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Disaggregate demand models predict the choice behavior of indi-
vidual consumers. But while such models predict choice probabilities
(0<p<1), they must be tested against {0, 1) choice behavior. This
paper uses information theory to derive three complementary tests
that help analysts select a “best” disaggregate model. “Usefulness"
measures the percentage of uncertainty (entropy) explained by the
information the model provides. It provides theoretic rigor and in-
tvitive appeal to the commonly used likelihood ratio index and leads
to important practical extensions. “Accuracy” is a new two-tailed
normal test that determines whether the (0, 1) observations are rea-
sonable under the hypothesis that the model is valid. “Significance”
is the standard chi-squared test to determine whether a null model
can be rejected. This paper also extends the information test to
examine the relationships among successively more powerful null
hypotheses. For example, in a logit model one can quantify {1} the
contribution due to knowing aggregate market shares, (2) the in-
cremental contribution due to knowing choice set restrictions, and
{3) the final incremental contribution due to the explanatory vari-
ables. Further extensions provide “explanable uncertainty” measures
applicable if choice frequencies are observed. Market research and
transportation analysis empirical examples are given.

HE DESIGN of successful products and services requires valid pre-

dictions of how consumers will respond to changes in product or service
strategy. Recently in marketing research and in transportation planning,
demand models have been developed that base their predictions on causal
hypotheses that model the behavior of individual consumers (logit analy-
sis, McFadden [19]; probit analysis, Finney [3]; discriminant analysis,
Fisher [4], etc.). Because of their behavioral content and because of the
rich, individual specific data on which these models are based, analysts
expect these ‘‘disaggregate behavioral demand models” to provide ac-
curate predictions of consumer behavior and to provide useful diagnosties
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Probabilistic Choice Models 407

that help understand the consumers’ choice process. But how accurate
are these models? This question, which must be answered to the satis-
faction of both the analytic modeler and the marketing or transportation
manager, is the subject of this paper.

Disaggregate models predict group response, e.g., the number of bus
riders from zone to zone, by aggregating together predictions of how in-
dividual consumers behave (Koppelman [16]). But because of potential
errors in modeling, in measurement, in estimation, and because of random
influences on consumer behavior, these models cannot predict with cer-
taintyv. Instead. far each individual 4 they nrediet chaice nrohahilifies.
For example, in modeling choice among modes of transportation a model
might predict the probability that a particular consumer will choose
public transit, drive, walk, or will not travel. The fundamental problem in
testing is that while the models predict probabilities, they must be tested
on observed events. In a given instance individual 7 either rides, drives,
walks, or stays put. Suppose a model predicts that 7 will ride the bus with
probability 0.7 and 7 does ride the bus. To assess the validity of such a
model, a test must quantify how much ‘“rightness’” or “wrongness’ there
was in the prediction. Furthermore, suppose a model makes individual
predictions, but for 1,000 individuals. Analysts need a test to measure
that model’s predictive ability and to select a “best” model.

1. EXISTING TESTS

The problem of testing predicted probabilities as observed events is not
new, and there are a number of tests now in use. Aggregate tests compare
average probabilities with aggregate statistics such as market shares.
Disaggregate tests compare individual probabilities with individual events.
This section reviews both types of tests and then discusses their relative
merits.

Aggregate tests have strong intuitive appeal and are useful aids to com-
munication between analysts and managers. Managers can internalize
the meaning of these tests, compare the model to their prior beliefs, and
assess the accuracy of a model in a way that can be readily communicated
to others. For example, first preference recovery, ri, which computes the
percentage of individuals that select their first-preference alternative, is
easy to understand and can be readily compared to chance recovery,
rc=1/(number of alternatives), or market share recovery, rm,= Z ,~(ms,-2)
where ms;=market share of product j. In most probabilistic models,
maximum probabilities are substituted for first preference because choice
probabilities are monotonic in preference.

