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Von Neumann-Morgenstern (VN-M) utility theory is the dominant theoretical model of risk
preference. Recently, market researchers have adapted vN-M theory to model consumer risk
preference. But, most' applications assess utility functions by asking just n questions to specify
n parameters. However, any questioning format, especially under market research conditions.
introduces measurement error. This paper explores the implications of measurement error on
the estimation of the unknown parameters in vN-M utility functions and provides procedures
to deal with measurement error.

We assume that the functional form of the utility function, but not its parameters, can be
determined a priori through qualitative questioning. We then model measurement error as if
question format and other influences cause the consumer to choose the unknown “risk
parameter” from a probability distribution and to make his decisions accordingly. We provide
procedures to estimate the unknown parameters when the measurement error is either (a)
Normal or (b) Exponential.

Uncertainty in risk parameters induces uncertainty in utility and expected utility, and hence
uncertainty in choice outcomes. Thus, we derive the induced probability distributions of the
consumer’s utility and the estimators for the implied probability that an alternative is chosen.

Results are obtained for both the standard decision analysis “preference indifference”
question format and for a “revealed preference” format in which the consumer is asked simply
to choose between two risky alternatives.

Since uniattribute functions illustrate the essential risk preference properties of vN-M
functions, we emphasize uniattribute results. We also provide multiattribute estimation proce-
dures. Numerical examples illustrate the analytical results.

(MARKETING; UTILITY THEORY; RISK MODELING)

1. Perspective

The measurement and modeling of how consumers form preferences among risky
alternatives is becoming an important problem in marketing science as researchers
begin to focus on purchases of durable goods such as automobiles, home heating
systems, home computers, and major appliances. An integral part of such consumer
decisions is the choice of a specific product, say a gas furnace, when the attributes of
the product, say annual cost and reliability, are not known with certainty.

A number of procedures have been proposed to model consumer risk. For example,
Pras and Summers (1978) include the standard deviation of an attribute as a risk
measure. Among these procedures is explicit risk assessment with von Neumann-
Morgenstern (vN-M) utility functions. vN-M utility functions have the advantages that
they are:

(1) theoretically derived from an axiomatic base (von Neumann and Morgenstern
1947, Friedman and Savage 1952, Herstein and Milnor 1953, Jensen 1967, Marschak
1950, and others),

(2) provide a set of practical functional forms derived from testable behavioral
assumptions (see review in Keeney and Raiffa 1976), and,
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(3) have been applied extensively to model managers’ decisions (see extensive
reviews in Farquhar 1977 and Keeney and Raiffa 1976).

However, until recently vIN-M utility functions have not achieved widespread use in
marketing. This reluctance by marketing academics and practitioners stems in part
because the question formats can be difficult and because the consumer modeling has
not acknowledged measurement error as have more widely accepted techniques such
as conjoint analysis (Green and Srinivasan 1978) and logit analysis (McFadden 1980).
For example, both Hauser and Urban (1979) and Eliashberg (1980) have successfully
modeled consumer preferences and have forecast reasonably well with vN-M theory,
but both studies use the decision analysis procedure which requires complex questions
to first test behavioral assumptions and then obtain exactly n observations to fit n
parameters.

The consumer preference modeling task is different from the decision analysis task.
Market research interviews are usually severely limited in time, hence, tradeoffs must
be made among interviewee training, assumptions testing, complexity of questions, and
the number of questions. Marketing researchers/scientists often prefer to ask more but
simpler questions to statistically infer properties and estimate parameters. Such proce-
dures must acknowledge potential measurement error.

More recently, marketing scientists have recognized these issues and have begun to
adapt vN-M theory to marketing problems. For example, Ingene (1981) uses a Taylor
series expansion to obtain simpler functional forms which are estimable with linear
regression. Currim and Sarin (1984) provide two approaches. In the first, they adapt
conjoint analysis to vN-M functions and in the second they retain the standard vN-M
preference indifference format but use linear programming to minimize the stress of
fit. All three approaches have practical merit and indicate the renewed interest in
vN-M utility modeling.

In this paper, we take a different approach to the marketing problem. We explicitly
acknowledge measurement error, but retain the axiomatic base and powerful, practical
functional forms of vN-M theory. In the face of measurement error, we develop
procedures to estimate unknown parameters for vN-M utility functions and we
examine the implications of such measurement error on the utility functions and the
choice outcomes.

2. Conceptualization of Measurement

The primary advantage of vN-M utility theory is its ability to model risk prefer-
ences. Basically, products are represented by their attributes and uncertainty (risk) is
modeled as a probability distribution over the attributes. The vN-M function assigns a
scalar value to every possible outcome of the uncertain attributes such that the
consumer will prefer the product which has the maximum expected utility. The axioms
imply that such a utility function exists and is unique (subject to a scaling change).
The market research task is to obtain an estimate of this function such that expected
utility is a reasonable predictor of the consumer’s behavior.'

In general, a vN-M utility function can be an arbitrary function, but research in the
last 20 years has identified a set of parametered functions based on reasonable
behavioral assumptions. These functions are valuable for market research because they
allow us to parameterize, and hence simplify, the estimation problem and because they
focus our attention on functional forms that can be justified a priori with a qualitative
analysis of the consumer’s risk preference.

'In marketing research, measurement error exists. Thus, we rarely can predict with certainty and instead
forecast choice probabilities. Predictions of choice probabilities require modification of the vN-M axiom
system. For one set of revised axioms, see Hauser (1978).
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FiGure 1. Conceptualization of Error Modehing.

We assume that this qualitative analysis has been carried out and that we know the
functional form of the consumer’s utility function. We do not know and would like to
determine the unknown parameter(s) that characterize the degree of the consumer’s
attitude toward risk. Common functional forms and the interpretations of risk parame-
ters are reviewed in §3. Keeney and Raiffa (1976, pp. 191-193) provide details on the
qualitative analysis and Hauser and Urban (1979, Figure C) provide a market research
example.

We can conceptualize the market research measurement as shown in Figure 1. We,
the experimenter, choose a set of questions. The type of question chosen as well as
other factors could well induce biases and errors in the measurement process. For
example, Hershey, Kunreuther and Schoemaker (1982) found that the domain of
outcomes (e.g., pure loss versus mixed lottery) and the decision context (e.g., abstract
versus concrete formulation) may be influential in the observation of the consumer’s
risk attitude. In our framework, this may influence the parameterized utility function
describing the consumer, but for a given utility function, there is some true risk
parameter, r 7, and our questioning process induces error when we try to assess 7. We
describe this error by a probability distribution, f(r|A), of the risk parameter, r, where
A is a parameter of the distribution.

We then model the consumer’s response as if he chooses a utility function, u(x,r),
draws a risk parameter, r,, from f(»|A) independently for each question,? and provides
an answer to the question that is consistent with u(x,r;). When we obtain / observa-
tions, it is our task to estimate f(r|A), or more specifically, A. If errors are unbiased
(zero mean) or if the bias is known, we can then obtain an estimator of e

The assumption of error induced by question format or by other sources such as
temporal variation, approximation, etc., and its modeling through random draws of
the risk parameter is similar to “random utility” error theories such as Thurstone
(1927) or Luce and Suppes (1965), but modified to emphasize the strength of vN-M
theory—risk preference.

We note that our model of the consumer’s response (dotted box in Figure 1) is a
paramorphic model, that is, we assume that the consumer responds as if he follows the
postulated procedure. Such details of cognitive response are inherently unobservable
{without introducing new observation errors), but serve to provide a modeling frame-

20r for each product which he evaluates in answering the question.
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work with which to represent measurement error. In one interpretation, our assump-
tion acts as a surrogate for explicit modeling of errors due to misspecification of the
attributes, exogenous influences, task factors (e.g., problem framing), purchase situa-
tion variation, and other unobserved error sources.

To analyze the implications of Figure 1, we investigate a number of issues. (1) We
obtain methods to estimate x, and hence f(r]X), from data obtained from standard
decision analysis indifference questions. (We allow A to be vector valued.) (2) We
obtain methods to estimate A from revealed preference questions where the consumer
is given two alternatives and asked to choose his most preferred. (3) Since uncertainty
in r induces uncertainty in u(x,r), we derive the distribution of utility from the
estimated distribution of r. (4) Since uncertainty in utility induces uncertainty in
expected utility and hence uncertainty in choice outcomes, we derive expressions for
the probability that a given alternative is chosen by the consumer. We investigate these
issues for alternatives represented by discrete (Bernoulli) distributions of the attribute,
x, and for alternatives represented by continuous distributions (e.g., Normal) of the
attribute x. Before we begin the formal development we provide a brief review of
vN-M concepts.

