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Learning From Ex perience, Simply

Abstract

There is substantial academic interesnivdelingconsumer experientiééarning How-
ever, (approximately) optimal solutions to forwdodking experientialearning problems are
complex, limiting their behavioral plausibilignd empiricafeasibility. We propose that co
sumers use cognitively simple heuristic strategiés explore one viable heurisiindex stra
egies, andlemonstrate thdaheyare intuitive, tractable, and plausibledex strategieare much
simpler forconsumers to use bptovide closeo-optimal utility. Theyalsoavoid exponential
growth in computationatomplexity, enabling researchets study learning modglinmore
complex situations.

Well-definedindex strategiedepend upon a structural propecsiled indexability. We
prove the indexability o& canonical forwardboking experientialearning model in whicleon-
sumers learn bramglality while facing random utility shock§ollowing anindex strategycon-
sumers develop an index for each brandssply and choose the brand with the highest index.
Using synthetic data, we demonstrtitat an index strategy achieves nearly optimal utility at
substantialljower computational costdJsing IRI data fodiapers we find thatan index strag-
gy performsas well asan approximately optimal solution abdtter than myopic learningVe
extend the analysis to incorporate risk aversabimer cognitively simply heuristicheterogee-

ous foresightand an alternative specification of brands.

Keywords: forward-lookingexperientiallearning, indexstrategies structural models, cogn
tive simplicity, heuristics, mutarmed landit problems, restless bangitoblens,

indexability:
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1. Introduction and Motivation

Considerable effort in marketing is devoted to studying the dynamics by whichheonsu
ers learn from their consumption experience (e.g., Roberts and Urban 1988; Erdésamad
1996; Ching Erdem and Keane 2043 As an example, imagine new parents who have to shop
for diapers, perhaps with little pexisting knowledge about this category. As these parents find
out more about diaper brands through usage experience, tieey $rategic choice. They can
exploittheir knowledge to date and select the most appealing brand. They carpdsefur-
ther, which may entail sampling a currertgsthanideal brand, so that they can make a more
informed decision in the future.

Researchers have developed theawrl models of optimizing forwartboking consm-
ers who balance exploitation with exploration. Pillars of these models include an explicitly spec
fied description of consumer utility and an explicitly specified processhigh consumers
learn. Most models assume consumers choose brands by solving a dynamic program xhich ma
imizes expected total utility taking learning into account. Researchers argue thatihsedy
models are more likely to uncover insight and be inwaffiar newdomain policy simulations
(Chintagunta et al. 2006, p. 604). However, these advantages often come at the expense of diff
cult problemsand timeconsuming solution methods.

The dynamic programs for forwatdoking experiential learning models ateemselves,
extremely difficult to solve optimally. We cite evidence below that the problems are PSPACE
hardbtheyare at least as hard to solveaay problem that requires PSPACE computational

memory" This intractability presents both practical and theoretical challenges. Practieally, r

! PSPACEHS the set of problems which use polynorsialed memor§i memory proportional t !' , wherel!! ! is
a measure of the size of the problem arahn be extremely large. PSPA®@Erd problems are at least as hard as
NP-hard problems, which are themselvespaased of being unsolvable in polynomial time.
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searchers have had to rely on approximate solutions. Without explicit comparisons to the optimal
solution, we do not know the impact of the approximations on estimasoitts. Moreover, the
well-known Ocurse of dimensionalityO prevents researchers from investigating problems with
moderate or large numbers of brands or marketing variables, whereby even approximate sol
tionsmay not bdeasible. Theoretically, it is reasable to posit that a consumer cannot sopre o
timally in his orher head a dynamic problem thatjuires vast amounts of memory and camp
tation In fact, weltdeveloped theories in marketing, psychology, and economics suggedi-that o
served consumer deaisi rules areftencognitively simple (e.gRPayneet al.1988, 1993;
Gigerenzer and Goldstein 1996).

We proposethat consumers use cognitivelynple heuristics to solve learning problems.
As an example of the class of cognitivelynple heuristics, we uestigatean attractivecand-
date heuristicindex strategieswherdyy a consumedevelofs a numerical scor@r anindex, for
eachbrandseparately anthen choosethe brandwith the largest indeXndex strategies ate
solution concept that decomposeasintractable problem into a set of tractable-gudblemsWe
retain basic pillars of structural modeling such as an explicit description of the decstess
and an assumption that consumers seek to optimize. We posit in addition a cost to soilving co
plex problems (e.g., Shugan 1980; Johnson and Payne 1985). We assume the consumer chooses
a strategy that optimizes expected discounted utility minusdgisitivecost. Whilethe cost of
cognitive complexity might be observable in the laboratory, sayitiin response latency, it is
unobservablén vivo. Instead, wadentify domains where index strategies are nearly optimal in
the senseof maximizing expected discountedlity. If, in such domains, index strategies are
substantially simpler for the consumer to implement, then it is likely that savings in cognitive

costs exceed the slight deviation from optimadityd, hence, provide the consumer with greater
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utility net of cognitive costsln the special cases where index stratggjiegideoptimalexpected
utility, we arguehatindex strategieare superior as a description of forwdwdking learning
Following the same logic, we establish conditions wingyepic learing strategiegi.e., explot-
ing posterior beliefs without exploration) sufficenhmdelconsumer behavior.

To motivatethe viability of index strategies as a descriptive model of consumers we (1)
establishwhethemnwell-defined index strategies exist, @plain why they are intuitive and
hence might be used by consumers, (3) investigate when index strategies are (near) optimal sol
tions to the reduced problem of utility maximization, and whether they are computatiomally si
pler than the approximately optal solution? and (4) test whether index strategies expl&in o
served consumer behavior at least as well as alternative models.

We address #1 analytically by proving the OindexabilityO property of canonical forward
looking experiential learning modelsnflexability ishard to establish in genenaWWe address
#2 by examining the form and properties of index strategies and arguing they are behaniorally i
tuitive relative to the approximately optimal solut@ssumed in most forwaildoking learning
models We address #3 using synthetic data. We address #4 by estimating alternative srodels u
ing IRI data on the purchase of diapers, a product category where we expect to see forward
looking experiential learning.

Our basic hypothesis is that consumers caraesgnitively simplendex strategy to
solve forwardliooking experiential learning problemBigure 1 is a conceptual summary of our
hypothesisWe demonstrate viability by showing ttiaere exists a welliefined indexhat sats-
fies the four criteria. Weo not argue that consumers actually tisewell-definedindex. Rather

we argue that the wetlefined indexs a betteOas ifO descriptitiman the (approximately)s

2 We use computational simplicity as a surrogate for cognitive simplicity in this paper.
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timal solution strategy
We first describea camnical learning problem. We nesaview briefly literaturesghat
address learning dynamics, cognitive simplicity, and related optimization probéartben &-
amine index strategies from the perspectives of theory, synthetic data, and empirical estimation.

We close with extensions.
[Insert Figure 1 about here.]

2. Canonical Forward -Looking Experiential Learning Problem

We consider the followinganonical forwardlooking experiential learning problenA
consumer sequentially chooses from & sebntaining! brands. Let index brands antindex
purchase occasisnThe consumerOs utility, , from choosing at! has three components. The
first component iguality, ! ;- , whichcan be defined tmclude enjoyment, fit with needs,
weighted sum of brand features, etc. Quality aagrindependentlyrom a distribution
LW 1 T with parameters, . TheF distributiors are independeraicrosg. This independence
assumption rules out learning abauttrand by choosing anothd@rhe consumer, however, does
not know the vala of the parametets andobserves quality draws to infer the vabfd,. A
quality draw of a brand is only realizafterthe consumehas chosen that brand.

The second component of utility is a sebbfervable shocks;- , such amdvertising,
price, promotion, and other control variables that are observable to the researcher and ¢onsumer.
For simplicity, we assumihat observable shockéfect utility directly, although the model iz-e

tendable to indirect effecterough the qualy components in Erdem and Keane (1996),kAc

% An empirical search among heuristics would risk exploiting random variation in the data. Instead we demonstrate
that an index strategy, and at least one other cognitively simple heuristic, perform well on the data.

4 Our consumer learning model treats observable utility shocks as exogenous. However, the same insight applies to
endogenous observable utility shocks as lasgl) each OatomicO consumerOs learning does not affect these shocks
(e.g., a brandOs advertising expenditure), and (2) these shocks do not directly convey quality information.



