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Does Incomplete Spanning in International Financial 
Markets Help to Explain Exchange Rates?†

By Hanno Lustig and Adrien Verdelhan*

We assume that domestic ( foreign) agents, when investing abroad, 
can only trade in the foreign (domestic)   risk-free rates. In a 
 preference-free environment, we derive the exchange rate volatility 
and risk premia in any such incomplete spanning model, as well as a 
measure of exchange rate cyclicality. We find that incomplete span-
ning lowers the volatility of exchange rate, increases the risk premia 
but only by creating exchange rate predictability, and does not affect 
the exchange rate cyclicality. (JEL E32, F31, F44, G15)

Our paper focuses on three key exchange rate puzzles: the volatility puzzle 
of Brandt, Cochrane, and   Santa-Clara (2006); the cyclicality puzzle of Backus 
and Smith (1993); and the currency risk premium puzzle of Fama (1984). Along 
these three dimensions, the data are at odds with the standard international busi-
ness cycle and international asset pricing models that typically assume that financial 
markets are complete. In recent years, keeping the assumption that markets are com-
plete, a series of papers propose compelling resolutions of these three puzzles, based 
on the  long-run risk, the habit, or the disaster risk frameworks. While the models 
differ, they all assume that stochastic discount factors (SDFs) are highly correlated 
across countries, a feature that is difficult to test directly in the data because SDFs 
in these models depend on  hard-to-measure  long-run consumption, habit ratios, or 
disaster probabilities. In this paper, we pursue another route, relaxing the complete 
spanning assumption.

To what extent can incomplete spanning resolve the core exchange rate puzzles? 
We consider an extreme case, where the domestic (foreign) agents, when investing 
abroad, can only trade in the foreign (domestic)  risk-free rates. We find that even 
this extreme departure from complete spanning has limits: it can help match quan-
titatively the volatility of exchange rates in the data and the currency risk premium, 
but it has no impact on a broad measure of exchange rate cyclicality.
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To derive this  preference-free result, we make two key assumptions: (i) the exis-
tence of a  log-normal SDF in the space of traded assets in each country, (ii) the exis-
tence of a domestic and a foreign  risk-free rate in which the other country’s investors 
can invest. With these two assumptions, we can derive  closed-form expressions for 
the exchange rate volatility, cyclicality, and risk premia that are valid in any incom-
plete spanning model.

To do so, for any pair of log SDFs  m  and   m   ∗   that price the domestic and for-
eign assets from the perspective of respectively the domestic and foreign investors, 
we introduce a wedge  η  that reconciles the log change in exchange rates with the 
domestic and foreign SDFs:  Δs = η +  m   ∗  − m . These stochastic wedges, first 
introduced by Backus, Foresi, and Telmer (2001), can be interpreted as ratios of tax 
rates on exchange rate transactions that mimic the effects of market incompleteness 
in a complete markets world. Similar approaches have been used in the macroeco-
nomics literature, most notably in Chari, Kehoe, and McGrattan (2007). Complete 
markets is a special case, where the wedge is zero.

In our framework, four Euler equations have to hold simultaneously: the domestic 
investor can buy the domestic  risk-free asset and the foreign  risk-free asset (bearing 
there the exchange rate risk), while the foreign investor can buy the foreign  risk-free 
asset, as well as the domestic one (here again bearing the exchange rate risk). 
This is equivalent to assuming that foreign investors have unconstrained access to 
 one-period-ahead forward currency markets, but perhaps not to other asset markets. 
If domestic investors had access to more foreign assets, additional Euler equations 
would apply. Our four Euler equations imply some restrictions on the moments of 
the wedges  η , and these restrictions have some bite.

We find that the Euler equation restrictions imply that the volatility of exchange 
rates always decreases relative to the complete markets benchmark. In a log-nor-
mal world, the higher the volatility of the wedge, the lower the volatility of the 
exchange rate changes, thus helping to resolve the volatility puzzle. After matching 
the exchange rate volatility, the currency risk premium depends only on the first 
moment of the wedge. To increase the currency risk premium, incomplete spanning 
models need to introduce a predictable component in the exchange rate changes. 
The impact of the Euler equation restrictions on the exchange rate cyclicality is even 
starker.

We define the exchange rate cyclicality by the comovement of exchange rate 
changes with the difference in SDFs,   m   ∗  − m . We find that, in a regression of the 
difference in log SDFs on the log changes in exchange rates, the slope coefficient is 
1, as in complete markets. To link this theoretical result to the data, we need to depart 
from a pure  preference-free approach. In a representative agent model with power 
utility, our cyclicality measure would be the comovement between exchange rate 
changes and relative consumption growth rates, as in the seminal Backus and Smith 
(1993) contribution. We do not need those extreme assumptions though. When com-
paring our theory to the data, we simply assume that aggregate consumption growth 
is a useful proxy for the SDF. In other words, we assume that SDFs are large in bad 
times, as for example in most existing  macro-finance models. In that case, our find-
ing shows that the home currency depreciates when the home investor experiences 
better times than the foreign investor. Incomplete spanning models that satisfy our 
two assumptions deliver the same cyclicality slope coefficient as complete spanning 
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models. This cyclicality slope coefficient is puzzling when confronted to macroeco-
nomic variables and the current state of our knowledge on exchange rates.

To confront our theoretical results with the data, we make one additional 
assumption: the log domestic and foreign SDFs, m and   m   ∗  , are volatile, in order 
to reproduce the Sharpe ratio on aggregate equity and currency markets. We con-
sider all possible  cross-country correlations between m and   m   ∗  . As an example, 
the volatility of the log SDF has to be around 50 percent to match the equity risk 
premium, and a  cross-country correlation of 0.5 would be a large value consider-
ing the  cross-country correlation of any macroeconomic variables at quarterly or 
annual frequency.

With these volatile SDFs, we turn to the exchange rate volatility, risk premium, 
and cyclicality. First, the volatility of the wedge has to be very close to the vol-
atility of the log SDFs in order to match the exchange rate volatility. When the 
 cross-country correlation of the SDFs is 0.99, there is no need to introduce any 
wedge to match the volatility of exchange rate. But for any  cross-country correla-
tion of SDFs below 0.8, the wedge has to exhibit a volatility of at least 30 percent. 
Second, in a model where the domestic and foreign log SDFs have the same volatil-
ity, the log currency risk premium is zero when markets are complete. Introducing 
a drift of 4 percent in the wedge thus help match the currency risk premium. This 
result is valid for any correlation of the log SDFs: once the model matches the 
exchange rate volatility, the currency risk premia in logs as in levels only depend 
on the first moment of the wedge. To obtain a large currency risk premium without 
exchange rate predictability, one needs to start with some home and foreign SDFs 
of different volatilities. Third, the cyclicality slope coefficient is 1, as already noted, 
no matter the SDF volatilities or SDF correlations or wedges. By increasing the 
currency risk premium, the wedge then naturally increases, in absolute values, the 
covariance between the SDF and the exchange rate changes. In this sense, cyclical-
ity even worsens: exchange rates tend to decrease in bad times, even more so than 
in complete markets.