Other useful aggregate tests compare predicted market shares, s,
with observed market shares, ms,. [%;=(1/n) 3. p;;, where p,, is the
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predicted probability that ¢ chooses j and n is the total number of indi-
viduals.] For example, root mean square percent error in predicted market
shares, e, has been used by Koppelman {16] to compare aggregation
methods for mode choice predictions in Washington, D.C. He reports
errors in the range of 25-35%. Hauser and Urban [10] report that percent
error was a better discriminator than first-preference recovery between
von Neumann-Morgenstern utility assessment and logit analysis (e, =18 %
vs. 36 % while r;=50% vs. 46 %). Similar tests such as weighted percent
error, mean absolute crror, least-squares error, and weighted least-squares
error have all been used with varying success (see [16]).

Disaggregate tests address the basic testing problem by comparing pre
dictions and events on an individual level. These tests can discriminate
between models that predict aggregate market shares well but miss the
individual choice process and those that capture individual differences.
For example, any logit choice model with J—1 choice specific constants
(J =the number of alternatives) will predict aggregate market shares
exactly on the “calibration” data, but different models within this class
may be “better’” than others. Disaggregate tests quantify the concept of
“better.”

A common test is the log-likelihood chi-squared significance test (Mood
and Graybill [20]). In this test the probabilistic model is compared to a
null model. If the null model can be formulated as a restriction (subset)
on the parameters of the tested model, then L=2 log [likelihood ratio of
tested model to null model] is x° distributed with degrees of freedom equal
to the difference in degrees of freedom between the tested model and the
null model. In logit applications the most common null model is the
equally likely model (all choice parameters set equal to zero), but some
researchers use the market-share proportional model (choice specific con-
stants only) when a full set (J—1) of choice specific constants are used
in the estimated model.

The chi-squared test can reject a null model, but it cannot give an in-
dication of how well a model predicts nor can it compare two models
unless one model is a restriction of the other. The most common disag-
gregate test used to measure a model’s predictive ability is the likelthood
ratio index [19]. This test, o' =1—L(X)/Ly where L(X) is the log-likeli-
hood of the tested model (explanatory variables X) and Lo is the log-
likelihood of the null model, acts like a pseudo-R2 since p' =0 when L(X)
=L, and p’=1 when the model predicts perfectly, otherwise 0<p’<1.
In related tests Kendall [14] suggests a correlation coefficient similar to
that for regression and Cragg [1] suggests a correlation-like coefficient.
Stopher [25] uses the correlation ratio (Weatherburn [27], Neter and
Maynes [21], Johnson and Leone [13]) to augment the correlation coeffi-
cient, but his use requires that individuals be grouped. Results are ex-
tremely sensitive to the grouping.
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Although the aggregate tests are intuitive and aid communication
between managers and analysts, they can be misleading. For example, a
first-preference recovery of 55 % is usually good, but not in a market of
two products. A recovery of 90 % is usually good in a two-product market
but not if one product has a market share of 95% (7, =90.5%). Simi-
larly, e, is identically zero for the market-share proportional null model,
but €,>0 for most models, which may be more realistic representations
of the true choice process. (For example, most logit models without choice
specific constants will not predict market shares exactly. But choice spe-
cific constants are often undesirable because they make it difficult to
project a model from the “calibration” situation to a new situation. In
particular, if new products are introduced, there is no way to know the
choice specific constant for the new product.) These restrictions on ag-
gregate tests caution the analyst to use aggregate tests with great care.
Furthermore, because aggregate tests do not address the fundamental
problem of testing individual probabilities against observed events, they
may not be able to discriminate between models to select the “best”
model of individual choice behavior. :

The disaggregate tests do address the fundamental testing problem.
The chi-squared test can statistically reject properly formulated null
hypotheses, and the likelihood ratio index can give an R’-like measure
of the predictive ability of a probabilistic model. In many cases these
tests nicely complement the aggregate tests. Disaggregate tests are not
used alone because they are theoretically sensitive to the problem that
limy,, . [log pi;] = — . Aggregate tests are not as sensitive to zero prob-
abilities.

