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THEME 1: SUMMARY OF NOTATION AND ACRONYMS 
(Some Notation is Used Only in This Web Appendix) 

lhfa  binary indicator of whether level of feature f is acceptable to respondent h (disjunctive, 

conjunctive, or subset conjunctive models, use varies by model) 

l

har  binary vector of acceptabilities for respondent h 

b1, b2 parameters of the HB subset conjunctive model, respectively, the probability that a pro-

file is considered if  and the probability it is not considered if  Sax hj ≥′ rr Sax hj <′ rr

er  a vector of 1’s of length equal to the number of potential patterns 

D covariance matrix used in estimation HB compensatory 

f indexes features, F is the total number of features 

h indexes respondents (mnemonic to households), H is the total number of respondents 

I the identity matrix of size equal to the total number of aspects 

j indexes profiles, J is the total number of profiles 

l  indexes levels within features, L is the total number of levels 

mjp binary indicator of whether profile j matches pattern p 

jmr  binary vector describing profile j by the patterns it matches 

n size of the consideration set 

Mj percent of respondents in the sample (“market”) that consider profile j 

p indexes patterns; also used for significance level in t-tests when clear in context 

P maximum number of patterns [LAD-DOC(P, S) estimation] 

Q number of partworths (compensatory model) 

s size of a pattern (number of aspects in a conjunction) 
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S maximum subset size [Subset(S) model] or maximum number of aspects in a conjunctive 

pattern [DOC(S) model, LAD-DOC(P, S) estimation] 

Th threshold for respondent h in compensatory model 

whp binary indicator of whether respondent h considers profiles with pattern p 

hwr  binary vector indicating the patterns used by respondent h 

ljfx  binary indicator of whether profile j has feature f at level  l

jx  binary vector describing profile j 

yhj binary indicator of whether respondent h considers profile j 

hyr  binary vector describing respondent h’s consideration decisions 

hβ
r

 vector of partworths (compensatory model) for respondent h 

hjε  extreme value error in compensatory model 

γc, γM parameters penalizing, respectively, complexity and deviation from the “market” 

+
hjξ  non-negative integer that indicates a model predicts consideration if  1≥+

hjξ

−
hjξ  non-negative integer that indicates a model predicts non-consideration if  1≥−

hjξ

DOC(S) set of disjunctions of conjunctions models. S, when indicated, is the maximum 

size of the patterns. 

DOCMP combinatorial optimization estimation for DOC models  

LAD-DOC alternative estimation method for DOC models in which we limit both the number 

of patterns, P, and the size of the patterns, S 

Subset(S) set of subset conjunctive models with maximum subset size of S 
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THEME 2: PROOFS TO FORMAL RESULTS THAT  

DISJUNCTION-OF-CONJUNCTION DECISION RULES NEST  

OTHER NON-COMPENSATORY DECISION RULES 

Result 1.  The following sets of rules are equivalent (a) disjunctive rules, (b) Subset(1)rules, and 

(c) DOC(1) rules. 

Proof. A disjunctive rule requires 1≥′ hjax rr ; a Subset(S) rule requires Sax hj ≥′ rr ; a DOC(S) rule 

requires 1≥′ hjwm rr .  Clearly the first two rules are equivalent with S = 1.  For DOC(1) recognize 

that all patterns are single aspects hence jmr  and hwr  correspond one-to-one with aspects and jmr  

can be recoded to match jxr  and hwr  can be recoded to match har . 

Result 2.  Conjunctive rules are equivalent to Subset(F) rules which, in turn, are a subset of the 

DOC(F) rules, where F is the number of features. 

Proof. A conjunctive rule requires Fax hj =′ rr  Setting S = F establishes the first statement. The 

second statement follows directly from Result 3 with S = F. 

Result 3.  A Subset(S) rule can be written as a DOC(S) rule, but not all DOC(S) rules can be 

written as a Subset(S) rule. 

