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Online Appendix A. Proof of Proposition 1 (Indexability) 
 

A.1. Proof of Proposition 1 When Consumers Are Risk Neutral 

Without loss of generality, we set observable shocks ݔ௧ to zero and use ߳௧ to represent all 

utility shocks. The focus is on the sub-problem where the consumer chooses between an uncer-

tain brand ݆ and a certain reward ߣ. To simplify notation, we drop the brand identifier ݆. The 

Bellman equation for this problem is 

(A1) ܸሺݏ௧, ߳௧, ሻߣ 	ൌ maxሼߣ ൅ ,௧ݏॱሾܸሺߜ ߳௧ାଵ, ,ሻ|߳௧ሿߣ ߳௧ ൅ ॱሾݍ௧|ݏ௧ሿ ൅ ,௧ାଵݏॱሾܸሺߜ ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿሽ,  

where ݏ௧ summarizes the consumer’s belief about brand quality at purchase occasion t. The defi-

nition of indexability is that, for any state ሺݏ௧, ߳௧ሻ, if it is optimal to choose the fixed reward ߣ, 

then it must be also optimal to choose the fixed reward ߣᇱ	for any ߣᇱ ൐  This is equivalent to .ߣ

the following condition: 

(A2) 
߲

ߣ߲
ሺߣ ൅ ,ݐݏॱሾܸሺߜ ,൅1ݐ߳ ሿݐ߳|ሻߣ െ ݐ߳ െ ॱൣݐݏ|ݐݍ൧ െ ,൅1ݐݏॱൣܸሺߜ ,൅1ݐ߳ ,ݐݏ|ሻߣ ൧ሻݐ߳ ൒ 0 

⟺ 1൅ ߜ
߲
ߣ߲

ॱሾܸሺݏ௧, ߳௧ାଵ, ሻ|߳௧ሿߣ െ ߜ
߲
ߣ߲

ॱሾܸሺݏ௧ାଵ, ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿ ൒ 0. 

Intuitively, condition (A2) requires that, as ߣ increases, the expected future value of choosing the 

uncertain brand should not grow too fast compared to that of choosing the fixed reward ߣ. It 

turns out that the assumptions of the canonical forward-looking experiential learning problem as 

specified in §2 are sufficient for condition (A2) to hold. We prove this result below. 

We first define the expected value function ܸܧሺݏ௧,  :ሻ by integrating out ߳௧ߣ

(A3) ܸܧሺݏ௧, ሻߣ ≜ ॱఢ೟ሾܸሺݏ௧, ߳௧,  .ሻሿߣ

Given the assumptions that ߳௧ାଵ and ߳௧ are i.i.d. and that ߳௧ is independent of ݏ௧, we have 

ॱሾܸሺݏ௧, ߳௧ାଵ, ሻ|߳௧ሿߣ ൌ ॱሾܸሺݏ௧, ߳௧ାଵ, ሻሿߣ ൌ ॱሾܸሺݏ௧, ߳௧, ሻሿߣ ൌ ,௧ݏሺܸܧ  ,ሻߣ

and 
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ॱሾܸሺݏ௧ାଵ, ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿ ൌ ॱሾܸሺݏ௧ାଵ, ߳௧ାଵ, ௧ሿݏ|ሻߣ ൌ ॱሾܸሺݏ௧ାଵ, ߳௧, ௧ሿݏ|ሻߣ ൌ ॱሾܸܧሺݏ௧ାଵ,  .௧ሿݏ|ሻߣ

Therefore, Equation (A1) implies the following fixed point:  

(A4) ܸܧሺݏ௧, ሻߣ 	ൌ නmaxሼߣ ൅ ,௧ݏሺܸܧߜ ,ሻߣ ߳௧ ൅ ॱሾݍ௧|ݏ௧ሿ ൅ ,௧ାଵݏሺܸܧॱሾߜ ௧ሿሽݏ|ሻߣ  .ሺ߳௧ሻܪ݀

Denote 0 as the option of the certain reward ߣ, and 1 as the uncertain brand. We define the fol-

lowing quantities: 

(A5) 0ݒሺݐݏ, ሻߣ ≜ ߣ ൅ ,ݐݏሺܸܧߜ ሻߣ and  1ݒሺݐݏ, ሻߣ ≜ ॱൣݐݏ|ݐݍ൧ ൅ ,൅1ݐݏሺܸܧॱሾߜ  .ሿݐݏ|ሻߣ

Observe that the conditional probability of choosing 1 is given by 

(A6) ܲሺ1|ݏ௧, ሻߣ 	ൌ න ૤ൣ0ݒሺݐݏ, ሻߣ ൑ ݐ߳ ൅ ,ݐݏ1ሺݒ ሻ൧ߣ ሺ߳௧ሻܪ݀

	ൌ න
߲

,௧ݏଵሺݒ߲ ሻߣ
maxൣ0ݒሺݐݏ, ,ሻߣ ݐ߳ ൅ ,ݐݏ1ሺݒ ሻ൧ߣ 	ሺ߳௧ሻܪ݀	

ൌ 	
,௧ݏሺܸܧ߲ ሻߣ

,௧ݏଵሺݒ߲ ሻߣ
. 

The last equality is obtained by interchanging integration and differentiation and evoking Equa-

tions (A4) and (A5). Similarly we have  

(A7) ܲሺ0|ݏ௧, ሻߣ ൌ
,௧ݏሺܸܧ߲ ሻߣ

,௧ݏ଴ሺݒ߲ ሻߣ
. 

Differentiating both sides of Equation (A4) with respect to ߣ and using the Chain Rule, we obtain 

(A8) ߣܸܧሺݐݏ, ሻߣ 	≜
,ݐݏሺܸܧ߲ ሻߣ

ߣ߲
ൌ

,ݐݏሺܸܧ߲ ሻߣ

,ݐݏ0ሺݒ߲ ሻߣ
,ݐݏ0ሺݒ߲ ሻߣ

ߣ߲
൅
,ݐݏሺܸܧ߲ ሻߣ

,ݐݏ1ሺݒ߲ ሻߣ
,ݐݏ1ሺݒ߲ ሻߣ

ߣ߲
 

ൌ ܲሺ0|ݏ௧, ሻሺ1ߣ ൅ ܧߜ ఒܸሺݏ௧, ሻߣ ሻ ൅ ܲሺ1|ݏ௧, ܧॱሾߜሻሺߣ ఒܸሺݏ௧ାଵ, ௧ሿሻݏ|ሻߣ , 

where the last equality is obtained from Equations (A5), (A6), and (A7). Next, we prove the fol-

lowing lemma. 

Lemma 1. For all ݏ,   we have ,ߣ
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(A9) 0 ൑ ܧ ఒܸሺݏ, ሻߣ ൑
1

1 െ ߜ
. 

Proof. Fix any ݏ, ߳, and ߣ. Let π* denote the optimal policy that achieves ܸሺݏ, ߳,  ሻ. First, if aߣ

positive constant c is added only to the fixed reward ߣ in every period but the uncertain brand 

remains unchanged, then following π* yields an expected total utility at least as large as 

ܸሺݏ, ߳, ,ݏሻ. Therefore, ܸሺߣ ߳, ߣ ൅ ܿሻ ൒ ܸሺݏ, ߳,  ሻ. Second, if a positive constant c is added to bothߣ

the fixed reward and the uncertain brand in every period, then π* is still optimal and yields an 

expected total utility of ܸሺݏ, ߳, ሻߣ ൅ 	ܿ/ሺ1 െ   By construction, adding a positive constant to	ሻ.ߜ	

both options yields expected utility at least as high as adding the constant only to the fixed re-

ward: ܸሺݏ, ߳, ሻߣ ൅ 	c/ሺ1 െ ,ݏሻ ൒ ܸሺߜ	 ߳, ߣ ൅ ܿሻ. Integrating out ߳ we have 

,ݏሺܸܧ  ሻߣ ൑ ,ݏሺܸܧ ߣ ൅ ܿሻ ൑ ,ݏሺܸܧ ሻߣ ൅
ܿ

1 െ ߜ
.  

It follows that 

 0 ൑
,ݏሺܸܧ ߣ ൅ ܿሻ െ ,ݏሺܸܧ ሻߣ

ܿ
൑

1
1 െ ߜ

.  

Taking the limit on both sides as c→0 establishes the lemma. 

Lemma 1 implies that 0 ൑ ܧ ఒܸሺݏ௧, ሻߣ ൑ 1 ൅ ܧߜ ఒܸሺݏ௧, -ሻ. This result, together with Equaߣ

tion (A8) and the fact that ܲሺ0|ݏ௧, ሻߣ ൅ ܲሺ1|ݏ௧, ሻߣ ൌ 1, in turn implies that: 

(A10) 1 ൅ ܧߜ ఒܸሺݏ௧, ሻߣ ൒ ܧॱሾߜ ఒܸሺݏ௧ାଵ, ,௧ሿݏ|ሻߣ  

which establishes the indexability condition (A2). 

A.2. Proof of Proposition 1 When Consumers Exhibit General Risk Preferences 

In this section, we extend the proof of §A.1 to show that the canonical forward-looking 

experiential learning problem is indexable when consumers exhibit general risk preferences.  

The Bellman equation in the case of general risk preferences is 
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(A1’) ܸሺݏ௧, ߳௧, ሻߣ 	ൌ maxሼݑሺߣሻ ൅ ,௧ݏॱሾܸሺߜ ߳௧ାଵ, ,ሻ|߳௧ሿߣ

ॱሾݑሺ߳௧ ൅ ௧ሿݏ|௧ሻݍ ൅ ,௧ାଵݏॱሾܸሺߜ ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿሽ. 

For the ease of comparison, we denote the above equation as (A1’), meaning that it corresponds 

to Equation (A1) of §A.1. The same notational rule applies throughout §A.2. The indexability 

condition becomes 

(A2’) 
߲
ߣ߲

ሺݑሺߣሻ ൅ ,௧ݏॱሾܸሺߜ ߳௧ାଵ, ሻ|߳௧ሿߣ െ ॱሾݑሺ߳௧ ൅ ௧ሿݏ|௧ሻݍ െ ,௧ାଵݏॱሾܸሺߜ ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿሻ ൒ 0 

⟺ ሻߣᇱሺݑ ൅ ߜ
߲
ߣ߲

ॱሾܸሺݏ௧, ߳௧ାଵ, ሻ|߳௧ሿߣ െ ߜ
߲
ߣ߲

ॱሾܸሺݏ௧ାଵ, ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿ ൒ 0. 