3. Review of YN-M Concepts

This section briefly reviews some aspects of vN-M utility theory that are necessary for our analyses. It
may be skipped by readers familiar with vN-M theory. For greater detail see Keeney and Raiffa (1976).

Uniattributed Functions

Uniattributed functions are derived from assumptions about how a consumer’s risk preference changes as
his “assets” increase. For example, we might expect a consumer to be less concerned about uncertainty of
3100 in heating bills if his current base heating bill were $3,000 than he would be if his base heating bill
were $300. Pratt (1964) proposed a measure, called absolute risk aversion, R(x), of how a consumer’s risk
attitude varies with his asset level, x. If u(x) is the utility function, R(x) is given by

du(x) [/ du(x)

— - m)

R(x)= ~

If R(x) is positive, the consumer is risk averse, if R(x) is negative, risk prone, and if R(x) is zero, risk
neutral. Larger absolute values of R(x) imply greater risk aversion (proneness).

A related concept is proportional risk aversion, S(x), which measures a consumer’s risk preference when
consequences are measured in proportion to current assets. For example, if the uncertainty in heating bills
were + 10% of the base bill then the proportional risk aversion measure would be appropriate to describe the
consumer’s risk attitude. If x; is the minimum (reference) value of x, then S(x) is given by:

S(x) = (x ~ xg)R(x). @

The most common uniattributed functional forms are based on constant R(x) or S(x). As Table 1
indicates, constant R(x) implies an exponential function and constant S(x) implies a power function. A
third functional form, linear utility, is a special case when R(x) = S(x) = 0. This is the risk neutral form
which applies when risk does not affect the consumer’s decisions.

Other uniattributed functional forms are possible, for example, a logarithmic form or a sum of exponential
forms, but the three functions in Table 1 are the functional forms that have dominated applications in
decision analysis and marketing science. Furthermore, in reviewing 30 applications, Fishburn and Kochen-
berger (1979) found that the constant R(x) and constant S(x) functional forms fit the data quite well and
substantially better than the linear form.

Multiattributed Functions

Multiattributed functions are derived from assumptions about utility and preference independence (of
dependence) among attributes. Empirical experience in decision analysis and marketing science has found
them to be feasible and useful. We return to the multiattributed issue in §5 where we provide an example
based on the commonly used muttilinear form.
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TABLE 1
Common Umattributed vN-M Utility Functions
Behavioral Assumption Functional Form Range of Attribute
Constant absolute P RUE)
1. risk averse (R(x) = r) 1—e r>0 Xg & X & ©
(l_e”‘\‘\u))
—_— r>0 Xg € X € X,
(1—e ")
(;onstant proportional (x — x)
2. risk averse or prone —_— r>0 X € X € X,
(S(x)=1-r (x4~ x0)
Risk neutral (special (x = %o)
3. case of (1) when r >0 T Xg & X < X,
and (2) whenr— 1)) (X‘ Xo)

Note. Functional forms also exist for r < 0. For ease of exposition we restrict our analyses to r > 0.
For constant proportional risk atutude, the utility function is nsk averse for 0 < r < 1 and risk prone
forr > L

Emprical Experience

Neither decision analysts nor marketing scientists have exphaitly approached vN-M uulity measures as
error-laden measures. Meyer and Pratt (1968) provide a procedure for “fairing™ determinisucally a smooth
function through a set of pomts, Fishburn and Kochenberger (1979) use a minimum mean squared error
procedure, and Curnm and Sarin (1983) use a conjoint-like procedure and a minimum stress procedure. but
none of these authors explicitly models measurement error statistically or examines its implications. We
know of no systematic empirical study quantifying measurement error at the individual level.

The only systematic empirical studies of which we are aware relate to variation across individuals. Such
studies do not necessarily relate to variation within individuals, but they are appropriate if our theory 1s to
be applied across individuals and they are suggestive of the type of empirical research necessary to examine
assumptions within individuals. For example, in one study by Fishburn and Kochenberger (1979), although
the intervals are coarse and unequal, 7 of 8 cases frequency distributions “look™ either normal or
exponential.

4. Single Parameter Uniattributed Utility Functions

Following Fishburn and Kochenberger (1979), we assume that separate parameters
are estimated “above target” and “below target,” thus we can assume that the utility
function is either concave throughout the region, x, < x < x,, or convex throughout
the region. Without loss of generality we assume that the attribute of interest, x, has
been scaled such that preference is monotonically increasing in x over the region of
estimation. For example, if there were a finite ideal point, say length of an automobile,
we either (1) assess separately for the range above and the range below the ideal point
or (2) assess with respect to a rescaled attribute such as distance from the ideal point.

Our results are derived at the level of the individual consumer, that is, we assume
that any variation in the unknown parameter, r, represents uncertainty in measuring
the parameter and /or uncertainty across time and situations. We note, however, that
our results can be interpreted for variation across consumers with proper modification
in definitions. We begin with an example that illustrates the nature of the problem of
interest and its essential characteristics.

An lllustrative Example

Suppose that a consumer is considering replacing his antiquated home heating
system with a new oil, gas, electric, or solar system. He is uncertain about unit fuel
cost, about heating efficiency, and about weather, thus, the annual savings, x, of the
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FIGURE 2. Schematic of Uniattribute Lottery Measurement.

new system over the present system is an uncertain outcome. Suppose that he has some
prior beliefs about the savings due to each system and that these prior beliefs can be
characterized by a probability distribution over the range of $200 < x < $1200. We
want to estimate his utility for values of x and to predict his future choices. (Assume
for simplicity of exposition that attributes other than x do not affect his choices. §5
relaxes this assumption.)

Using a standard decision analysis lottery questioning format, we ask the lottery
question described schematically in Figure 2. The consumer is given a choice between
two heating systems. Heating system A4, a solar system, has a known savings of x;
dollars. The savings of heating system B, an oil system, are less certain and depend
upon the price of oil. If conditions are favorable, the savings are $1200, and if they are
unfavorable, the savings are only $200. The consumer is asked to specify the likelihood
(probability), p;, of favorable conditions such that he would be indifferent between
system 4 and system B. An example question is given in Appendix 2.

For other market research wordings of this type of question see Hauser and Urban
(1977, pp. 593-594) and Eliashberg (1980, pp. 74-75). Alternatively, one might
consider using a 0-10 or 0-100 probability scale to elicit p,. For examples of such
scales, see Juster (1966) or Morrison (1979).3

Suppose that from discussions with the consumer we believe a constant proportional
risk averse utility function is appropriate. For our problem, the function is:

u(x;,r) = (x, — 200)'/(1000)". 3
If the vN-M axioms hold, then Figure 2 implies:
u(x,,r)=pu(1200,r) + (1 — p,)u(200,r). 4

Substituting equation (3) in equation (4) yields:
(x, = 200)"/1000" = p,(1) + (1 — p,)(0) = p; . o)

Finally, if there were no errors and we know x; and p,, we could obtain r by solving
the algebraic relationship in equation (5). That is:

r; = r(x;, p;) = log(p,)/log[ (x; — 200)/1000]. (6)

The practice in marketing research is to ask multiple questions as illustrated in Table
2 and to utilize all the information obtained. That is, we could vary x; and have the
consumer specify a p; for each x;. We would then use equation (6) to obtain an r, for
each x;. However, as Table 2 indicates, we are likely to get a different value of r for
each question since it is quite unlikely that the consumer will be perfectly consistent in
responding to the various questions. The conceptual model in Figure 1 gives us a
framework to analyze and interpret the implications of such variation in 7;.

3We note, however, that Morrison (1979) uses an alternative error theory to analyze such probability
scales. See also Kalwani and Silk (1982).
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TABLE 2
Example of Assessment for the Annual Savings of a Home Heating System
g Xy P:)
i X, (constant proportional
Measurement (dollars) P risk averse)
1 300 0.29 0.54
2 400 0.46 0.48
3 500 0.53 0.53
4 600 0.64 0.49
5 700 0.72 047
6 800 0.75 0.56
7 900 0.83 0.52
8 1000 0.91 042
9 1100 0.95 049

We begin with maximum likelihood estimators, A, for A, when questions are asked in
the format of an indifference question. We address revealed preference questions after
we derive the necessary analytic tools, i.e., expressions for the distribution of utility
and for choice probabilities.

