs Holdout Hit Rate
LBA Holdout Pairs LBA Hit Rate  

0%

20%

40%

60%

80%

100%

1 2 4 6 8 10 infinity

q

C
om

pu
te

rs
 (L

en
k,

 e
t. 

al
., 

LI
NM

AP
)

Holdout Percent Pairs Holdout Hit Rate
LBA Holdout Pairs LBA Hit Rate  

(c) Computers, HBRL    (d) Computers, LINMAP 

5 



Greedoid-Based Non-Compensatory Inference, Supplemental Appendices 

Supplemental Appendix 3:  Monte Carlo Experiments 
 For simplicity of exposition, we report Monte Carlo results for rank-order data only.  We 

expect to obtain qualitatively similar results for consider-then-rank synthetic data. For our gener-

ating model, we modify a functional form proposed by Einhorn (1970).  We first define a set of 

generating weights,  for n = 1 to N.  We then select each synthetic respondent c’s true 

partworths as follows:  for the n

n
n

−= 12ω

)1(2)( nmm
nncw −== ω th smallest partworth.  Following Einhorn, 

m = 0 implies Dawes’ model and m = 1 implies a minimally lexicographic model.  (By mini-

mally lexicographic, we mean that the model may not be lexicographic in the presence of meas-

urement error.) Setting 0 < m < 1 generates a q-compensatory model.  By setting m = 0, 1/15, 

2/15, 4/15, 8/15, and 16/15 we generate a range of models that are successively less compensa-

tory.  (For 16 aspects, the smallest partworth is 2-15.  Setting the largest m to 16/15 makes the last 

model less sensitive to measurement error.) We then generate 1,000 synthetic respondents for 

each m as follows where is respondent c’s true utility for profile j. jcu

1. For each m, generate , normalize so ’s  sum to 1.0.  cwr ncw cwr  ⇒ cjjc wpu rr ′= . 

2. For each c, add error to the true utility: ),0(~~~~ eNwhereuu jjjcjc εε+= , e = 0.2, 0.4. 

3. Given }~{ kcu , generate a rank order of 32 cards for respondent c.  Repeat for all m. 

For each respondent, we use either the greedoid-based dynamic program to estimate an 

LBA aspect order or LINMAP(q) to estimate partworths.  (As Supplemental Appendix 2 indi-

cates, we obtain very similar predictions with HBRL(q) and LINMAP(q).  LINMAP(q) is much 

more efficient for simulations.)  Estimated partworths imply a rank-order of 32 profiles from a 

4324 design.  The comparison statistic is the percent of ordered pairs of profiles predicted from 

the estimated model that are consistent with the true model.  The results are shown in Figure 

SA3.  For ease of interpretation and comparison with the q-compensatory constraints, we label 

the horizontal axis with the ratio of the largest to the smallest partworth.  For example, m = 2/15 

implies a ratio of 4:1. 

Compare first the highly constrained compensatory model, LINMAP(2), to LBA.  As ex-

pected, the compensatory model predicts better than LBA when respondents are truly compensa-

tory and LBA predicts better than LINMAP(2) when respondents are truly lexicographic.  Fur-

thermore, there is a smooth movement from LINMAP(2) to LINMAP(∞) as q increases.  This is 

also true for q = 1, 8 and 16 (not shown for simplicity).  For this particular simulation with ho-
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mogeneous respondents, constraints help significantly for low m.  The unconstrained compensa-

tory model, LINMAP(∞) may over-fit the data for low m.  We expect this to be mitigated in the 

SmartPhone and computer empirical studies.  Finally, we see that q = 4 is a reasonable discrimi-

nator vs. LBA because LBA provides superior predictions when respondents are truly lexico-

graphic and q = 4 provides superior predictions when respondents are truly compensatory.  To 

obtain even more discriminate ability, we might have chosen q = 2 for illustrative purposes.  We 

did not do so because we felt it was too constrained to be realistic.  However, should the reader 

wish to make comparisons to q = 2 (or other q’s), the data are presented in Figure SA2.  

Figure SA3 
Results of the Monte Carlo Experiments 
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As a test of robustness, we also generated data for heterogeneous respondents.  Part-

worths were generated randomly and then raised to a power (mhetero).1  The curves are qualita-

tively similar but cross slightly earlier.  Predictive ability is reduced slightly for all models.  We 

encourage readers to explore alternative simulations. 

                                                 
1 mhetero affects the heterogeneous model differently than m affects the homogeneous model.  For example, for mhetero 
= 2, the geometric mean of the ratio of the maximum partworth to the minimum partworth is the order of 200; for 
mhetero = 4 it is the order of 50,000; and for mhetero = 8 it is the order of 1 billion.  The arithmetic means are consid-
erably higher.  We found the simulations with homogeneous respondents to be easier to interpret. 
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