We again define the expected value function ܸܧሺݏ௧,  :ሻ by integrating out ߳௧ߣ

(A3’) ܸܧሺݏ௧, ሻߣ ≜ ॱఢ೟ሾܸሺݏ௧, ߳௧,  .ሻሿߣ

Given the assumptions that ߳௧ାଵ and ߳௧ are i.i.d. and that ߳௧ is independent of ݏ௧, we have: 

ॱሾܸሺݏ௧, ߳௧ାଵ, ሻ|߳௧ሿߣ ൌ ॱሾܸሺݏ௧, ߳௧ାଵ, ሻሿߣ ൌ ॱሾܸሺݏ௧, ߳௧, ሻሿߣ ൌ ,௧ݏሺܸܧ  ,ሻߣ

and 

ॱሾܸሺݏ௧ାଵ, ߳௧ାଵ, ,௧ݏ|ሻߣ ߳௧ሿ ൌ ॱሾܸሺݏ௧ାଵ, ߳௧ାଵ, ௧ሿݏ|ሻߣ ൌ ॱሾܸሺݏ௧ାଵ, ߳௧, ௧ሿݏ|ሻߣ ൌ ॱሾܸܧሺݏ௧ାଵ,  .௧ሿݏ|ሻߣ

Therefore, the Bellman equation of the sub-problem implies the following fixed point:  

(A4’) ܸܧሺݏ௧, ሻߣ 	ൌ නmaxሼݑሺߣሻ ൅ ,௧ݏሺܸܧߜ ,ሻߣ

ॱሾݑሺ߳௧ ൅ ௧ሿݏ|௧ሻݍ ൅ ,௧ାଵݏሺܸܧॱሾߜ ௧ሿሽݏ|ሻߣ  .ሺ߳௧ሻܪ݀

Denote 0 as the option of the certain reward ߣ, and 1 as the uncertain brand. We define the fol-

lowing quantities: 

(A5’) 0ݒሺݐݏ, ሻߣ ≜ ሻߣሺݑ ൅ ,ݐݏሺܸܧߜ ሻߣ and   1ݒሺݐݏ, ሻߣ ≜ ,൅1ݐݏሺܸܧॱሾߜ  .ሿݐݏ|ሻߣ

The conditional probability of choosing 1 is given by 
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(A6’) ܲሺ1|ݏ௧, ሻߣ 	ൌ න૤ሼݒ଴ሺݏ௧, ሻߣ ൑ ॱሾݑሺ߳௧ ൅ ௧ሿݏ|௧ሻݍ ൅ ,௧ݏଵሺݒ ሻሽߣ  ሺ߳௧ሻܪ݀

	ൌ න
߲

,௧ݏଵሺݒ߲ ሻߣ
max൛ݒ଴ሺݏ௧, ,ሻߣ 	ॱൣݑ൫߳ݐ ൅ ൧ݐݏ|൯ݐݍ ൅ ,௧ݏଵሺݒ ሻൟߣ  ሺ߳௧ሻܪ݀	

ൌ	
,௧ݏሺܸܧ߲ ሻߣ

,௧ݏଵሺݒ߲ ሻߣ
. 

The last equality is obtained by interchanging integration and differentiation and evoking Equa-

tions (A4’) and (A5’). Similarly we have  

(A7’) ܲሺ0|ݏ௧, ሻߣ ൌ
,௧ݏሺܸܧ߲ ሻߣ

,௧ݏ଴ሺݒ߲ ሻߣ
. 

Differentiating both sides of Equation (A4’) with respect to ߣ and using the Chain Rule, we ob-

tain 

(A8’) ߣܸܧሺݐݏ, ሻߣ 	≜
,ݐݏሺܸܧ߲ ሻߣ

ߣ߲
ൌ

,ݐݏሺܸܧ߲ ሻߣ
,ݐݏ0ሺݒ߲ ሻߣ

,ݐݏ0ሺݒ߲ ሻߣ
ߣ߲

൅
,ݐݏሺܸܧ߲ ሻߣ
,ݐݏ1ሺݒ߲ ሻߣ

,ݐݏ1ሺݒ߲ ሻߣ
ߣ߲

 

ൌ ܲሺ0|ݏ௧, ሻߣᇱሺݑሻ൫ߣ ൅ ܧߜ ఒܸሺݏ௧, ሻ൯ߣ ൅ ܲሺ1|ݏ௧, ܧॱሾߜሻሺߣ ఒܸሺݏ௧ାଵ, ௧ሿሻݏ|ሻߣ , 

where the last equality is obtained from Equations (A5’), (A6’), and (A7’). Next, we prove the 

following lemma. 

Lemma 1’. For all ݏ,   we have ,ߣ

(A9’) 0 ൑ ܧ ఒܸሺݏ, ሻߣ ൑
ሻߣᇱሺݑ
1 െ ߜ

. 

Proof. Fix any ݏ, ߳, and ߣ. Let ߨ∗ denote the optimal policy that solves ܸሺݏ, ߳, -ሻ. Suppose a posߣ

itive constant c is added only to the fixed reward ߣ in every period but the uncertain brand re-

mains unchanged. First, the consumer is weakly better off after this change. Even if the consum-

er maintains ߨ∗ – and the consumer can do weakly better – the consumer’s expected utility re-
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mains unchanged in periods when the uncertain brand is chosen but increases in periods when 

the fixed reward is chosen. Therefore, ܸሺݏ, ߳, ߣ ൅ ܿሻ ൒ ܸሺݏ, ߳,   .ሻߣ

Second, let ߨ′ denote the optimal policy that solves ܸሺݏ, ߳, ߣ ൅ ܿሻ. Suppose the consumer 

adopts ߨ′ in state ሺݏ, ߳,  ሻ. After the increase in the fixed reward, the consumer’s expected utilityߣ

from adopting ߨ′ remains unchanged in periods when ߨ′ indicates choosing the uncertain brand 

but increases in periods when ߨ′ indicates choosing the fixed reward. The improvement in the 

consumer’s expected discounted utility is thus weakly less than if ߨ′ indicated choosing the fixed 

reward in each period, in which case the improvement in the consumer’s expected discounted 

utility would equal 
௨ሺఒା௖ሻି௨ሺఒሻ

ଵିఋ
. Recall that ߨ∗ is the optimal policy that solves ܸሺݏ, ߳, -ሻ. By defߣ

inition, the consumer is weakly better off choosing ߨ∗ than ߨ′ in state ሺݏ, ߳,  :ሻ. Thereforeߣ

ܸሺݏ, ߳, ߣ ൅ ܿሻ െ ܸሺݏ, ߳, ሻߣ ൑
ߣሺݑ ൅ ܿሻ െ ሻߣሺݑ

1 െ ߜ
. 

Integrating out ߳ we have: 

,ݏሺܸܧ  ሻߣ ൑ ,ݏሺܸܧ ߣ ൅ ܿሻ ൑ ,ݏሺܸܧ ሻߣ ൅
ߣሺݑ ൅ ܿሻ െ ሻߣሺݑ

1 െ ߜ
.	 

It follows that: 

 0 ൑
,ݏሺܸܧ ߣ ൅ ܿሻ െ ,ݏሺܸܧ ሻߣ

ܿ
൑
ߣሺݑ ൅ ܿሻ െ ሻߣሺݑ

ܿሺ1 െ ሻߜ
.  

Taking the limit on both sides as c→0 establishes the lemma. 

Lemma 1’ implies that 0 ൑ ܧ ఒܸሺݏ௧, ሻߣ ൑ ሻߣᇱሺݑ ൅ ܧߜ ఒܸሺݏ௧,  ሻ. This result, together withߣ

Equation (A8’) and the fact that ܲሺ0|ݏ௧, ሻߣ ൅ ܲሺ1|ݏ௧, ሻߣ ൌ 1, in turn implies that: 

(A10’) ݑ′ሺߣሻ ൅ ,ݐݏሺߣܸܧߜ ሻߣ ൒ ,൅1ݐݏሺߣܸܧॱሾߜ ,ሿݐݏ|ሻߣ  

which establishes the indexability condition (A2’). 
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Online Appendix B. Proof of Proposition 2 (Invariance) 

We first prove two useful lemmas. The focus is again on the sub-problem of a single 

brand and thus we drop the brand identifier j.  

Lemma 2. Fix a prior quality belief ݏ଴ ൌ ሺ̅ߤ଴,  ത଴ሻ, and a sequence of quality drawsߪ

ሼݍ௧: ݐ ൒ 0ሽ. Consider a modified version of the original sub-problem where the utility shocks be-

come ߳௧
௠ ൌ 	 ߳௧ ൅ ܿ for all t, and the fixed reward becomes ߣ௠ ൌ ߣ	 ൅ ܿ. Denote ܸܧ௠ and ܹ௠ 

as the expected value and index value for the modified problem. Then for any belief state ݏ, we 

have: 

(B1) ܸ݉ܧሺݏ, ߣ ൅ ܿሻ ൌ ,ݏሺܸܧ ሻߣ ൅
ܿ

1 െ ߜ
,  

(B2) 					ܹ௠ሺݏ, ߳ ൅ ܿ; ఢߤ ൅ ܿ, ఢሻߪ ൌ ܹሺݏ, ߳; ,ఢߤ ఢሻߪ ൅ ܿ. 

Proof.  To prove the first part of the lemma, it suffices to show that the proposed identity in 

Equation (B1) satisfies the fixed-point relationship implied by the modified problem: 

(B3) ܸܧ௠ሺݏ௧, ௠ሻߣ 	ൌ නmaxሼߣ௠ ൅ ,௧ݏ௠ሺܸܧߜ ,௠ሻߣ ߳௧
௠ ൅ ॱሾݍ௧|ݏ௧ሿ

൅ ,௧ାଵݏ௠ሺܸܧॱሾߜ ௧ሿሽݏ|௠ሻߣ ௠ሺ߳௧ܪ݀
௠ሻ. 

Suppose Equation (B1) holds. Following the definitions given in Equation (A5) we have 

(B4) 0ݒ
݉ሺݐݏ, ߣ

݉ሻ ≜ ߣ ൅ ܿ ൅ ,ݐݏሺܸ݉ܧߜ ߣ ൅ ܿሻ

ൌ ߣ ൅ ,௧ݏሺܸܧߜ ሻߣ ൅
ܿ

1 െ ߜ
ൌ ,௧ݏ଴ሺݒ ሻߣ ൅

ܿ
1 െ ߜ

	, 

and 
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(B5) 1ݒ
݉ሺݐݏ, ߣ

݉ሻ ≜ ॱൣݐݏ|ݐݍ൧ ൅ ,൅1ݐݏሺܸ݉ܧॱሾߜ ߣ ൅ ܿሻ|ݐݏሿ

ൌ 	ॱሾݍ௧|ݏ௧ሿ ൅ ,௧ାଵݏሺܸܧॱሾߜ ௧ሿݏ|ሻߣ ൅
	ߜܿ
1 െ ߜ

ൌ ,௧ݏଵሺݒ ሻߣ ൅
ߜܿ

1 െ ߜ
	.				 