Estimation for Preference Indifference Question Formats

A preference indifference question is a question such as the one described schemati-
cally in Figure 2. The experimenter provides x,, xo. and either x, or p,; the consumer
answers with a value of p, (or x,) such that he is indifferent between the two
alternatives.

The experimenter’s task is to estimate A from / indifference questions. Before we can
proceed further, we must make an assumption about the family of distributions,
f(r|A). In this paper, we investigate two error distributions: (1) Normal distributions
and (2) Exponential distributions.

Normal error theory has the advantage that it is the natural assumption usually
made in statistical theory. Its drawback is that r, can take on any value in the range
(— o0, 00). However, if the mean is significantly larger than the standard deviation,
then negative values of r, will be extremely rare.

Exponential error is not subject to this problem since we can restrict r > r, i.e.,

f(r])\)=()\-ro)"exp[—(r—ro)/()\—ro)] for r>r,.

However, exponential error theory does imply an asymmetric distribution with its peak
at r = ry and zero probability for r < r,.

Normal error and Exponential error are clearly quite different theories. Each has its
advantages and its disadvantages and, a priori, each reader will have his own favorite
theory. We investigate both assumptions in this paper in the belief that these two
assumptions are each flexible and together span a broad range of potential shapes for
fCr[N).

As it turns out, it is quite simple to obtain the maximum likelihood estimator (MLE)
for A, once an error assumption is made about the shape of f(r|A). (MLE’s are
important for applied statistics because they are consistent, efficient, and functions of
minimal statistics.)

Suppose we ask / questions of the format of Figure 2. That is, for a vector of
“certain outcomes,” X = (X;,X,, ..., X;), we obtain a vector of corresponding
“answers,” p = (p,, P, - - - » P;)- Because successive questions are independent, it is
easy to show that maximizing the joint probability, F(p{x,A), of observing p given x
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and A is equivalent to maximizing the following log likelihood function:*

LA x.p) = 3 log (1, |A) (7)

where r, = r(x;, p,). The MLE for A, X, is the value of A that maximizes (7). In other
words, we simply treat the r, as data points. This has a number of very practical
advantages.

Estimators

If we treat the r, as data, the MLE’s are well known for both Normal error and
Exponential error. If u and o? are the mean and variance of the Normal distribution,
then the MLE’s® are given by:

A=(/DHXr. (8)
§=(1/1)2(r,— B 9

For Exponential errors:
A=1/H3r. (10)

Furthermore, i and A can be interpreted as the expected (“true’”) values of r for
Normal and Exponential errors, respectively, if we assume induced error is zero-bias.

MLE's are invariant under transformation, that is, if § is an MLE for 8, then g(f) is
the MLE for g(#) (Giri 1977, Lemma 5.1.3). Thus, if we interpret ji or X as the “true”
values of r, then u(x,. ) or u(x,,A) are “true” values of u(x,) for Normal and
Exponential errors, respectively.

Note that equations (8), (9), and (10) apply for both the constant absolute and
constant proportional risk averse forms in Table 1. For that matter, they apply for any
uniattributed utility function for which a unique r, can be computed for each
consumer question. For the generalized version of the binary preference comparison
question shown in Figure 2 (x, < x, < oo for constant absolute risk aversion and
xo € x, € x,, for constant proportional risk aversion), the inverse functions are given
by:

Constant log(1 - p))
Absolute risk: 7(x,.p) = — —(}-—:—x)— , (1
Aversion ! o
o ) log(7) 2
roportional nsk: r(x,,p)= — .
Aversion log[ (x. = Xo)/ (¥ = xo) ]

When x, < x € x, for constant absolute risk aversion, the inverse function can be
obtained numerically and, for a few special cases, analytically.

Question Format

We derived equation (7) for the case when the x,’s were specified by the experi-
menter such that the consumer’s answers were the p’s. But, by symmetry, it is clear

4F(p|x,A) is the product of the f(r(x;. p,)|A)’s times the Jacobian which is independent of A.
SEquation (9) is the MLE for &, but it is biased for finite /. The more commonly used estimator is
(1/(1 — 1)8%. Also, if we want to estimate ry, its MLE is 7, = min, {r,}.
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that equation (7) applies if the probabilities, p,’s, are specified and the consumer
supplies the certain outcomes, x;’s. In fact, a modified equation (7) will apply for any
question format for which one can obtain an observation of r,. See Farquhar (1984) for
a review of alternative question formats. However, equation (7) does not imply that the
experimenter’s choice of question format is free from systematic bias. Different
formats may induce different biases, e.g., different u or A, different magnitudes of
error, e.g., different o? for Normal errors, or, for that matter, different types of error,
e.g., different f(r|A). But equation (7) does state that once the error assumption is
made, equations (8) and (9) or (10) apply independently of the question format.

Statistical Inference

One can test a hypothesis about the “true” value of r. For example, if normal error
theory applies and the researcher wishes to test whether the “true” value of r is
significantly different from some hypothesized value, r,, he can use a r-test with
(I - 1) degrees of freedom based on the statistic, (r, — AXI — 1)'/2/4. Similar results
apply for exponential error theory, except that the sampling distribution for A has a
gamma density with mean A,, and variance A2 /n.

An Illustration

Consider the problem in Table 2. Using equations (8), (9), and (10) we estimate
£=050 and é =0.04 for Normal errors and XA =050 for Exponential error. A
chi-square goodness-of-fit test suggests that the data are more likely to be generated
from a Normal distribution. A utility function based on r” = fi = 0.5 is shown in
Figure 3. For normal error theory, a 95% confidence interval for j is [0.47, 0.53] and
for 6 it is [0.03, 0.08].

Distribution of Utility

If the risk parameter, r, were known with certainty, we could compute u(x,r) for
any x and then compute directly the expected utility of a product. However, even with
an MLE for the “true” parameter, A, our knowledge about r is still represented by a
random variable with distribution, f(r]A). This uncertainty in r induces uncertainty in
u(x,r) for any x. Hence, the expected utility and, ultimately, the choice outcome are
random variables. We begin by computing the probability density function of u(x,r).
We then examine its implications. For simplicity of analytic exposition we restrict our
results to the infinite range (0 < x < oo0) constant absolute risk averse utility function
and (for exponential errors) to r > 0. For constant proportional risk averse utility
functions the range can be either finite or infinite and for normal errors r is
unrestricted. (The proofs to Propositions 1 and 2 and all subsequent propositions are
contained in Appendix 1.)

PROPOSITION 1. If measurement error is modeled as NORMAL, then the utility
Junctions have lognormal distributions. In particular,

i
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u(x, r)~A(~ kifi, k6?) for constant proportional risk aversion,
1 — u(x,r)~A(— xfi, x’8%) for constant absolute risk aversion, where

k = logl(x« = x0)/(x — Xo)},
A(a,b) = a Lognormal distribution with parameters a, b.

PROPOSITION 2. If measurement error is modeled as EXPONENTIAL, then the
utility functions have Beta distributions. In particular,

u(x,r)~Beta(1/ Xk 1) for constant proportional risk aversion,

u(x,r)~ Beta(1,1/ Ax) for constant absolute risk aversion,
where k is defined in Proposition 1, and Beta(c,d) = a Beta distribution with parameters

¢, d.

Propositions 1 and 2 are useful for practical applications involving risky and riskless
alternatives. For both error theories, the induced distributions on u(x,r) are recogniz-
able distributions with known properties similar to those that arise in quantal choice
problems. This will become key as we proceed to forecasts of choice probabilities.
Because Lognormal and Beta distributions compound nicely with conjugate distribu-
tions (DeGroot 1970) it is possible to obtain analytic results for important distributions
of outcomes.

Probability of Choice

If » were known with certainty, the expected utility of each product could be
computed and we would simply forecast that the consumer would choose the product
with the maximum expected utility. In this case, our forecasting statement would be
made categorically, that is, with probability zero or one. Instead, u(x,r) is a random
variable with distribution given by Propositions 1 and 2. Hence, the best we can
forecast is the probability, P, (0 < P, < 1) that the consumer will choose product j.