Our results so far pertain to a  log-normal world. They are not, however, a simple 
rejection of  log-normality. Relaxing our first assumption and considering higher 
moments of the wedges and SDFs, we derive restrictions on currency wedges 
in terms of their entropy and  co-entropy (as defined in Backus, Chernov, and 
Boyarchenko 2016) with the pricing kernels, as well as  closed-form expressions 
for the exchange rate entropy and risk premia. Even in this general case, increases 
in the volatility of the exchange rate changes go hand in hand with decreases in 
currency risk premia. The only way to counteract the decrease of the risk premium 
brought about by the decrease in exchange rate volatility is to impute a large 
 non-stationary component in the exchange rate changes through a large drift in the 
stochastic currency wedge.

We end the paper with  model-specific examples of our general results, and 
a look at the incomplete market models through the lenses of our assumptions. 
We consider the extension of the simple  consumption capital asset pricing model 
(CAPM) to jumps and to dynamic asset pricing models. While one cannot rule out 
the existence of a  non-Gaussian model that would match the three exchange rate 
puzzles simultaneously thanks to incomplete spanning, we do not know of such a 
model. In a calibrated version of the benchmark Merton (1976) and consumption 
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disaster model, however, we find that the introduction of incomplete spanning 
of the consumption disasters cannot address the three puzzles simultaneously. In 
a large class of dynamic asset pricing models, the  higher-order moments of the 
currency wedge are related to its first moment by no-arbitrage restrictions, always 
lowering currency market risk premia and Sharpe ratios. Thus, in a large class of 
models, under our trading assumption, the first moment of the wedge is not a free 
parameter. Finally, we show that the existing incomplete market models do not 
satisfy our theoretical or empirical assumptions.

Literature Review.—The exchange rate volatility, cyclicality, and forward pre-
mium puzzles highlight the limits of most international economics models that 
assume that the menu of contingent claims spans all states of the world, following 
the seminal work of Lucas (1982). The three puzzles are the subject of a very 
large literature, with literally hundreds of contributions published in the last 30 
years. We briefly review the puzzles before turning to the existing solutions. (i) 
Hansen and Jagannathan (1991) show that stochastic discount factors have to be 
highly volatile in order to reproduce observed equity premia. As Brandt, Cochrane, 
and  Santa-Clara (2006) point out, stochastic discount factors must be almost per-
fectly correlated in order to match the comparatively low exchange rate volatility 
in the data. But macroeconomic variables exhibit low correlations across countries. 
(ii) When markets are complete and agents have constant relative risk aversion 
preferences, changes in exchange rates must be perfectly correlated with relative 
consumption growth rates in the domestic and foreign economies. As was first 
pointed out by Kollmann (1991) and Backus and Smith (1993), the low correlation 
in the data is therefore surprising. (iii) As documented by Tryon (1979), Hansen 
and Hodrick (1980), and Fama (1984), interest rate differences do not predict sub-
sequent changes in exchange rates, thus giving rise to large deviations from the 
uncovered interest rate parity condition and currency carry trade risk premia. The 
size of currency risk premia represents a challenge for many models in interna-
tional economics.

Colacito and Croce (2011, 2013), as well as Colacito et al. (2018a, b), Bansal 
and Shaliastovich (2013), Farhi and Gabaix (2016), Gabaix and Maggiori (2015), 
and Stathopoulos (2017) address the aforementioned puzzles in models respectively 
based on  long-run risk preferences, rare disaster risk, segmented markets, or habit 
preferences. The  long-run risk models assume or infer that the slow moving com-
ponents of consumption growth are almost perfectly correlated across countries.1 
The disaster risk model assumes that exchange rates exhibit a low probability of a 
large depreciation. The segmented market models assume a very large correlation 
between exchange rate changes and the consumption growth of the market par-
ticipants. Since we find that incomplete spanning can only go so far in explaining 

1 In these models, the SDFs are volatile enough to reproduce the equity premium and the forward premium 
puzzles, but, thanks to their  long-run risk components, the SDFs are almost perfectly correlated such that exchange 
rates are as volatile as in the data. Since the volatility of the SDFs is mostly due to the  long-run risk components, 
not to the consumption growth shocks, the correlation between exchange rates and relative consumption growth 
rates is low, as in the data. The  long-run risk components are, however, difficult to measure in the data and most evi-
dence is drawn indirectly from asset prices and not macroeconomic quantities, or are the predictions of models with 
endogenous diffusion of technology, as in Croce, Nguyen, and Schmid (2012) or Gavazzoni and Santacreu (2015).
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exchange rate puzzles, our paper implicitly argue in favor of more empirical work 
along the lines suggested by the recent contributions to the international finance 
literature.

Building on Brandt, Cochrane, and  Santa-Clara (2006) and Backus, Foresi, and 
Telmer (2001), our paper also complements a growing literature in international 
economics and finance that study exchange rates in incomplete markets. There is a 
wealth of empirical evidence that investors act as if they face an incomplete menu of 
assets abroad, either because of explicit transactions and capital controls, or because 
of other frictions (Lewis 1995). Notable recent theoretical contributions include the 
work by Alvarez, Atkeson, and Kehoe (2002, 2009); Chari, Kehoe, and McGrattan 
(2002); Bacchetta and van Wincoop (2006); Corsetti, Dedola, and Leduc (2008); 
Pavlova and Rigobon (2010, 2012); Bruno and  Shin (2015); Maggiori (2017); 
Gabaix and Maggiori (2015); and Favilukis, Garlappi, and Neamati (2015). Instead 
of specifying a  fully-fledged international economics model as these authors do, 
we seek results that are valid for any stochastic discount factors. Sandulescu, 
Trojani, and Vedolin (2018) estimate the exchange rate wedges by comparing the 
 minimum-variance SDFs that account for different sets of international returns.

The rest of this paper is organized as follows. Section I presents our main theo-
retical results. Section II then studies the quantitative implications of our results and 
thus the ability of incomplete spanning models to match the exchange rate volatility, 
the currency risk premium, and the exchange rate cyclicality. Section III applies our 
 preference-free results to some  model-specific examples and compares our assump-
tions to recent incomplete market models. Section IV concludes. All the proofs are 
presented in the online Appendix.

I. Theoretical Results

In this section, we first define our notation, then derive key restrictions on incom-
plete market models imposed by the tradeability of  risk-free bonds, and finally study 
their implications for three major moments of exchange rates.

A. Notation

We start by defining some notation. All variables are functions of states, not just 
of time, but we use a time subscript as shorthand when clear. We define  M  and   M   ∗   
as functions that map the states of nature into the positive real line. Our goal is to 
place restrictions on the moments of these variables, moments with clear empirical 
counterparts. To do so, we assume that  M  and   M   ∗   are the domestic and foreign SDFs 
that satisfy the Euler equations for the domestic and foreign returns:

(1)   E t    ( M t+1    R t+1  )  = 1 ,

(2)   E t    ( M  t+1  ∗    R  t+1  ∗  )  = 1 ,
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where   R  t+1  ∗    represents the foreign return expressed in units of foreign currency, 
while   R t+1    denotes the domestic return, expressed in units of the domestic cur-
rency.2 More generally,   x   ∗   denotes a foreign variable expressed in units of foreign 
currency.