Define ∆ሺݏ௧, ሻߣ ≜ ,௧ݏ଴ሺݒ	 ሻߣ െ	ݒଵሺݏ௧, ,௧ݏሻ. Then ∆௠ሺߣ ߣ ൅ ܿሻ ൌ ∆ሺݏ௧, ሻߣ ൅ ܿ for the modified 

problem. The assumption that the distribution of ߳ has scale and location parameters implies:  

(B6) ݉ܪሺ∆݉ሻ ൌ Prሺ߳݉ ൑ ∆݉ሻ ൌ Prሺ߳ ൑ ∆ሻ ൌ  ሺ∆ሻ, andܪ

න ߳݉݀
߳݉൒∆݉

ሺ߳݉ሻ݉ܪ ൌ න ሺ߳ ൅ ܿሻ݀
߳൒∆

 .ሺ߳ሻܪ

The right-hand side of Equation (B3) becomes: 

 න ߳݉݀
߳݉൒∆݉

ሺ߳݉ሻ݉ܪ ൅	1ݒ
݉ሺݐݏ, ߣ

݉ሻ൫1 െ ሺ∆݉ሻ൯݉ܪ ൅ 0ݒ
݉ሺݐݏ, ߣ

݉ሻ݉ܪሺ∆݉ሻ		

ൌ න ሺ߳ ൅ ܿሻ݀
ఢஹ∆

ሺ߳ሻܪ ൅ ൬ݒଵሺݏ௧, ሻߣ ൅
ߜܿ

1 െ ߜ
	൰ ൫1 െ ሺ∆ሻ൯ܪ ൅ ቀݒ଴ሺݏ௧, ሻߣ ൅

ܿ
1 െ ߜ

ቁ  ሺ∆ሻܪ	

ൌ න ߳݀
ఢஹ∆

ሺ߳ሻܪ ൅ ,௧ݏଵሺݒ ሻ൫1ߣ െ ሺ∆ሻ൯ܪ ൅ ,௧ݏ଴ሺݒ ሺ∆ሻܪ	ሻߣ ൅	
ܿ

1 െ ߜ
 

ൌ ,ݏሺܸܧ ሻߣ ൅
ܿ

1 െ ߜ
 

,ݏሺܸ݉ܧ = ߣ ൅ ܿሻ , 

which is the left-hand side of Equation (B3). The first equality follows from Equations (B4) to 

(B6). The third equality uses the fact that ܸܧሺݏ,  ,ሻ is the fixed point of Equation (A4). Thereforeߣ

,ݏ௠ሺܸܧ  .௠ሻ also satisfies the fixed-point relationship implied by the modified problemߣ

For the second part of the lemma, we use the definition of Whittle’s index, which is the 

value of ߣ௠ such that 

(B7) 0ݒ
݉ሺݐݏ, ߣ

݉ሻ ൌ ߳݉ ൅ 1ݒ
݉ሺݐݏ, ߣ

݉ሻ. 
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It suffices to show that the proposed identity in Equation (B2) solves the above equality. Note 

that the right-hand side of Equation (B7) is: 

߳݉ ൅	1ݒ
݉ሺݐݏ, ߣ

݉ሻ ൌ ߳ ൅ ܿ ൅ ,ݐݏ1ሺݒ ሻߣ ൅
ߜܿ

1 െ ߜ
 

ൌ 	߳ ൅	ݒଵሺݏ௧, ሻߣ ൅
ߜܿ

1 െ ߜ
ൌ ,௧ݏ଴ሺݒ ሻߣ ൅

ܿ
1 െ ߜ

, 

which equals the left-hand side of Equation (B7) following Equation (B4). The first equality fol-

lows from Equation (B5). The third equality follows from the definition of Whittle’s index for 

the original problem (setting	ܹሺݏ, ߳ሻ ൌ  Then by the definition of Whittle’s index, we have .(ߣ

ܹ௠ሺݏ, ߳ ൅ ఢߤ	;ܿ ൅ ܿ, ఢሻߪ ൌ ܹሺݏ, ߳; ,ఢߤ	 ఢሻߪ ൅ ܿ. 

Lemma 3. Fix the original sub-problem. Consider a modified problem where the quality 

sample becomes ሼݍ௧
௠ ൌ ௧ݍܾ ൅ ܿ: ݐ ൒ 0ሽ, the utility shocks becomes ߳௧

௠ ൌ 	ܾ߳௧ for all t, the prior 

belief becomes ݏ଴
௠ ൌ ሺ̅ߤ଴

௠, ത଴ߪ
௠ሻ ൌ ሺܾ̅ߤ଴ ൅ ܿ, ௠ߣ ത଴ሻ, and the fixed reward becomesߪܾ ൌ ߣܾ ൅ ܿ. 

Then for all ݏ ,ݐ௧
௠ ൌ ሺ̅ߤ௧

௠, ത௧ߪ
௠ሻ ൌ ሺܾ̅ߤ௧ ൅ ܿ,  ௠ and ܹ௠ as the expected valueܸܧ ത௧ሻ. Denoteߪܾ

and index value for the modified problem. Then for any belief state ݏ, we have: 

(B8) ܸ݉ܧሺ݉ݏ, ߣܾ ൅ ܿሻ ൌ ,ݏሺܸܧܾ ሻߣ ൅
ܿ

1 െ ߜ
,  

(B9) 					ܹ௠ሺݏ௠, ܾ߳; ,ఢߤܾ ఢሻߪܾ ൌ ܾܹሺݏ, ߳; ,ఢߤ ఢሻߪ ൅ ܿ. 

Proof. The strategy of the proof is similar to that of Lemma 2. Note that the Bayesian updating 

implies that for all t the precision ݓ௧
௠ of the modified problem remains the same as that of the 

original problem: 

ݐݓ 
݉ ൌ 	

ݐതߪ
݉2

ݐതߪ	
݉2 ൅ 2݉ߪ

ൌ
ݐതߪ2ܾ

2

ݐതߪ2ܾ
2 ൅ 2ߪ2ܾ

ൌ  .ݐݓ

It follows that the updated posterior mean and variance in the next period become 
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൅1ݐതߤ 
݉ ൌ ݐݓ

ݐݍ݉
݉ ൅ ሺ1 െ ݐݓ

݉ሻߤതݐ
݉ ൌ ݐݍ൫ܾݐݓ ൅ ܿ൯ ൅ ሺ1 െ ݐതߤሻ൫ܾݐݓ ൅ ܿ൯ ൌ ൅1ݐതߤܾ ൅ ܿ, 

൅1ݐതߪ 
݉ ൌ ݐതߪ

݉ ඥ1 െ ݐݓ
݉ ൌ ݐതߪܾ ඥ1 െ ݐݓ ൌ  .൅1ݐതߪܾ

Therefore, the belief state in the next period preserves the relationship:   

൅1ݐݏ 
݉ ൌ ൫ߤതݐ൅1

݉ , ൅1ݐതߪ
݉ ൯ ൌ ൫ܾߤതݐ൅1 ൅ ܿ,  . ൅1൯ݐതߪܾ

For the first part of the lemma we show that the identity in Equation (B8) satisfies the 

fixed-point relationship implied by the modified problem 

(B10) ܸܧ௠ሺݏ௧
௠, ௠ሻߣ 	

ൌ නmaxሼߣ௠ ൅ ௧ݏ௠ሺܸܧߜ
௠, ,௠ሻߣ 	߳௧

௠ ൅ ॱሾݍ௧
௠|ݏ௧

௠ሿ

൅ ௧ାଵݏ௠ሺܸܧॱሾߜ
௠ , ௧ݏ|௠ሻߣ

௠ሿሽ ௠ሺ߳௧ܪ݀
௠ሻ. 

Suppose Equation (B8) holds, then 

(B11) 0ݒ
݉ሺ݉ݐݏ, ߣ

݉ሻ ≜ ߣܾ ൅ ܿ ൅ ,݉ݐݏሺܸ݉ܧߜ ߣܾ ൅ ܿሻ  

ൌ ߣܾ	 ൅ ,௧ݏሺܸܧܾߜ ሻߣ ൅
ܿ

1 െ ߜ
ൌ ,௧ݏ଴ሺݒܾ ሻߣ ൅

ܿ
1 െ ߜ

	.		 

Similarly, 
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(B12) 1ݒ
݉ሺ݉ݐݏ, ߣ

݉ሻ ൌ ॱൣݐݍ
ݐݏ|݉

݉൧ ൅ ൅1ݐݏሺܸ݉ܧॱሾߜ
݉ , ߣܾ ൅ ܿሻ|ݐݏ

݉ሿ 

ൌ	ඵቆܾݍ௧ ൅ ܿ ൅ ߜ ቀܾܸܧሺݏ௧ାଵ, ሻߣ ൅
ܿ

1 െ ߜ
ቁቇ݀ܨ௠ሺݍ௧

௠|ߤ௠, ௧ܤ௠ሻ݀ߪ
௠ሺߤ௠|ݏ௧

௠ሻ 

ൌ	ඵቆܾݍ௧ ൅ ܿ ൅ ߜ ቀܾܸܧሺݏ௧ାଵ, ሻߣ ൅
ܿ

1 െ ߜ
ቁቇ݀ܨሺݍ௧|ߤ,  			௧ሻݏ|ߤ௧ሺܤሻ݀ߪ

ൌ 	ܾඵ൫ݍ௧ ൅ ,௧ାଵݏሺܸܧߜ ሻ൯ߣ ,ߤ|௧ݍሺܨ݀ ௧ሻݏ|ߤ௧ሺܤሻ݀ߪ ൅
ܿ

1 െ ߜ
 

ൌ ,௧ݏଵሺݒܾ	 ሻߣ ൅
ܿ

1 െ ߜ
	. 

The first equality uses the fact that ܸܧ௠ሺݏ௧ାଵ
௠ , ߣܾ ൅ ܿሻ ൌ ,௧ାଵݏሺܸܧܾ ሻߣ ൅ ܿ/ሺ1 െ  ሻ. The secondߜ

equality follows from normality and conjugate prior assumptions for the distribution of qualities 

௧ݏ௧. Then ∆௠ሺܤ and beliefs ܨ
௠, ߣܾ ൅ ܿሻ ≜ ଴ݒ

௠ሺݏ௧
௠, ߣܾ ൅ ܿሻ െ	ݒଵ

௠ሺݏ௧
௠, ߣܾ ൅ ܿሻ ൌ ܾ∆ሺݏ௧,  ሻ forߣ

the modified problem. The assumption that the distribution of ߳ has scale and location parame-

ters implies  

(B13) ݉ܪሺ∆݉ሻ ൌ ,ሺ∆ሻܪ and න ߳݉݀
߳݉൒∆݉

ሺ߳݉ሻ݉ܪ ൌ ܾන ሺ߳ ൅ ܿሻ݀
߳൒∆

 .ሺ߳ሻܪ

The right-hand side of Equation (B10) becomes 

 න ߳݉݀
߳݉൒∆݉

ሺ߳݉ሻ݉ܪ ൅	1ݒ
݉ሺ݉ݐݏ, ߣܾ ൅ ܿሻ൫1 െ ሺ∆݉ሻ൯݉ܪ ൅ 0ݒ

݉ሺ݉ݐݏ, ߣܾ ൅ ܿሻ݉ܪሺ∆݉ሻ		

ൌ ܾන ߳	݀
ఢஹ∆

ሺ߳ሻܪ ൅ ቀܾݒଵሺݏ௧, ሻߣ ൅
ܿ

1 െ ߜ
	ቁ ൫1 െ ሺ∆ሻ൯ܪ ൅ ቀܾݒ଴ሺݏ௧, ሻߣ ൅

ܿ
1 െ ߜ

ቁܪሺ∆ሻ 

ൌ ܾන ߳݀
ఢஹ∆

ሺ߳ሻܪ ൅ ,௧ݏଵሺݒܾ ሻ൫1ߣ െ ሺ∆ሻ൯ܪ ൅ ,௧ݏ଴ሺݒܾ ሺ∆ሻܪሻߣ ൅	
ܿ

1 െ ߜ
 

ൌ ,௧ݏሺܸܧܾ ሻߣ ൅
ܿ

1 െ ߜ
 

,݉ݐݏሺܸ݉ܧ = ߣܾ ൅ ܿሻ, 
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which is the left-hand side of Equation (B10). The first equality follows from Equations (B11) to 

(B13). The third equality uses the fact that ܸܧሺݏ, -ሻ is the fixed point of Equation (A4). Thereߣ

fore, ܸܧ௠ሺݏ௧
௠,  .௠ሻ also satisfies the fixed-point relationship implied by the modified problemߣ

For the second part of the lemma, we again use the definition of Whittle’s index, which is 

the value of ߣ௠ such that  

(B14) 0ݒ
݉ሺ݉ݐݏ, ߣ

݉ሻ ൌ ߳݉ ൅ 1ݒ
݉ሺ݉ݐݏ, ߣ

݉ሻ. 