Proof.  Sax hj ≥′ rr  holds if any S aspects are acceptable.  Therefore jxr  must match at least one 

pattern of length S.  Let  be the set of such patterns, then SΣ jxr  matches at least one element of 

. Consider the DOC(S) rule defined by whj = 1 for any pattern in SΣ SΣ .  The inequality 

Sax j′ h ≥
rr  holds if and only if 1≥′ hjwm rr , establishing that Subset(S) can be written as a DOC(S) 

rule.  By definition, a DOC(S) rule also includes patterns of size less than S, hence, Sax hj <′ rr  for 

some DOC(S) rules.  This establishes the second statement. 
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Result 4. Any set of considered profiles can be fit perfectly with at least one DOC rule. More-

over, the DOC rule need not be unique. 

Proof. For each considered profile, create a pattern of size F that matches that profile. This pat-

tern will not match any other profile because F aspects establishes a profile uniquely.  Create hwr  

such that whj = 1 for all such profiles and whj = 0 otherwise.  Then 1=′ hjwm rr  if profile j is consid-

ered and 0=′ hj wm rr  otherwise.  The second half of the proof is established by the examples in the 

text which establishes the existence of non-unique DOC rules. 
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THEME 3: HB ESTIMATION OF THE SUBSET CONJUNCTIVE,  
ADDITIVE, AND q-COMPENSATORY MODELS 

 
Subset Conjunctive Model (includes Disjunctive and Conjunctive) 

 All posterior distributions are known, hence we use Monte Carlo Markov chains 

(MCMC) with Gibbs sampling.  Recall that S is fixed.  

 ),,',','|Pr( 21 bbssaothersya fhhjhf ll

r θ .  We follow Gilbride and Allenby (2004, p. 404) 

and use a “Griddy Gibbs” algorithm.  For each h we update the acceptabilities, , aspect by 

aspect. For each candidate set of acceptabilities we compute the likelihood as if we kept all other 

acceptabilities constant replacing only the candidate .  The likelihood is based on Equation 5 

and the prior on the

lhfa

c
hfa l

lfθ ’s.  The probability of drawing  is then proportional to the likelihood 

times the prior summed over the set of possible candidates. 

c
hfa l

 ),,','|Pr( 21 bbsasy hhjfl
rθ .  The lfθ ’s are drawn successively, hence we require the mar-

ginal of the Dirichlet distribution – the beta distribution. Because the beta distribution is conju-

gate to the binomial likelihood, we draw lhfθ from ∑∑ −++
h hfh hf aaBeta )]1(6,6[ ll . 

 ).',','|,Pr( 21 ssasybb fhhj l

r θ  Because the beta distribution is conjugate to the binomial 

likelihood, we draw b1 from ∑∑ ≥′−≥′+
jh hjhjjh hjhj SaxySaxy

,,
)]()1(,)(Beta 1[ rrrr δδ  and we 

draw b2 from ∑∑ ′+
jh jhj xyBeta

,
(1[ <′−<

jh hjhjh SaxySa
,

)]()1(,) rrrr δ )(•δ , where δ is the indica-

tor function. 

 For the disjunctive model we set S = 1; for the fully conjunctive model we set S = 16, and 

for the subset conjunctive model we set S = 4.  
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Additive Model 

 Respondent h considers profile j if hjhjx εβ +′
rr is above a threshold.  Subsuming the 

threshold in the partworths, we get a standard logit likelihood function: 

   
hj

hj

x

x

hjhj
e

exy
β

β

β rr

rr
rr

′

′

+
==

1
),|1Pr(  

),|0Pr( hjhj xy β
rr

= = 1 - ),|1Pr( hjhj xy β
rr

=

0

r

. We impose a first-stage prior on  that is normally 

distributed with mean and covariance D.  The second stage prior on D is inverse-Wishart with 

parameters equal to I/(Q+3) and Q+3, where Q is the number of parameters to be estimated and I 

is an identity matrix.  We use diffuse priors on 

hβ
r

β

0β
r

.  Inference is based on a Monte Carlo Markov 

chain with 20,000 iterations, the first 10,000 of which are used for burn-in. 

q-Compensatory Model 

 Estimation is the same as in the additive model except we use rejection sampling to en-

force the constraint that the importance on any feature is no more than q times as large as any 

other feature. 