This battery of aggregate and disaggregate tests can address many prob-
lems in testing probabilistic models, but there are importance problems
that this battery does not address. For example: (1) The likelihood ratio
index behaves nicely at the limits (p*=0, p’=1), but it does not have an
intuitive interpretation between the limits. Managers need an intuitive
interpretaton that is naturally related to a measure of probabilistic un-
certainty. (2) p° can be computed relative to any null hypothesis, L,
but no deductive theory indicates whether that simple computation is the
appropriate generalization for complex null hypotheses. (3) The choice
of a null hypothesis is based on judgment. A good test should indicate
which null hypothesis is best and indicate the relationship among null
hypotheses. (4) The null hypothesis sets the lower bound for o', but
p’=1 may not be the appropriate upper bound. If individuals make re-
peated choices and do not always select the same alternative, then p’=1 is
not possible, even in theory. (Perfect prediction would require different
probabilities for different occasions. Such predictions are not possible
without situational variables.) A theory-based test should indicate how to
incorporate upper-bound information. Finally, (5) the chi-squared test
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can reject a null hypothesis but does not test the accuracy of predictions.
A test of “accuracy,” which can accept or reject the tested model, is neces-
sary to complement the chi-squared test of “significance” and the p° test
(or its generalization) of “usefulness.”

These problems and others can be effectively resolved by considering
probabilistic models as an information system where the predicted prob-
abilities (or null hypotheses) represent the best information derived from
the set of explanatory variables, X.

2. INFORMATION THEORY: AN INTERPRETABLE TEST OF MODEL USEFULNESS

Suppose there is a set of choice alternatives, A ={ay,a,,- - -a,}, and sup-
pose there is a set of explanatory variables, X, which take on specific
values, X, each individual, ¢. Suppose that through some mathematical
analysis a conditional probability model, p(a;| X;), has been developed
to estimate choice probabilities, p;;j=p(a;| X;), from the explanatory
variables. Suppose that to test the model each individual’s choice be-
havior, as represented by 8;;, has been observed. (3;;=1 if 7 chooses j, 6;;=0
otherwise.) This section will derive the information test for such a proba-
bilistic model of consumer behavior. Later sections will extend the test
to cases where the choice set varies and the number of choice occasions is
greater than one.

The probability model can be viewed as an information system. In other
words, the “observable occurrence,” e.g., the attributes of the choice
alternatives, provides information about ‘“unobservable events,” i.e.,
about the choice outcome. Thus a test uses the information measure,
I1(a;,X;), (Gallagher [5]) to quantify the information provided by X;. For-
mally we have I(a;X;)=log [p(a;| X.)/p(a;)], where p(a;) is the prior
likelihood of the outcome, i.e., the event that a;is chosen.

First observe that the information criteria provide managerially in-
terpretable benchmarks. The first benchmark is the expected information
provided by the model, EI(A;X), where

EI(4;X)= D xuex 2p(a;, X) loglp(a;| X:)/p(a)] (1)

with p(aj;, X;) the joint probability of an ‘“observation” of X; and an
“event,” a; chosen.

Another benchmark is the total uncertainty in the system, which is
measured by the prior entropy, H(A), where

H(A) = — 2 p(a;) log p(a;). (2)

The prior entropy measures the uncertainty before “observing” X;. After
observing X; the uncertainty is reduced to the posterior entropy, H(4 | X),
where

H(A|X) = — D xuex 25 p(a;, Xi) log p(a; | Xu). (3)
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Note that for a sample of n individuals the test can use p(a;, X;) =
p(a; | X:)p(X;) by setting p(X;) = (number of times X; occurs)/n and
by setting p(a;) either equal to the observed market-share fraction, ms;,
or equal to 1/(number of alternatives) (equally likely model), or to any
other prior belief of p(a;). For comparing p(e;| X;) against the market
share model

EI(A;X) = 22 2.; (1/n)p(a; | X:) log [p(as | X:)/p(a;)]  (4)
and

H(A) = =2 ;ms;log (ms;). (5)

Note that since 0=ms;<1, H(4) is positive.