We then introduce a wedge  η  that reconciles the log change in exchange rates 
with the difference in log SDFs. Throughout the paper, lower case letters denote 
natural logarithms. The log changes of the exchange rate is thus

(3)  Δ  s t+1   =  η t+1   +  m  t+1  ∗   −  m t+1   ,

where   S t    denotes the nominal exchange rate in domestic currency (e.g., US dollars) 
per unit of foreign currency. When   S t    increases, the foreign currency appreciates 
and the US dollar depreciates. We define variables in nominal terms, but a similar 
analysis applies to real variables.3 The wedge   η t+1    links the actual exchange rates to 
the difference in the log SDFs.

When asset markets are complete, the stochastic discount factor is unique.4 In this 
case, the wedge   η t+1    is 0. To see this clearly, note that when markets are complete, 
the domestic and foreign investor’s Euler equations apply for any foreign return   R  t  ∗  :

(5)   E t   ( M t+1     
 S t+1   _  S t  

    R  t+1  ∗  )  = 1 ,

(6)   E t    ( M  t+1  ∗    R  t+1  ∗  )  = 1 .

Since the stochastic discount factor is unique when markets are complete, then   
M  t+1  ∗   =  M t+1  (  S t+1  / S t   ) , and in logs,  Δ  s t+1   =  m  t+1  ∗   −  m t+1  .  In models that feature 
complete spanning, one can thus back out the implied changes in exchange rates 
from the stochastic discount factors at home and abroad. Equivalently, one can start 

2 If the law of one price holds in financial markets and investors can form portfolios freely, then a unique 
stochastic discount factor exists in the space of traded assets (see Ross 1978, Cochrane 2005, for a textbook expo-
sition). But there are cases when investors cannot form portfolios freely (e.g., in the presence of  short-selling 
constraints) or when the law of one price in financial markets fails, and thus the existence of a stochastic discount 
factor is not guaranteed.

3 Among developed countries, in the absence of high and volatile inflation rates, the three exchange rate puzzles 
that we study in the paper exist on both nominal and real variables: the volatilities of real and nominal exchange 
rates are similar, and so are their correlations with macroeconomic variables and their risk premia. When dealing 
with real variables, in a world with multiple goods, we would choose one good in each country to be the numéraire;   
S t    would then denote the real exchange rate, expressed in units of the domestic numéraire, per unit of the foreign 
numéraire; and   M t    would be expressed in the domestic numéraire. Our analysis allows for different consumption 
baskets at home and abroad.

4 Markets are complete when investors can invest in any contingent claim, either directly or by synthesizing 
contingent claims using other securities. In other words, markets are complete when securities’ payoffs span all the 
possible states of nature. Suppose that there are  N  possible states of nature tomorrow. Each contingent claim is a 
security that pays one dollar in one state  n  only tomorrow;  pc(n)  is its price today. Each asset is defined by the set  X  
of its payoffs in each state of nature. Let  x(n)  denote an asset’s payoff in state  n , then the asset price  P(X )  must satisfy

(4)  P (X )  =  ∑ 
n
  

 

    pc (n) x (n)  =  ∑ 
n
  

 

    π (n)    
pc (n) 

 _____ 
π (n) 

      x (n)  = E (MX)  ,

where the last equality is simply a definition of the stochastic discount factor  M . When markets are complete, the 
stochastic discount factor is clearly unique.
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from the domestic (or foreign) stochastic discount factor and the rate of change in 
exchange rates, and then derive the implicit foreign (domestic) SDF. When goods 
markets are not frictionless or domestic and foreign agents consume different goods, 
then real exchange rates vary in equilibrium even if financial markets are themselves 
frictionless.

In the case of the  Breeden-Lucas-Rubenstein representative agent model with 
power utility, then the real log pricing kernel is   m t+1   = log δ − γΔ  c t+1    where  γ  
denotes the coefficient of relative risk aversion,  δ  denotes the rate of time preference, 
and  Δ  c t+1    denotes log aggregate consumption growth. Similarly, the foreign log 
pricing kernel is   m  t+1  ∗   = log  δ   ∗  −  γ   ∗ Δ c  t+1  ∗   . The econometrician can test this model 
by gathering data on aggregate consumption growth at home and abroad. This is, 
however, only an example: in this paper, we seek to derive  model-free results. Note 
that  M  and   M   ∗   are equilibrium outcomes that vary with the asset structure and the 
models, but our results are valid for any pair of  M  and   M   ∗  .

Our  wedge-based approach comes from the work of Backus, Foresi, and Telmer 
(2001) who, in their study of currency risk premia, define new "perturbed" SDFs 
denoted    M ˆ    t+1  ∗   :

(7)    M ˆ    t+1  ∗   =  M  t+1  ∗   exp ( η t+1  )  =  M t+1     
 S t+1   _  S t  

   . 

When markets are incomplete, the stochastic discount factor is not unique: under 
certain conditions, a unique stochastic discount factor exists in the space of traded 
assets, but many others potentially exist outside that space. Each wedge   η t+1    thus 
defines a potential stochastic discount factor. This alternative view is equivalent to 
our approach, where we start from any pair of SDFs and define the wedge to match 
the exchange rate. In the online Appendix, we show how our results do not change 
when we project the SDFs onto the space of traded payoffs, which includes the 
domestic and the foreign  risk-free, and then use projections in the analysis. The 
exchange rate depends on the wedge, and hence fundamentally determines the space 
of traded payoffs.

B. Assumptions

To show how spanning restrictions in general may help understand exchange 
rates, we make two assumptions.

ASSUMPTION 1: We assume that the log domestic and foreign stochastic discount 
factors,  m  and   m   ∗  , and the wedge  η  are jointly normal.

The log-normality assumption delivers clear  closed-form solutions. Note, how-
ever, that this assumption is restrictive. It rules out, for example, wedges that are 
driven by several  non-independent Gaussian processes (potentially linked to, for 
example,  un-spanned labor income and housing risks): if the processes are not jointly 
normal, their sum does not follow a normal distribution. We relax this assumption at 
the end of this section to derive more general results.
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ASSUMPTION 2: We assume that there exists a  risk-free asset at home and abroad 
that can be bought and sold by both domestic and foreign investors.

Risk-free bonds are freely traded. This is our key assumption. Domestic investors 
can trade the foreign  risk-free asset, and  vice versa, the foreign investor can invest in 
the domestic  risk-free asset. In other words, Assumption 2 is reminiscent of the cov-
ered interest parity: if investors can invest at the domestic and foreign  risk-free rates, 
then forward rates (scaled by the current spot rate) are simply equal to the interest 
rate differences across countries. The covered interest parity condition is a very 
accurate description of the data, up to but not after the recent financial crisis (see Du, 
Tepper, and Verdelhan 2018). All the puzzles we study, however, existed before the 
recent financial crisis, at a time when the covered interest parity held tightly in the 
data. This is not to say that (i) financial markets were necessarily integrated before 
the crisis, or (ii) that Assumption 2 is necessarily verified in practice or in all mod-
els:  risk-free rates may not exist, notably in emerging markets, and capital controls 
or other frictions may prevent the covered interest parity arbitrage, as notably in 
the recent work of Gabaix and Maggiori (2015),  Schmitt-Grohé and Uribe (2016), 
Farhi and Werning (2017), Amador et al. (2017), and Itskhoki and Mukhin (2017). 
These incomplete market models do not satisfy Assumption 2.