 

References for Theme 3 

Gilbride, Timothy J. and Greg M. Allenby (2004), “A Choice Model with Conjunctive, Disjunc-

tive, and Compensatory Screening Rules,” Marketing Science, 23(3), 391-406. 
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THEME 4: INTEGER PROGRAMMING ESTIMATION OF THE DOC, SUBSET CON-

JUNCTIVE, ADDITIVE, AND Q-COMPENSATORY MODELS 

 All mathematical programs were formulated to be as similar as feasible to DOCMP.  

CompMP and SubsetMP can be simplified with algebraic substitutions. We subsume the thresh-

old in the partworths estimated by CompMP. We set K to a number that is large relative to Th.  

For comparability and to be conservative, we set S = 4 in SubsetMP.  For disjunctive we set S = 

1 and for fully conjunctive we set S = 16. 

DOCMP:  hc

J

j
hjjhkjM

J

j
hjhjhjhj

hh

weMMyy
w

rr
rr

′+−++−+ ∑∑
=

+−

=

+− γξξγξξ
ξ 11

])1([])1([
},{

min

 

Subject to:   for all j = 1 to J +≤′ hjhj wm ξrr

      for all j = 1 to J −−≥′ hjhj wm ξ1rr

    ,  ≥  0,   +
hjξ −

hjξ hwr a binary vector 

    Allowable patterns have length at most S. 

SubsetMP:  SMMyy
Sa

c

J

j
hjjhkjM

J

j
hjhjhjhj

hh

γξξγξξ
ξ

+−++−+ ∑∑
=

+−

=

+−

11

])1([])1([
},,{

minrr

Subject to:      for all j = 1 to J +≤′ hjhj Sax ξrr

      for all j = 1 to J )1( −−≥′ hjhj Sax ξrr

    ,  ≥  0,   +
hjξ −

hjξ har a binary vector, S > 0, integer 

 8



CompMP:  hc

J

j
hjjhkjM

J

j
hjhjhjhj

hh

eMMyy βγξξγξξ
ξβ

rr
rr

′+−++−+ ∑∑
=

+−

=

+−

11

])1([])1([
},{

min

Subject to: ++≤′ hjhhj KTx ξβ
rr   for all j = 1 to J 

)1( −−≥′ hjhhj Tx ξβ
rr   for all j = 1 to J     

    ,  ≥  0,   +
hjξ −

hjξ hβ
r

 ≥ 0 

CompMP(q):  hc

J

j
hjjhkjM

J

j
hjhjhjhj

hh

eMMyy βγξξγξξ
ξβ

rr
rr

′+−++−+ ∑∑
=

+−

=

+−

11

])1([])1([
},{

min

Subject to: ++≤′ hjhhj KTx ξβ
rr   for all j = 1 to J 

)1( −−≥′ hjhhj Tx ξβ
rr   for all j = 1 to J     

    }]{min}{[max}{min}{max llllllll nnff q ββββ −≤−  for all f, n 

    ,  ≥  0,   +
hjξ −

hjξ hβ
r

 ≥ 0 
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THEME 5: KULLBACK-LEIBLER DIVERGENCE FOR CONSIDERATION DATA 

 To describe this statistic, we introduce additional notation. Let qj be the null probability 

that profile j is considered and let rj be the probability that profile j is considered based on the 

model and the observations.  The K-L divergence for respondent h is ∑ j jjj qrr ]/[ln{  + 

.  To use the K-L divergence for discrete predictions we let zhj and 

 be the indicator variables for validation

)]}1/()1[(ln)1( jjj qrr −−−

hjẑ  consideration, that is, zhj =1 if respondent h considers 

profile j and = 1 if respondent h is predicted to consider profile j.  They are zero otherwise. 

