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WTP to Avoid A Catastrophe that Can Occur Only Once

If nothing is done to avert a catastrophic event that can occur only once, and reduces

consumption by a random fraction ¢ if it occurs, welfare is
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where [E denotes the expectation over 7 and ¢. As before, WTP is defined as the maximum
percentage of consumption, now and throughout the future, that society would give up to
eliminate the possibility of the catastrophe. Define p = ¢ + g(n — 1). If society gives up a

fraction w of consumption to avert this catastrophe, net welfare is
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WTP is then the value w* that equates V{, and V.

To obtain the WTP for eliminating the event, note that welfare if no action is taken is:
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Here we have used the assumption that z = e~? follows a power distribution. If the event is

eliminated, welfare net of the fraction w of consumption sacrificed is
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Comparing (1) and (2), the WTP to eliminate the event is:
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From this equation, we see that (i) w* is an increasing function of the mean arrival rate A;
(ii) w* is an increasing function of the expected impact E(¢), and thus a decreasing function
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of the distribution parameter 3; and (iii) w* is a decreasing function of both the rate of
time preference 6 and the growth rate g. We would expect w* to be higher for an event
that is expected to occur sooner and have a larger expected impact, and lower if either the
rate of time preference or the consumption growth rate is higher. The dependence on 7 is
ambiguous. Given the growth rate g, a higher value of n implies a lower marginal utility of
future consumption, and thus a lower WTP to avoid a drop in consumption. On the other
hand it also implies a greater sensitivity to uncertainty over future consumption.

As mentioned above, for expected utility to be finite, we need § > n — 1. It is easy
to see that as 7 is increased, w* approaches 1 as n approaches 3 + 1. The reason is that
the risk-adjusted remaining fraction of consumption is E((1 — ¢)'™) = 8/(8 —n+1). In
risk-adjusted terms, the possibility of a high-¢ outcome weighs heavily on expected future
welfare, and thus on the WTP.

A few numbers: Suppose 3 = 2 so the expected loss is E ¢ = .33, A = .05 so the expected
arrival time is ET = 1/\ = 20 years, § = g = .02, and n = 2. Then w* = 0.22. If instead
0 =0, then w* = 0.26. If § = .02 but we increase n to 2.5, w* increases sharply, to 0.60.

It is useful to compare the WTP to avoid this “once-only” event with the WTP when
the event can occur multiple times. As shown in Martin and Pindyck (2015), in the latter
case the WTP is .
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(The subscript m is added to emphasize that the event can occur multiple times.) Whether
the event can occur only once or repeatedly: (i) w* is increasing in the mean arrival rate
A; (i) w* is increasing in the expected impact E(1 — ¢), and thus a decreasing function of

*

the distribution parameter [; and (iii) w* is a decreasing function of both the rate of time
preference 0 and the growth rate g. And as expected, w}, > w* foralln > 1,8 >n—1,A > 0.
Some comparisons: (1) Ifn=2,9g=0 =.02s0p = .04, A\ = .02and 5 = 3 (so E(1—¢) = .75),
then w* = .143 and w}, = .250. (2) If instead A = .04, then w* = .200 and w;}, = .500. (3)

If A=.04 but g = 2.1, then w* = .313 and w;, = .910. In the last example, (3 is just above



the limit (2.0) at which expected utility becomes unbounded.

References

Martin, Ian W.R., and Robert S. Pindyck. 2015. “Averting Catastrophes: The Strange
Economics of Scylla and Charybdis.” American Economic Review, 105(10): 2947-2985.