We turn now to the implications for the wedge  η  of the Assumptions 1 and 2.

C. The Restrictions on the Wedge

Based on our definition of exchange rates, the domestic investor’s Euler equation 
for foreign assets, and the foreign investor’s Euler equation for the domestic assets are

(8)   E t   ( M t+1     
 S t+1   _  S t  

    R  t+1  ∗  )  =  E t   ( M  t+1  ∗   exp ( η t+1  )   R  t+1  ∗  )  = 1 ,

(9)   E t   ( M  t+1  ∗      S t   _  S t+1  
    R t+1  )  =  E t   ( M t+1   exp (− η t+1  )   R t+1  )  = 1 .

Since the  risk-free payoffs are in the space of traded assets for all investors, domes-
tic and foreign, the  risk-free returns satisfy not only the Euler equations (1) and (2), 
but also equations (8) and (9). These four Euler equations applied to  risk-free rates 
impose some conditions on the wedge  η , summarized in the following proposition.

PROPOSITION 1: Under Assumptions 1 and 2, when the exchange rate change is  
Δ  s t+1   =  η t+1   +  m  t+1  ∗   −  m t+1   , then the wedge   η t+1    satisfies

(10)   cov t   ( m  t+1  ∗  ,  η t+1  )  = − E t    ( η t+1  )  −   1 _ 
2
    var t   ( η t+1  ) , 

(11)   cov t   ( m t+1  ,  η t+1  )  = − E t    ( η t+1  )  +   1 _ 
2
    var t   ( η t+1  ) , 
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where   E t   ( η t+1  )   satisfies additional regularity restrictions.5

Hence, there are limits as to how much incomplete markets noise we can intro-
duce. For example, when the exchange rate wedge has a conditional mean of zero 
 ( E t   ( η t+1  ) = 0) , the amount of noise is bounded above by the following two 
conditions:

  2min ( std t   ( m t+1  ) ,  std t   ( m  t+1  ∗  ) )  ≥  std t   ( η t+1  )  ,

   std t   ( m  t+1  ∗   −  m t+1  )  ≥  std t   ( η t+1  )  .

The upper bound on the wedge’s volatility has a simple economic counterpart. 
Recall that the standard deviation of the log SDF measures the maximal Sharpe ratio 
among traded assets, defined as the ratio of expected excess returns to their volatili-
ties. This  well-known result derives directly from the Euler equation in a log-normal 
world;   E t   ( M t+1    R t+1  ) = 1  implies that

(12)    
 E t   ( R t+1   −  R  t  f   )   _  

 std t   ( R t+1  ) 
   ≤  std t    ( m t+1  ) , for any return  R t+1  . 

The maximal volatility of the wedge is thus linked to the maximal Sharpe ratio 
among traded assets.

Naturally, if foreign investors can invest in other domestic assets, this will give 
rise to additional restrictions on the wedges. For example, if the foreign investor’s 
can trade an additional risky asset, then the wedges cannot covary with these risky 
returns  ( r t+1  ,  r  t+1  ∗  ) :

(13)   cov t   ( r  t+1  ∗  ,  η t+1  )  = 0 =  cov t   ( r t+1  ,  η t+1  ) . 

Likewise, in dynamic asset pricing models, the drift term of the wedge imputed to the 
exchange rate process is not a free parameter but is instead determined by no arbi-
trage condition. We ignore these additional constraints, which may further limit the 
explanatory power of incomplete spanning models. Instead, we now turn to three key 

5 These restrictions are

  − E t    ( η t+1  )  ≤  std t   ( η t+1  )  ( std t   ( m  t+1  
∗  )  +   1 __ 

2
    std t   ( η t+1  ) ) , when  E t   ( η t+1  )  ≤ −  1 __ 

2
    var t    ( η t+1  )  ,

   E t    ( η t+1  )  ≤  std t   ( η t+1  )  ( std t   ( m  t+1  
∗  )  −   1 __ 

2
    std t   ( η t+1  ) ) , when  E t   ( η t+1  )  ≥ −  1 __ 

2
    var t    ( η t+1  )  ,

   E t    ( η t+1  )  ≤  std t   ( η t+1  )  ( std t   ( m t+1  )  +   1 __ 
2
    std t   ( η t+1  ) ) , when  E t   ( η t+1  )  ≥   1 __ 

2
    var t    ( η t+1  )  ,

 −  E t    ( η t+1  )  ≤  std t   ( η t+1  )  ( std t   ( m t+1  )  −   1 __ 
2
    std t   ( η t+1  ) ) , when  E t   ( η t+1  )  ≤   1 __ 

2
    var t    ( η t+1  )  ,

   std t   ( η t+1  )  ≤  std t   ( m  t+1  
∗   −  m t+1  )  , everywhere.
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moments of exchange rates, volatility, risk premia, and cyclicality, and in each case 
derive their values in incomplete market models that let agents trade  risk-free bonds.

D. Key Theoretical Implications

First, we find that the volatility of the exchange rate decreases relative to the com-
plete spanning benchmark  one-for-one with the volatility of the wedge, as noted in 
the following corollary.

COROLLARY 1: Under Assumptions 1 and 2, when the exchange rate change is 
 Δ  s t+1   =  η t+1   +  m  t+1  ∗   −  m t+1   , the volatility of exchange rates is given by

   var t    (Δ  s t+1  )  =  var t    ( m t+1  )  +  var t    ( m  t+1  ∗  )  − 2 cov t   ( m t+1  ,  m  t+1  ∗  )  −  var t    ( η t+1  )  .

This result follows directly from the covariance restrictions in equations (10) and 
(11) that imply   cov t   ( m  t+1  ∗   −  m t+1  ,  η t+1  ) < 0 . Since the wedges comove negatively 
with the log difference in SDFs, they offset the effect of  m  and   m   ∗  , and thus reduce 
the overall volatility of the exchange rate.

Second, we turn to the currency risk premium. When markets are complete, 
the log currency risk premium established in Bekaert (1996); Bansal (1997); and 
Backus, Foresi, and Telmer (2001) is simply  1/2 [ var t   ( m t+1  ) −  var t   ( m  t+1  ∗  )] . When 
markets are incomplete, the drift of the wedge affects the log currency risk premium, 
and the volatility of the wedge affects the currency risk premia in levels, as noted in 
the following corollary.

COROLLARY 2: Under Assumptions 1 and 2, when the exchange rate change is 
 Δ  s t+1   =  η t+1   +  m  t+1  ∗   −  m t+1   , then the currency risk premium in logs on a long 
position in foreign currency is

   E t   [r x  t+1  FX  ]  ≡  r  t  f,∗  −  r  t  f  +  E t   (Δ  s t+1  ) 

 =   1 _ 
2
   [ var t   ( m t+1  )  −  var t   ( m  t+1  ∗  ) ]  +  E t   ( η t+1  ) . 