That is,
P = Prob[fu(x,r)hj(x)dx >fu(x,r)hk(x)dx fork=1,2,.. .J] (13)

where h(x) is the probability distribution of outcomes for Alternative j.

If we were evaluating riskless alternatives, then (13) becomes a quantal choice
problem similar to logit or probit analysis (McFadden 1980) except that we use
Lognormal or Beta distributions rather than the double exponentlal and normal
distributions used in logit and probit analyses, respectively.® (See reviews of quantal
choice models in Manski and McFadden 1981 and Daganzo 1979.)

Since our focus is on risky alternatives, we examine in detail two important cases of
equation (13). We examine binary choices among;:

(1) Products whose outcomes are specified by lotteries possessing discrete (Bernoulli)
probabilities, and

(2) Products whose outcomes are specified by continuous probability density func-
tions, especially normal distributions.

These cases illustrate the essential ideas behind equation (13). We obtain analytic
results for both problems. We leave the problems of other uncertain outcomes and
multiple choices for future research, although we point out that, in principle one could
use Propositions 1 and 2 with numerical techniques to compute P, via equation (13).
This would be analogous to the use of numerical techniques in state-of—the-art multiple
choice probit analysis (see Daganzo 1979).

°Quantal choice problems with lognormal mixtures of double exponential distributions of utility have
been studied. See Boyd and Meliman (1980).
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Alternative | Alternative 2

FIGURE 4. Binary Choice Problem.

Binary Choice Between Lotteries

The first consumer choice situation that we consider is characterized as a binary
choice problem with dichotomous outcomes illustrated in Figure 4. For example,
Alternatives 1 and 2 may be two heating systems heated by two different energy
sources and the dichotomous outcomes may represent world events that affect the
prices of these sources. Without loss of generality assume x, > x, and 8 > a. As
before, xy < x,x, < x4. (If X, > x, and a > B, then Alternative 1 would dominate
Alternative 2.) This simple choice problem contains the essence of risky choice; the
individual must decide between a potentially greater payoff, Alternative 1, and a
greater likelihood of the payoff, Alternative 2. .

Our objective is to estimate the probability, P,, that the consumer will choose
Alternative 1, given that we have estimated the parameters, A, of the probability
density function from which the risk parameter, r, is drawn. Before we proceed, we
note that, for the binary choice problem presented in Figure 4, measurement errors
may be induced once, for the question as a whole, or twice, once for each alternative.
This gives rise to two viewpoints (assumptions) regarding the nature of our con-
ceptualizations of how consumers draw r, from f(r|]}).

We label these assumptions as single and multiple random draws. Under the single
random draw assumption, the consumer draws the corresponding risk parameter only
once, and he is consistent in the sense of using the same parameter (and hence, the
same utility function) to evaluate all alternatives in his choice set. Under the multiple
random draw assumption, the consumer draws the risk parameter every time he
evaluates an alternative. The two assumptions imply similar, but slightly different,
choice probabilities. We begin with single random draw.

PROPOSITION 3. For the binary choice problem with discrete outcomes (Figure 4),
under the single random draw assumption, if measurement error is modeled as NORMAL,
then:

P = <I>[( i —xlog(B/a))/ 6] for constant proportional risk aversion,
) ®[(r. - i)/ é] if ax,> Bx,
P = Jor constant absolute risk aversion (infinite range, 0 < x < o),
0 if ax; < Bx;,
* where x7'= log[(x, ~ x0)/ (X3 — xo)],

and r, solves the equation Bexp(—r,x,) — aexp(—r.x,) = B — «a, and ®[ ] denotes the
cumulative distribution function of a normally distributed variate.

PROPOSITION 4. For the binary choice problem with discrete outcomes (Figure 4),
under the single random draw assumption, if measurement error is modeled as EXPO-
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FiGure 5. Hypothetical Characteristics of the Risk Involved for Two Home Heating Systems.

NENTIAL, then:

}3] = [ B/ a] =/ for constant proportional risk aversion,

L-exp[-r/A] i ax> B,

ﬁ, = for constant absolute risk aversion (infinite range, 0 < x < )
0 l:f ax, < ﬁxZ ’
where x and r, are defined in Proposition 3.

Propositions 3 and 4 are useful results. To illustrate their application, consider the
hypothetical alternatives in Figure 5. Alternative 1 is oil heat where the high risk
reflects volatile supplies. Alternative 2 is gas heat where the risk reflects only uncer-
tainty in the heating characteristics of the home.

Using the distribution implied by the data in Table 2, i =0.5, 6 =0.04. From
Figure 5, a = 0.3, 8 = 0.5, x, = 200, x, = 1200, and x, = 600. Assuming a constant
proportional risk averse utility function and substituting these values in Proposition 3
yields

P, = ®[ (0.5 - 108(0.5/0.3)/1og(1000/400) } /0.04] = ®[ — 1.44] = 0.075

for normal error theory. In a marketing forecasting application, we would assign a
0.075 value to the probability that the consumer would choose oil heat.
We now consider multiple random draws. We have been able to obtain analytic

results for constant proportional risk averse utility functions.

PROPOSITION 5. For the binary choice problem with discrete outcomes (Figure 4),
under the multiple random draw assumption, for a constant proportional risk averse utility

function:
P, =(I>{[ﬁ—-xlog(ﬁ/a)]/m6} for NORMAL errors

where 72 = k? + k3,  is defined in Proposition 3, and
ky = 108[(’%" x0)/ (X = xo)]’ ky = 108[(-": —x0)/ (X2~ Xo)]’

P =[ky/(k,+ k)][ B/«]™ /™  for EXPONENTIAL errors.

It is interesting to compare Proposition 3 (Normal errors, constant proportional risk
aversion) to Proposition 5 (Normal errors, constant proportional risk aversion). This
comparison illustrates the impact of measurement error on our ability to estimate
choice probabilities. Without error, r7 is known and Alternative 1 will be chosen,
P, =1, whenever r” > xlog(B/a). This corresponds to Propositions 3 and 5 with
é—>0. As our uncertainty, §, about r increases, our ability to predict the consumer’s
behavior decreases, i.e., P, decreases for § > «xlog(8/a). If we compound that error
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by allowing the consumer multiple random draws from f(r|A), then our ability to
predict is modified still further because we replace by xkné. The differences between
Propositions 3 and 5 make clear the implications of our assumption about our
knowledge of the consumer’s choice process.

One can obtain similar interpretations by comparing Propositions 4 and 5 for
exponential errors. The forms are the same, but the constants vary, e.g., k vs. k; '.

Thus, clearly, an *“open loop” estimation of probabilities, i.e., use indifference
questions to estimate f(r]}:) and Propositions 3 to 5 to estimate £,, will depend on the
assumptions we make about how uncertainty in u(x,r) affects uncertainty in choice
outcomes. On the other hand, a “closed-loop” revealed preference estimation of
probabilities will be much less dependent on this assumption. We discuss these issues
in detail after we derive the revealed preference estimators. However, we first complete
this subsection with estimates for ﬁl for constant absolute risk averse utility functions.

Despite the fact that the Lognormal and Beta distributions are well studied (e.g.,
Aitchison and Brown 1969, DeGroot 1970, Drake 1967), we have been unable to
obtain analytic results for i;, with constant absolute risk averse utility. Instead,
Proposition 6 relies upon implied integral equations which require numerical tech-

niques.

PROPOSITION 6. For the binary choice problem with discrete outcomes (Figure 4),
under the multiple random draw assumption, for a constant absolute risk averse utility
function:

P = Prob[§, — ¢, >(B—a)]  for NORMAL errors,  where
d~A(loga — x, i,x76%),  G~A(log B — x, i x36%),
P = Prob[ aid, — B, >0]  for EXPONENTIAL errors,  where
ii~Beta(1,1/Ax))  for 1=1,2.

Binary Choice Among Alternatives Represented by Continuous Distributions of Outcomes

Although attributes of many consumer products can be represented by lotteries,
many other attributes will be represented by continuous distributions such as the
Normal distribution. For example, if we buy a new automobile, we might expect that
the miles per gallon 'we actually obtain is best represented by a Normal distribution
based on the published EPA estimate.