It suffices to show the proposed relation in Equation (B9) solves the above equality. Note that 

the right-hand side of Equation (B14) is 

߳݉ ൅	1ݒ
݉ሺ݉ݐݏ, ߣ

݉ሻ ൌ 	ܾ߳ ൅ ,ݐݏ1ሺݒܾ ሻߣ ൅
ܿ

1 െ ߜ
ൌ ܾ൫߳ ൅ ,ݐݏ1ሺݒ ሻ൯ߣ ൅

ܿ

1 െ ߜ

ൌ ,ݐݏ0ሺݒܾ ሻߣ ൅
ܿ

1 െ ߜ
, 

which equals the left-hand side of Equation (B14) following Equation (B11). The first equality 

follows from Equation (B12). The third equality follows from the definition of Whittle’s index 

for the original problem (setting	ܹሺݏ, ߳ሻ ൌ  Then by the definition of Whittle’s index, we .(ߣ

have 	ܹ௠ሺݏ௠, ܾ߳; ,ఢߤܾ	 ఢሻߪܾ ൌ ܾܹሺݏ, ,ఢߤ	;߳ ఢሻߪ ൅ ܿ. 

To complete the proof of the proposition, note that by Lemma 3 we have: 

 					ܹሺܾ̅ߤ ൅ ܿ, ,തߪܾ ܾ߳; ,ߪܾ ,ఢߤܾ ఢሻߪܾ ൌ ܾܹሺ̅ߤ, ,തߪ ߳; ,ߪ ,ఢߤ ఢሻߪ ൅ ܿ. 

Setting ܾ ൌ ܿ and ߪ/1 ൌ െ̅ߪ/ߤ  and evoking Lemma 2 yields 
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 ܹሺ̅ߤ, ,തߪ ߳; ,ߪ	 ,ఢߤ ఢሻߪ ൌ ߤ̅ ൅ ܹߪ ቆ0,
ഥߪ
ߪ
,
߳
ߪ
; 1,

ఢߤ

ߪ
,
ఢߪ

ߪ
ቇ 

ൌ ߤ̅ ൅ ߪ	 ቈܹ ቆ0,
ഥ	ߪ	
ߪ
,
߳ െ ఢߤ

ߪ
; 	1, 0,

ఢߪ

ߪ
ቇ ൅

ఢߤ

ߪ
቉ 

ൌ ߤ̅ ൅ ఢߤ ൅ ܹߪ ቆ0,
ഥ	ߪ	
ߪ
,
߳ െ ఢߤ

ߪ
; 1, 0,

ఢߪ

ߪ
ቇ ,  

which completes the proof of the proposition.  
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Online Appendix C. Proof of Proposition 3 (Comparative Statics) 

We again focus on the sub-problem of a single brand and thus drop the brand identifier j.  

Proof of Proposition 3(1). The first part that Whittle’s index increases with posterior 

mean ̅ߤ is evident from Proposition 2. For the second part, fix some belief state ݏ and consider 

any ߳ᇱ ൐ ߳. Let ܹᇱ and ܹ be the corresponding Whittle’s indices. Recall that ∆ሺݏ, ሻߣ ≜

,ݏ଴ሺݒ	 ሻߣ െ	ݒଵሺݏ, ᇱሻܹ,ݏሻ. Then by the definition of an index,  ∆ሺߣ ൌ ߳ᇱ ൐ ߳ ൌ ∆ሺݏ,ܹሻ. Note 

that:  

(C1) 		∆ఒሺݏ, ሻߣ ൌ
߲∆ሺݏ, ሻߣ

ߣ߲
ൌ
,ݏ଴ሺݒ߲ ሻߣ

ߣ߲
െ
,ݏଵሺݒ߲ ሻߣ

ߣ߲
൒ 0 , 

where the inequality is implied by (A10). It then follows that ܹᇱ ൐ ܹ. 

Proof of Proposition 3(2). We will prove the first part. The second part holds following 

a similar argument. Fix some ߪଶ
ଶ ൐ ଵߪ

ଶ. Let ሼ ௧ܻ: ݐ ൒ 0ሽ be a sequence of random variables condi-

tionally i.i.d. from the distribution ܰሺߤ, ଵߪ
ଶሻ. Let ሼ߱௧: ݐ ൒ 0ሽ be a sequence of random variables 

conditionally i.i.d. from the distribution ܰሺߤ, ଶߪ
ଶ െ ଵߪ

ଶሻ. The two sequences are independent. 

Construct a sequence of random variables such that ܼ௧ ൌ ௧ܻ ൅ ߱௧ for all ݐ. Then ሼܼ௧: ݐ ൒ 0ሽ are 

conditionally i.i.d. from the distribution ܰሺߤ, ଶߪ
ଶሻ. Fix some policy ߨ that solves the problem un-

der ሼܼ௧: ݐ ൒ 0ሽ. Denote ߨሺݏ௧, ߳௧ሻ ൌ 0 if the fixed reward ߣ is chosen, and ߨሺݏ௧, ߳௧ሻ ൌ 1 if the un-

certain brand is chosen. Then the value function in state ሺݏ, ߳ሻ when ߨ is applied becomes 
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,ݏሺߨܸ  ߳, ;ߣ  2ሻߪ

ൌ 	ॱ ൥෍ߜ௧
ஶ

௧ୀ଴

ሼ૤ሾߨሺݐݏ, ሻݐ߳ ൌ 1ሿሺܼݐ ൅ ሻݐ߳ ൅ 	૤ሾߨሺݐݏ, ሻݐ߳ ൌ 0ሿߣሽ	|	ሺݏ଴, ߳଴ሻ ൌ ሺݏ, ߳ሻ൩	 

ൌ 	ॱ ൥෍ߜ௧
ஶ

௧ୀ଴

ሼ૤ሾߨሺݐݏ, ሻݐ߳ ൌ 1ሿሺܻݐ ൅ ݐ߱ ൅ ሻݐ߳ ൅ 	૤ሾߨሺݐݏ, ሻݐ߳ ൌ 0ሿߣሽ	|	ሺݏ଴, ߳଴ሻ ൌ ሺݏ, ߳ሻ൩ 

ൌ 	ॱ ൥෍ߜ௧
ஶ

௧ୀ଴

ሼ૤ሾߨሺݐݏ, ሻݐ߳ ൌ 1ሿሺܻݐ ൅ ሻݐ߳ ൅ 	૤ሾߨሺݐݏ, ሻݐ߳ ൌ 0ሿߣሽ	|	ሺݏ଴, ߳଴ሻ ൌ ሺݏ, ߳ሻ൩

൅ ॱ ൥෍ߜ௧
ஶ

௧ୀ଴

૤ሾߨሺݐݏ, ሻݐ߳ ൌ 1ሿ߱௧	|	ሺݏ଴, ߳଴ሻ ൌ ሺݏ, ߳ሻ൩ 

ൌ ,ݏሺߨܸ ߳, ;ߣ  ,1ሻߪ	

where the last equality uses the fact that the second term is equal to zero. Note that  

గܸሺݏ, ߳, ଵሻߪ	;ߣ 	൑ ܸሺݏ, ߳,  ଵሻ because the latter is the optimal value function. Thereforeߪ	;ߣ

గܸሺݏ, ߳, ଶሻߪ	;ߣ 	൑ ܸሺݏ, ߳, ;ߣ  Taking maximum on the left-hand side gives .ߨ ଵሻ for allߪ

ܸሺݏ, ߳, ଶሻߪ	;ߣ 	൑ ܸሺݏ, ߳, ,ݏሺܸܧ ଵሻ. Integrating out ߳ further yieldsߪ	;ߣ ;ߣ ଶሻߪ	 	൑ ,ݏሺܸܧ  .ଵሻߪ	;ߣ

Then we have ܧ ఙܸሺݏ, ;ߣ ሻߪ	 ≜ ,ݏሺܸܧ߲ ;ߣ ሻߪ	 ⁄ߪ߲ 	൑ 0 for all ݏ, ,ߣ  Differentiating both sides of .ߪ

Equation (A4) with respect to ߪ and using Chain Rule gives 

,ݐݏሺߪܸܧ  ;ߣ ሻߪ ൌ 	
,ݐݏሺܸܧ߲ ;ߣ ሻߪ

,ݐݏ0ሺݒ߲ ;ߣ ሻߪ
,ݐݏ0ሺݒ߲ ;ߣ ሻߪ

ߪ߲
൅
,ݐݏሺܸܧ߲ ;ߣ ሻߪ

,ݐݏ1ሺݒ߲ ;ߣ ሻߪ
,ݐݏ1ሺݒ߲ ;ߣ ሻߪ

ߪ߲
 

	ൌ ܲሺ0|ݏ௧, ;ߣ ܧߜሻ൫ߪ ఙܸሺݏ௧, ;ߣ , ሻ൯ߪ ൅ ܲሺ1|ݏ௧, ;ߣ , ܧॱሾߜሻሺߪ ఙܸሺݏ௧ାଵ, ;ߣ ,  .௧ሿሻݏ|ሻߪ

The last equality implies that  

,ݐݏሺߪܸܧ  ;ߣ ሻߪ ൌ
,ݐݏ|ሺ1ܲߜ ;ߣ , ሻߪ

1 െ ,ݐݏ|ሺ0ܲߜ ;ߣ ሻߪ
ॱሾߪܸܧሺݐݏ൅1, ;ߣ  .ሿݐݏ|ሻߪ

It then follows that  
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߲∆ሺݏ௧, ;ߣ ሻߪ

ߪ߲
ൌ ܧሺߜ	 ఙܸሺݏ௧, ;ߣ ሻߪ െ ॱሾܧ ఙܸሺݏ௧ାଵ, ;ߣ , ௧ሿሻݏ|ሻߪ  

ൌ ߜ	 ቆ
,௧ݏ|ሺ1ܲߜ ;ߣ ሻߪ

1 െ ,௧ݏ|ሺ0ܲߜ ;ߣ ሻߪ
െ 1ቇॱሾܧ ఙܸሺݏ௧ାଵ, ;ߣ  ௧ሿݏ|ሻߪ

ൌ ߜ	 ൬
ߜ െ 1

1 െ ,௧ݏ|ሺ0ܲߜ ;ߣ ሻߪ
൰ ॱሾܧ ఙܸሺݏ௧ାଵ, ;ߣ ௧ሿݏ|ሻߪ ൒ 0, 

where the last inequality uses the fact that ॱሾܧ ఙܸሺݏ௧ାଵ, ;ߣ ௧ሿݏ|ሻߪ ൑ 0. Let ଶܹ and ଵܹ be the 

Whittle’s indices corresponding to ߪଶ and ߪଵ. This inequality implies ∆ሺݏ, ଵܹ; ଶሻߪ ൒

∆ሺݏ, ଵܹ; ,ݏଵሻ. Since by the definition of an index, ∆ሺߪ ଶܹ; ଶሻߪ ൌ ∆ሺݏ, ଵܹ; ଵሻߪ ൌ ߳, we have 

∆ሺݏ, ଵܹ; ଶሻߪ ൒ ∆ሺݏ, ଶܹ; ଶሻ. It then follows that ଶܹߪ ൑ ଵܹ by Equation (C1). 