The accuracy of the model can be calculated by comparing the empirical
information, I(A; X), with the expected information. (Note: We will
discuss this point further.) To compute the empirical information we use

I(A;X) = (1/n) 20: 225 8:5l0g [p(a; | X:)/ms,). (6)

Equations 4, 5, and 6 show that information theory can be formulated
to test probabilistic models. But before this test can be used for proba-
bilistic choice models, (4)-(6) must be given more intuitive meanings.
Consider the following theorems:

THEOREM 1. The entropy of a system is numerically equal to the informa-
tion that would be observed, given perfect knowledge, i.e., H(A) = I(A; per-
fect knowledge).

Proof. Under the assumption of perfect knowledge, p(a;| X:) = &;
for all j. Thus, I(A; perfect knowledge) = (1/n) Y_: D_; 8:; log [8:;/p(a;)].
Switching summations and recognizing 8;;=0 if ¢ does not choose j give:
I(A; perfect knowledge) = (1/n) D_; D wc log [1/p(a;)]

+ Xiccii 0log [O/P(a:‘)l

where C(j) is the set of individuals who choose ;. Since under the null
hypothesis the number of individuals who choose ¢ is np(a;) and since
lim,.¢ {zlog 2] =0, this gives

I(A; perfect knowledge) E]-[wp(aj)/n] log [1/p(a;)]
= —2p(a;) logp(a;) = H(A).

THEOREI\.I 2. If the probability model is aggregately consistent with the null
hypothesis, i.e. D x..x p(a;, X:) = pla;), then the expected information is
equal to the reduction in uncertainty, i.e., EI(A;X) = H(A)—H(A | X).
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Proof. Expanding EI(A; X) as defined in (1) gives

EI(A; X) = 2xux 2.:9(0; Xa) log p(a; | Xo)
— Dxiex 25 p(a; X:) log p(a;).
The first term on the right-hand side is —H(A | X), as given by (3).

Using Zx.-ex p(aj, X;) = p(a;), the second term can be shown to be
—H(A),asgiven by (2). Thus EI(A; X) = H(A)—H(A | X).

THEOREM 3. Suppose that the true choice probabilities are given by
Pij = Qij; then EI(A; X) attains its maximum value for p;; = qj.

Proof. Let Q = maxp;a, {22:2.5(1/0) g:; log [psi/p(ai)]+ 2 N
(1= 2_;p:;)}, where the Lagrange multipliers, \;, have been used to in-
corporate the constraint that »_;p;; = 1 for all <. Since g¢;; are the true
probabilities, p(a;, X;) = ¢i; (number of times X; occurs)/n. The con-
ditions for optimality are then \; = (1/n) and p;; = ¢;; and second-order
conditions indicate a maximum.

Theorems 1, 2, and 3 together give intuitive meaning to the informa-
tion measure. The entropy, H(A), is a naturally occurring measure of
uncertainty in thermodynamics (Reif [23]), in statistics (Jaynes [12]), and
in marketing (Herniter [11}). It measures the total uncertainty of the
system, and by Theorem 1 it represents the maximum uncertainty that
can be explained with perfect information. Furthermore, if the model is
less than perfect, then the expected information represents the reduc-
tion in uncertainty due to the model. Thus, EU* = EI(A; X)/H(A) can
be used to measure the percentage of uncertainty explained by the model.
1-EU* = H(A| X)/H(A) gives the residual uncertainty. (Note that
H(A), and hence EU*, depend on the null hypothesis. Since p(a;) = 1/J
maximizes H(A), the equally likely null model represents maximum
uncertainty or, conversely, minimum knowledge.)