The currency risk premium in levels on a long position in foreign currency is given by

  E t   [r x  t+1  FX  ]  +   1 _ 
2
    var t   [r x  t+1  FX  ]  = − cov t    ( m t+1  , Δ  s t+1  ) 

 =  var t   ( m t+1  )  −  cov t   ( m  t+1  ∗  ,  m t+1  )  −   1 _ 
2
    var t    ( η t+1  )  +  E t   ( η t+1  ) . 

The currency risk premium in levels, from the perspective of the foreign investor, is 
given by

  E t   [−r x  t+1  FX  ]  +   1 _ 
2
   var t   [r x  t+1  FX  ]  = − cov t   ( m  t+1  ∗  , −Δ  s t+1  ) 

 =  var t   ( m  t+1  ∗  )  −  cov t   ( m  t+1  ∗  ,  m t+1  )  −   1 _ 
2
   var t   ( η t+1  )  −  E t   ( η t+1  ) . 
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Market incompleteness wedges can increase currency risk premia, but only at the 
cost of introducing exchange rate predictability through an increase in the drift.

Third, we turn now to the exchange rate cyclicality. Its usual definition is the 
correlation of exchange rate changes with consumption, output, or employment 
growth rates. With constant relative risk aversion (CRRA) preferences, for example, 
complete markets imply a perfect correlation between relative consumption growth 
rates and exchange rate changes. To preserve the  model-free aspect of our work, we 
define the exchange rate cyclicality in more general terms, that naturally encom-
pass the usual definition. To do so, we assume that stochastic discount factors are 
large in bad times, as in all existing  macro-finance models. For our purpose, the 
exchange rate cyclicality is thus measured by the correlation of exchange rates with   
m   ∗  ,  m , or their difference. Complete markets imply, perhaps counterintuitively, that 
the home currency depreciates in relatively good times for home investors. Under 
Assumptions 1 and 2, incomplete market models are no different.

COROLLARY 3: Under Assumptions 1 and 2, when the exchange rate change is  
Δ  s t+1   =  η t+1   +  m  t+1  ∗   −  m t+1   , then the covariance between the difference in log 
stochastic discount factors   m   ∗  − m  and the change in exchange rates in incomplete 
markets is  non-negative and equal to the variance of exchange rates:

   cov t   ( m  t+1  ∗   −  m t+1  , Δ  s t+1  )  =  cov t   ( m  t+1  ∗   −  m t+1  ,  η t+1  )  +  var t   ( m  t+1  ∗   −  m t+1  ) 

 =  var t   ( m  t+1  ∗   −  m t+1  )  −  var t   ( η t+1  ) 

 =  var t   (Δ  s t+1  )  ≥ 0. 

As a result, the slope coefficient in a regression of   m   ∗  − m  on exchange rate 
changes is equal to 1, its value when markets are complete:

   β  cyclicality   ≡   
 cov t   ( m  t+1  ∗   −  m t+1  , Δ  s t+1  )    __________________  

 var t   (Δ  s t+1  ) 
   = 1. 

Only the correlation would decrease,

   corr t    ( m  t+1  ∗   −  m t+1  , Δ  s t+1  ) 

   =   
 √ 

_______________________________________
       var t    ( m t+1  )  +  var t    ( m  t+1  ∗  )  − 2 cov t    ( m t+1  ,  m  t+1  ∗  )  −  var t    ( η t+1  )         ____________________________________________     

 √ 
______________________________

     var t    ( m t+1  )  +  var t    ( m  t+1  ∗  )  − 2 cov t    ( m t+1  ,  m  t+1  ∗  )   
   ≤ 1. 

Complete markets imply a perfect correlation between the difference in log sto-
chastic discount factors and the log change in exchange rates. Corollary 3 shows 
that the impact of incomplete spanning on measures of exchange rate cyclicality 
is limited for three reasons. First, incomplete spanning does not change the sign 
of the covariance between exchange rate changes and the difference in log sto-
chastic discount factors spanned by asset markets. Even in incomplete markets, 
as soon as agents can trade in  risk-free bonds, exchange rates will depreciate 
when the home investor experience better times than the foreign investor. In a 
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 utility-based framework, those times, however, are defined by the marginal utility 
spanned by asset markets, whereas the total marginal utility of the investor may 
be high or low. Second, incomplete spanning does not change the slope coefficient 
in a regression of the difference in log stochastic discount factors on exchange 
rate changes; it is equal to 1, as in complete markets. Third, incomplete spanning 
decreases only one measure of the cyclicality: the correlation between exchange 
rates and the stochastic discount factor, and it clearly does it only because of the 
volatility of the wedge and thus at the cost of a lower Sharpe ratio on the currency 
risk premium.

E. Non-Normality

Corollaries 1, 2, and 3 are our key  preference-free results. Some of these results 
can be extended to an environment with  non-Gaussian shocks. To do so, we use 
a different,  entropy-based measure of risk. The conditional entropy of a random 
variable   X t+1    is equal to   L t   ( X t+1  ) = log  E t   ( X t+1  ) −  E t   (log  X t+1  ) . If the random 
variable   X t+1    is log normally distributed, then its entropy is equal to one-half of 
its variance. In general, entropy measures all higher order cumulants   κ i    of  log X : 
  L t   ( X t+1  ) =  κ 2t  /2! +  κ 3t  /3! +  κ 4t  /4! + ⋯ . Similarly, following Backus, 
Boyarchenko, and Chernov (2018), the  co-entropy is defined as   L t   ( X t+1    Y t+1  ) − 
 L t   ( X t+1  ) −  L t   ( Y t+1  ),  which is a natural measure of the covariation. This measure is 
zero if the variables are conditionally independent. Using these measures of risk, we 
derive an analog to Proposition 1 in the case of  non-Gaussian shocks.

PROPOSITION 2: Under Assumption 2, when the exchange rate change is  Δ  s t+1   
=  η t+1   +  m  t+1  ∗   −  m t+1   , then the wedge  η  satisfies the following restrictions:

   E t    ( η t+1  )  −  L t    ( e   − η t+1   )  =  L t    ( M t+1    e   − η t+1   )  − L  ( M t+1  )  −  L t    ( e   − η t+1   ) , 

  − E t    ( η t+1  )  −  L t    ( e    η t+1   )  =  L t    ( M  t+1  ∗    e    η t+1   )  − L  ( M  t+1  ∗  )  −  L t    ( e    η t+1   ) , 

and where the trend   E t    (η t+1  )  satisfies

  − E t    ( η t+1  )  ≤ log  E t    ( M t+1    e   − η t+1   )  −  E t   log ( M t+1  ) , 

   E t    ( η t+1  )  ≤ log  E t    ( M  t+1  ∗    e    η t+1   )  −  E t   log ( M  t+1  ∗  ) , 

   E t    ( η t+1  )  ≤ log  E t   (   M  t+1  ∗   _  M t+1    e   − η t+1     )  −  E t   log (   M  t+1  ∗   _  M t+1  
  ) . 

These  η -conditions are the exact equivalent of the covariance conditions in the 
log-normal case. When the stochastic discount factor and the wedge are jointly 
log-normal, as in Assumption 1, one recovers the same conditions derived in 
Proposition 1.
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We now compare the entropy of the incomplete markets exchange rates to the 
entropy of the complete markets version, denoted   L t    ( M  t+1  ∗  / M t+1  )  , in the following 
corollary, a clear counterpart to Corollary 1 in the log-normal case.