Proposition 7 derives the probability of choice, ﬁl, if the two outcomes are
represented by Normal distributions with means and variances, m, v? and m,, ¢},
respectively. For simplicity, we state the result only for single random draws with
constant absolute risk averse utility functions. Other results are obtainable but some
require numerical techniques. Without loss of generality assume m, > m, and v, > v,.
(If m; > m, and v, < v,, then P, = 1.)

PRrOPOSITION 7. For binary choice among Normally distributed outcomes, under the
single random draw assumption, for a constant absolute risk averse utility function:

P, = (I>[ [2(m, - mz)/(u,2 - 03)— fi]/é‘ ] for NORMAL errors,
Pi=1- exp[ -2(m; - mz)/X(Uf - vg)] for EXPONENTIAL errors.

We have stated the result explicitly for Normally distributed outcomes, but the key
idea of the proof (see Appendix) is to use exponential transforms to simplify the
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integral equation for P,. We can use the same method to obtain results for any
distribution for which the exponential transform is tabled. Tabled functions include
the continuous Beta, Cauchy, Chi-square, Erlang, Exponential, Gamma, Laplace, and
Uniform distributions as well as some discrete distributions such as the Binomial,
Geometric, and Poisson distributions. See tables in Keeney and Raiffa (1976, p. 202)
and Drake (1967, pp. 271-276).

For the constant proportional risk averse utility function we can also obtain results
by using the Mellin transform, [x'f(x)dx, for those distributions for which it exists.
See tables in Bateman (1954).

Estimation for Revealed Preference Questions

The most commonly used question formats in decision analysis use some form of
preference indifference question. However, in marketing such questions have been
criticized as too complex. On the other hand, revealed preference questions, where the
consumer is asked to choose among (or rank order) alternatives, are very common. For
example, conjoint analysis, as reviewed by Green and Srinivasan (1978), uses this form
of questioning and is one of the most widely used marketing research procedures. In
fact, Currim and Sarin (1984) use a modified conjoint analysis procedure to estimate
vN-M like utility functions. Furthermore, revealed preference is one of the most
commonly used techniques in transportation demand analysis. See Manski and
McFadden (1981).

Since we are addressing a market research issue, we allow the experimenter to
choose the question format much as he would choose the fractional factorial design in
conjoint analysis. For revealed preference estimation the consumer’s task is simple. He
is given [ pairs of alternatives. Each alternative is described by a probability distribu-
tion of outcomes (usually lotteries, but continuous distributions are allowable if they
can be described adequately to the consumer). For each pair of alternatives, the
consumer is asked to choose the alternative which he prefers. See Appendix 2 for an
example question format. Propositions 3 through 7 give us the analytic tools to obtain
estimators for f(r|A) from the answers to such questions.

Let §, = 1 if the consumer chooses Alternative 1 for the ith pair and let §, = 0 if he
chooses Alternative 2. Let 8 be the vector of §,’s. Then the joint probability, F(8|A), of
observing a particular set of answers, 8, given f(r|A) is given by:

F(8|)\) = ﬁ PR~ P8 (14)
i=]

where P,, = P,,(\) are determined for each question, i, by the appropriate proposition
(i.e., Propositions 3, 4, 5, 6 or 7 or their extensions). For example, for lotteries under
the multiple random draw assumption with exponential errors and a constant propor-
tional risk averse utility function, P,, is given by:

Py =[kyi/ (ki + ka) ][ B/ ]~/ (15)

In principle, we could form a log-likelihood function based on equations (14) and
(15) and then maximize it by numerical techniques to obtain MLE’s of A A. However,
if the experimenter chooses his measurement design carefully, he can obtain practical
analytic expressions for A In particular, for equation (14), if (1) he chooses a, B, x;

7Exponential transforms are also known as moment generating functions (with the sign of the argument
reversed) and Laplace transforms when x > 0. The Mellin transform is also known as the factorial moment

generating function.
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Which heating system do you prefer ?
FIGURE 6. Schematic of Revealed Preference Question Corresponding to Proposition 5.

and x, for the first question (review Figure 4), if (2) for every subsequent question, /,
he chooses a, and x,,, and if (3) he then chooses B, and x,, according to the following
rule:

X3, = Xo + [ (X2 = Xo)/ (X« = %0) " (¥4 — Xo), (16)
ﬂi = (B/a)y’a“ s (17)
Y, = log[ (x1, = xo)/(xx— Xo) ] /10g[ (x| — Xo)/(*+ = X0) ] (18)

then he can obtain an analytic expression for A. (Note we have suppressed the
subscript 1 on x,,, etc. for the base question, i = 1.)

The analytic expression is obtained from the invariance properties of MLE’s in the
following way. Equations (16) through (18) ensure that for all A, P,, is constant for all
questions. Define I, as the number of times the first alternative is chosen, then F(8|})
becomes a Binomial distribution for /,. The MLE for a Binomial distribution is
obtained simply as P, =I,/1. A is obtained by solving the equation PN=1,/1
From equation (15) we obtain

A=[(1/ky)log(B/a)]/ [log{kod/(ky + ky)I,} ] (19)

where a, B, k, and k, are obtained from the reference question.

To illustrate this technique, consider a set of questions in which each alternative is a
potential heating system. The attribute of interest is reliability, that is, a 0 to 10 scale
indicating how likely it is that the system will not require major repairs during the next
five years. (For example, this reliability index might be 10 times the probability that no
repair will be required.) One such question is illustrated schematically in Figure 6.

We can then ask 10 questions of this form as indicated in Table 3. (We have
rounded B to the nearest 0.05.) We record I,, the number of times the consumer

prefers Heating System 1.

TABLE 3
Example Experimental Design for
Revealed Preference Questions

Question Heating System 1  Heating System 2
Number Xy, a; X3, B

9.5 0.5 7.5 0.60
9.0 0.5 5.5 0.75
8.5 0.5 4.0 0.90
8.0 04 30 0.90
1.5 0.3 20 0.85
70 02 1.5 0.70
6.5 02 1.0 0.90
9.5 0.6 1.5 0.70
9.0 0.6 5.5 0.90
9.5 0.7 1.5 0.85

.
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For example, if 1, =2, then A =0.44, and if /, =3, then A =0.61. We could, of
course, obtain better estimates by asking more questions. For example, if 7 = 100 and
1, =21, then X=045and if /1, = 22, then A=047.

We constructed equations (16) through (19) and Table 3 for Proposition 5, Exponen-
tial error. It is also possible to construct experimental designs for Normal errors, for
continuous distributions of outcomes, and for constant absolute risk averse utility
functions. The experimenter simply chooses the appropriate proposi[ion (or its exten-
sion) and derives the condition on a, B, x,, and x, such that P, is constant for all
questions. X is the solution to P &)= 1,/1. For example, for Proposition 7, we can
restrict (m, — m,)/(v} ~ v?) to be constant to assure P| is constant. For Normal
errors, there are two unknown parameters, hence we must either (1) assume one
parameter is known, or (2) ask two sets of clustered questions to obtain two equations
in two unknowns. Of course, more parameters will require more questions and the
MLE’s will depend upon the obtainable sample size.

Revealed Preference vs. Preference Indifference Questions

Each type of question format has its advantages and disadvantages. For example,
revealed preference formats are likely to be easier for the respondent to answer, but we
require more of them to obtain reasonable estimates of A or Pl

A more subtle issue is that of “open loop” vs. “closed loop”. We saw earlier that the
estimate of P,, based on the preference indifference format, depends upon our
assumption of single or multiple draws. This is because we estimate f(r|A) directly
from the preference indifference question and then use f(r|A) to calculate Pl We
never collect direct information on choice outcomes.

On the other hand, with the revealed preference format, we do collect direct
information on choice outcomes. In this case our estimate of Pl depends less upon our
assumptions. For example, if we use Proposition 3 rather than Proposition 5, our
estimate of 6 will be smaller by a factor of (k)™ !, but kn will cancel out when we use
the same proposition to forecast £,. We can expect similar robustness, but not exact
cancellation, with respect to our assumptions on the error distribution.

Such robustness of “closed-loop” revealed preference technique is discussed in the
econometric literature. For example, Domencich and McFadden (1975, p. 57) provide
a table and discussion illustrating the similarity in probability predictions of the Logit,
Probit, and Arctan probability of choice models. The Logit is based on Double-
exponential errors, the Probit is based on Normal errors, and the Arctan is based on
Cauchy errors.