Learning from Experience, Simply

erberg (2003), and Narayanan et al. (2005). The third component of utilitymbseervable
shock !+, which represents random fluctuationsealized utility that arebserved by the ¢o
sumer but not ly the researcher.

Consumer decisiormakingdepends on quality aritie weighted sum of observable and
unobservable shosk'%!!j-- I ,Whereﬁ’ is a vector of weight parameters. We refer to this
weighted sum astility shocks We let utility shock$e drawn from a joint distribution,
;1011111 independently oveuurchase occasiongith parameters, >The!,Os are ird
pendentcrosyg. The consumeknowsthe distribution , and the value dof , observes the cu
rent utility shocksrior to making apurchaselecision, but does not know future realizations of
the shocksNotice that unlike the quality draws, thdility shocks ofabrand are realized reghr
less ofwhetherthe consumehas chosen that brandle male the conservative assumption that
utility shocks are independeat! » and thus do not helfpe consumer learn quality directly.
However, utility shocks do shape learning indirectly by varyireconsumerutility from ex-
ploitation, which in turn décts incentive for exploration.

In summary, we write the consumerOs utility from choosing braiqlirchase occasion

I as follows:

(1) ! Lt CIEe 11

For ease of exposition, in the main analysis, we assume that the constiskenesitral. We x-

tend the model to incorporate risk aversioranl.

We model each consumer ashé consumenses Bayes Theorem to update beliefs about

® Observable shocks can be independently distributed over purchase ocfrsionsmber of reasons. For exa

ple, firms may intentionally randomize price promotions in response to competition. Such Omixed strategiesO can
generate observed prices that appear to be independently drawn at each purchase occasion from a knaam distribut
(Narasimhan 1988).
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the quality parametey after each consumption experience (assumed to occur after choice but
before the next choice). Lét bethe informatiorset that summarizghe consumerOs beliefs
about!, atpurchase occasidn At! ! !, beliefs about, are summarized by a prior distuib
tion,!,, 1,11, 1, wherel,, is based on all relevant prior experience. Afterltheconsumption
experience the consumerOs posterior beliefs are summarizet! by - ! . When bothf, and

prior beliefs are normal, Bayesian updating is naturally conjugate. We obtain . I ;. ! us-

ing standard updating formulae. The parameters of posterior bilidfs] and the realized i

ity shocks» ! | ande;, ! E, summarize the state of information about brarithe collection

of brandspecific state(l, 17, 1F) I 11 1 101 00, 10 10 1P 1 1 10 T T represents

the set of states relevant to the decision problem at
We seek to model a decision stratelgy(! ! ! 1 1)/ I 1| that maps the state space to
the choice set. Whout further assumptions, the consumer must choose a decision strategy to

maximize expected discounted utility:
(2) KA R [Z!”!(! o U DE ) (G [

where! is the discount factor. The expectatioms taken over the stochastic process generated
by the decision strategy (in particular, the transition between states that may depend on the co
sumerOs brand choice). The infinite horizon can be justified either by consumption over a long
horizon or by tle consumerOs subjective belief that the decision predleemd randomly.

The optimal solution to the consumerOs decision problem can be characterized-as the s

lution to the Bellman equation

RNTRRL NIRRT

(3) NG WA U B P O I AP B e T PR LN LR TLR AR
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While the Bellman equation is conceptually simple, the full solution is computationally difficult
because, even after integrating out the utility shéckand', it evolves on a state space of size

I' |', where]|! | is the number of elementslin Not only is|! |' exponential in the number of
brandd, it becomes extremely large!ifcontains many elements, even when the optimat sol
tion is approximated by choosing discrete points to représead is common in the literature.

We provide an illustrative example in 4.

3. Related Literatures
Before we introduce index strategies, it is helpful to revdiencepts from literaturemn

learning dynamics, cognitive simplicity, arelated optimizatioproblems.

3.1. Learning Dynamics

Many influential papers study consumer learning dynamics and apply learning models to
explain or forecast consumer choiceproblems related to the canonical learning probleon
example, usinglata from automotive conswarg Roberts and Urban (1988) estimate a model in
which consumers use Bayesian learning to integrate information from a variety of soueces to r
solve uncertainty about brand quality. Erdem and Keane (1996) build upon the conceptef Baye
ian learningandinclude forwardlooking consumers who tradeoff exploitation with exploration.
For frequentlypurchased goods, their model fits data better thamlearningmodel (reduced
form of Guadagni and Little 1983) and the myopic learning model of Roberts and Urban.

These papers stimulated a line of research that estimates the dynamics of consaomer lear
ing Bfor a comprehensive review see Ching et al. 2Some modelfocus onmyopic can-
sumers with Bayesian learning (e.g., Narayanan et al. 2005; Meht2@®&;J.Chintagunta et al.
2009; Narayanan and Manchanda 2009; Ching and Ishiha@aZmP), while others explicitly

model forwardlooking consumers (e.g., Ackerberg 2003; Crawford and Shum 2005; Erdem et
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al. 2005, 2008). The computational complexifyforwardlooking learning has been one of the
reasos that some applicatioresssumanyopic learningHowever, f atheory is accuratelyed
scriptive, morecomplex forwaredooking models should improve policy simulations.

Because forwartboking choice problesithat involve continuous state space generally
cannot be solved optimally, significant effort has been spent on developing approximate sol
tions. For exampléKeane and Wolpii1994) use Monte Carlo integration and interpolation,
Rust (1993) introduces aandomization approach, and Imai et al. (2009) develop an estimator
that combines dynamic programming solutions with a Bayesian Markov chain Monte Caflo alg
rithm.® While these solution methods vary in speedat#impt to approximate the Bellman
equation to theoverallproblems and thusay suffer from the curse of dimensionality (/).

At the same time of technical developmertistd is a growing recognition of threeed
for richer theories of consumer behavibor example, Chintagunta et al. (20066 p4) suggest
that Othe future development of structural models in marketing will focus on the interface b
tween economics and psychology.O
3.2. Cognitive Simplicity

Parallel literatures in marketing, psychology, and economics provide evidencerthat co
sumers use decision rules that are cognitively simple. In markBaygeet al.(1988, 1993) and
Bettmanet al.(1998 present evidence that consumers use simple heuristic decision rules to
evaluate products. For example, under time pressure, consuiteerase conjunctive ruleser
quire a few Omust haveO features) rathemtioa® complicated compensataonfes. Using sim-

lated thinking costs with Oelementary information processes,O Johnson and Payne £:985) illu

® There is a related literature on newtynamic programming, which us@eural networkand other approximation
architectures to overcontke curse of dimensionality (Bertsekas and Tsitsiklis 1996).
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trate how heuristic decision rules canragonal when balancing utility and thinking costs.
Methods to estimate the parametersagnitively simpledecision rules vary, but such rulefs
tenpredict difficult consumer decisions as well as or better thampensatory rule®.g., Brsder
200Q Gilbride and Allenby 2004; Kohli and Jedidi 2007; Yee et al. 2007; Hauser et al. 2010).
Building on SimonOs (1995, 1956) theory of bounded rationality, researchers ir-psycho
ogy argue that human beings use cognitively simple rules that are Ofast anddrggalO
Gigerenzer and Goldstein 199dartignonandHoffrage 2002. Fast and frugal rules evolve
when consumers learn decision rules from experience. Consumers continue to use the decision
rules because they lead to good outcomes in familiar environf@&uitistein and Gigerenzer
2002). For example, when judging the size of cities, Otake the bestO oftendeadsdtmlg-
ments’ In 20102011, two issues afudgment and Decision Makimgere devoted to threcay-
nition heuristic alone (e.g., Marewski et 2010).
The costly nature afognition has also received attention in economics (see Camerer
2003 for a review). A line of research looks to extend or revise standard dynamic decision
making models with the explicit recognition that cognition is costly.@xample, Gabaix and
Laibson (2000) empirically test a behavioral solution to decis®s problems, whereby dec
sionrmakers actively eliminate loywrobability branches to simplify the task. Gabaix et al. (2006)
develop a Odirected cognition model,®tich a decisiormaker acts as there isonly one
more opportunity to search. In the laboratory, the directed cognition model explains subjectsO
behaviorbetter than a standard search model with costless coghituser, Keane, and Mec
be (2004) provid further evidence that consumers might use heuristic rules to solve dynamic

programs.