Proof of Proposition 3(3). Consider any ߪതᇱ ൐  ത. By the invariance property we haveߪ

 ܹሺ̅ߤ, ,തߪ ߳; ,ߪ	 ,ఢߤ ఢሻߪ ൌ
തߪ
തᇱߪ

ܹ ቆ̅ߤ, ,തᇱߪ ߳;
തᇱߪ

തߪ
,ߪ ,ఢߤ

തᇱߪ

തߪ
 ఢቇߪ

൑
തߪ
തᇱߪ
	ܹሺ̅ߤ, ,തᇱߪ ߳; ,ߪ	 ,ఢߤ  ఢሻߪ	

൏ ܹሺ̅ߤ, ,തᇱߪ ߳; ,ߪ ,ఢߤ ఢሻߪ , 

where the first inequality follows from Proposition 3(2). 
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Online Appendix D. Computation of the Index Function 

We can use the invariance property to simplify the computation of Whittle’s index. The 

computation is based on the fixed point problem in Equation (A4) and the definition of Whittle’s 

index. Product identifier j is dropped to simplify notation. Note that the ܸܧ function evaluated at 

௧ߤ̅ ൌ 0 is ܸܧሺ0, ,ത௧ߪ ሻߣ ൌ  

ߣmaxሼ׬ ൅ ,ሺ0ܸܧߜ ,ത௧ߪ ,ሻߣ 	߳௧ ൅ ,௧ାଵߤሺܸ̅ܧॱሾߜ ,ത௧ାଵߪ ,ሻ|0ߣ ത௧ሿሽߪ   ሺ߳௧ሻܪ݀

ൌ නmax൛ߣ ൅ ,ሺ0ܸܧߜ ,ത௧ߪ ,ሻߣ 	߳௧ ൅ ௧ݍ௧ݓሺܸܧॱ௤೟ሾߜ ൅ ሺ1 െ ,௧ߤ௧ሻ̅ݓ ,ത௧ାଵߪ ,ሻ|0ߣ ത௧ሿൟߪ  ሺ߳௧ሻܪ݀

ൌ නmax ቄߣ ൅ ,ሺ0ܸܧߜ ,ത௧ߪ ,ሻߣ 	߳௧ ൅ ॱ௤೟ߜ ቂܸܧሺ0, ,ത௧ାଵߪ ߣ െ ௧ሻݍ௧ݓ ൅
௧ݍ௧ݓ
1 െ ߜ

|0, ത௧ቃቅߪ  ሺ߳௧ሻܪ݀

ൌ නmax൛ߣ ൅ ,ሺ0ܸܧߜ ,ത௧ߪ ,ሻߣ 	߳௧ ൅ ,ሺ0ܸܧॱ௤೟ሾߜ ,ത௧ାଵߪ ߣ െ ,௧ሻ|0ݍ௧ାଵݓ ത௧ሿൟߪ  ,ሺ߳௧ሻܪ݀

where ݓ௧ ൌ ത௧ଶߪ ሺߪത௧ଶ ൅ ଶߪ ሻ⁄  is the precision. The first equality is implied by Bayesian updating 

formulae for the normal distribution. The second equality uses Equation (B8) from Lemma 3 and 

the fact that the expectation of ݍ௧ and ̅ߤ௧ conditional on ̅ߤ௧ ൌ 0 are both zero. The last equality 

again uses the zero expectation of  ݍ௧ conditional on ̅ߤ௧ ൌ 0.  

We now treat ߣ as a state variable. Let ߣ௧ାଵ ൌ ௧ߣ െ ݓ௧ݍ௧. Note that the distribution of ݍ௧ 

conditional on the belief ሺ̅ߤ௧, ଶߪand standard deviation ඥ	௧ߤ̅ ത௧ሻ is normal with meanߪ ൅ ത௧ߪ
ଶ. 

Therefore ߣ௧ାଵ|ߣ௧	~ܰሺߣ௧, ଶߪ௧ඥݓ ൅ ത௧ߪ
ଶ	ሻ. The fixed point problem now only involves the ܸܧ 

function fixed at ̅ߤ௧ ൌ 0, and evolves on the state space ሺߪത௧,  :௧ሻߣ

,ሺ0ܸܧ ,ത௧ߪ ௧ሻߣ 	ൌ නmax൛ߣ௧ ൅ ,ሺ0ܸܧߜ ,ത௧ߪ ,௧ሻߣ ߳௧ ൅ ,ሺ0ܸܧॱఒ೟శభሾߜ ,ത௧ାଵߪ ,௧ାଵሻ|0ߣ ,ത௧ߪ ௧ሿൟߣ  .ሺ߳௧ሻܪ݀	

Standard dynamic programming algorithms can be used to solve the above fixed point. 

Given the solution of ܸܧሺ0, ,ത௧ߪ  such that the two terms inside the ߣ ௧ሻ, we can find the value ofߣ
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max operator in the above equation are equal for various values of random shocks	߳ under ̅ߤ ൌ 0.  

This value is then the corresponding Whittle’s index :		ܹሺ0, ,തߪ ߳; ,ߪ	 ,ఢߤ  ఢሻ. The index evaluatedߪ

at any value of posterior mean ̅ߤ is then computed by linear summation as implied by the invari-

ance property. We present further implementation details in Online Appendix G.2. 
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Online Appendix E. Computation of the Value Function 

Given a decision rule Π, we compute the value function (expected total utilities) by for-

ward simulating utilities for a sufficiently long horizon. Starting at a given state ሺݏԦ଴, Ԧ߳଴ሻ ൌ ሺݏԦ, Ԧ߳ሻ, 

we sample a large number D of Markov chains for each brand ቄቀݏ௝௞
ሺௗሻ, ௝߳௞

ሺௗሻቁ:	݇ ൌ 1, 2, ቅܭ…
ௗୀଵ

஽
, 

where ܭ is greater than the truncated horizon ܶ. Bayesian updating of the normal distribution 

leads to the following state transition probabilities:   

ത݆,݇൅1ߤ
ሺ݀ሻ ത݆݇ߤ	|

ሺ݀ሻ~	ܰ ቆߤത݆݇
ሺ݀ሻ, ݆݇ݓ

ሺ݀ሻට݆ߪ
2 ൅ ത݆݇ߪ

2 ሺ݀ሻቇ ത݆,݇൅1ߪ   ,
ሺ݀ሻ | ത݆݇ߪ

ሺ݀ሻ ൌ ത݆݇ߪ
ሺ݀ሻට1 െ ݆݇ݓ

ሺ݀ሻ , and 

݆߳݇
ሺ݀ሻ	~	ܪሺ߳; ,߳ߤ	 ݆݇ݓ  ሻ, where߳ߪ

ሺ݀ሻ ൌ ത݆݇ߪ
2	ሺ݀ሻ ሺ݆ߪ

2 ൅ ത݆݇ߪ
2	ሺ݀ሻሻൗ . 

These sequences of belief states are then fixed in advance and reused for each decision rule. Un-

der a decision rule Π, the empirical estimate of its expected total utility for a truncated horizon ܶ 

is given by 

ॽΠሺݏԦ, Ԧ߳ሻ ൌ
1

ܦ
	෍ቐ	෍ݐߜ෍૤ ቂΠ ቀݏԦݐ

ሺ݀ሻ
, Ԧ߳ݐ
ሺ݀ሻቁ ൌ ݆ቃ ቀߤത݆,݆݊ݐ

ሺ݀ሻ ൅ ݐ݆߳
ሺ݀ሻቁ

ܬ

݆ൌ1

ܶെ1

ൌ0ݐ

ቮሺݏԦ0, Ԧ߳0ሻ ൌ ሺݏԦ, Ԧ߳ሻቑ

ܦ

݀ൌ1

, 

where ௝݊௧ is the cumulative number of trials for brand ݆ up to period ݐ. Note that the realized state 

values are chosen from the pre-drawn sample paths, with ௝݊௧ indicating which state in the sample 

path is chosen.  
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Online Appendix F. Maximum Simulated Likelihood Estimation 

 We estimate each model’s parameters with maximum simulated likelihood estimation. To 

simplify notation let ߙԦ denote the vector of parameters to be estimated. Let ݀௜௧ ∈  denote ܣ

household ݅’s decision at period ݐ and let Ԧ݀௜
௧ ൌ ሼ݀௜௞ሽ௞ୀଵ

௧  denote ݅’s decision sequence up to peri-

od ݐ. The likelihood of observing the choice sequences as a function of ߙԦ is:  

Ԧሻߙሺܮ  ൌෑܮ௜ሺߙԦሻ

ூ

௜ୀଵ

ൌ ෑPr൫ Ԧ݀௜
்೔; Ԧ൯ߙ .

ூ

௜ୀଵ

 

 Learning strategies depend upon the evolution of the unobserved belief states, which 

complicates the inference process. If we were to write the likelihood function as a function of 

each consumer’s unobserved belief states and shocks over periods, we would need to sample 

from an extremely complicated joint density of belief states and shocks. Instead, we augment the 

data and sample directly from the more-fundamental unobservables – the quality experiences ݍ௜௝௧ 

that are drawn conditionally i.i.d. from normal distributions with mean ߤ௝ and standard deviation 

 ௝. Given a set of quality experiences and a set of prior beliefs, we obtain the unobserved beliefߪ

states, ݏ௜௝௧ ൌ ሺ̅ߤ௜௝௧,  :ത௜௝௧ሻ, by conjugate updating formulaeߪ

ݐത݆݅ߤ  ൌ
ത݆0ߪ
2

ത݆0ߪ
2 ൅ ݆ߪ

2 ൗݐ݆݅݊
ݐത݆݅ݍ ൅

݆ߪ
2 ൗݐ݆݅݊

ത݆0ߪ
2 ൅ ݆ߪ

2 ൗݐ݆݅݊
ത݆0ߤ , and ݐത݆݅ߪ

2 ൌ
ത݆0ߪ
2 ݆ߪ

2 ൗݐ݆݅݊

ത݆0ߪ
2 ൅	݆ߪ

2 ൗݐ݆݅݊
	,	 

where ݊௜௝௧ is the cumulative number of purchases of brand ݆ by consumer ݅ through period ݐ. We 

use ݍത௜௝௧ ൌ
భ

೙೔ೕ೟
∑ ௤೔ೕೖ
೙೔ೕ೟
ೖసభ  to denote the average quality experience observed by the consumer 

through period ݐ. Note that the posterior variance ߪത௜௝௧
ଶ  decreases over time towards zero as more 

information is incorporated and the speed of convergence depends on the prior and the true vari-

ance.  When the prior ߪത௝଴
ଶ  is much larger than the true variance ߪ௝

ଶ, then after just one update, the 
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posterior quickly converges to ߪ௝
ଶ.1   

 We introduce vector notation to simplify exposition. Let ߤԦ be the vector (over ݆) of mean 

qualities, let ߪԦ be the vector (over ݆) of the standard deviations of quality draws, and let ߪԦఢ be the 

vector (over ݆) of the standard deviations of unobservable shocks. Let the sequence of quality 

draws through period ݐ be ݍԦ௜
௧ ൌ ሼݍԦ௜௞ሽ௞ୀଵ

௧ . Let ݔԦ௧ and Ԧ߳௜௧ be the vectors (over ݆) of prices and un-

observable utility shocks. Finally, let ௤݂ሺ∙ሻ and ݌ఢሺ∙ሻ be the probability density functions for the 

quality draws and the unobservable shocks. The likelihood for household ݅ is given by 

(F1) ݅ܮሺߙሬԦሻ ൌ නනෑ૤ቄΠ ቂݐ݅ݏ ቀሬ݀Ԧ݅
െ1ݐ

, ሬԦ݅ݍ
െ1ቁݐ , ,ݐሬԦݔ Ԧ߳݅ݐቃ ൌ ሬԦ݅ݍหݐ݅݀

ܶ݅; ሬԦ൧ቅߙ ሬԦ݅ݍ൫ݍ݂
ܶ݅; ,ሬԦߤ ሬԦ݅ݍሻ݀ݐሺԦ߳݅߳݌ሬԦ൯ߪ

ܶ݅

ܶ݅

ൌ1ݐ

݀Ԧ߳݅ݐ . 