Finally, if knowledge is limited by the explanatory variables, X, and
if there are some true probabilities, ¢;;, known only to a clairvoyant, then
the best value for the expected information is attained by setting p;; = ¢:;.
Thus the expected information is indeed an ‘“honest reward function”
(Raiffa [22]) in the sense that the “‘reward” structure would force a clair-
voyant to divulge the true probabilities. Note that some commonly used
measures such as least squares, R’, can be shown to be dishonest for test-
ing probabilities against events. (A clairvoyant would maximize R’ by
setting pim=1 for alternative m such that ¢.n=max; ¢;; and p;;=0 for
j#Em.)

A problem with EU? is that it is computed independently of the ob-
served data, 8;;. In fact, it is the expected value of a test statistic, U =
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I1(4;X)/H(A). Thus, in practice, an analyst can either (1) use the em-
pirical uncertainty explained, U? to measure the predictive usefulness of a
model, or (2) use the expected uncertainty explained, EU?, for usefulness
and then test the “closeness” of U’ to EU”. The “closeness” test can be
interpreted as a test of accuracy and will be explained in the next section.

All that remains is to show that U” is the appropriate generalization of
of the likelihood ratio index, o°. This is shown by

TureoreM 4. If the null hypothesis is independent of <, i.e., pi; = p(a;),
then the likelihood ratio index, p', is numerically equal to the empirical per-
cent uncertainty explained, U°.

Proof. p'=1—r, where r is the logarithm of the likelihood function for
the probabilistic model, call it L(X), divided by the logarithm of the like-
lihood function for the null hypothesis, call it L. Thus p* = 1—L(X)/L,=
(Io—L(X))/Lo. Now Lo = log Tt [Timip(a)® = 25: 358 log
p(a;). Similarly, L(X) = >.:>_ i log p(a;| X:); thus Li—L(X) =
225 llog p(a;)—log pla; | X)) = —n I(4; X).

Now since p(a;) is independent of ¢: Ly = D_; 2 iccc;) 05 log pla;) =
>inpla;)logpla;) = —n H(A). Thusp* = —n I{(A; X)/[-nH(A)] =
I(A;X)/H(A) = U™

In summary, the information test, EU* or U?, provides a natural mea-
sure of uncertainty and a natural intuitive managerial interpretation of
uncertainty cxplained. Furthermore, it is an ‘“honest” reward function
and in the case of simple null hypotheses it reduces to the likelihcod ratio
index. Thus, EU* or U® provides the first stage of a threc-stage disag-
gregate test. The next two sections will develop accuracy and significance
tests to complement this test of usefulness. Section 5 will then shown how
this test extends naturally to successively more powerful null hypotheses
and Section 6 will show how to shift the upper bound when frequencies
rather than single events are observed.

3. NORMAL DISTRIBUTION: A COMPANION TEST FOR ACCURACY

It is tempting to use EU” as a measure of uncertainty, but EU? can be
casily maximized for a completely inaccurate model (i.e., set p;;=1 and
pi;=0 for j>£1). Thus a test must be devised to compare an observed
statistic, U?, to its cxpected value, EU% F ortunately, under reasonable
assumptions /(4 ; X) is normally distributed.

THEOREM 5. Suppose that the model is accurate, i.e., the observed events,
8:5’s, are Bernoulli random variables with probabilities given by p(a; | X,),
and indwiduals are independent. Then for large samples I(A; X) is a normal
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random variable with, mean EI(A; X) and variance

V(4;X) = (1/n) 24 2_iplaj| Xo)llog (p(a;| X:)/p(a)]
—[225p(a;| X:)log (p(a;| X:)/p(a;)]}

Proof. First recognize that 1(A4;X) = .. (1/n) 2_,8:;logpla; | X:)/
p(a;)] is the sum of n independent random variables, e.g., the first random
variable takes on a value (1/n) log [p(a;| X:)/p(a;)] with probability
p(a; | X1). Under reasonable conditions this sum of independent random
variables is asymptotically normal. The reasonable conditions require
that no term dominates the sum and that the individual terms are not
uniformly skewed (Drake [2]). Although algebraically complex, these
conditions reduece to the condition that the p(a;| X;)’s are not arbitrarily
close to 1 or 0. This condition is met in any reasonable empirical probabil-
ity of choice model, such as the logit model. The mean and variance are
then directly computed.