Let be the number of profiles considered in the estimation task.  Let and 

 be corresponding observed and predicted numbers for the validation task.  Let 

be the number of false negatives (observed as considered but predicted as 

not considered) and be the number of false positives (observed as not con-

sidered but predicted as considered).  (Fn and Fp are not to be confused with F, the number of 

features as used in the text.)  Substituting, we obtain the K-L divergence for a model being 

evaluated.  The second expression expands the summations and simplifies the fractions. 

hjẑ

∑=
j hje yC

∑=
j hjv zC ˆˆ

∑ −=
j hjhjn zzF )ˆ1(

∑=pF

∑ j hjz=vC

−
j hjhj zz ˆ)1(

K-L divergence = ∑∑
=

−

−
−−

−

=
−

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−−

+
−

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

−

0ˆ:
)(

ˆ
ˆ

ˆ

1ˆ:
)(

ˆˆ

ˆ

lnˆ
ˆ

lnˆlnˆlnˆ
ˆ

hj
e

v

nv

e

v

n

hj
e

v

p

e

v

pv

zj J
CJ
CJ

FCJ

v

nv

J
C

CJ
F

v

n

zj J
CJ
C

F

v

p

J
C
C

FC

v

pv

CJ
FCJ

CJ
F

C
F

C
FC

 

))(ˆ(
)ˆ(ln)ˆ(

)ˆ(
ln

)(ˆlnˆ
)ˆ(

ln)ˆ(
ev

nv
nv

ev

n
n

ev

p
p

ev

pv
pv CJCJ

FCJJFCJ
CCJ

JFF
CJC

JF
F

CC
FCJ

FC
−−

−−
−−+

−
+

−
+

−
−=
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The perfect-prediction benchmark sets hjhj zz ˆ= , hence Fn = Fp = 0 and .  The relative K-

L divergence is the K-L divergence for the model versus the null model, divided by the K-L di-

vergence for perfect prediction versus the null model. 

vv CC =ˆ
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 THEME 6:  GENERATION OF SYNTHETIC DATA 
FOR SIMULATION EXPERIMENTS 

Compensatory Rules (First Simulations, Data Chosen To Favor HB Estimation) 

We drew partworths from a normal distribution that was zero-mean except for the inter-

cept. The covariance matrix was I/2.  We adjusted the value of the intercept (to 1.5) such that re-

spondents considered, on average, approximately 8 profiles.  Profiles were identified as consid-

ered with Bernoulli sampling from logit probabilities. 

Compensatory Rules (Second Simulations, Data Chosen To Favor Machine Learning Es-

timation) 

Following Toubia, et. al. (2003) we drew partworths from a normal distribution with 

mean 50 and standard deviation 30, truncated to the range of [0, 100].  We adjusted the value of 

the intercept such that respondents considered, on average, approximately 8 profiles.  Profiles 

were identified as considered if they passed the threshold with probability b1 = 0.99.  If they did 

not pass the threshold, they were considered with probability b2 = 0.01.  We enforced the q-

compensatory constraint by rejection sampling. 

Subset Conjunctive Rules   

We drew each acceptability parameter from a binomial distribution with the same pa-

rameters for all features and levels. We adjusted the binomial probabilities such that respondents 

considered, on average, approximately 8 profiles.  This gave us S 4.  We set b1 = 0.95 and b2 = 

0.05 in the first set of simulations and b1 = 0.99 and b2 = 0.01 in the second set of simulations. 

Disjunctions of Conjunctions Rules  

We drew binary pattern weights from a Dirichlet distribution adjusting the marginal bi-

nomial probabilities such that respondents considered, on average, approximately 8 profiles.  