COROLLARY 4: Under Assumption 2, when the exchange rate change is  Δ  s t+1   
=  η t+1   +  m  t+1  ∗   −  m t+1   , then its entropy is

   L t   (   S t+1   _  S t  
  )  =  L t   (   M  t+1  ∗    e    η t+1    _  M t+1  

  ) 

 =  L t   (   M  t+1  ∗   _  M t+1  
  )  −  E t    ( η t+1  )  + log  E t   (   M  t+1  ∗   _  M t+1    e   − η t+1     )  − log  E t   (   M  t+1  ∗   _  M t+1  

  ) . 

Hence, the difference between the entropy of the exchange rate change in incomplete 
versus complete markets is equal to

  Δ  L t   =  L  t  IM  −  L  t  CM  = − E t    ( η t+1  )  + log  E t   (   M  t+1  ∗   _  M t+1    e   − η t+1     )  − log  E t   (   M  t+1  ∗   _  M t+1  
  ) . 

The change in entropy of exchange rates introduced by incomplete spanning is 
tightly linked to the change in currency risk premia. To see this point, let us first 
define the currency risk premium when shocks are  non-Gaussian. Backus, Foresi, 
and Telmer (2001) show that the complete markets’ risk premium in logs is simply   
L t    ( M t+1  )  −  L t    ( M  t+1  ∗  )  . The complete markets’ risk premium in levels is thus given by

   E t   [r x  t+1  FX  ]  +  L t   (   S t+1   ___  S t  
  )  =  L t    ( M t+1  )  −  L t    ( M  t+1  ∗  )  +  L t   (   M  t+1  ∗   _  M t+1  

  ) . 

The following proposition describes the risk premium with incomplete spanning; it 
is the counterpart to Corollary 2.

COROLLARY 5: Under Assumption 2, when the exchange rate change with incom-
plete spanning is  Δ  s t+1   =  η t+1   +  m  t+1  ∗   −  m t+1   , then the risk premium in logs on a 
long position in foreign currency is

   E t   [r x  t+1  FX  ]  =  L t    ( M t+1  )  −  L t    ( M  t+1  ∗  )  +  E t    ( η t+1  ) . 

The risk premium in levels on a long position in foreign currency ( from the perspec-
tive of the domestic investor) is given by

   E t   [r x  t+1  FX  ]  +  L t    (   S t+1   ___  S t  
  )  =  L t    ( M t+1  )  −  L t    ( M  t+1  ∗  )  +  E t    ( η t+1  )  +  L t   (   M  t+1  ∗    e    η t+1    _  M t+1  

  ) . 
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The difference between the currency risk premium in incomplete versus complete 
markets is thus related to the changes in exchange rate entropy introduced by the 
incomplete spanning,

  ΔR P t   = R P  t  IM  − R P  t  CM  = Δ  L t   +  E t    ( η t+1  ) . 

In the symmetric case, where the drift of the wedge is zero (  E t    ( η t+1  )  = 0 ), a 
decrease in the entropy of the exchange rate leads to a commensurate decrease in 
the foreign currency risk premium. When the drift of the wedge is not zero, it may be 
possible to lower the entropy of exchange rates without lowering their risk premia.

While Corollaries 4 and 5 offer a clear link between the entropy and risk premia of 
exchange rates, there is no equivalent result for their cyclicality. In a  preference-free 
setting, we are not able to bound the  co-entropy of exchange rates and stochastic 
discount factors. As a result, the tension that we highlight in the log-normal case 
cannot be formally expressed here. As entropy depends on an infinite sum of higher 
moments, it may be possible to pick some higher moments that affect the  co-entropy 
of exchange rates and stochastic discount factors without affecting much the entropy 
of the exchange rates or the currency risk premium. We do not know of such a 
model, but we cannot mathematically rule out its existence.

To build some intuition, we extend our Gaussian case to a case where the SDFs 
and the wedge are characterized by their first three moments: mean, variance, and 
skewness, while the higher moments are close to zero. Note that all the higher 
moments cannot be exactly equal to zero, as no such distribution would exist.6 We 
focus on the first three moments (and not just two moments as for a normal distribu-
tion) only to illustrate how additional moments can help resolve the puzzles. We use  
≃  signs instead of equal signs to remind the readers that the other higher moments 
cannot be exactly zero. In this case, under Assumption 2, the two conditions on the 
moments of the wedge  η  (implied by the four Euler equations that characterize the 
domestic and foreign  risk-free assets held by the domestic and foreign investors) are

  0 ≃  E t    ( η t+1  )  +   1 _ 
2
    var t    ( η t+1  )  +  cov t    ( m  t+1  ∗  ,  η t+1  )  +   1 _ 

6
    skew t    ( m  t+1  ∗   +  η t+1  ) , 

  0 ≃ − E t    ( η t+1  )  +   1 _ 
2
    var t    ( η t+1  )  −  cov t    ( m t+1  ,  η t+1  )  +   1 _ 

6
    skew t    ( m t+1   −  η t+1  ) . 

If the skewness is zero (and all the higher moments are exactly zero, as for a normal 
distribution), we recover the same expressions as in equations (10) and (11). Taking 
the skewness into account, the variance of the exchange rate is now

   var t    (Δ  s t+1  )  ≃  var t    ( m  t+1  ∗   −  m t+1  )  −  var t    ( η t+1  ) 

 −   1 _ 
3
    skew t    ( m  t+1  ∗   +  η t+1  )  −   1 _ 

3
    skew t    ( m t+1   −  η t+1  ) . 

6 The authors thank Mike Chernov for pointing this out and providing the following reference: Curto and Fialkow 
(1991). Skewness is a natural starting point. Downside risk in fundamentals generates positive skewness in SDFs. 
In the data, Lettau, Maggiori, and Weber (2014) find that downside risk explains a large  cross section of equity, 
currency, and bond returns. 
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The skewness terms are novel compared to Corollary 1. The covariance between 
exchange rate changes and the relative log SDFs is

  cov ( m  t+1  ∗   −  m t+1  , Δ  s t+1  )  ≃  var t    (Δ  s t+1  )  +   1 _ 
6
    skew t    ( m  t+1  ∗   +  η t+1  ) 

 +   1 _ 
6
    skew t    ( m t+1   −  η t+1  ) . 

Again, the skewness terms are novel compared to Corollary 3. If the skewness 
terms are positive and help decrease the volatility of the exchange rates below the 
complete markets’ benchmark (thus helping to address the Brandt, Cochrane, and 
 Santa-Clara 2006 puzzle), they will increase the  comovement between exchange 
rates and relative log SDFs, thus amplifying the exchange rate disconnect puzzle. 
If the kurtosis of the SDFs and wedge is also nonzero, then both skewness and 
kurtosis will affect the volatility and cyclicality of the exchange rates. In that case, 
one could imagine, for example, that the kurtosis of the wedge would help reduce 
the volatility of exchange rates, while its skewness would decrease the exchange 
rate cyclicality.