The preference indifference format has complementary advantages. Because A (or i
and 6) are calculated directly from the consumer’s answers and not from “solving”
A= g(P ), estimates of A based on the preference indifference format are less likely to
be dependent upon our assumptions.

In other words, if our interest is in estimating the purchase probability, P,, then the
revealed preference format is likely to be better because it uses choice outcome data
directly and is robust with respect to our assumptions on the type of error distribution
and on single vs. multiple draws. If our interest is in estimating the “true” value of the
risk parameter or the distribution of the risk parameter, then the preference indiffer-
ence format is likely to be better.

Summary of Single Parameter Uniattributed Utility Functions

This completes our analytic discussion of single parameter, uniattributed utility
functions. (We discuss empirical issues and assumption testing in §6.)

Occasionally, researchers may wish to use multiple parameter uniattributed utility
functions, for example, see Keeney and Raiffa (1976, p. 209). If questions can be
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clustered then the multiattributed technique (Procedure 2) discussed in §5 can be
applied to multiparameter uniattributed functions. Alternately, one can use a regres-
sion approximation® based on a Taylor’s series expansion of the risk premium as
defined by Pratt (1964) and discussed also by Keeney and Raiffa (1976).

5. Muitiattributed Utility Functions

There are many applications in marketing where it is necessary to model decisions
involving multiple attributes, each of which is risky. For example, the decision to buy a
home heating system might involve reliability as well as annual dollar savings.
(Choffray and Lilien 1978 illustrate empirically a multiattributed preference problem
for solar air-conditioning.)

If we assume that the qualitative questions to determine the appropriate functional
form of the multiattributed utility function have already been asked (e.g., Keeney and
Raiffa 1976, pp. 299-301 or Eliashberg 1980, pp. 74-75), then we can estimate
multiattributed utility functions in two ways.

Estimation Procedure 1

The first procedure is a two-step procedure which combines the results of §4 with
commonly used methods in marketing. In Step 1, we use either preference indifference
or revealed preference questions to obtain estimators for uniattributed functions for
each attribute. Suppose that the condition of “mutual utility independence” (Keeney
1972) among the attributes has been identified qualitatively, then the multiattributed
function, U(x,w) is given by:

M M M
U(x,w)amglwmu(xm,rm)+ D D Wl (X s )X, 1)

m=1t k=m

+ third order and higher interaction terms. (20)

Note that if the higher order terms are zero (for conditions see Fishburn 1974), then
equation (20) reduces to the additive forms commonly assumed in conjoint and logit
analyses.

In Step 2, the experimenter then asks either preference indifference (or revealed
preference) questions using multiattributed alternatives. Standard conjoint (or logit)
analysis procedures can then be used to obtain W with u(x,,,7,) rather than x,, as the
explanatory variables. (7,, is our best estimate of r,, from Step 1.)

Estimation Procedure 1 is an approximation. It is a two-stage procedure with the
potential problem of compounding errors from Step 1 to Step 2. However, (1) if such
compounding is small relative to other measurement errors, or (2) if the additive form
applies and errors are independent and identically distributed (i.i.d.) across attributes,
then Estimation Procedure 1 should work well. (If implied distributions of u(x,,,7,,)
are i.id.,, then the w, are equally biased which has no effect since u(x,w) is only
unique to a transformation.)

$The risk premium, #,, is the expected value of the lottery minus the certainty equivalent, x;. Keeney and
Raiffa (1976, p. 161) show =, = (1/2)c?R(x;) + € where o? is the variance of the lottery and e represents
higher order terms. Writing R(x,,r) as a function of r and rearranging terms yields R? = R(x;,r) + ¢; where,
for Figure 2, R? = 2%, /[ pi(x,— %P + (1 — p,Xxq — X’} with w, = 2, — x, and X, = p,x, +(1 — p)xo. Thus,
R is a function of known data and because the Taylor’s series error, ¢, is included in the measurement error,
¢;, we have obtained a regression equation. For example, to combine “absolute” and “proportional” risk
aversion, we have R?=r, + rf(x, — xo) ' + ¢, which is lincar in the unknown parameters. Note that
u(x,r) = f, fexp{— [ R(x,v)dx}dx + f,, where f, and f, are scaling constants.
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Estimation Procedure 2

Estimation Procedure 2 is a one-stage procedure, but is limited by practicality to
preference indifference questions. (Revealed preference would require numerical tech-
niques.)

Suppose we ask / X L preference indifference questions where L is the number of
parameters, w, to be estimated. Let X, = (X, X5 - - - » X,ipr) be the levels of the M
attributes for the certainty equivalent in the pth question in the ith cluster. In assessing
U(x, w) we specify either (1) all of x; or (2) p,, and all but one of the x,.

If we ask our questions in I clusters of L questions and if a computable vector-
valued inverse function, W(x;,p;), exists mapping the question set onto the unknown
parameters, then the multiattributed problem is simply the multivariate extension of
the single parameter uniattributed case. (x, is the matrix with rows x,, and p; is the
vector with elements p,.) For example, if errors cause W to be distributed with a
multivariate normal distribution with mean p, and covariance matrix, I', then the
maximum likelihood estimators, i and T, are given by:

p=(1/DHZw, @1
f=/D3[w - #][w - &) 62

where w, = W(x;,p,) and () denotes transpose.

For a formal proof, see Giri (1977, Chapter 15). As before, we can construct
confidence regions with the multivariate extension of a r-test. For example, the
appropriate statistic for ji is Hotelling’s T? statistic (Giri 1977, Chapter 7; and Green
1978, p. 257).

Similar results apply for multivariate exponential error.

Probability of Choice

Choice probabilities can be obtained with equation (13) and numerical techniques.
For example, one might use equation (13) by sampling from the multivariate normal
distribution, then using the sampled W to compute the expected utility of each option.
Choice probabilities are then the percent of times an alternative is chosen in, say, 1000
draws. This computation method is similar to methods used in probit analysis, e.g.,
Daganzo (1979), and has proven feasible in that context.

Estimation Example

We illustrate Estimation Procedure 2 with a home heating system example. Suppose
that besides annual savings, x,, the individual is concerned with reliability, x,, as
measured by 10 times the probability that no repair will be needed each year. We wish
to model the consumer’s preference by a constant proportional risk averse, multilinear
utility function. (This is a two-attribute version of equation (20).)

U(x, W) = wiuy(x,) + waiy(x,) + (1 — w3 — wouy(x))uy(x;),
uy(x;) ={(x| - 2(1))/1000]”'; uz(xz)s[xz/IO]w’.

We estimate the distribution of the four unknown parameters, w = (w;, W,, w3, W), by
asking the lottery question shown in Table 4. In each question, the consumer is asked
to give a probability, p,,;, such that he is indifferent between a certainty equivalent,
(Xpi1, Xpiz) and a lottery where the system is described by (xpi1,xg2) with probability

3
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FIGURE 7. Schematic of Multiattnbute Lottery.

P,i» and by (x,;,x,,;) with probability, (1 - p,,). In other words, the standard lottery
shown in Figure 7.

The reader will note that we have designed the questions in Table 4 based on the
“corner point” method that allows for easy computation of the inverse function,

W(x;,p,)- That is:
Wy, = lOg(Ph)/IOg[(xm - 200)/1”)], Wy = log(le)/log('xZIZ/lO)’

(24)
W3, =P3:/Plv Wy, =P4i/P2:-

The corner point method is discussed in Keeney and Raiffa (1976, p. 305) and a
market research example with schematics of questions is given in Hauser and Urban
(1979, pp. 259-260).