This gave us 0.025, 0.018, and 0.017 for S = 2 to 4.  We simulate consideration decisions such 
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that the probability of considering a profile with a matching pattern and the probability of con-

sidering a profile without a matching pattern is the same in the DOC rules as in the compensa-

tory and subset conjunctive rules.  In the first set of simulations we generated DOC rules for S ~ 

1, 2, 3, and 4 where S = 1 corresponds to disjunctive rules and S = 4 is similar to, but not identi-

cal to conjunctive rules.  In the second set of simulations we focused on S = 3 for simplicity. 
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THEME 7: SYNTHETIC DATA EXPERIMENTS 

 The focus of our paper is on the predictive ability of DOC-based models for the empirical 

GPS data.  One can also create synthetic respondents such that an estimation method that as-

sumes a particular decision rule does well when data are generated by that decision rule.  Be-

cause the synthetic data experiments are computational intensive we focus on key comparisons 

to provide initial perspectives.  Our simulations are not designed to explore every one of the ten 

benchmarks in the paper.  We encourage readers to explore synthetic-data experiments further. 

Simulations 1. Synthetic Data Chosen to Favor Hierarchical Bayes Specifications 

TABLE W1 
OUT-OF-SAMPLE HIT RATE IN FIRST SIMULATIONS 

(Each Estimation Method and Each Data-Generation Decision Rule) 

 Hit Rate for Indicated Estimation Method (%) 

Data Generation        
Decision Rule 

HB            
Compensatory

HB     
Subset(1) 

HB     
Subset(2) 

HB     
Subset(3) 

HB     
Subset(4) DOCMP 

Compensatory 74.6* 45.2 59.3 66.7 72.4 72.8 

Subset(2) 78.5 71.1 88.0* 85.4 80.3 84.5 

Subset(3) 78.6 61.3 81.9 87.2* 80.9 83.8 

Conjunctive [Subset(4)] 78.7 60.3 80.7 87.1 89.0* 89.2* 
Disjunctive  
[DOC(1), Subset(1)] 84.4 85.6 86.4 86.1 83.7 90.8* 

DOC(2) 77.6 70.6 76.1 78.6 78.8 87.0* 

DOC(3) 76.3 51.0 65.4 76.4 77.8 83.3* 

DOC(4) 74.8 53.7 65.8 75.0 76.9 82.9* 

*Best predictive hit rate, or not significantly different than the best at the 0.05 level, for that decision rule (row).  
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Simulations 2. Synthetic Data Chosen to Favor Machine Learning Specifications 

TABLE W2 
OUT-OF-SAMPLE HIT RATE IN SECOND SIMULATIONS 

(Each Estimation Method and Each Data-Generation Decision Rule) 

 Hit Rate for Indicated Estimation Method (%) 

Data Generation        
Decision Rule 

HB 
Add-
itive 

HB 
Conj-

unctive 

HB 
Disj-

unctive 

Comp-
MP     

(q = 4) 

DOC-
MP     

(S = 4) 

LAD-
DOC 
(∞,∞) 

LAD-
DOC  
(2, 4) 

Additive (q = 4) 80.6 83.3 74.5 81.5 87.8 83.8 79.2 

Conjunctive 79.9 87.9 59.6 76.7 88.6 87.1 87.3 

Disjunctive 79.1 58.8 86.0 78.7 82.1 83.5 80.3 

DOC 82.1 85.5 69.2 82.1 89.8 89.4 89.3 

 

TABLE W3 
OUT-OF-SAMPLE K-L DIVERGENCE PERCENTAGE IN SECOND SIMULATIONS 

(Each Estimation Method and Each Data-Generation Decision Rule) 

 K-L Divergence Percentage  for Indicated Estimation Method (%) 

Data Generation        
Decision Rule 

HB 
Add-
itive 

HB 
Conj-

unctive 

HB 
Disj-

unctive 

Comp-
MP     

(q = 4) 

DOC-
MP     

(S = 4) 

LAD-
DOC 
(∞,∞) 

LAD-
DOC  
(2, 4) 

Additive (q = 4) 6.9 24.2 22.1 20.0 39.9 29.7 25.4 

Conjunctive 8.1 40.5 16.1 14.2 42.5 39.9 39.9 

Disjunctive 6.5 14.9 37.4 21.8 29.0 29.5 26.7 

DOC 8.3 28.9 21.8 21.5 45.3 46.1 48.3 

 

Discussion of the Second Set of Simulations   

DOC-based estimation methods tend to predict best for data generated with DOC rules.  