In the class of  non-normal models often used in the option pricing and 
 macro-finance literature, however, we show that the tension we highlighted in the 
Gaussian case applies: introducing incomplete spanning to decrease the volatility 
of exchange rates also decreases the currency risk premium and implies counterfac-
tual links between stochastic discount factors and exchange rate changes. Yet, since 
these results are  model-specific, we leave them for the last section of the paper and 
focus for now on bringing our  preference-free theoretical results to the data.

II. Quantitative Implications: Addressing Three Stylized Facts

In this section, we study the ability of incomplete spanning models to match 
simultaneously three facts: the volatility, the cyclicality, and the risk premium on 
exchange rates. We start with a brief overview of these moments in the data.

A. Empirical Facts

We consider 15 developed countries: Australia, Belgium, Canada, Denmark, 
France, Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden, 
Switzerland, the United Kingdom, and the United States. All exchange rates are 
defined with respect to the US dollar. Data are quarterly, over the 1973:IV– 2014:IV 
period. Table 1 reports some  well-known stylized facts.

We start with the exchange rate volatility. Across all the countries, the average 
annualized volatility is 11 percent in this sample (Panel A of Table 1). It is precisely 
estimated, with a standard error (obtained by bootstrapping) of 0.4 percent, and 
there are only small variations across countries: the  cross-sectional standard devi-
ation is 1.6 percent. There is no statistical difference between the volatility of real 
and nominal exchange rates. This is the moment of the data that is the most precisely 
known.

We turn now to the exchange rate risk premium. In the data, as Panel B of Table 
1 reports, the average carry trade excess return is 4.4 percent, implying a Sharpe 
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Table 1—Exchange Rate Puzzles

Cross-country Cross-country Cross-country Cross-country
Mean SD Min Max

Panel A. Volatility
  σ Δs   11.21 1.57 6.23 12.70

(0.44) (0.22) (0.56) (0.61)
  σ Δq   11.12 1.64 6.21 12.81

(0.44) (0.20) (0.48) (0.59)

 corr (Δc, Δ  c   ∗ )  0.17 0.10 0.02 0.35
(0.05) (0.02) (0.07) (0.08)

Equity Sharpe ratio 0.22 0.12 0.00 0.48
(0.15) (0.04) (0.15) (0.21)

Time-series mean Time-series SD
Time-series 
Sharpe ratio

Panel B. Risk premium

 r x  t+1  FX   4.42 8.73 0.51
(1.36) (0.97) (0.19)

 r x  t+1  FX   +   1 _ 2   var [r x  t+1  FX  ]  
4.80 8.73 0.55

(1.32) (0.98) (0.19)

 − r x  t+1  FX   +   1 _ 2   var [r x  t+1  FX  ]  
−4.04 8.73 −0.46
(1.40) (0.98) (0.20)

Cross-country Cross-country Cross-country Cross-country
Mean SD Min Max

  β UIP   −0.26 0.63 −1.28 1.10
(0.47) (0.17) (0.51) (0.60)

Cross-country Cross-country Cross-country Cross-country
Mean SD Min Max

Panel C. Cyclicality

 corr (Δq, Δc − Δ  c   ∗ )  −0.07 0.09 −0.22 0.14
(0.05) (0.03) (0.07) (0.10)

  β Backus-Smith   −0.01 0.02 −0.03 0.02
(0.01) (0.00) (0.01) (0.02)

 corr (− Δq, Δ  c   ∗ )  −0.02 0.12 −0.21 0.24
(0.03) (0.03) (0.07) (0.09)

Notes: The table reports summary statistics on three exchange rate puzzles. Panel A focuses on the exchange rate 
volatility. It reports the cross-country mean of the bilateral nominal and real exchange rate volatilities, along with 
the cross-country standard deviation of the bilateral exchange rate volatilities and the corresponding minimum and 
maximum values across countries. Panel A also reports similar moments for the correlation between US and for-
eign consumption growth rates and equity Sharpe ratios on MSCI country indices. Panel B focuses on the exchange 
rate risk premium. It reports the time-series mean carry trade excess return, its time-series standard deviation and its 
Sharpe ratio (obtained as the ratio of the mean excess return to its standard deviation). The excess returns are either 
in logs, or in levels, from the perspective of the US or foreign investor. Finally, panel B reports the slope coeffi-
cient in a regression of exchange rate changes on the foreign minus domestic interest rate difference. Excess returns 
are annualized (multiplied by 4) and reported in percentages. The standard deviation on the carry trade returns in 
annualized (multiplied by 2) and reported in percentages. The countries are sorted by the level of their short-term 
nominal interest rates into four portfolios. The exchange rate risk premium corresponds to the average carry trade 
excess return obtained by borrowing in low-interest rate currencies (i.e., shorting the first portfolio) and investing in 
high-interest rate currencies (long the last portfolio). Panel C focuses on the exchange rate cyclicality. It reports sim-
ilar moments for the correlation between the changes in real exchange rates and the relative consumption growth, the 
slope coefficient in a regression of relative consumption growth rates on exchange rate changes and a constant, and 
for the correlation between the changes in real exchange rates and the foreign consumption growth. Data are quar-
terly, over the 1973:IV–2014:IV period. The panel consists of 15 countries: Australia, Belgium, Canada, Denmark, 
France, Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom, and 
United States. The standard errors (reported between brackets) were generated by block-bootstrapping 10,000 sam-
ples, each block containing two quarters.
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ratio of 0.5. To obtain the estimate of the carry trade excess return, the countries are 
sorted by the level of their  short-term nominal interest rates into four portfolios. The 
exchange rate risk premium corresponds to the average carry trade excess return 
obtained by borrowing in  low-interest rate currencies (i.e., shorting the first port-
folio) and investing in  high-interest rate currencies (long the last portfolio). Larger 
average currency risk premia and Sharpe ratios can be obtained on larger sets of 
countries (Lustig and Verdelhan 2007).

We end with the exchange rate cyclicality. If we again assume that SDFs are high in 
bad times, complete markets imply that the foreign currency appreciates in bad times 
for foreign investors, while the home currency depreciates in good times for domestic 
investors. This implication of complete markets is sometimes viewed as undesirable 
and counterintuitive (e.g., the Argentine peso depreciated in 2002, clearly not during 
great times in Argentina), although not always rejected by the data (e.g., the Japanese 
yen appreciated after the 2011 tsunami in Japan). To be more precise requires a model 
of the SDF and its drivers. Historically, a large literature assumes that the SDFs are 
driven by consumption growth shocks. In the data, as shown in Panel C of Table 1, 
the corresponding unconditional correlation between exchange rate changes and 
relative consumption growth rates is not statistically different from zero. This is the 
Kollmann (1991) and Backus and Smith (1993) puzzle. Likewise, the unconditional 
correlation between changes in exchange rates and foreign consumption growth or the 
slope coefficient in a regression of relative consumption growth rates on exchange rate 
changes and a constant are also not statistically different from zero. Since exchange 
rate changes do not seem to comove significantly with any macroeconomic variables, 
it seems fair to assume that the cyclicality of exchange rates is empirically zero.

To sum up, we focus on three facts about exchange rates: (i) a standard deviation 
of 11 percent, (ii) a currency risk premium of around 4 percent, and (iii) a cycli-
cality close to zero. The high equity Sharpe ratio imposes some restrictions on the 
volatility of SDFs.