To compute the likelihood we integrate over quality draws and unobservable shocks. To 

integrate numerically we sample ܴ sequences of quality draws (each sequence has ௜ܶ draws for 

consumer ݅) from a multivariate normal distribution with parameters ߤԦ and ߪԦ. We assume that 

the unobservable shocks follow zero-mean Gumbel distribution with homogenous variance ߪఢ  

for all brands. This assumption allows us to use the well-known logit formula to substantially 

simplify the computation of choice probabilities for all models. Based on Proposition 2, we spec-

ify the index function as a linear function of the unobserved shocks ߳௜௝௧, while preserving mono-

tonicity:  

Π෡ௐ ൌ ௝ݔܽ݉݃ݎܽ ቊ̅ߤ௜௝௧ ൅ ௜௝ߤ
௫,ఢ ൅ ߳௜௝௧ ൅ ௜௝ߪ ෙܹ௝ ቆ0,

ത௜௝௧ߪ
௜௝ߪ

,
௜௝௧ݔߚ െ ௜௝ߤ

௫,ఢ

௜௝ߪ
, 1, 0,

௜௝ߪ
௫,ఢ

௜௝ߪ
,  .	ቇቋߜ

We provide further implementation details of the estimation procedures in Online Appendix G. 

                                                 
1 This introduces difficulty in estimating the variance of prior quality beliefs. For example, we encounter difficulty 
when estimating the mixture model. The likelihood function is flat over the regions where the values of ߪ௝

ଶ	are large. 
As a solution, we terminate the iterations of estimation when the likelihood improves by less than 0.02%. We expect 
the same difficulty to apply to the approximately optimal solution. 
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Online Appendix G. User’s Guide to Implementation 

This user’s guide documents the implementation details of the optimization solutions and 

the estimation procedures. §§G.1 and G.2 provide the details of solving the single-agent problem 

via the approximately optimal solution and the index solution using discrete approximation. 

§§G.3 and G.4 summarize the details of estimating the approximately optimal solution and the 

index solution.  

G.1. Computing the Approximately Optimal Solution 

G.1.1. Overview 

Recall that the goal is to solve the following Bellman equation of the overall problem: 

 ܸሺݏԦ௧, ,Ԧ௧ݔ Ԧ߳௧ሻ ൌ max
௝∈஺

൛ߚԦ′ݔԦ௝௧ ൅ ߳௝௧ ൅ ॱሾݍ௝௧ ൅ ,Ԧ௧ାଵݏሺܸߜ ,Ԧ௧ାଵݔ Ԧ߳௧ାଵሻ|ݏԦ௧, ݆ሿൟ	. 

Under the assumption that unobservable shocks 	 ௝߳௧ are i.i.d., we can integrate out this component 

and transform the problem to (Rust 1994): 

(G1) ܸܧሺݏԦ௧, Ԧ௧ሻݔ ൌ න max
௝∈஺

൛ߚԦ′ݔԦ௝௧ ൅ ߳௝௧ ൅ ॱൣݍ௝௧ ൅ ,Ԧ௧ାଵݏሺܸܧߜ ,Ԧ௧ݏԦ௧ାଵሻหݔ ݆൧ൟ݀ܪሺ Ԧ߳௧ሻ.
ఢሬԦ೟

 

Further assumption on the distribution of Ԧ߳௧ can simplify the above integration. If 	 ௝߳௧ follows 

i.i.d. Gumbel distribution, then we have a closed-form expression (Rust 1994): 

(G2) ܸܧሺݏԦ௧, Ԧ௧ሻݔ ൌ ఢߤ ൅	ߪఢߛ ൅ ఢߪ log ቐ෍exp൭
Ԧ௝௧ݔ′Ԧߚ ൅ ॱൣݍ௝௧ ൅ ,Ԧ௧ାଵݏሺܸܧߜ ,Ԧ௧ݏԦ௧ାଵሻหݔ ݆൧

ఢߪ
൱

௃

௝ୀଵ

ቑ , 

where ߛ	is the Euler constant.  Notice that for this simplification to hold, we need to assume the 

distribution of the unobservable shocks is the same for all brands: ൫ߤ௝
ఢ, ௝ߪ

ఢ൯ ൌ ሺߤఢ,   .ఢሻ for all jߪ

The observable shocks ݔԦ௧ remain in the state space. One can also integrate out ݔԦ௧ given 

the independence assumption, so that Equation (G1) becomes 
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(G3) ܸܧሺݏԦ௧ሻ ൌ න max
௝∈஺

൛ߚԦ′ݔԦ௝௧ ൅ ߳௝௧ ൅ ॱൣݍ௝௧ ൅ Ԧ௧ାଵݏሺܸܧߜ ሻหݏԦ௧, ݆൧ൟ݀ܪሺݔԦ௧, Ԧ߳௧ሻ.
ሺ௫Ԧ೟,ఢሬԦ೟ሻ

 

We solve Equation (G3) with simulation by integrating over the joint distribution of (ߚԦ′ݔԦ௝௧ ൅

௝߳௧).
2 The modified Bellman equation still cannot be solved exactly because the state space of 

each brand ݏ௝ ൌ ሺ̅ߤ௝,  ത௝ሻ is continuous. There are many algorithms to approximate the solutionߪ

(see a survey by Rust 1996 for methods to solve continuous-state Markov decision processes). 

We will use a “discrete approximation” approach that first discretizes the state space, then solves 

the discrete-state dynamic programming problem, and finally finds the value function of the con-

tinuous-state problem by aggregating the discrete-state solution using interpolation. While dis-

crete approximation may be slower than “smooth approximation” (e.g., the Keane-Wolpin 1994 

algorithm adopted by Erdem and Keane 1996; see Ching et al. 2013b for details of its implemen-

tation), it can fully preserve the contraction property of the Bellman equation, and is guaranteed 

to converge to the true solution as the discretization becomes finer (e.g., Chow and Tsitsiklis 

1991). The absolute computation time depends on various factors such as the algorithm, comput-

er memory, software package, coding, etc. In this paper we are interested in comparing the rela-

tive computation time of the two solution concepts, the approximately optimal solution and the 

index solution, using the same discrete approximation approach to solve the fixed-point problem 

in both solutions. 

G.1.2. State Space and Transition Probabilities 

We discretize the state space into a finite collection of state points ॰ሺ̅ߤ௝; ሻܯ	 ൌ

                                                 
2 Alternatively, one can assume that the distribution of the sum (ߚԦ′ݔԦ௝௧ ൅ ߳௝௧) is Gumbel and is homogenous, which 
leads to a value function similar to Equation (G3). However, this assumption is not appealing in this setting because 
(1) we need ௝߳௧ alone to be Gumbel to obtain a simple logit expression of choice probabilities, and (2) the uncertain-
ty in utility shocks may vary across brands. 
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ቄߤ෠௝
ሺ௠ሻ

ቅ
௠ୀଵ

ெ
 and ॰൫ߪത௝; ܰ൯ ൌ ቄߪ෡௝

ሺ௡ሻ
ቅ
௡ୀଵ

ே
 for each brand. Given the discretized state space, we con-

vert the transition probabilities from the continuous problem to the discrete problem.  Recall that 

the transitions in the continuous problem are given as follows.  Suppose the consumer’s current 

belief about brand j at period t is (̅ߤ௝௧,  ത௝௧).  If the consumer chooses brand j, then the consumer’sߪ

beliefs about brand j in the next period become   

(G4) ߤത݆,ݐ൅1|	ߤത݆ݐ~	݂ ൬ߤത݆ݐ, ݆ߪටݐ݆ݓ
2 ൅ ݐത݆ߪ

2 ൰    and   ߪത݆,ݐ൅1| ݐത݆ߪ ൌ ඥ1ݐത݆ߪ െ	ݐ݆ݓ , 

where ݂ሺ∙ሻ is the normal density, and ݓ௝௧ ൌ ത௝௧ߪ	
ଶ	 ሺߪ௝

ଶ ൅ ത௝௧ߪ
ଶ	ሻൗ . If the consumer does not choose 

brand j, then the consumer’s beliefs about j remain the same in the next period (̅ߤ௝,௧ାଵ,  = (ത௝,௧ାଵߪ

,௝௧ߤ̅)    .(ത௝௧ߪ

The transition of the variance of belief ߪത௝௧
	  is deterministic.  Given the variance of prior 

belief ߪത௝଴
	 	, we know the exact values that the future ߪത௝௧

	  would fall in.  This pins down the dis-

cretization of ߪത௝௧
		 . We can set ߪ෡௝

ሺଵሻ
ത௝଴ߪ =

	  and ߪ෡௝
ሺଶሻ

ത௝ଵߪ =
	 , and so on: ߪ෡௝

ሺேሻ
ത௝,ேିଵߪ =

	 .  Note that for large 

values of ܰ, ߪ෡௝
ሺேሻ

will be close to zero.   