Because DOC rules nest conjunctive and disjunctive rules, DOC-based estimation also predicts 

well for data generated by conjunctive and disjunctive rules.  The strong showing of DOCMP for 
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additive rules (q = 4) is a topic worth further exploration.  One untested hypothesis is that the 

strong showing might be due to the fact that the synthetic data is based on 4 features with S = 4, 

in contrast to the empirical GPS data which have 12 features with S = 4. 

We also did some preliminary exploration comparing CompMP (q = ∞) to CompMP (q 

=4).  As expected, the more-general unconstrained model, which nests some non-compensatory 

rules, tends to predict better than CompMP (q = 4) for the non-compensatory rules.  The mixed 

model, CompMP (q = ∞) also does well when we simulate a DOC (S = 3) model which has 

complex conjunctions.  As the generating model becomes more complex, the unconstrained 

models do well as paramorphic models.  These results are tangential to our focus on DOC-based 

estimation, but worth further exploration by readers wishing to explore variations among the 

benchmarks.   

In the empirical data most respondents were fit with DOC-based models that included 

only one conjunction. For example, for DOCMP, 7.1% of the “evaluate-all-profiles” respondents 

were fit with two conjunctions.  This is moderately close to our synthetic-data condition of con-

junctive respondents.  (In contrast, synthetic respondents generated with the DOC rule were al-

lowed up to three conjunctions.)  In the conjunctive domain, the DOC-based models predict best.  

The conjunctive model predicts better in the conjunctive domain than in our data because no syn-

thetic respondents have more than one conjunction.  For this domain, CompMP (q = ∞) achieves 

a predictive hit rate of 84.4% and a K-L percentage of 31.1%, which are good, but less than 

DOCMP, LAD, or conjunctive estimation. 

Finally, as in most synthetic-data experiments, it would be interesting to explore whether 

the results vary based on the various parameters used to generate synthetic respondents.  Such 

explorations are beyond the scope of this Web Appendix. 
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THEME 8.  RESULTS FOR ALTERNATIVE FORMATS 

Some of the models which performed poorly on the primary format are not included in 

Appendices 8, 9, and 10.  Although we have not yet run these benchmark models due to compu-

tational constraints, we expect no surprises from these models relative to those that have already 

been run.  Data are available should the reader wish to investigate these benchmark models fur-

ther.  In all cases at least one DOC-based model is best or not significantly different than best on 

both metrics. The additive machine-learning model is significantly worse on K-L percentages, 

but, on one format, matches the DOC-based models on hit rate. These results are consistent with 

the basic qualitative directions discussed in the text.  The sample sizes are evaluate-all-profiles 

(93), consider-only (135), reject-only (94), no-browsing (123), and text-only-evaluate-all-profiles 

(135). 
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TABLE W4 
EMPIRICAL COMPARISON OF ESTIMATION METHODS 

NO BROWSING FORMAT 
(Representative German Sample, Task Format in Theme 12) 

Estimation method Overall hit rate (%)† K-L divergence      
percentage (%) 

Hierarchical Bayes Benchmarks   

    Disjunctive  54.5 17.8 

    Subset Conjunctive  73.0 25.7 

    Additive 77.3 17.6 

Machine-Learning Benchmarks   

    Additive 78.8 26.1 

DOC-Based Estimation Methods   

    DOCMP 81.5* 34.1* 

    LAD-DOC 80.7* 32.6* 

† Number of profiles predicted correctly, divided by 32.   * Best or not significantly different than best at the 0.05 level. 
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TABLE W5 
EMPIRICAL COMPARISON OF ESTIMATION METHODS  

CONSIDER-ONLY FORMAT 
(Representative German Sample, Task Format in Theme 12) 

Estimation method Overall hit rate (%)† K-L divergence      
percentage (%) 

Hierarchical Bayes Benchmarks   

    Disjunctive  50.5 9.3 

    Subset Conjunctive  78.4 15.5 

    Additive 87.1 5.7 

Machine-Learning Benchmarks   

    Additive 88.6* 16.9 

DOC-Based Estimation Methods   

    DOCMP 88.6* 29.4* 

    LAD-DOC 88.4* 29.4* 

† Number of profiles predicted correctly, divided by 32.   * Best or not significantly different than best at the 0.05 level. 