" The takethe-best rule is, siply, if you recognize one city and not the other it is likely larger; if you recognize
both use the most diagnostic feature to make the choice.
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Cognitive process mechanisms are debated in the marketing, psychology, and economics
literatures. Our hypothesithat consumers ugeuristics such aadexstrategiesneed only the
observation that consumers favor decision rules that are cognitively simple and that such rules
often lead to good outcomes. The simplicity hypothesis assumes that consume triids

gains versus cognitive costs, but doesrequire explicit measurement of cognitive costs.

3.3. Cognitively Simple Solutions to Complex Optimization Problems

If a ball player wants to catch a ball that is already high in the air and traveling directly
toward the player, then all the playered do is gaze upon the ball, start running, and adgist
or her speed to maintain a constant gaze angle with the ball (Hsdohénd Gigerenzer 2005, p.
102)® The gaze heuristic is an example where a cognitively simple rule accomplishes a task that
might otherwise involve solving difficult differential equations. But the principle is mare ge
eral:simple solutions often perform well in complex optimization problems

There are many examples in marketing and economics where descriptive decision rules
solve morecomplex problem8.In domains such as consunirrdget allocation, the choice of
which information source to search, and the evaluation of products via agendas, heuristic sol
tions appear to describe consumer behavior well (Hauser 1986; Hausébandl986; Hauser,
et al. 1993). Rust (199Y argues thait is likely consumers solve problems requiring an Oiifeas
bly large number of calculationsO by using heuristic solutions such as decomposition-into sub
problems. He states that O[t]he challesge recognize whether or not a problem is neagly d
composable, and if so, to identify its approximately independerpimiilems, [and] determine

whether they can be solved separately (p. T®)i€view is closely related to our index approach

8 Professional athletes use ma@mplicated heuristics that give them greater range, for example, in bapeball,
positioning based on prior tendencies and the expected pitch, and the sound as the bat hits the ball.

° Of course, the empirical performance of descriptive solutions is not guaranteed. Gilovich et al. (2002) provide a
comprehensive survey of human dgeon heuristics and their possible biases.

10



Learning from Experience, Simply

to complexforwardlooking learning problems.

3.4. Related Optimization Problems: Bandit Problems and Index Solutions

The model we formulate 2 is closely related tthe multi-armed bandit problepna
prototypical problem that illustrates the fundametrtadieoff between exploration and expdoit
tion in sequential decision making under uncertainty. In a bandit protilerdecisiormaker
faces a finite number of choices, each of whyiglds an uncertairpayoff. The decisiormaker
must make choices, obsemetcomes, and update beliefs with a sequential decisionTige.
decisionmakerseeks to maximize expected discounted values.

The bandit problems was firkirmulated by the British in World War Iénd,for over
thirty years no simple solution was knvn. Then Gittins and Jones (1974) demonstratecha si
ple index solutio®develop an index for each OarmO (i.e., each choice alternative) by solving a
subproblem that involves only that arm, then choose the arm with the largest index. This index
solutionreduces an exponentially complgsoblem to a set of ordimensional problemsittins
and Jones (1974) proved the surprising result that the index solution is the optimal solution to the
classic bandit probleri?.

However the GittinsJones@iriking resul comes at the cost of a strict assumption that
the stats of the norchosen choice alternatives do not evoldhenthis assumption is violated
say due to random shocks, GittinsO index is no longer guaranteed to be optimal. Such problems
are known asestless bandit@/Vhittle 1988) and, in general, are computationally intractable

(Papadimitriou and Tsitsiklis 1999). In his seminal paper, Whittle (1988) proposed a tractable

Y Hauser et al. (2009) apply GittinsO index to derive optimal Owebsite morphlngO strategies that matol+website d
sign with customers® cognitive styldeban et al. (2014) fieldest morphing for AT&TOs banner adising on

CNET and General MotorsO banner advertising on a variety of websites. OtHeromellapplications of index
strategies include jetmatchlearning Jovanovicl979; Miller 1984 and pharmaceuticgiroduct learning (Dickstein
2012). See Ching etl. (2013a) for a survey.

11
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heuristic solution. The solution generalizes GittinsO index such that thensrodtebe solved
optimally or near optimally by associating an ingeferred to a®hittleOs indeseparately
with each alternative and choosing the alternative with the largest index.

The existence of welliefined index solutions relies on a structural property cailiedek-
ability, which is not guaranteed for all restless bandit problems. Whittle (1988, p. 292) wrote that
OOne would very much like to have simple sufficient conditiansdexability; at the moment,
none are knownO (see alieo-Mora2001). Gittins et al. (2011, p. 154) also lament that Othe
question of indexability is subtle, and a complete understanding is yet to be acHieveanO
important class of marketing mddechoice modelsconsumer utility tends to be restless over
purchase occasionsor example, in most randeutility choice models there is an idiosyncratic
Oerror term@s wellasother changes in the choice environm@ng., McFadden 1986F With-
out further study, we do not know whether an indimategyis a good solution to sugkstless
problems.

We recognizehatthe canonical forwardooking experiential learning problebelongs
to the general class of restless baslgicause of the presence dfityt shocks.In a5 weprove
thatthe problemis indexableand thus a welldefined indexsolutionexists in the sense of Whi
tle (1988) Moreover, weexplore the key properties of suahindex which shed light on how

consumers may behave in solving the learning problem.

4. An Index Strategy in the Absence of Utility Shocks

1 The indexability of restless bandits is problepecific. For exampleé\i—o-Mora (200]) takes the achievable+

gion approachRertsimas and Nib-Mora 2000) and establishes the indexability of a class of restless bartalit pro
lemswith linear performance measures (e.g., queue input control). Glazebrook, et al. (2006) show that a special
class of restless bandit proble®stochastic schedulingis indexable. To our knowledge, no general result@anal
gous to GittinsO Index Theoreniséx as of today.

2The error term has been modeledaasinobservedto the researchesyate variable in structural applications

(Rust 1994, Chapter 5%ections 3.1 to 3.2). This modeling approach Oprovides a natural @GatyooalizeéXis-
crepancies ¢étween observed behavior and the predictions of the discrete decision process modelO (Rust 1994
3101). This is different from the Ooptimal chqibes nois¢émeasurement errérapproach.

12
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The learning problem we examine includes utility shocks, but it is easier to illustrate the
intuition of index strategies iy a problem without utility shocks. Temporarily assume
M. ! 1. 1 1 forall! and!, although the same result holds when there is no intertemporal vari
tion in . and!, . In this special cas¢éhe consumerOs decision problem is a classic-anoi
bandit.

GittinsO insight is as follows. To evaluate a btatite consumer thinkas ifhe orshe is
choosing between this brand and a rewarthat is fixed for all futurgpurchaseccasios. The
consumethussolves a sulproblemat each puwhase occasioBthe consumecaneither sample
this brand to gain more information about it, or exploit the fixed reWwarih the latter case, the

consumerOs belief about brameases to evolve, such that, , ! !.. The optimal solution to

this subproblem is determined by a greatly simplified version of the Bellman equation:

(4) A A LT A i (P YO TV [ A T T PPN L IR NI
Notice that each suproblem only depends on the statelation of a single brand, The sub
problem is much simpler than the full problem specified in Equation 3.

GittinsO index, 1. 1, is defined as the smallest valud ptuch that the consumer at
purchase occasidnis just indifferent betweeexperiencing brantland receiving the fixecer
ward.That is, we obtain! !!,. ! by equating the twterms inside the maxizationoperatorof
Equation 4. Gittins proposed tHat!,. ! could be used as a measuring device for the value-of e
ploring lrand! Dif there is more uncertainty about a brand left to explore, the consumer will
demand a higher fixed reward to be willing to stop exploration. Naturally, GittinsO inglex is u
dated when new information arrives.

GittinsO surprising result is the Index Theorem. The optimal solution is to choose the

13
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brand with the highest indeat eachpurchase occasio computationally difficult problem has

thus been decomposed inteimpler subproblems.

Index Theorem (Gittinsand Jones 1974Jhe optimal decision strategy when there are

no utility shocks ig (") ! "#$! 1y, ! (1 )!