The simplicity of equation (24) is for ease of exposition. Tradeoff questions as well
as lotteries can be used and the inverse function can vary with / as long as it is
computable for all i. Even with our simplification, the 16 questions provide the
experimenter with a variety of questions to be asked. The “answers”, p,;, to the lottery

TABLE 4
Example Assessment for the Savings and Reliability of a Home Heating System
Certainty Equivalent *“Win” “Loss”  Probability Parameters

ip Xpi1 Xoi2 x;’il x;)IiZ x;xl X;DIZ P Wy w2 W3, W4,
1 1 400 2 1200 2 200 2 0.45 0.50

2 400 2 400 10 400 O 0.60 0.32

3 40 0 1200 10 200 O 0.20 0.44

4 200 2 1200 10 200 O 0.50 0.83
21 600 4 1200 4 200 4 0.65 047

2 600 4 600 10 600 O 0.75 0.31

3 600 0 1200 10 200 O 0.25 0.38

4 200 4 1200 10 200 O 0.60 0.80
31 80 6 1200 6 200 6 0.75 0.56

2 80 6 800 10 800 O 0.80 0.44

3 800 O 1200 10 200 O 0.30 0.40

4 200 6 1200 10 200 O 0.65 0.81
4 1 1000 8 1200 8 200 8 0.90 047

2 1000 8 1000 10 100 O 0.95 0.23

3 1000 0 1200 10 200 0O 0.35 0.39

4 200 8 1200 10 200 O 0.75 0.79

A=050 033 040 081

x, = savings in dollars
X, = reliability index
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questions were “constructed” by assuming w = (0.50, 0.33, 0.40, 0.80) and rounding of f’
to the nearest 0.05.

Examination of Table 4 reveals that the estimated parameters, fi, recover the
“known” values quite well. The covariance matrix I, and the corresponding correla-
tion matrix, C, can be readily computed with equations (21) and (22).

6. Some Comments on Application and Assumption Testing

In this section we comment briefly on ways to obtain the input data.

Preference Indifference Questions

Preference indifference questions are the most popular means by which to obtain data on consumer risk
preference. Appendix 2 provides an example question. For other example questions, see Eliashberg (1980),
Hauser and Urban (1977, 1979) and Keeney and Raiffa (1976). See also Hershey, Kunreuther and
Schoemaker (1982), Schoemaker and Waid (1982) and Schoemaker (1981) for empircal discussion, interpre-
tation, and suggestions for the type of biases and errors induced when assessing vN-M functions with
different question formats.

These are difficult questions to ask. In our own experience we have found it critical to “train” the
respondent with warm-up questions and to use multi-colored props and probability wheels to explain the
concepts (see Appendix 2). In the initial questions, we iterate in on the indifference point, e.g., indicate a p,
value in which alternative 1 is clearly preferred and a p; value in which alternative 2 is clearly preferred, then
continually narrow the range until the respondent finally indicates it is “too close to call.”

Revealed Preference Questions

In a revealed preference question, the respondent is given two lotteries and asked to choose the one he
prefers. Because we know of no empirical studies using such questions to assess vN-M functions, we can
only speculate on the type of question wording that is appropriate. Appendix 2 provides one such
speculation. We expect that the basic task will prove easier for the respondent, but that the concept of a
lottery must still be explained carefully. Warm-up questions, props, and attention to potential misunder-
standings are likely to be important as we gain experience with this type of question.

7. Future Research

This paper provides the analytic framework to study the effect of measurement error
on the modeling of consumer risk preference. But research remains.

Besides the tradeoffs discussed above, we can identify at least four important
empirical issues:

(1) We have assumed Normal or Exponential error. If the experimenter wishes to
determine the form of f(r|A) empirically, we suggest he use preference indifference
questions to obtain r; for sufficiently large / and plot its histogram. If the histogram is
symmetric and unimodal, Normal errors are likely to be the best assumption; if the
histogram is unimodal and skewed with é = ji, then Exponential errors are likely to be
the best assumption.

(2) We have discussed both single and multiple draw assumptions. If the experi-
menter wishes to select empirically among the assumptions of single and multiple
random draws, we suggest he obtain both preference indifference and revealed
preference questions and determine empirically whether Propositions 3 and 5 or
Propositions 4 and 5 produce the best match among the alternative question formats.

(3) Empirical evidence to date suggests that preference indifference questions yield
reasonable predictive validity. But, theoretically, revealed preference questions should
do better for estimates of choice probabilities. An experimenter can test this hypothesis
by using preference indifference questions for one sample of consumers and revealed
preference questions for another sample of consumers.

9Rounding off may not produce independent multivariate Normal error, but it serves to illustrate the
technique.'fhetendmcyofmspondenutoroundtothenearesto.osisminleruﬁngfamrem:ch

question.
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(4) Common belief in the decision analysis literature holds that we can identify the
appropriate functional form with qualitative assessment. For example, see Farquhar
(1984) and Keeney and Raiffa (1976, pp. 188-200) for discussion and examples. An
experimenter can partially test this assumption by first using the qualitative techniques
and then using our estimators of choice probabilities based on both alternative
functional forms. Theory suggests that predictions should be most accurate using the
functional form identified qualitatively.

We hope that our analyses encourage researchers to address these and other
empirical issues and to identify which assumptions are appropriate under which
empirical conditions.

This completes our analysis of the implications of measurement error for modeling
consumer risk preference with vN-M utility functions. Our emphasis is on uniattri-
buted single parameter functions since they are most commonly used and illustrate the
unique advantage of vN-M utility functions. Our main results are practical and
flexible. They enable the experimenter to choose among question formats, error
assumptions, and functional forms for the utility function. They provide MLE’s for the
distributions of risk parameters and for choice probabilities. Furthermore, we have
indicated (with references) how one can use numerical techniques for the cases where
analytic results are unobtainable.

Besides empirical research, topics such as:

® alternative distributional assumptions for measurement errors,

® estimators for other functional forms,

® cfficient algorithms for estimators which require numerical techniques (equation
(13), Proposition 6, and multiattribute extensions),

® extensions of Propositions 3 through 7 for multiple choice problems,

® the analysis of cases when the functional form of the utility function is unknown
and must be estimated,

® the extension of our conceptualization to cases where successive draws from f(r|A)
are not independent but rather dependent upon anchoring, heuristics, recency effects,
problem framing, etc., and

® the analysis of the implications of vN-M measurement error for sequential
decision making and bargaining solutions,
are all exciting research questions. We hope our analyses provide a beginning.

Appendix 1. Proofs to Propositions

ProoF 1. By definition, if z 1s a normal variable with mean, p, and variance, o2, and if z = log y. then y
is a lognormal random variable with parameters g and o?, designated by y~A({ g 0?). See Aitchison and
Brown (1969). For constant proportional risk aversion, r(x,u) = —k ~'logu or logu = — kr(x.u). I r(x.u)
~N(ji, 8%, then — kr(x,u)~N(— kg, k%6%) which is our first result. For constant absolute risk aversion
log(1 — u) = — xr(x, u) yielding the second result.

Proor 2. Restriction to r > 0 implies 7o = 0. f(# {A) induces a distribution on u. g{u | A). according (o the
following transformation formula g(ut)\)=f(r(x u)M)Iﬂr(x u)/du|. See Mood and Graybill (1963, p.
224). For exponential error, f(rl}\)=)\ lexp(— r/A) and for constant proportional risk aversion r(x,u)
=~k " 'logu and |8r/3u|=1/ku. Substituting in the transformation formula yields g(u | X)

= (M)~ 'w!!/%) -1 which we recognize as a Beta distribution with parameters (1/Ak) and 1. A Beta
distribution with parameters ¢, d is proportional to u°~'(1 —~ u)*~'. For constant absolute risk aversion
r(x,u) = —(1/x)log(1 ~ u) and {8r/8u| = 1 /[x(1 — u)}. Substituting in the transformation formula yields
g(ulk)s(.\x} (1 — w1/ -1 which we recognize again as a Beta distribution with parameters | and
(1/Ax).

. ProoF 3. We scale u(x, r) such that u(xg,r) =0 and u(x,,r)= 1. Then, for the binary choice problem
P, = Prob{au(x,,7) > Bu(x,,r)] where 7 indicates random variable. Substituting for the constant propor-
tional risk aversion utility function, w(x, r) = (x — xof /(x,— xo)". This yields that

P, = Probl7 > log( B/ a)l/logl(x, — x0)/(x; — %)} = Probl7 > x log( B/ a)].
Recognizing that r~ N(ji, ¢%) and ®{( A — z)/ 6] = Prob{7 > z] yields the result. The result is only approxi-
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mate since we ignore r < 0 which occurs with low probability when p is significantly greater than o. Now
substituting the infinite range constant absolute risk aversion utility function, u(x,r)=1-e~", into
au(x,,r) = Bu(x,,r) yields the equation for r,. Note that as r— oo, u(x,r)—> 1, and Alternative 2 will be
preferred since 8 > a. As r—0, Alternative 1 will be preferred if ax, > fx, since u(x,r) approaches
linearity. Thus, if there is only one solution to the equation for r,, P; = Prob{0 < f < r,). For ax, > Bx,,
there is only one solution to the equation for 7, > 0. We provide a proof of this fact in Lemma 1, below. If
ax, < fix,, then au(x,,r) < Bu(x,,r) for r > 0, hence P, = 0.