 

 19



TABLE W6 
EMPIRICAL COMPARISON OF ESTIMATION METHODS – REJECT-ONLY FORMAT 

(Representative German Sample, Task Format in Theme 12) 

Estimation method Overall hit rate (%)† K-L divergence      
percentage (%) 

Hierarchical Bayes Benchmarks   

    Disjunctive  74.1 20.5 

    Subset Conjunctive  78.4 27.9 

    Additive 76.8 14.6 

Machine-Learning Benchmarks   

    Additive 81.5 31.7 

DOC-Based Estimation Methods   

    DOCMP 83.7* 42.1* 

    LAD-DOC 81.9 39.1* 

† Number of profiles predicted correctly, divided by 32.   * Best or not significantly different than best at the 0.05 level. 
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THEME 9.  RESULTS FOR THE US SAMPLE 

 We present here the results for the evaluate-all-profiles format.  Limited testing on the 

other formats (HB benchmarks only) are consistent with the results for the German sample and 

with the US results for the evaluate-all-profiles format. 

 The basic results from the US sample evaluate-all-profiles format are consistent with 

those from the German sample.  The biggest difference is that the US sample is based on a 

smaller sample size (38 respondents) and, hence, it is more difficult to establish statistical sig-

nificance.  DOC-based methods are significantly different than the additive machine-learning 

benchmark on the K-L percentage, but the additive machine-learning benchmark is not signifi-

cantly different than the DOC-based methods on hit rates.  The comparisons to the HB bench-

marks remain consistent. 

 
TABLE W7 

EMPIRICAL COMPARISON OF ESTIMATION METHODS US 
EVALUATE-ALL-PROFILES FORMAT 

(Representative German Sample, Task Format in Theme 12) 

Estimation method Overall hit rate (%)† K-L divergence      
percentage (%) 

Hierarchical Bayes Benchmarks   

    Disjunctive  61.2 20.6 

    Subset Conjunctive  72.7 26.6 

    Additive 78.9 19.4 

Machine-Learning Benchmarks   

    Additive 82.7* 30.0 

DOC-Based Estimation Methods   

    DOCMP 82.3* 36.5* 

    LAD-DOC 82.7* 36.0* 

 † Number of profiles predicted correctly, divided by 32.  * Best or not significantly different than best at the 0.05 level. 
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THEME 10: RESULTS FOR TEXT-ONLY FORMAT 
 

TABLE W8 
EMPIRICAL COMPARISON OF ESTIMATION METHODS 

TEXT-ONLY FORMAT 
(Representative German Sample, Task Format in Theme 12) 

Estimation method Overall hit rate (%)† K-L divergence      
percentage (%) 

Hierarchical Bayes Benchmarks   

    Disjunctive  43.7 11.2 

    Subset Conjunctive  72.4 21.3 

    Additive 78.4 13.9 

Machine-Learning Benchmarks   

    Additive 81.4* 26.9 

DOC-Based Estimation Methods   

    DOCMP 81.5* 30.5* 

    LAD-DOC 80.7 30.6* 

† Number of profiles predicted correctly, divided by 32. * Best or not significantly different than best at the 0.05 level. 
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THEME 11: DECISION TREES AND CONTINUOUSLY-SPECIFIED MODELS 

Decision Trees 

Decision trees, as proposed by Currim, Meyer and Le (1988) for modeling consumer 

choice, are compatible with DOC rules for classification data (consider vs. not consider).  In the 

growth phase, decision trees select the aspect that best splits profiles into considered vs. not 

considered.  Subsequent splits are conditioned on prior splits.  For example, we might split first 

on “B&W” vs. “color,” then split “B&W” based on screen size and split “color” based on 

resolution.  With enough levels, decision trees fit estimation data perfectly (similar to Result 4 in 

Theme 2), hence researchers either prune the tree with a defined criterion (usually a minimum 

threshold on increased fit) or grow the tree subject to a stopping criterion on the tree’s growth 

(e.g., Breiman, et. al. 1984).   