Thus a two-tailed test can be applied to determine whether 7(4; X) is a
reasonable observation from the model. If 7(A; X) is statistically far from
EI(A; X), reject the probabilistic model as unable to explain the em-
pirical observations.

(7)

4. STATISTICAL SIGNIFICANCE: ITS RELATIONSHIP TO USEFULNESS
AND ACCURACY

Based on Section 2, the information measure provides a useful inter-
pretation and extension of the commonly applied likelihood ratio index,
and based on Section 3, this measure provides a new test of accuracy that
allows the analyst to accept or reject the hypothesis that the observations
could have been generated by the model.

By recognizing that L = 2nI(A; X), we can add a third stage to the
disaggregate information test. This third stage, significance, is simply
the standard chi-square significance test reviewed in Section 1. In this
test the analyst sees whether the model, the p(a;| X;)’s, and the ob-
servations, 8;;'s, are reasonable under the hypothesis that the null model
is true. Too large a x* statistic rejects the null model. Note that 7(4; X)
is normally distributed in the accuracy test because only the 6:;’s are
random variables under the hypothesis that the probabilistic model is
correct, while 2nJ(A; X) is chi-squared distributed in the significance
test because both the §;;’s and the p(a; | X;)’s are random variables under
the hypothesis that the null model is correct.

This three-part test of ‘‘usefulness,” “accuracy,” and ‘‘significance” is
illustrated in Figure 1. The model is a standard logit model without choice
specific constants. The choice set consists of seven shopping centers in the
suburbs north of Chicago and the explanatory variables are factor scores
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for each individual along six dimensions: variety, quality, atmosphere,
value, layout, and parking. The dependent variable was first preference
and the sample size is 99.

The model is overwhelmingly significant with respect to the equally
likely null model, Ny, but it only explains 44 % of the uncertainty. The
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Figure 1. Information test applied to shopping center
preference prediction.

model is clearly accurate with respect to Ny (99 % level), but less accurate
with respect to the market-share null model, N; (80 % level). Note that
the accuracy test is a relative test because the null model appears in it.
[EI(A; X) depends on p(a;).] In this application the model was not
statistically rejected, but the accuracy test relative to N; was one stimulus
that led to further investigation. The final model, presented in Hauser
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and Koppelman [8], required statistical corrections for choice-based sam-
pling (Manski and Lerman [18]).

5. SUCCESSIVELY MORE POWERFUL NULL HYPOTHESES

The example in Figure 1 illustrates how important null hypotheses are
in the choice of a test. Fortunately, the information test provides a useful
generalization that helps overcome the problem of selecting a null hypothe-
sis. To begin this discussion, consider the following formal notation.

Call the equally likely null hypothesis Ny (p(a;)=1/7), and call the
market-share proportional null hypothesis Ny (p(a;) = ms;). Using the
theory introduced in (1)-(6), one can compute the observed information
and the entropy relative to either null model. Let I,(4; X) be the observed
information relative to Ny, and let H1(A) be the entropy relative to Ny
(see (5) and (6)). Similarly, let Io(4; X) and Hy(A) be computed relative
to No. (Substitute p(a;)=1/J in (5) and (6).) Finally, let Io(A; N1) be
the observed information of N; relative to N,. (Substitute p(a;| X;)=
ms; and p(a;)=1/J in (6).)

The first important results are that Io(A; N1) can be more simply repre-
sented and that Io(A4; X) can be computed from component parts.