The transition of the posterior mean of belief ̅ߤ௝௧ is probabilistic on the entire unbounded 

continuous space.  We choose a bound ሾെܤ,  points.  The ܯ ሿ and discretize it uniformly intoܤ

size ܤ is chosen to be large enough so that the states outside the bounds are rarely visited.  We set 

 to be 5 deviation from the mean of the conditional distribution.  We then define the transition ܤ

probabilities on the discretized state space from one state point ሺߤ෠௝
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻ to another 

ሺߤ෠௝
ሺ௠ᇱሻ

, ෡௝ߪ
ሺ௡ᇱሻ

ሻ as ݌ሺߤ෠௝
ሺ௠ᇱሻ

, ෡௝ߪ
ሺ௡ᇱሻ

෠௝ߤ	|
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻ.  If the consumer does not choose brand j, then 

ሺߤ෠௝
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻ transits to ሺߤ෠௝

ሺ௠ሻ
, ෡௝ߪ

ሺ௡ሻ
ሻ with probability one. If the consumer chooses brand j, then 
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the transition is as follows.  First, the variance of posterior belief ߪ෡௝
ሺ௡ሻ

 transits to ߪ෡௝
ሺ௡ᇲሻ

 determinis-

tically with ݊ᇱ ൌ ݊ ൅ 1 for ݊ ൏ ܰ.  Note that the difference between ߪ෡௝
ሺ௡ሻ

 and ߪ෡௝
ሺ௡ାଵሻ

 converges 

to zero as n becomes larger.  Therefore, we will set ܰᇱ ൌ ܰ such that ߪ෡௝
ሺேሻ

 transits to itself.  Sec-

ond, the mean of posterior belief  ߤ෠௝
ሺ௠ሻ

∈ ॰ሺ̅ߤ௝;ܯሻ transits to any state point ̅ߤ௝
ሺ௠ᇲሻ ∈ ॰ሺ̅ߤ௝;ܯሻ 

with normalized probability: 

(G5) ݌ሺߤ෠௝
ሺ௠ᇲሻ

෠௝ߤ	|
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻ ൌ

݂ሺߤ෠௝
ሺ௠ᇲሻ

| ෠௝ߤ
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻ

∑ ݂ሺߤ෠௝
ሺ௠ᇲሻ

| ෠௝ߤ
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻெ

௠ᇲୀଵ

, 

where ݂ሺߤ෠௝
൫௠ᇲ൯

෠௝ߤ	|
ሺ௠ሻ

, ෡௝ߪ
ሺ௡ሻ
ሻ	is the density conditional on ሺߤ෠௝

ሺ௠ሻ
, ෡௝ߪ

ሺ௡ሻ
ሻ defined in the continuous-

state problem (see Equation G4).  

G.1.3. Algorithm 

After obtaining the transition probabilities for the discrete problem we can then solve the 

discrete-state dynamic programming problem using any standard dynamic programming algo-

rithm.  Here we use value iteration, which is easy to implement albeit not particularly fast. One 

can adopt the multi-grid approach (Chow and Tsitsiklis 1991) or the random-grid approach (Rust 

1996) to speed up the algorithm. The value iteration algorithm proceeds as follows: 

 Step 1: Initialize the ሺܯ ൈ ܰሻ௃	matrix ܧ෢ܸ଴ ቀߤ෠
ሬԦ	,  .෡ሬሬԦቁߪ

 Step 2: Iterate the modified Bellman equation until ฮܧ෢ܸ௞ାଵ െ  :෢ܸ௞ฮ < Toleranceܧ

෢ܸ݇൅1ܧ ቀߤ෠
ሬԦ	, ෠ሬԦቁߪ ൌ න max

ܣ∋݆
൜ߚሬԦ′ݔሬԦ݆ ൅ ݆߳ ൅ ෠݆ߤ

ሺ݉ሻ

ሺݔሬԦ,Ԧ߳ሻ

൅ ෍	ߜ ෢ܸ݇ܧ ൬ߤ෠݆
൫݉′൯

, ෠݆ߪ
൫݊′൯
൰ ෠݆ߤሺ݌

൫݉′൯
෠݆ߤ	|

ሺ݉ሻ
, ෠݆ߪ

ሺ݊ሻ
ሻ	

ܯ

݉′ൌ1
ൠ ,ሬԦݔሺܪ݀ Ԧ߳ሻ,	 
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In Step 2, numerical integration is needed.  We use direct simulation to integrate the function 

over the joint distribution of utility shocks. Once we have found the solution ܧ෢ܸ  to the discrete 

problem, we can aggregate it to produce the solution ܸܧ defined on the entire continuous state 

space using interpolation.  In this paper, we use linear interpolation. 

G.2. Computing the Index Solution 

G.2.1. Overview 

Recall that in Appendix D we have shown that the index function reduces to solving the 

following modified Bellman equation (after integrating out both ݔԦ௝ and ௝߳):  

 

,൫0ܸܧ ,ത௝௧ߪ ௝௧൯ߣ 	ൌ න max ቄߣ௝௧ ൅ ,൫0ܸܧߜ ,ത௝௧ߪ ,௝௧൯ߣ Ԧ௝௧ݔ′Ԧߚ ൅ ߳௝௧
ሺ௫Ԧೕ೟,ఢೕ೟ሻ

൅ ,൫0ܸܧॱఒೕ,೟శభൣߜ ,ത௝,௧ାଵߪ ,௝,௧ାଵ൯|0ߣ ,ത௝௧ߪ ௝௧൧ቅߣ ,Ԧ௝௧ݔ൫ܪ݀ ௝߳௧൯. 

where the EV function is fixed at ̅ߤ௝௧ ൌ 0, and ߣ௝௧ is treated as a state variable with the following 

transition probabilities: 

(G6) 
݈ܽ݉ݎ݋ܰ	~	ݐ݆ߣ|൅1ݐ,݆ߣ ൬ݐ݆ߣ, ݆ߪටݐ݆ݓ	

2 ൅ ݐത݆ߪ
2 ൰ ,   and   ߪത݆,ݐ൅1| ݐത݆ߪ ൌ ඥ1ݐത݆ߪ െ	ݐ݆ݓ , 

where  ݐ݆ݓ ൌ 	 ݐത݆ߪ
2	 ሺ݆ߪ

2 ൅ ݐത݆ߪ
2	ሻൗ . 

We will remove 0 from the EV function for notational convenience, with a slight abuse of nota-

tion of the EV function: 

(G7) 

,ത௝௧ߪ൫ܸܧ	 ௝௧൯ߣ ൌ න max ቄߣ௝௧ ൅ ,ത௝௧ߪ൫ܸܧߜ ,௝௧൯ߣ Ԧ௝௧ݔ′Ԧߚ ൅ ߳௝௧
ሺ௫Ԧೕ೟,ఢೕ೟ሻ

൅ ,ത௝,௧ାଵߪ൫ܸܧॱఒೕ,೟శభൣߜ ,ത௝௧ߪ|௝,௧ାଵ൯ߣ ௝௧൧ቅߣ ,Ԧ௝௧ݔ൫ܪ݀ ௝߳௧൯. 

The integration over the distribution of utility shocks (	ߚԦ′ݔԦ௝௧ ൅ ߳௝௧) in general has no closed-form 

expression.  We can, however, compute its value given any distributional assumptions using sim-

ulation or Gaussian quadrature.  For example, we can assume that	ݔԦ௝௧ is normal and 	 ௝߳௧ is Gum-
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bel, or the sum 	ߚԦ′ݔԦ௝௧ ൅ ߳௝௧ is normal or Gumbel.  The computation is relatively easy given this is 

a one-dimensional problem (i.e., involving one brand).  For the synthetic-data analysis, we as-

sume that ݔԦ௝௧ is 0 and 	 ௝߳௧ is Gumbel.  For the field-data analysis on diaper purchases, we assume 

that ݔԦ௝௧ is normal and 	 ௝߳௧ is Gumbel.  These assumptions are made simply to ease the computa-

tion of the approximately optimal solution, to which the index solution is compared, rendering 

ours a conservative test of the relative simplicity of the index strategy.   

The procedure of computing the index function involves two stages.  The first stage is to 

find the solution to the EV function from Equation (G7). We will use discrete approximation, the 

same method used for the approximately optimal solution.  The second stage is to find the value 

of ߣ such that the two terms inside the max operator in Equation (G7) are equal. This ߣ value then 

equals Whittle’s index evaluated at ̅ߤ௝௧ ൌ 0 and for a particular variance ߪത௝௧ and utility shocks 

Ԧ௝௧ݔ′Ԧߚ	 ൅ ߳௝௧, that is, ܹ൫0, ,ത௝௧ߪ Ԧ௝௧ݔ′Ԧߚ	 ൅ ߳௝௧; ,௝ߪ	 ௝ߤ
௫,ఢ, ௝ߪ

௫,ఢ	൯. 

G.2.1. Algorithm 

The discretization of the state space is the same as that for the approximately optimal so-

lution described in §G.1.2, except that we now treat ߣ as the state variable rather than ̅ߤ௝௧.  

 Step 1: Initialize ܧ෢ܸ଴ ቀߪ෡௝
ሺ௡ሻ
, ෡௝	ߣ

ሺ௠ሻቁ, ∀	݉, ݊.     

Step 2: Iterate the modified Bellman equation until ฮܧ෢ܸ௞ାଵ െ  :෢ܸ௞ฮ < Toleranceܧ
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෢ܸ݇൅1ܧ ቀߪ෠݆
ሺ݊ሻ
, ෡݆	ߣ

ሺ݉ሻ
ቁ 	

ൌ න max ൜ߣ	෡݆
ሺ݉ሻ

൅ ෢ܸ݇ܧߜ ቀߪ෠݆
ሺ݊ሻ
, ෡݆	ߣ

ሺ݉ሻ
ቁ , ሬԦ݆ݔ′ሬԦߚ	 ൅ ߳

݆
ሺݔሬԦ݆,݆߳ሻ

൅ ෍ߜ ෢ܸ݇ܧ ቀߪ෠݆
ሺ݊′ሻ

, ෡݆ߣ
ሺ݉′ሻ

ቁ ෡݆ߣሺ݌
ሺ݉′ሻ

| ෠݆ߪ
ሺ݊ሻ
, ෡݆ߣ

ሺ݉ሻ
ሻ	

ܯ

݉ൌ1
ൠ ,ሬԦ݆ݔ൫ܪ݀ ݆߳൯. 

Step 3: Obtain ܧ෢ܸ ∗ ቀߪ෡௝
ሺ௡ሻ
, ෡௝	ߣ

ሺ௠ሻቁ after Step 2.  For every n and value of 	ߚԦ′ݔԦ௝ ൅ ߳௝, find 

the root 	ߣ∗ such that the difference ∆ሺߣሻ ൌ 0, where   

∆ሺߣሻ ൌ ෡௝	ߣ
ሺ௠ሻ ൅ ෢ܸܧߜ ∗ ቀߪ෡௝

ሺ௡ሻ
, ෡௝	ߣ

ሺ௠ሻቁെ	ߚԦᇱ௫Ԧೕ െ ߳௝

െ ෍ߜ ෢ܸ௞ܧ ൬ߪ෡௝
൫௡ᇲ൯

, ෡௝	ߣ
ሺ௠ᇲሻ൰ ෡௝	ߣሺ݌

ሺ௠ᇲሻ|	ߪ෡௝
ሺ௡ሻ
, ෡௝	ߣ

ሺ௠ሻሻ	.
ெ

௠ୀଵ
 

Note that the difference ∆ሺߣሻ increases with ߣ. One easy way is to locate the 

ሺ	ߣ	෡ሺ௔ሻ, ෡ሺ௕ሻሻ	ߣ	 ∈ ቄߣ	෡௝
ሺ௠ሻቅ

௠ୀଵ

ெ
 such that ∆ቀߣ	෡௝

ሺ௔ሻቁ ൐ 0 and ∆ቀߣ	෡௝
ሺ௕ሻቁ ൏ 0 and then use linear 

interpolation to find ߣ௝
∗	such that ∆൫ߣ௝

∗൯ ൌ ௝ߣ  .0
∗ is then Whittle’s index for brand j, ෡ܹ௝, 

evaluated at ߪ෡௝
ሺ௡ሻ

 and 	ߚԦ′ݔԦ௝ ൅ ߳௝.  