LEMMA 1. Assume B > a and x| > x,, then the equation Bexp(—r.x;) — aexp(—r.x;))=f — a has at
most one solution for r. > 0.

Proor. First, rewrite the equation in functional form:

E(r) = all — exp(—=rx;)] = Bl1 — exp(— rx,)] (A1)
recognizing x, > x, and 8 > a. Alternative 1 will be chosen whenever E(r) > 0.

By a Taylor expansion E(r)s r(ax,— fx,) as r—0. Let E(0")=lim, o+ E(r) and let E(c0)
= lim, ,  E(r). Then E(0*)> 0 if ax, > Bx, and E(0*) < 0 if ax; < Bx,. By direct substitution E(c0)
=a~ B <0 since a < B.

Now differentiate E(r) yielding E'(r) = dE(r)/dr = axexp(— rx;) — Bx,exp(—rx,). Setting the deriva-
tive equal to zero yields r* = (log ax, — log Bx,)/(x, — x;). Since x; > x,, r* > 0 iff ax, > Bx,. Further-
more, E'(0* ) = ax, — fx, thus £(0*) > 0 iff ax; > Bx,.

Assume ax; < Bx,, then E(0) < 0, E(¢0) <0, and E(r) is monotonically decreasing in the range (0, o).
Thus, there is no solution to (A1) for r. > 0. If ax; = Bx,, the only solution for r > 0 is 7. = 0.

Assume ax; > Bx,, then E(0*) >0, E'(0*) >0, and r* > 0. Thus, E(r) > 0 for r < r*. Now E(r*) > 0,
E(0) < 0, and E(r) is monotonically decreasing in the range (r*, o0). Thus, there is exactly one solution to
(A1) for r, > 0 and it occurs in the range (r*, o). Note that we have also proven that E(r) > Oforr € ©,r)
and E(r) < O for r € (r,, c0), thus Alternative 1 can only be chosen when r is in the range (0, r,).

PrOOF 4. The results follow the same arguments used in Proposition 3 except Prob[r > z] = exp(—z /i).
The result is exact since Prob{r < 0} = 0.

PrOOF 5. Alternative 1 will be chosen if au(x,,7;) > Bu(x,,7,). Consider first normal error theory.
Rearranging terms, this condition becomes log u(x,, 7;) — log u(x,,7,) > log( B/ a). Using Proposition 1, the
left-hand side of the inequality is distributed as N[ i(k, — k,),6%(k? + k3)] and the result follows from the
recognition that k, — k, = logl(x, — xo)/(xy — xp)} =k~ .

Now consider exponential error theory. Again rearranging terms indicates that Alternative 1 will be
chosen if u(x,,7)/u{xy,7y) > B/a. Let & = u(x,,7) then by Proposition 2 and the assumption of

independent draws the joint p.d.f., g(u,,u,), is given by:
gluy uy) = (sz,kz) - l(“l)“/;‘k')_ '(“2)“/“1)‘ L

Define 7 = &, /4, and { = &, then the joint p.df. of Z and 1 is obtained using a Jacobian transformation:
ful2.0) = 1gx(2)7 ()7 * 927! where g, = (1/Ak,). Integrating out ¢ yields the marginal distribution for z:

992

q+qz‘?'”', 0<z<,
E@ =17 ’

A2 -e-t oL

@+

Since (8/a) > 1,
P, = Problz > B/al = fﬂ 7‘. f(2)dz=1q,/(q, + )N B/a) ™%

Finally, substituting ¢, = (} /in) into the above expression yields the result.

Proor 6. The proof is similar to that of Proposition 5. For NORMAL errors we use the limited
reproductive properties of the lognormal distribution (Aitchison and Brown 1969) and some algebra. See
Barouch and Kaufman (1976) for issues involving sums of lognormal random variables.

Proor 7. First we recognize that the expected utility for a constant absolute risk aversion utility function
with outcomes described by f(x) is given by

E(u) =fu(x. f(x)dx=1 ~fe""f(x)tbc= 1~ M(r)
where M(r) is the exponential transform of f(x). See Keeney and Raiffa (1976, p. 201), Drake (1967,
Chapter 3). For the Normal distribution, M(r) = exp(— rm + r?/2). Thus,
P = Prob[l ~ exp(—rm; + r}/2) > 1 — exp(~ rm, + r20§/2)].
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HEATING SYSTEM 1
SAVINGS OF
$1,200

(Yeltow Card)

HEATING SYSTEM 2
SAVINGS OF
$400

(Green Card)

HEATING SYSTEM 1
SAVINGS OF
$200

(Blue Card)
FIGURE Al. Layout of Props for Warm-up Questions.

Simplifying yields P, = Prob[7 < 2(m, — m;)/(c} — ¢3)]. Finally, substituting the appropriate f(r |A) yields
the result.

Appendix 2. Example Questions

Warm-Up

This set of questions allows you to express how important you feel it 1s that you are certain about the
savings you achieve with your new heating system. Most people find these questions difficult but interesting
to answer, but feel 1t i1s important to express their feelings on this aspect of their preference.

To better understand this question, 1magine that you are not sure about the savings you will achieve with
your new heating system. In fact, these savings can be between $200 and $1.200. The exact savings you
achieve will be determined by a game of chance.

Imagine that someone 1s going to spin this wheel. [Interviewer lays out the wheel and cards, as shown in
Figure A1.] If it comes up yellow (chances are 1 in 10) your savings will be $1.200. If it comes up blue. your

savings will be only $200. We will call this “game of chance” ‘Heating System 1'.
Imagine that you are given a choice between ‘Heating System 1’ and a guaranteed savings of $400. We

call the guaranteed savings ‘Heating System 2'. Which system would you prefer? [Most people would prefer

the guarantee of $400.]'°
Let us now assume we improve the odds on savings $1.200 to 9 in 10 for ‘Heating System 1". [Interviewer

changes the size of the yellow area to represent odds of 9 in 10.] Now if the wheel comes up yellow you save
$1,200, if it comes up blue you save only $200. Now which heating system do you prefer? [In this case most

people prefer to take the chance with ‘Heating System 1'.]

Preference Indifference Format

Now imagine you are allowed 1o set the odds for *Heating System I'. If the yeliow area is very small you
prefer the guarantee of $400; if it is very large you would be willing to take a chance on the $1.200 savings.
Try to find some “indifference” setting in which you can not make up your mind between ‘Heating System

1" and Heating System 2.
That is, set the yellow area of the wheel for ‘Heating System 1’ such that if it were larger you would take a
chance on ‘Heating System 1" and if it were smaller you would prefer the guarantee of $400 given by

‘Heating System 2’

[After the respondent sets the wheel, the interviewer checks the setting by challenging the respondent to
make a cholce. If the respondent can make 2 choice, the interviewer encourages him to modify his probability.
The interviewer keeps iterating the question until the respondent is truly indifferent. At this point, the
interviewer records the answer and proceeds to the next preference indifference question.]

Revealed Preference Format
Now imagine that you are given the choice between two games of chance representing heating systems A
and B, respectively.

10In a personal interview, we also allow for the rare individual who is strongly risk seeking and prefers the
lottery.
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In *Heating System A’, the size of the yellow area is 30% of the total. If the yellow area comes up, your
savings are $1,200. If the blue area comes up, you save only $200.

In ‘Heating System B’, the size of the yellow area is 50% of the total. If the yellow area comes up. your
savings are $600. If the blue area comes up. you save only $200.

[The respondent is shown schematics such as Figure 5 or a modified Figure A1 to represent Heating Systems
A and B]

Which system do you prefer, ‘Heating System A’ or ‘Heating System B’?

[Note. The warm-up section can be modified to introduce the respondent to choices between the Jotteries. We
suspect that after the first or second revealed preference question, subsequent questions can be streamlined.

These example questions are for a personal interview. A mail questionnaire will require modification in
format. Pretesting will improve the questions for each application.)
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