Figure 2 illustrates intuitive properties of GittinsO index. We consider one brandl-The so
id line plots one realization of GittinsO ira@es it evolves when the brand is chosen repeatedly.
The dashed line plots the consumerOs posterior mean quality belief. It is updated by brand exp
rience and converges towdttetrue brand quality. Myopic consumers would exploit experience
and choose thierand that yields the highest posterior mean quality. Forlealdng consumers
may want to explore further. The dotted curve, which is simply the difference between GittinsO
index and the posterior mean quality, measures the value of exploration. fiieisledlines
smoothly with experience because the value of exploration decreases as the consumer learns
more about brand quality¥hen we plot GittinsO index as a function of the consumerOs posterior
quality uncertainty;» (not shown), it is also inttive Bthe index increases wié because the
value of exploration increases with the remaining amount of quality uncertainty. Figure 2 and the
simple relationship between GittinsO index and posterior qoaligfssuggest that aonsumer

might intut something close to the dotted cuifthere were no utility shocks
[Insert Figure 2 about here.]

5. AnIndex Strategy inthe Presence of Utility Shocks
We now allow utility shocks. Observable sho€ksinclude effects that researchels o
serve and model, such as changes in advertising, promotion, or price. Unobservablg.shocks

include effects that researchers do not obsandewhich do not provide a signal about quality.

14
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The presence of unobservable shock=igralto many empirial consumer choice modelseB
cause shocks enter the utility functi@yardless of the consumerOs decistbesconsumer may,
in any purchase occasigswitch among brands.

When the model includes utility shocks, the Gittdmmes Index Theorem no laergg-
plies because the states of raftosen brands do not remain constant. With shocks, thernensu
erOs problem belongs to the class of restimsdit problems as introduced by Whittle (1988). In
generalsuch optimization problems are PSPAG&d(Papadintriou and Tsitsiklis 1999The-
orem 4 making the problem extremely difficuif not infeasibleto solve and making it impla
sible that the consumer would use a solution strategy based on Equétioar®) other difficlr
ties,PSPACEhardproblems requirextremely largenemoryba particularly scarce resource for
consumers (e.gBettman 1979, p. 140; Lindsay and Norman 1977, p. 3U6)develop dheo-
reticalsolution to this problenn this sectionWe will show that the canonical forwalabking

experiatial learning problem is indexable and index strigt®igave intuitive properties.

5.1. The Canonical Forward -Looking Experiential Learning Problem is Indexable
Whittle (1988) proposed a solution that generalizes GittinsO itleachpurchase o
casion to evaluate a brarid the consumer thinkas ifhe orshe must choose between brand

land a reward, that is fixed for all future purchase occasiofise Bellman equation for thé

subproblem which now includes utility shockbecomes

G) ! (e!Tetpn)) =

13 Even when there is no learning, a typical empirical model cwmer choices may include a shock, or ao-idi
syncratic error!,. , that is treated as unobservable by researchers. Without this shock, the model would predict that
the consumer makes the same choice over purchase occasions if all other observablefi@@ioiconstant. In the
context of learning, incorporating this shock allows for switching among brands even when the consumer has
learned much about brand quality.

15
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I I T (PN L T T | [ B | P R L TP T PP TPV T TP 1)
The index is defined as the smallest valug cfuch that the consumermirchaseccasion is
just indifferent between choosing branand receiving the fixed reward. For such an index to be
well-defined and meaningful, the indexability condition need to be satisfied (Whittle 1988). Let

L rr 1l E be the set of states fohieh choosing, atpurchase occasidnis optimal:

(6) () =)y rrrr b [ Qa1

DA 1 L b U g U0 1y I Mg 1 T 0

Indexabilityis defined agollows:
Definition : A brand! is indexable iffor any!, !, (1,) ! !, 11| forany!, ! !/

Indexability requires that, as the fixed reward increases, the collection of states for which
the fixed reward is optimal does not decrease. In other woiidssaime state it is optimal to
choose the fixed reward, it must also be optimal to choose arHigld reward. Indexability
implies a consistent ordering of brands for any state, so an index strategy is meatdowéul.
er, indexability need not always hold in general and can not be taken for granted (Whittle
1988)** Thus, before we can posit arlex strategy as a consumer heuristie,must establish
indexabilityfor amodelthatincludes utility shocks. In Online Appendix Wwe prove the follav-

ing proposition.

Proposition 1 . Thecanonical forwardlookingexperientiallearningproblemdefined in

a2 isindexable

4 For exampleWhittle (1988, p. 29¥provides a simple example wheénelexability faiks.
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Once the indexability condition is established, then a-dadihed strategy is to chooae
each pirchase occasidihe brand with the largest index. The index strategy breaks the curse of
dimensionality by decomposing a problem with exgrdiral complexity intd muchsimpler sub
problems, each on a state spacf o¢fafter integrating out the utility shocKs and!,. . With
this simplification, it is more plausible that the consumer might use the index strategyo-As a b
nus, estimatio is much fasteiThe difference in the size of the state space can be dramatic. For
example supposeave were interested in the mean and variance of quality and discristerad

with ! and! grid points respectivelyWith ! brands, the state space iodex strategies is

I 1 N for each brandiather thar(! ! ! )" for the original optimization problem given in Exu
tion3 For! I I 1 1" and!! !, thisis the difference between a state spat¢® of(for each
of six brandspnd! !l 11" 1000!000.

5.2. The Index Strategy is Invariant to Scale and Behaves Intuitively

Index strategiedramaticallysimplify the solution, but can the consumer intuit (perhaps
approximately) an index strategy? We expect future laboratory experiments to address this issue
empiricdly. In this paper, we argue that index strategies have intuitive properties and that it is
not unreasonable for the consumer to intuit those properties.

An index strategy would be difficult for the consumer to use if the strategy weme not i
variant topermissible scale transformationkit is invariant the consumer can intuit (or learn)
the basic shape of the index function and use that intuited shape in many situations. Invariance
facilitates ecological rationality. The following results hold for feliy general distributions of
quality,!, ! . 1,1, and joint distributions of utility shocks and!,-, as long as they have scale

and location parameters and the quality belief!,!1,. ! is conjugate. To ease interpretation, we

15 Gittins© inderxhibits invariance propertieSittins 1989)

17



Learning from Experience, Simply

assime thatiy and! » are normal distributions with parameters defined eatlieand!, for true
quality; - andr- for posterior beliefs about quality; ahd" and!, ™ for utility shocks. In

Online Appendix B we prove the foving proposition.

Proposition 2 . Let!” beWhittleOs indée®r the canonical forwardooking experiential
learning problencomputed when the posterimeanquality (T+ ) is zero, the meautility

shock(! | ") is zero, and thenherentvariation of quality (!, ) is 1 WhittleDsndexfor any

values of thesparameterss the following simple function bf .

mn rn
~ : H

G P T IR S TR T N o A B R T TP AR VR =

T D10l Ll )
=1 = H -l . !'. !| I|

Proposition 2 implies that the consumer can simlifyorher mental evaluations byed

composing the index for each brand into (1) the mean utility gained from myopic learning,

-

which reflects the exploitation pbsterior beliefs, and (2) the incremental benefit of
looking forward,!,!” , which captures quality information gained through explorafiorassess

the value of explorationhe consumer need only intuit the shapé ofor a limited range of @-
rametervalues and scale it Hy. Proposition 2 also helps researchers understand whichgearam
ters can be identified in the indskategy model.

To provide further intuition, we prove the following proposition in Online Appendix C.
The proposition shows th¥lthittleOs index behaves as expected when the parameters of the
problem vary. The consumer likes increases in quality and utility shocks, dislikes inherent unce
tainty in quality and utility shocks, but valuie ability to learn and, hence, resotkie uncer-

tainty inposteriorbeliefs about quality.
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Proposition 3 . WhittleDs$ndexfor the canonical forwardooking experiential learning

problem(1) increagswith the posterior meanf quality (I, ), the observable utility

shocks !(!ﬂ-- ), andtheunobservable utilitghock (), (2) weakly decreaswith thein-
herentuncertainty in quality!( ) and themagnitude ofincertainty in theutility shocls

(! !’ "), and (3)increaeswith the consumer@ssterioruncertainty about qualityé. ).