TueorEM 6. The incremental information of Ni relative to No is equal
to the reduction in entropy in going from Ny to N1, t.e., Io(A; N1) =Ho(A)—
H\(A).

Proof. I(A; Ny)=(1/n) D_; D ;8:;1log [ms;/(1/J)]. Thus
Io(A; Na)=(1/n) 2 2.;8:; log ms;—(1/n) 205 2258:; log (1/J).

Switching the order of the summation and noting that, for fixed j Db
is equal to choosing ms, and that S D ibiy=n yield: Io(4; N1)= —(.—-
2 ms;log ms;)+(— 2, (1/J) log (1/J))=—Hi(A) +Ho(4), which

completes the proof.

TuroreM 7. The information relative to No, Io(A; X), is equal to thf; n-
formation relative to Ny, I,(A; X), plus the information of N1 relative to
N(], IQ(A, Nl), ze, IQ(A, X) =I()(A, N1)+11(A, X)

Proof. Similar to that of Theorem 6.

Together, Theorems 6 and 7, which can be proven for any set of null
hypotheses, provide very useful results. Taking No, the equally likely
hypothesis, as the state of no knowledge, one can view information as
coming successively first by the hypothesis, N1, which tells only market
shares, and then incrementally from the model p(a;|X;) for all <. Further-
more, the “no knowledge entropy,” Ho(A), can be viewed as being suc-
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cessively reduced, first to Hy(A) by the market-share information, Ny,
and then to the estimated residual entropy, H(A|X). (Note that H(A4|X)
is independent of both N and N.)

A practical advantage of Theorems 6 and 7 is that while I,(4; X) may
be difficult to compute, Ho( A) and I,( A; N1) are given by simple fermulas.
Thus /4(A; X) can be computed relative to any null hypothesis by simple
addition and subtraction once Iy(A; X) is known. For example, Ho(A)
==Y ;(1/J)log (1/J)=log J and I,(4; N1)=log J+ S ;ms; log ms;.

A point of further interest is that Theorems 6 and 7 apply to the ex-
pected information measure only if (1/n) > iplaj, X;) =ms;, ie., only
if the model is constrained to correctly predict the market shares. Thus
Ii(A; X)—I1,(A; X) is only equal to EIo(A; X)—EI;(A; X) when the
predicted market shares are constrained. This is why the test of accuracy
is actually a test relative to the null hypothesis.

Once the information measure is extended to test the comparison be-
tween simple null hypotheses like Ny and N;, the generalization is straight-
forward to other null hypotheses or to successively stronger models. For
example, when choice specific constants were added to the model in Figure
1, they explained an additional 3.1 % of the uncertainty.

An important problem in practice is when the choice set varies across
individuals. This problem can be addressed with the information test by
selecting a null model, Ny, which assumes that the choice set and nothing
else is known. This test is illustrated in a study by Silk and Urban [24]
on deodorants. There were 18 brands on the market, but the average size
of the choice set was only three brands.

Define the null model, N, as follows: Let J; equal the number of al-
ternatives in individual #’s choice set; then the null probabilities are given
by p¥;=1/J; if alternative a; is in individual 7’s choice set and pi;=0
otherwise.

In the study the explanatory variable was a ratio-scaled preference
measure calculated from constant sum-paired comparisons (Torgenson
[26]). The dependent variable was the last brand purchased. The model
was a one-parameter logit model linking preference to probability of
choice. First-preference recovery was 83 %.

Relative to the equally likely hypothesis (No, p;=1/18), the logit
model explained 80% of the total uncertainty. But N, explains 62% of
that uncertainty and the logit model adds only 18% to that. Thus N,
represents a significant amount of information and is an extremely strong
assumption. (In a category like deodorants, where the choice set is de-
termined more by each consumer’s interest than by product availability,
knowledge of everyone’s choice set contains considerable preference in-
formation.)