Each node in a decision tree is a conjunction, hence the set of all “positive” nodes is a 

DOC rule.  However, because the logical structure is limited to a tree-structure, a decision tree 

often takes more than S levels to represent a DOC(S) model.  For example, suppose we generate 

errorless data with the DOC(2) rule: (a ∧ b) ∨ (c ∧ d).  To represent these data, a decision tree 

would require up to 4 levels and produce either (a ∧ b) ∨ (a ∧ ¬b ∧ c ∧ d) ∨ (¬a ∧ c ∧ d) or 

equivalent reflections. Depending on the incidence of profiles, the decision tree might also pro-

duce (c ∧ d) ∨ (c ∧ ¬d ∧ a ∧ b) ∨ (¬c ∧ a ∧ b), which is also logically equivalent to (a ∧ b) ∨ (c 

∧ d).  Other logically equivalent patterns are also feasible. This DOC(3) rule is logically 

equivalent to (a ∧ b) ∨ (c ∧ d), but more complex in both the number of patterns and pattern 

lengths.  To impose cognitive simplicity we would have to address these representation and 

equivalence issues. 

As a test, we applied the Currim, Meyer and Le (1988) decision tree to the data in Table 
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2. We achieved a relative hit rate of 38.5% and a K-L divergence of 28.4%, both excellent, but 

not as good as those obtained with DOCMP and LAD-DOC estimation.  LAD-DOC (p = 0.002) 

and DOCMP (p = 0.01) are significantly better on relative hit rate.  LAD-DOC (p = 0.002) is 

significantly better and DOCMP is better (p = 0.06) on information percentage. While many 

unresolved theoretical and practice issues remain in order to best incorporate cognitive simplicity 

and market commonalities into decision trees, we have no reason to doubt that once these issues 

are resolved, decision trees can be developed to estimate cognitively-simple DOC rules. 

Continuously-Specified Models 

 Conjunctions are analogous to interactions in a multilinear model; DOC decision rules 

are analogous to a limited set of interactions (Bordley and Kirkwood 2004; Mela and Lehmann 

1995).  Thus, in principle, we might use continuous estimation to identify DOC decision rules.  

For example, Mela and Lehmann (1995) use finite-mixture methods to estimate interactions in a 

two-feature model.  In addition, continuous models can be extended to estimate “weight” 

parameters for the interactions and thresholds on continuous features. 

We do not wish to minimize either the practical or theoretical challenges of scaling 

continuous models from a few features to many features.  For example, without enforcing 

cognitive simplicity there are over 130,000 interactions to be estimated for our GPS application.  

Cognitive simplicity constrains the number of parameters and, potentially, improves predictive 

ability, but would still require over 30,000 interactions to be estimated.  Nonetheless, with 

sufficient creativity and experimentation researchers might extend either finite-mixture, 

Bayesian, simulated-maximum-likelihood, or kernel estimators to find feasible and practical 

methods to estimate continuously-specified DOC rules (Evgeniou, Boussios, and Zacharia 2005; 

Mela and Lehmann 1995; Rossi and Allenby 2003; Swait and Erdem 2007). 
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THEME 12: CONSIDER-ONLY, REJECT-ONLY, NO-BROWSING, TEXT-ONLY, EX-
AMPLE FEATURE-INTRODUCTION, AND INSTRUCTION SCREENSHOTS 

 Screenshots are shown in English, except for the text-only format.  German versions, and 

other screenshots from the surveys, are available from the authors.  
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