Figure 3 illustrates WhittleOs index where we set the posterior mean quality to zero, so
that the curve represents the value of exploration. (More generally, WhittleOs index fluctuates
with the posterior mean quality in a way similar to Figure 2.) Asthvagase for GittinsO index,
the valueof-exploration component of WhittleOs index is a smooth decreasing functior-of exp
rience because experience reduces posterior quality uncertainty. With sufficient experience, the
value of exploration converges towarero implying that, asymptotically, the value of a brand is
based on the posterior mean of quality (Proposition 2). Unlike GittinsO index, WhittleOs index is a

function of the magnitude of utility shockis'(' ). As the magnitude of utility shocksdmmnes

larger, it is less important for the consumeexplore and the value of exploration deceases as
shown in Figure 3. These properties and the shape of the curve itself, are intuitive.

[Insert Figure 3 about here.]

Figure 3 and Propositiadisuggest that, other things being equal, when the magnitude of
the uncertainty imtility shocks is larger, the realized utility shocks are more likely to begthe d
ciding factor in consumersO brand choices. For example, as the depth of price promotions i
creases, consumers are more likely to base their purchase decisions on pricq.! WWhen
(compared with inherent quality uncertainty normalizet} ds ! ), WhittleOs index is almost flat

implying an almost myopic strategy. To formalize this insiglet,state the following Corollary
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to Propositiors:

Corollary . (1) As the consumerOs posterior uncertainty in quality increases relative to

the magnitude of the utility shocks, the value to the consumer from looking fonward i

creases. (2hsthe magnitude fathe utility shocks increases relative to the consumerOs

posterior uncertainty in quality, the value from looking forward decreases. In this latter
case, a myopic leaning strategy (i.e., exploiting posterior beliefs) may suffice, and could
be the optimastrategy if it is cognitively simpler than a forwalkabking learning strag-

ay.

These results highlight the intricate relationship between the consumerOs uncertainty in
quality and uncertaintgaused bytility shocks Thetwo types of uncertaintgomplement each
other in drivingthe consumerOs value of exploitatimmt may compete with each other stap-
ing the consumerOs value of exploratidre index solution offers an intuitigescription of this

relationship. In @6 and @7, we examine theeital performance of the index strategy.

6. Examination of the Near Optimality of an Index Strategy (Synthetic Data)
We now examine whether an index strategy implies a reasonable tradeoff betvireen opt
mality and simplicitylndexabilityguarantees existenoé a welldefined index strategy bdbes
not guaranteés optimality.*® For the canonicdbrward-looking experientialearning problem,
the performance of the index strategy is an empirical question. Cognitive costs remainwinobser
able, but &4 and o5 ggest that an index strategy could be substantially simpler than the direct
solutionof the Bellman equatioto the overall problemilo examinavhether the loss in utility is

small,we switch from analytic derivations to synthetic data because the losktynis an issue

8 Many performance bounds have been developed under different contexts and conditions. See Gittins @t al. (2011
for a review of recent developments.
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of magnitude rather than direction. Synthetic data establish existence (rather than universality) of
situations where index strategies are close to optimal.

For concreteness we examine the special case Wlaam! » are normal ditributions.

From the perspective of consumer decismaking what matters is the joint distribution adb-o
servable shockd'- ) and unobservable shocks ). Thereforefor the synthetialata analysisve
set observable shocks zeo without loss & generality Practically, even if there are no observ
ble shocks (e.g., no price promotions), unobservable shocks (e.g., idiosyncratic taste fluctuations)
are still likely to prevail in most choice modeW§e allow for both observable and unobservable
shacks in thefield-data analysis.

We compare four decision strategies that the consumer might use.

1. No Learning . In this strategy the consumer chooses the brand based ahiy consm-
erOgprior beliefs of quality and the current utility shocks. This strategy providesea bas
line to evaluate the incremental value of learning.

2. Myopic Learning . In this strategy the consumer chooses the brand based dhly on
consumerQmsterior quality beliefs arttie current utility shock& his strategy exploits
the consumer@ssteriorknowledge about brand quality. The Corollary predicts that this
strategy will suffice when the magnitude of utility shocks is relatively baghpared
with posterior quality uncéainty.

3. Index Strategy . This strategy assumes the consumer can intuit the shape of WhittleOs i
dex. As per Proposition 2, this strategy improves on the myopic learning strategy to take
into account thexplorationvalue of learning. Brand choices refleet tconsumerOs
tradeoff between exploitation and exploration.

4. Approximate ly Optimal . The PSPACHhard forwardiooking experiential learning pbe
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lem cannot be solved optimally, hence researchers resort to approximate solutions (e.g.,
Keane and Wolpii994; Edem and Keane 1996; Rust 189Ackerberg 2003; Cra-
ford and Shum 2006; Imai et al. 20@hing 2010Ching et al2013h. Although g-
proximation methods varfsee Online Appendix @r a review, discrete optimization is
arepresentativenethodand shoud converge to the optimal solution waHarger number
of grids Chow and Tsitsiklid991; Rust 1996).
We choose parameters that illustrate the phenomena and are empirically plausible. The
simulation requires a finite horizon; we seledt !" purchaseoccasios. If the discount factor
istt I 1" “truncation to a finite horizon is negligible. We discretize the state dpate,
ITw I lintoasetof ! ! grid points for each df brands. We choode! ! I I" 11" |
I" 4 which should be close tgtimal in the continuous probleMTo simplify integration we
draw the utility shocks from a Gumbel distribution with paraméﬂefr'saj’ I and normalize the
location parameter such that the utility shocks have zero unconditional means (Rust 9887, 19
Inherent uncertainties in quality for both brands.are equal and normalized to 1.
The index strateggvolves on a statgpace of siz¢l ! ! ) for each of the brands
whereas the approximately optimal solution evolves on a-spatee of sizé! ! ! 1'. We
choosd ! ! for a conservative test of the relative simplicity of the index strategy.
We vary the parameter values to capture three possibilities: (1) the means and uncertainty
both favor one brand, (2) the means are the same but unceféamty one brand, and (3) the

means and uncertainty favor different brands. Because quality beliefs are relative, we fix the pr

"We choosé ! " grid points for the posterior meaguality. Meanwhile, we fix each brand®s prior quality va
iance. Posterior quality variance evolves deterministidallpwing Bayesian updating formulaBecause there are
I I I" purchase occasiena brandOs posterioratjity variance has | | | 50 possible values, depending on how

many times this brand has been chosen. Toerghe size of the state spafoe the index strategy is ! ! !
R

22



Learning from Experience, Simply

or mean quality belief of Brand 1 Bs ! ! and vary the prior mean quality belief for Brand 2
asf. | 111, We normake the standard deviation of Brand 20s prior quality belief as
M. ! 1 and the standard deviation of Brand 10s prior quality belief as! !l . Finally, to test
the Corollary we allow the uncertainty in shocks to vary from relatively small to relatargly: |
Lhrrirn,

We compute the iridesand the consumerOs expected total utilities foukthpse oca-
sionsunderthe fourdecision strategies. Details are provided in Online Appendices D ared E. T

ble 1 summarizes the results.

[Insert Table Jabout here.]

We first examine computation timassurrogates for cognitive complexity. As expected,
the nelearning and myopic learning strategies impose negligible computation time, the index
strategy requires moderate computation time, and the apmatety optimal solution is substa
tially slowerb600 times as timeonsuming as the index strategy even for this basic problem.
Faster approximatioalgorithmswould reducehe computational time for the approximately-o
timal solution (Keane and Wolpin 29; Rust 1997atmai, et al. 2009)but they would alsoe
pedite the index strategy because we use the same algoritbaiviog the Bellman equations in
both modelgsee Online Appendix G for implementation detaildpreover, faster approxisn
tion algorthmsdo not address the curse of dimensionalitye ratioof computational timem
Table 1 could benadearbitrarily largewith finer grid pointsor with alarger number of brands

We next examine the consumerOs expected utilities. In all cases)eheing strategy
leads to the lowest utility, which suggests that learning is valuable. Furthermore, the index stra
egy isstatisticallyindistinguishable from the approximately optimal strategy. As long as-cogn

tive simplicity matters even a littlehe index strategy will be better on utility minus complexity.
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Finally, the results are consistent with the Corollary. When there is relatively low unce
tainty in utility shocks (upper panel of Table 1), the index strategy and the approximately optimal
strategy generate higher utility than myopic learning,, antivo of the three casegsignificantly
higher utility. When there is relatively high uncertainty in utility shocks (lower panel of Table 1),
the myopic learning model performs virtually the sameither the index strategy or the appro
imately optimal strategy. The differences are not significant. In this case, the consumer might
achieve the best utility minus complexity with a myopic strategy, among the models tested.