Finally, as is shown in Figure 2, the information test can compute in-
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formation as coming first from N; relative to Ny, then incrementally from
N: relative to Ny, and finally from the logit model (X) relative to Na.
This can be done even though the implicit parameters for Ny are not a
subset of N, or of those for the logit model.

6. FREQUENCY OF CHOICE

A final problem that the information test can address is the problem
encountered when market-research data is collected from a consumer
panel. In this case observed choice is not a one-time occasion, but rather

L(A;N,))= 662 I4A;Nx)=1778 14A;X)*2302 Ho(A)=2.890
0 | .
| ! '
- |
| information due to logit relative to Ng (80%) Tuidual L
I I uncertainty |

fe (20%)
information due N, relative to Ngo , info. due ! !

(62%)  |logit rela-|
! tive to Np:
' | ts% |

1

, information | information due N, )
due N, relctive’ relative o N, (39%)'

] 1o Ng (23%)] I

i

1

information due logit relative
to N, (57 %)

N B

Figure 2. Information test when the choice set varies
(deodorant example).

the consumer makes repeated purchases over time. Frequencies rather
than (0, 1) events are observed.

Perfect information would result from correctly predicting every choice
occasion for every individual; i.e., p:x=8;% where k indexes the choice
occasion. Unfortunately, without situational variables probabilities, p;;,
that are predicted by probabilistic choice models are independent of choice
occasion. Thus Ho(A) =1o(A; perfect information) is not possible even
in theory.

This problem can be addressed by defining a new perfect model, P,
such that p;s=f:; where f;; is the observed frequency. The new entropy,
Go(A) =I,(A4; P;), then becomes the base uncertainty, and a new measure,
Vo=Io(A; X)/Go(A), gives the percentage of “‘explainable” uncertainty
that is actually explained by the model. Alternatively, a figure such as
Figure 2 can be produced and Gy(A4) can be compared to Ho(A) to de-
termine the percentage of unexplainable uncertainty.
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Thus, in addition to indicating the relationships between the lower
bounds (null hypothesis), the information test is readily extendable to
indicate the relationships among the upper bounds (explainable uncer-
tainty).

7. SUMMARY

This paper addresses the fundamental problem of testing probabilistic
predictions against 0, 1 observed events by deductively deriving an in-
formation-theoretic test. Under standard null hypotheses this test re-
duces to the likelihood ratio index, p°, now in common use. One advantage
of the information-theoretic approach is that it gives both theoretic rigor
and an intuitive appeal to this hiterto heuristic measure. But the infor-
mation test goes beyond that. It indicates how to extend p° to complex
null hypotheses and how to change the upper bound on explainable un-
certainty. Together these extensions make clear many interesting and
complex effects. For example, the contribution of choice set restrictions is
quantified in Figure 2.

The information test measures usefulness, but it also statistically mea-
sures accuracy. A two-tailed normal test indicates whether the information
statistic is reasonable under the hypothesis that the probabilistic model is
correct. This test, which is relative to the chosen null hypothesis, provides
the model builder with an important diagnostic tool to assess the validity
of a probabilistic model.

Finally, under the appropriate null hypothesis, 2n (A ; X) is the standard
x_ statistic used to measure statistical significance.

Thus the information test gives a three-stage disaggregate test of use-
fulness, accuracy, and significance. It provides useful generalizations for
existing disaggregate tests, makes possible new comparisons among models
and hypotheses, and indicates the intuitive and statistical relationships
among model tests. These advantages are sufficient to add this test to
those tests that modelers use to select probabilistic models. To date, the
test has been used to test a new ranked probability model (Hauser [6]),
to test independence of irrelevant alternatives (Silk and Urban [24]), to
compare various means to model consumer perceptions (Hauser and
Koppelman [7]), to test the relative effects of attitudinal and engineering
variables in logit models (Lavery [17]), to test a bargain-value model of
brand choice (Keon [15]), to test improved new product models (Hauser
and Urban [9]), and to test location models for financial services.
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