Once we have the ܧ෢ܸ  function and Whittle’s index ෡ܹ௝ defined on the discrete state space, we can 

use interpolation to find values of EV and ௝ܹ over the entire continuous state space. 

G.3. Estimating the Approximately Optimal Solution 

We estimate the model using maximum simulated likelihood.  For the approximately op-

timal solution, the likelihood function in Equation (F1) can be expressed as:  

ሬԦሻߙሺ݅ܮ ൌ 

න ቌෑ
exp ቀݐ,ݐ݅݀ݔߚ ൅ ݐ,ݐത݅݀݅ߤ ቀ

ሬ݀Ԧ݅
െ1ݐ

, ሬԦ݅ݍ
െ1ቁݐ ൅ ॱߜ ቂܸܧ ቀߤത݅݀݅ݐ,ݐ൅1, ൅1ቁݐ,ݐത݅݀݅ߪ ቚߤത݅݀݅ݐ,ݐ, ,ݐ,ݐത݅݀݅ߪ ቃቁݐ݅݀

∑ exp ቀݐ݆ݔߚ ൅ ݐത݆݅ߤ ቀሬ݀Ԧ݅
െ1ݐ

, ሬԦ݅ݍ
െ1ቁݐ ൅ ॱߜ ቂܸܧ ቀߤത݆݅,ݐ൅1, ൅1ቁݐ,ത݆݅ߪ ቚߤത݆݅ݐ, ,ݐ,ത݆݅ߪ ݆ቃቁ

ܬ
݆ൌ1

ܶ݅

ൌ1ݐ

ቍ
ሬԦ݅ݍ
ܶ݅
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௤݂൫ݍԦ௜
்೔; ,Ԧߤ Ԧ௜ݍ݀	Ԧ൯ߪ

்೔,  

where the last equation uses the assumption that ߳௜௝௧ follows the i.i.d. Gumbel distribution. The 

outer integration is computed by simulating R sequences of quality signals ቄݍԦ௜
்೔ሺ௥ሻቅ

௥ୀଵ

ோ
 from a 

multivariate normal distribution of true quality ௤݂ሺ∙ሻ parameterized by (ߤԦ,   .(Ԧߪ

 To find the maximum simulated likelihood estimates ߙԦ∗ ൌ ∏ݔܽ݉݃ݎܽ Ԧሻߙ௜ሺܮ
ூ
௜ୀଵ , we adopt 

the nested fixed point algorithm (Rust 1994):  

 In the inner loop, for each guess of parameters ߙԦ, solve for the ܸܧ function based on 

Equation (G3) using the procedure in §G.1 and then evaluate the likelihood function.  

 In the outer loop, find the parameters ߙԦ∗ that maximize the likelihood value.  

The inner loop is computationally intense.  For each parameter guess, we obtain an ܸܧ function, 

which is then used to initialize the ܸܧ function for the next parameter guess. This allows for fast-

er convergence.  

Another important issue is the choice of the size of discretization (i.e., the values of ܯ 

and ܰ).  The larger these numbers, the greater accuracy we obtain. But computation memory and 

time will increase exponentially as well. If we choose ܯ ൌ ܰ ൌ 10 then the size of the state 

space is ሺܯ ൈ ܰሻସ ൌ 10଼.  If ܯ ൌ ܰ ൌ 100 the size is 10ଵ଺.  In the estimation, we set ܯ ൌ ܰ ൌ

5 which yields a state space of size 5଼ ൌ 390,635.  

G.4. Estimating the Index Strategy 

The estimation procedure is similar to the one for the approximately optimal solution.  

Recall that the index rule is defined as 

(G8) Πܹ ൌ ݆ݔܽ݉݃ݎܽ ቊߤത݆݅ݐ ൅ ݆ߤ
߳,ݔ ൅ ݆ߪ ෙܹ ݆ ቆ0,

ݐത݆݅ߪ
݆ߪ

,
ݐ݆ݔߚ ൅ ݐ݆݅߳ െ ݆ߤ

߳,ݔ

݆ߪ
, 1, 0,

݆ߪ
߳,ݔ

݆ߪ
,  .	ቇቋߜ

We rewrite the index as a linear function of ߳௜௝௧ :  
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(G9) Π෡ܹ ൌ ݆ݔܽ݉݃ݎܽ ቊߤത݆݅ݐ ൅ ݐ݆ݔߚ ൅ ݐ݆݅߳ ൅ ݆ߪ ෙܹ ݆ ቆ0,
ݐത݆݅ߪ
݆ߪ

, 0, 1, 0,
݆ߪ
߳,ݔ

݆ߪ
,  .	ቇቋߜ

This transformed function preserves all the properties of Whittle’s index and simplifies the com-

putation of choice probabilities.  

Assuming ߳௜௝௧ follows i.i.d. Gumbel, the likelihood in Equation (F1) for household i is   

 Ԧሻߙ௜ሺܮ

ൌ න

ۉ

ۈ
ۈ
ۈ
ۇ

ෑ

expቌݔߚௗ೔೟,௧ ൅ ௜ௗ೔೟,௧൫ߤ̅ Ԧ݀௜
௧ିଵ, Ԧ௜ݍ

௧ିଵ൯ ൅ ௝ߪ ෙܹ௝ ቆ0,
ത௜ௗ೔೟௧ߪ
ௗ೔೟ߪ

, 0, 1, 0,
ௗ೔೟ߪ
௫,ఢ

ௗ೔೟ߪ
, ቇቍߜ

∑ expቌݔߚ௝௧ ൅ ௜௝௧൫ߤ̅ Ԧ݀௜
௧ିଵ, Ԧ௜ݍ

௧ିଵ൯ ൅ ௝ߪ ෙܹ௝ ቆ0,
ത௜௝௧ߪ
௝ߪ

, 0, 1, 0,
௝ߪ
௫,ఢ

௝ߪ
, ቇቍ௃ߜ

௝ୀଵ

்೔

௧ୀଵ

ی

ۋ
ۋ
ۋ
ۊ

௤ሬԦ೔
೅೔

௤݂ቀݍԦ௜
்೔; ,Ԧߤ Ԧ௜ݍ݀	Ԧቁߪ

்೔. 

We again use the nested fixed point algorithm to find the maximum simulated likelihood esti-

mates: 

 In the inner loop, for each guess of parameters ߙԦ, first compute Whittle’s index ෙܹ௝ using 

procedures described in §G.2 with utility shocks normalized to zero. Then evaluate the 

likelihood given the index function. 

 In the outer loop, find the parameters ߙԦ∗ that maximize the likelihood value.  

We need to determine the number of grid points for the posterior mean and the posterior 

variance (i.e., the values of ܯ and ܰ).  For an “apples-to-apples” comparison between the ap-

proximately optimal solution and the index strategy, we set ܯ ൌ 5 and ܰ ൌ 5 for both models. 

The state space is ሺ5 ∙ 5ሻସ ൌ 390,625 for the approximately optimal solution and 5 ∙ 5 ൌ 25 for 

the index strategy, a ratio of 15,625.  (We solve for ܬ ൌ 4 indices.) 

Because the size of the state space does not grow exponentially with the number of brands 

under the index strategy, it is feasible to choose finer grids for the index strategy than for the ap-

proximately optimal solution.  Thus, for greater accuracy we set ܯ ൌ 200 and set ܰ to the max-
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imum number of repeat purchases of households in the sample, which is 75. The size of the state 

space for the index strategy is 200 ∙ 75 ൌ 15,000.  If we were to attempt this finer grid for the 

approximately optimal solution, the state space would be 

ሺ200 ∙ 75ሻସ ൌ 50,625,000,000,000,000.  This is about 130 billion times the approximately op-

timal solution’s state space under the original grid of ܯ ൌ ܰ ൌ 5.  It is unlikely that computa-

tions would be feasible with such a large state space, even with a more efficient search of the 

grid.  
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Online Appendix H. Predicted Switching Matrices 

Table H presents the predicted switching matrices among diaper brands, using the param-

eter estimates from the (a) no-learning model, (b) myopic learning model, and (c) approximately 

optimal solution model, respectively. The predicted switching matrix based on the parameter es-

timates from the index strategy model is presented in Table 2b. 

 

Table H. Switching among Diaper Brands 

(a) Predicted Switching Matrix – No-Learning Model 

 Percent of times that Row Brand is purchased at Occasion ݐ 

and Column Brand is purchased at Occasion ݐ ൅ 1† 

Pampers Huggies Luvs Other Brands 

Within the first 13 purchases     

      Pampers 17.5% 4.4% 4.7% 0.0% 

      Huggies 8.1% 19.8% 3.6% 0.0% 

      Luvs 4.4% 2.9% 9.2% 0.0% 

      Other Brands n/a‡ n/a n/a n/a 

After the first 13 purchases     

      Pampers 5.3% 1.7% 1.6% 0.0% 

      Huggies 2.5% 7.5% 1.0% 0.0% 

      Luvs 1.2% 0.7% 3.7% 0.0% 

      Other Brands n/a n/a n/a n/a 
† Switching percentages are weighted by market share so that the percentages in the same table add up to 100%.  
‡ Switching probability not applicable because the model predicts no purchase of Other Brands. 
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Table H. Switching among Diaper Brands (continued) 

(b) Predicted Switching Matrix – Myopic Learning Model 

 Percent of times that Row Brand is purchased at Occasion ݐ 
and Column Brand is purchased at Occasion ݐ ൅ 1† 

Pampers Huggies Luvs Other Brands 

Within the first 13 purchases     

      Pampers 23.3% 2.6% 1.6% 0.1% 

      Huggies 1.8% 23.9% 1.1% 0.1% 

      Luvs 1.7% 1.2% 15.7% 0.1% 

      Other Brands 0.3% 0.1% 0.1% 1.0% 

After the first 13 purchases     

      Pampers 6.2% 0.6% 0.5% 0.0% 

      Huggies 0.3% 12.4% 0.1% 0.0% 

      Luvs 0.5% 0.2% 4.3% 0.0% 

      Other Brands 0.0% 0.0% 0.0% 0.1% 

(c) Predicted Switching Matrix – Approximately Optimal Solution Model 

 Percent of times that Row Brand is purchased at Occasion ݐ 
and Column Brand is purchased at Occasion ݐ ൅ 1† 

Pampers Huggies Luvs Other Brands 

Within the first 13 purchases     

      Pampers 20.2% 3.0% 2.0% 0.2% 

      Huggies 2.0% 25.9% 1.4% 0.1% 

      Luvs 1.5% 1.6% 15.3% 0.1% 

      Other Brands 0.3% 0.1% 0.1% 1.0% 

After the first 13 purchases     

      Pampers 4.6% 0.4% 0.4% 0.0% 

      Huggies 0.3% 15.0% 0.1% 0.0% 

      Luvs 0.5% 0.2% 3.4% 0.0% 

      Other Brands 0.0% 0.0% 0.0% 0.1% 

 