Analysis of synthetic dataever covers all cases. Table 1 is best interpreted as providing
evidence that (1there existeasonable situations where an index solution is better thap-the a
proximately optimal solution on utility minus complexity and (2) there exist domains wlyere m

opic learning is best on utility minus complexity. We now examine field data.

7. Field Estimation of a n Index Strategy (IRl Data on Diaper Purchase s)

We examine how an index solution fits and predicts behaviors compared with ar-appro
imately optimal solutiond myopic learningAs a first test, we seek a product category and
sample where consumers are likely to be forwaaking. Even if an index solution does notbe
ter than an approximately optimal solution, we consider the result promising because an index
solution is cognitively simpler. As a test of face validity, we expect learning strategies te outpe
form nolearning strategies andecause we focus on a situation that favors forharking ke-
havior,we expecforwardlooking strategies to outperformyapic learning.

7.1. IRl Data on Diaper Purchases

We select the diaper category from the IRI Marketing Dataset that is maintained by the
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SymphonyIRI Group and available to academic researchers (Bronnenberg, et ai® Rog@3r
consumers are likely toedearning and forwartboking. Parents typically begin purchasing-di

pers based on a discrete birth event, and their entry to the category is arguably exogenous (Ching
et al. 2010, 2012). Even if the birth is a second or subsequent child, diaper gaglitave

changed. Informal qualitative interviews suggest that parents learn about whether diaper brands
match their needs through experience (with often more than one purchase), that diapeis are suff
ciently important that parents take learning seriowstygl that parents often try multiple brands

before settling on a favorite brand. In fact, Ching et al. (2012) find that diaper consumers co

duct strategic trials of various brantdlhere are observable shocks due to price promotions and
shocks due to unobserable events. For example, a baby might go through a stage where-a diffe
ent brand is best suited to the parent/childOs needs. Finally, diapers have the advantage of being
regular purchasewherethe nachoice option is less of a conceamd consumers tend to be in

the market for many purchase occasions.

To isolate a situation favoring forwaftdoking learning, we apply the following sample
screening criteria. First, to focus on consumers whose purchases are likely triggered by a birth
event, we select households whose first purchase occurs 30 weeks after the start of data colle
tion (73% of the entire sample). Second, we focus on frequent buyers. Compared with occasional
buyers who might be shopping for a baby shower, frequent bugensaxe likely to have both
the motivation and the opportunity to explore different diaper brands. Therefore, we select

households who have made at least 5 purchases during the observation window (39%-of the e

!81n comparison, durable goods may induce different learning dynamics. Becauséuf thechase frequency,
consumers may not have the opportunity to learn by sampling. Fdsause the stakes are often higgnsumers

may have the motivation to acquither types of information (e.g., Consumer Repratiews) prior to purchase.

The ISMS durables goods dataset (Ni et al. 2012) provides a good resource to study these learning dynamics

9 Ching et al. (2012) use a quasiuctural approach, where they nebthe consumerOs expected future payoffs as a
function of state variables. Their model detects strategic trial if the coefficients of expected future payoffsfare signi
icant and if model fit improves significantly over the myopic model.
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tire sample¥° Third, to focus further, we elimate any consumers who have purchased private
labels and restrict attention to consumers who buy exclusively branded products (64%nef the e
tire sample). To the extent that private label buyers are more price sensithgs(| Singh, and
Chintagunta 2006 they may be less interested in learning about product quatity8.4, we e-
analyze the data by including private labefdter applying these screening criterilbe data
contain 262 households who made 3,379 purchases (13 purchases per housarerabelf’
We randomly select 131 households for estimation and 131 households for validation.

The market is dominated by three major brands, Pampers, Huggies, and Luvs. &e aggr
gate all othebrandedpurchases as OOther Branais@®@do not model the qaurchase optionAs
a firstorder view, Table 2a comparemrketsharedweightedswitching behavior during the
first 13 purchases witthatafter the first 13 purchasésThere is a noticeable change in switc
ing patternsFor example, the relative brang/édty of Huggies increases after 13 purchases.
This suggestthat consumers may learn about brand quality puechasesAlthough the ca-
gory is chosen as a likely tes¢d for consumer learning, high brand loyalty, even during the in

tial 13 purchasessuggests that there is no guarantee a fonlaaking strategy will fit the data.

[Insert Table 2 about here.]

%0 Analyses basednoa random selection of buyers rather than frequent buyers are available from the authors. Likely
because infrequent buyers have less incentive or opportunity to learn, the myopic learning model does better on this
random selection of buyers than on fregfuguyers.

L The data only record the week, as opposed to the exact time, of purchase. Therefore, if a consumer makes multiple
purchases during the same week, we do not observe the sequence of brands purchased. Rather than make potentially
erroneous assurtipns about the data, we remove consumers who make mdititel purchases in any week of

the observation window (11% of the entire sample). An alternative analysis strategy might have been to randomize
purchase orders. However, there is no reason tacegpest removing consumers who make multiple purchases a

week will affect the comparison between the index strategy and the approximately optimal solution. We also do not
model purchase quantity decisions. Instead we assume that consumers update ithddeliets after each pu

chase (and consumption) occasion.

22\We define market share at the purchase level across the observation window, so that market shares Hefore and a
ter the first 13 purchases add up to 100%. For readers who wish to normaliz@ rabteer ways, the raw counts

are obtained by multiplying the percentages in Table 2 by 1th8ital number ofpurchases in the estimation

sample except the last purchase of each household
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7.2. Empirical Specification

We denote households byand denote by, household Ogurchaseoccasiorhorizon.
We assume that the qualdyd qualitybelief distributions!, and! ., are normal and thatu
observable shock distributions are GumbpBel: this initial test of an index solution, we lirfijit

to the weekly average priceBhe decision strategies are specified belovarfd! - are now sa-

lars).

No Learning: My ! 1S {T  Uhe D e,

Myopic Learning: !, =argmal {Tpmg! 1" p 1 Ly},

Index Strategy: !, | I"#$! !!{r!u#! LT (of—#l%wll—n)}

Approximately I T O o B N R P R (T L e T T

Optimal:
7.3. Issues of Identification

Although we would like to identify all parameters of the varimexlels, we cannot do so
from choice data alone because utility is only specified to an affine transformation, and because
the parameters that matter are relative parameters. For-tharnong model we can identifyne
ly the relative means of prior beliefss well as the price sensitivity parameteFor the myopic
learning model we can identify only the relative means of prior beliefs, the relative uncertainties
of prior beliefs, the true means of quality, and price sensitivity. For theanoing andnyopic
learning model$ime discounting does not matter.

For the index strategy and approximately optimal strategy we set the mean prior belief of
one brand[{;;- ) to zero and normaliziés variance of quality!(, ) to one to set the scale of gual

ty. (Only ., /!, matters.) We cannot simultaneously identify a brapecific mean of quality

and a brandpecific mean of the unobservable shock, so we set the latter td zérd §. The
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standard deviation df. is observed in the data. Wencéhen computé,' from ! !! * because the

observable and unobservable shocks are independent. As in most dynamic discreteahoice pr
cesses (Rust 1994), the discount fatta difficult to estimatewe set it td I" .23

Finally, as in Erdem and Kea (1996), we suppress Oparameter heterogeneityO among
households. We continue to allow each householdOs quality beliefs to evolve idiosyncratically,
but we do not attempt to estimate heterogeneity in prior beliefs, true mean qualitynagiire
tude ofutility shocks We abstract away from parameter heterogeneity for the following reasons.
First, there are, on average, only 13 purchases per household. We would overly strain the model
by attempting to estimate heterogeneity in all of the paranfétSeson, we wish to focus on
behavioral heterogeneity that arisgglogenousljrom forwardlooking learning. Even if
households start with exogenously homogeneous prior beliefs, different gealipationsand
utility shocks lead to differerosterior beliés, differentexploitatiorversusexploration
tradeoffs and different learning patt{e.g., Ching, et al. 2088 We seek to evaluate heteeag
neous learning dynamid¢gmsed orthe data, rather than using heterogeneous parameters to fit the
data. For an initial test of an index strategy, this simplification is conservative because it biases
against a good model fit.

We estimate each modelOs parameters with maximum simuletéubék estimation.
Estimation details are provided in Online Appendices F and G.

7.4. Estimation Results

3 Sensitivity analyses with other discount rates (e.qg., @rg50.99) yield almost identical ldikelihood statistics

and similar parameter estimates for the insgategy model. Anticipating the resultsagt4, we expect similar

lack of sensitivity for the approximately optimal strategy. The ease with whih sensitivity checks can be run is

a benefit of the computational tractability of the indérategy model.

4 Doing so is technically feasible, but would likely oyerameterize the model and exploit noise in the data. More
importantly, our goal is tdemonstrate that an index solution is a viable representation of cognitive simplicity and
that cognitive simplicity is a phenomenon worth studying in structural models. We leave explicit modeéing of p
rameter heterogeneity to future research. ©8.3 exploresight heterogeneity.
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Table 3 summarizes the fit statistics for the 1,538 diaper purchases irstimapie est
mation and the 1,841 purchases in theaftgample validtion.! 2 is an informatiortheoretic
measure that calculates the percent of uncertainty explained by the model (Hauser 1978); AIC
and BIC attempt to correct the likelihood function based on the number of parameters-n the in
sample estimation, BIC more shan AIC. (There are no free parameters in theobsample
validation.)

For comparability, we estimated the index strategy in two ways. The first eshirdest
cretizes the state space in the same manner as the approximately optimal mod€él=").

This enables an OapptesapplesO comparison. Then, because the index model does not suffer
from the curse of dimensionality, we-estimate the model with a finer gigd ! " 11 1 "),
There were only trivial diffe¥ncesForexampleU' ! !l I"# for bothestimationsand -

rameter values are not significantly different (nor different from the approximately optirdal mo

el). Wewill reporttheresults associated with tfieer gridfor the rest of the paper
[Insert Table 3 about here.]

First, on all measusethere are sizable gains to learnidgjl learning models explain and
predict brand choices substantially better than thieaming strategy. Second, the index strat
gy improves irsample fit and oubf-sample predictions relative to myopic learningeTikei-
hood is significanthyetter (Vuong test significancelisl !.!!'" in-sample and ""#$ lout-of-
sample)?® Thisresult is consistent with our expectation that frequent bwfdssanded diapers
are forwardlooking. Third, the index strategy performswell asthe approximately optimabs
lution in terms ofboth insample fit and oubf-sample predictions. This result is consistent with

the synthetiedata analysi®when two strategies yiemmog the same expected utilities and

% We use the Vuong test to compare masted models (Vuong 1989).
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hence predicalmostthe same brand choices, they are observationally equivalent and statistically
indistinguishable.

As a further visualization of model fit, Tablé Bports theredictednarketshare
weighted switchingpatternsThe predicted switching patterns are qualitatively similar to actual
switching patterngn Table 2aFor example, the indestrategymodel picks up the fact thatmwo
sumers are more loyal to Huggies than to the other brands beasuwse will dscuss belowthe
truemeanquality is higher for Huggies and itligely more rewardindo learn about Huggies

(! !’ * being relatively sma)l Although predictions are not perfect and could be improved if other

I -variables were observed, the oveMAE is within! " of actualswitching Moreover, he
predictedswitching patternfrom theindexstrategymodel are virtually identical to those from
the approximately optimalolutionmodel(reported in Online Appendix HYhe markeshare
weighted meambsolute error (MAE) is approximately!"™ "# of 1%.

Table 4 summarizes the estimated parameter values. As expected, the price sensitivity
coefficient is negative in every model. Across all learning models, all four brands increase in
mean quality relate to prior beliefs, which implies that diaper buyers ldanpurchase¢hese
brands more througéxperienceThese resultare consistent with the switching patterns in Table

2a.
[Insert Table 4 about here.]

Forwardlooking models identify thenagnitudeof utility shocks relative to inherent
qudity uncertainty (last panel of Table 4). Because the relative shock uncertainty varies across
brands, the index curve implies different behavior than myopic learning for those brands. This
explains why forwardooking models fit and predict bettdran myopic learning=or example,

Huggies has lower relative shock uncertainty than other brarnish mayprovidegreater m-

30



Learning from Experience, Simply

centives for consumers to explore Huggies. Because the myopic learning model ignorés this di
ference, it compensate by overestimating the mean prior belief of Hulyigieagerially, Hg-

gies has a highéruemean quality than Pampers and Luvs, but also higher inherent relative u
certainty in quality across consumption. (The table reports theofagloock uncertainty to qual

ty uncertaintypa smaller number means higher relative quality uncertainty.)

Both the index strategy and the approximately optimal strategy lead to similar parameter
estimates. Parameter estimates of either model are usuihliy confidence regions of the atte
native model. This result is consistent with the syntkdditan analysis, which suggests that both
strategies lead to near optimal utilifyhe index strategwill be a more plausible description of
consumer behaviaf it is cognitively simplerWe explore this last point below.

Computation time in the embedded optimization probleamesurrogate for cognitive
complexity. The last row of Table 3 reports the timegessaryo compute one likelihood fan
tion in eachmodel.For the indexstrategymodel we reporthe computation time foboth the
originalgrid ¢ ="! ! 1)and thdinergrid(! ! " 1l 1 I")Pthe latter ign parentheses
Consistent with the synthetdata analysis, the index strategy is substantiafiter than thepa
proximately optimal strateg§74-to-1 ratiobased on theame grid density daf ! ! I 1),

The size of the ate space is anothsurrogatdor cognitive complexitye.g.,a consm-
erOs memoyyThe statespacefor the approximately optimatrategyis 15,625times adarge as
the state space ftineindex strategygiven the same grid density of! ! ! I'. Computational
time ratios are not equal to stagace ratios due to computational overhébmhethelessif we
were to attempt to ugkefiner gridof! I " 11 1 1" for the approximately optimal strategy,
we would increase the stadpaceof the approximately optimal solution by a factorl8D bi-

lion. It is unlikely that approximatelgptimal computations would be feasible for the fined.gr
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Detailed calculations are presented in Online Appendix G

In summary, using IRI data on diaper purchases we find that (1) learning models fit and
predict substantially better than thelearning model; (2) forwartboking learning models fit
and pedict significantly better than the myopic learning model; (3) the index strategy and the
approximately optimal solution achieve similarsample fit and oubf-sample forecasts, as well
as reasonably close parameter estimates; and (4) computationeb@aitd/e) simplicity favors

the indexstrategy model relative to the approximateptimal model.

8. Further Explorations
We have shown that the canonical forwardking experiential learning model is inde
able and that an index strategy performs wek. Mdw extend the analysis to explore consumer
risk aversionpther cognitively simple heuristicketerogeneous consumer foresjigimtd private
labek.
8.1. Risk Aversion

For ease of expositioim previous sectionge assumed that consumers are risktral.
However, risk aversion can be an important issue for deemsaking under uncertainty (see
Ching et al. 2018for a review). We generalize our model to incorporate risk aversion following
the standard discountedility approach (e.g., Samuels@837; Erdem and Keane 1998}.
eachpurchase occasidntheconsumer maximizeg;, ;! ' '1 11,1, where! | is the net payoff
the consumer receives purchase occasionand! !!! is the consumerOs utility function. Utility
increases with net paff (i.e.,! ' I 1). In addition, the curvature of the utility function captures
general risk preferences: the consumer is risk neutrdll if ! | risk averse if ! |, and risk
seeking ift * 1 1. The Bellman equation for the spboblem of the'' brand(Equation 5) is

generalized as:
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We prove in Online Appendix & that the generalized canonical forwdodking experiential
learning model is indexable. This is true for all consumer utility functions satidfyihg .

The indexability result allows us to test for risk averabtow computational costWe
do sousing the diaper data. To parameterize the test, we assume that consumers exhibit constant
absolute risk aversiom:(! )! 11 I''" 'where! > measures the degree of risk aversion
(e.g., Roberts and Urban 1988Based on this utility function, we-@stinate the index strategy
model. In addition, we restimate the myopic learning model to see whether general risk-prefe
ences as opposed to the exploration incentive suffice to explain consumer thoices.

Table 3 reports the fit statistics. Allowing for rigkersion brings little improvement to
the likelihood and ', and worsens the AIC and BIC because of the extraasigksion paraer
ter. Table 4 reports the parameter estimdtks.riskaversion parametés insignificantfor the
myopic learning modelt is marginally significant for the index strategy mobet the magia
tude is smallDiaper buyers in our sample do not seem to be strongly risk aBerssuse the
approximately optimal model provides parameter estimates thelbaeetothe index model fio
the risk neutral case, we expect similar restilise were to estimate the approximately optimal
modelfor the risk averse case.
8.2.  Other Cognitively Simple Heuristics

The canonical forwartboking experiential learning model assumes that consurages h

perfect foresight. But the degree of foresight is an empirical quektooand Chong (2003) find

% For constant risk aversiolt,(! ) » ! as! ! !.Erdem and Keane (1996) express risk aversion with a quadratic
utility function.
" The risk aversion parameter cahbe separately identified from the mean prior beliefs in theeaming model.
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that a parsimonious myopic model accuratgcribesand predicts SKldemand® Models in
which the decisiommakerlooks one periochheadsometimes explaichoices well (Hauser et al.
1993; Gabaix et al. 200&€he et al. 2007)n the bandit literaturd\ly and Feron (2006) explore
oneperiod lookahead heuristics as approximate solutions to restless battitsvitching
costs A oneperiod lookaheadmodel is arguably simpler than the full dynamic optimization
problem, and is a heuristic consumers might use. For-pemad lookahead modelhe Bel-

man equation (Equation 3) is modified as:

(8) V(IT, &) =1 {F!r}- NI [! N (P R NPT 1}|§!,j]}!

Tables 3 and 4 report the empirical results. Thepmred lookahead model has worse
in-sample fit than the index strategy mo@éliong test = ! I"## ) andapproximatelythe
sameout-of-sample predictiofVuong test ! ! I"l# ). The oneperiod lookahead model fits
better than the myopic learning modekth insample (Vuong tedt! !1"™ ) and outof-
sample (Vuong tedt! '™ ), These results suggest that diaper consumers are not myopic,
although they mawot be perfectly forwartboking.

We could easily estimate a variety@agnitively simple heuristicecluding! ,-period
look-ahead models fdr, ! !, Gittins@ndex models modifie to allow for utility shocks?® and
various heuristicsuch aghoseproposed byBertsimas and Ne-Mora (2000) For example, a
modified-Gittins@Gndex model! ' ! I I"# in-sample! ' | 1l I"# outof-sampl@ does
better than myopic learning, but not as well agiidex strategynodel(which is based on Whi

tleOs index)Ve strongly cautioragainst choosing a bestedicting modebased on a singlead

?The modelvas used by Rcter & Gambleo predict SKU purchases
29 Specifically,the modified GittinsO indessumes that the consunhet purchase occasidrchooses therand

with the highest value df (1. ) ! 1. I 1., where! (1;,) is Gittingindex derived from theptimizationproblem
in the absence of utility shockseea4). The modified GittinsO index is an ad hoc solution compared with the Whi
tleGdndex model.
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taset Unrestricted searcamong modelsvould likely exploit random variatiotdowever, from
the good fit and predictive ability of the three tested heuristics (Whdtiéex,oneperiod look
aheadand modified GittinsO indexve are comfortable in our hypotheses that¢Dnitively
simpleheuristics are plausible alternatives to modelorgvard-looking behaviorand (2) ann-
dex strategy is one viable model.
8.3. Heterogene ous Fo resight

In an alternative approach we allow for heterogeneous consumer foresight. We assume
there are two latent consumer segments that represent the two OextremesO of the faresight spe
trum. One segment engages in myopic learning and the otherrgdummeerfect foresight.eB
cause théndex strategy and theppproximately optimasolutionare observationally indistt
guishable, wassume thahe perfectoresight segment followthe computationally favorable
index strategy. We use the latent clasthod (Kamakura and Russell 1989) to estimate tle fra
tion of consumers belonging to each segment, as well as the set of parameters associated with
each segment.

Not surprisingly, as Table 3 showietlatent class model generates higher likelihood and
I'' than both the myopic learning model!( ! I!I"  in-sample} ! ! MI"  out-of-samplg
and the index strategy modeél{( !.11" in-sample] ! ' I"# outof-sampl@. The flexibility
of the latent class model comes at the cost of extra parameters. It prodligetyabetter AIC
but a worse BIC thathe index strategy model.

The last two columns of Table 4 report the parameter estimates of the latent class model.
The parameter estimates associated with the respective segments are comparable to values in the
homogeneous models. Meanwhil&,% of diaper buyerare forwardlooking. Thisfinding ech-
oes the result from the opeeriod lookahead model that the average diaper buyarsiiber

myopicnor perfectly forwardliooking.
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8.4.  Private Label s

Our primary anlyses eliminated any consumer who purchasgdvatelabel during the
observatiorwindow. This restrictiorallowed ugo focus on a case where we expected forward
looking learning The decision was also driven by the curse of dimensionality inherermt @-th
proximately optimakolutionbadding another brand increases the size of the state space by
I 11 1 1" times As a robustness check, we repeatastimatiors replacing Oother brandsO
with private labed. Table Spresents the fit statisticEhe relative fit angbredictive accuracies
are the same as in Table 3. Furthermore(uhesported) parameter estimatesPampers, Hgr
gies, and Luvs are not significantly different when compatiegndexstrategyand approi

mately optimaimodelsin Tables 3 and 5.

9. Summary, Conclusions, and Future Research

Models of forwardooking experiential learning are important to marketing. These the
ry-driven models examine how consumers make tradeoffs between exploiting and exploring
brand information. Maagerially, these models enable researchers to investigate effects due to
quality uncertainty, learning, and the variation in utility shocks. Howeveradhgumer problem
in these models is computationally intractallRSPACEhard. Existing solutions \a the Bell-
man equation require vast computational resources (time and memory) that may congadict co
nitive simplicity theoresof consumers.

In this paper we propogbat consumers use cognitively simple heuristics to solve fo
ward-looking experientialearningproblems. We explore one viable heuri®iondex strategies.
Index strategiesepresent a solution concept that decomposes a complex problem into a set of
much simpler suproblemsWe prove analytically that an index strategy exists for canbnica

forward-looking experiential learning models and that the index function hasesprgperties
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that consumers miglmtuit. Using synthetic data, we demonstrate thael-definedindex sou-
tion achieves near optimal expected utility and is fast to atenfysing IRI data on diaperpu
chases, we show that at least one index solution fits the data and predaftsample signif
cantly better than either a #@arning model or a myopic learning model. Compared withpan a
proximately optimal solution, thedex strategy fits equally well, produces similar estimaten r
sults (and hence managerial implications), requires significantly lower computational costs and,
we believe, is more likely to describe consumer behavior.

We address many issues, but manyassemain. We do not model advertising as & qua
ity signal (the IRI dataset for the diaper category does not track advertising). The consequence of
incorporating advertising signals depends on how consumers learn. We abstract away from i
ventory problemsinventory effects are found to be insignificant in previous research (Ching et
al. 2012), but nevertheless add a dimension to consumersO dynamic planning. We study standard
settingswhere consumers do not learn from fahtosen alternatives. It would bdenesting to
modelcorrelated learning agxtend index strategies to incorporate hypothetical reinforcement of
nonchosen options (Camerer and Ho 199%chnically, it wouldalsobe interesting to examine
the indexability of learning models when there ssitching costs®

Diaper buyers are likely forwatidoking, but consumers in other product categories may
not be. Our theory suggests that consumers are most likely to be féowkirty when shock
uncertainty is small compared to quality uncertainty; we expect myopigriganodels to do
well when shock uncertainty is large. This prediction is testable usingaateggory analysis.

For instance, shock uncertainty may be large in hedonic goods categories where consumption

%0Bank and Sundaram (1994) prove that there is no consistent way to define an optimal index in the presence of
switching costs among choice alternatives. However, a bandit problem with switching cost céorieleted as a
restless aAndit problem, which could be indexable (Glazebrook et al., 2006;M&ra 2008).
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value swings with idiosyncratic mood. Shock undatyamay also be dominant in markets cha
acterized by volatile marketing mix variables. The recent rise of flash sales introducedaremark
ble price volatility to categories such as food, gasjgetd apparel. It will be interesting to study
whether this chage serves to promote myomurchase behaviars

Finally, an index solution appears to be a reasonable tradeoff for diaper consumers, but
our basic hypothesis is that consumers use cognitively simple heuristic strategieso@iher
tively simpleheuristts might explainconsumer behaviaven bettethan index strategies82
suggests testable alternativEature research can explore thasd other heuristiogsing either

field data or laboratory experiments.
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