B. Volatile SDFs

To study the ability of incomplete spanning models to match quantitatively these 
three facts, we need to pin down some moments of the SDFs. We make one addi-
tional assumption.

ASSUMPTION 3: We assume that the log domestic and foreign stochastic discount 
factors,  m  and   m   ∗  , are volatile enough to match the equity risk premium.

Recall that the standard deviation of the SDF measures the maximum Sharpe ratio 
in a log-normal world. We assume that the maximum Sharpe ratio is 0.5, in line with 
the equity premium in the United States over a long sample and the currency risk pre-
mium in our sample. A maximum Sharpe ratio of 0.50 is a conservative estimate: while 
MSCI indices that track the unconditional returns on large firms exhibit relatively low 
Sharpe ratios, many investment strategies (e.g., conditional on firms’ characteristics or 
using different asset classes) deliver Sharpe ratios well beyond 0.5. Many hedge funds 
would claim to attain Sharpe ratios above 1. We maintain our conservative estimate 
of the maximum Sharpe ratio, as any larger values further raise the bar for incomplete 
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spanning models. In the main text, we assume that the home and foreign SDFs exhibit 
the same volatility (0.5) but consider different volatilities in the online Appendix.

We consider all possible  cross-country correlations between the log domestic 
and foreign stochastic discount factors. In the data, the correlation of consumption 
growth rates varies between 0.02 and 0.35 as shown in Panel A of Table 1. In this 
respect, a  cross-country correlation of 0.5 between  m  and   m   ∗   appears high. Yet, to 
test the robustness of our results, we consider a range of correlation, from 0 to 0.99.

With these targets in mind, we turn now to the implied exchange rate moments 
across incomplete market models.

C. Exchange Rate Volatility

We want to match an 11 percent per annum volatility of exchange rate changes. 
Corollary 1 implies that we can simply back out the volatility of the wedge needed 
to match the volatility of exchange rates in the data,

   var t    ( η t+1  )  =  var t    ( m t+1  )  +  var t    ( m  t+1  ∗  )  − 2 cov t    ( m t+1  ,  m  t+1  ∗  )  −  0.11   2 . 

This equals the difference between the variance of the complete market exchange 
rates implied by the stochastic discount factors and the target variance. Figure 1 
plots the necessary volatility of the wedge to match the actual exchange rate vola-
tility for different values of the  cross-country correlation of the SDFs. For example, 
under Assumption 3 and with a  cross-country correlation of 0.5, the wedge must 
have a standard deviation of 49 percent per annum (  std t    ( η t+1  )  = 0.49 ), close to the 
maximum Sharpe ratio. If the  cross-country correlation of the SDFs decreases from 
0.5 to 0, then one needs an even more volatile wedge:   std t    ( η t+1  )   increases to 70 per-
cent. When the  cross-country correlation is 0.99, there is no need to introduce any 
wedge to match the volatility of exchange rate. But for any  cross-country correlation 
of SDFs below 0.8, the wedge has to exhibit a volatility of at least 30 percent.

As Figure 1 shows, the results do not change much with the targeted volatility: 
the conclusion is similar for targets that are one standard deviation above or below 
the mean exchange rate volatility. The figure is drawn assuming a maximum (annu-
alized) Sharpe ratio of 0.50. For higher values, the volatility of the wedge increases. 
In a nutshell, incomplete spanning helps with the volatility puzzle, but for the usual 
macroeconomic  cross-country correlations, the volatility of the wedges is of the 
same order of magnitude as the maximum Sharpe ratio. The first moment of the 
wedge is here irrelevant.

D. Currency Risk Premia

We turn now to the currency risk premium. Once we match the exchange rate 
volatility, the currency risk premium no longer depends on the correlation between 
the home and foreign stochastic discount factors. As already noted, the log currency 
risk premium in complete markets is simply  1/2 [ var t    ( m t+1  )  −  var t    ( m  t+1  ∗  ) ]  . Under 
Assumptions 1 and 2, when markets are incomplete, the currency risk premia in 
logs as well as in levels, from the perspective of the home and foreign investors, are
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   E t   [r x  t+1  FX  ]  =   1 _ 
2
   [ var t    ( m t+1  )  −  var t    ( m  t+1  ∗  ) ]  +  E t    ( η t+1  ) , 

   E t   [r x  t+1  FX  ]  +   1 _ 
2
   var t   [r x  t+1  FX  ]  =   1 _ 

2
   var t   (Δ s t+1  )  +   1 _ 

2
   [ var t   ( m t+1  )  −  var t   ( m  t+1  ∗  ) ]  +  E t   ( η t+1  )  ,

  E t   [−r x  t+1  FX  ]  +   1 _ 
2
   var t   [r x  t+1  FX  ]  =   1 _ 

2
   var t   (Δ s t+1  )  −   1 _ 

2
   [ var t   ( m t+1  )  −  var t   ( m  t+1  ∗  ) ]  −  E t   ( η t+1  ) . 

Figure 2 plots the theoretical currency risk premium in logs and levels and its 
empirical counterpart. The parameters are identical to those in Figure 1, matching an 
exchange rate volatility of 11 percent. The currency risk premia are plotted against 
the first moment of the wedge,   E t   ( η t+1  ) , ranging from  −5 percent  to  5 percent .

First, when the disturbance  η  is  mean-zero (  E t   ( η t+1  ) = 0 ), incomplete spanning 
does not introduce any  non-predictability in exchange rates. In this case, the effects of 
the  η  perturbations are completely identical for the home and foreign countries. This is 
a natural benchmark case to consider. In this case, the risk premia, in logs as in levels, 
are the same as in complete markets. In a symmetric model, where the volatilities of 
the home and foreign SDFs are the same, the log currency risk premium is zero, and 
the currency risk premia in levels are small, equal to one-half of the exchange rate 
variance. Without introducing exchange rate predictability, such incomplete spanning 
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Figure 1. Matching Exchange Rate Volatility: The Volatility of the Wedge 
versus the  Cross-Country Correlation of SDFs

Notes: The figure reports the volatility of wedge, denoted   std t   ( η t+1  )  , that is needed to match the volatility of the 
changes in the log exchange rate, against the  cross-country correlation of domestic and foreign SDFs, denoted 
  corr t    ( m t+1  ,  m  t+1  ∗  )  . The figure is drawn assuming a maximum Sharpe ratio of 0.50 in both countries (  std t   ( m t+1  )  
= 0.50  and   std t    ( m  t+1  ∗  )  = 0.50 ). The average volatility of exchange rates,   std t    (Δ  s t+1  )  , in our sample is 11 percent 
(blue line). The figure also plots (black lines) the same relationship for exchange rate volatilities one  cross-country 
standard deviation (1.6 percent) above and below the  cross-country mean volatility (11 percent).
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models that match the exchange rate volatility cannot match the actual currency risk 
premia.

Then, when the drift of the wedge increases, the theoretical currency risk pre-
mium tends toward its empirical counterpart. For a wedge of 5 percent, the theoret-
ical currency risk premium matches the actual value. Such a drift, however, implies 
that exchange rate changes are predictable, while in the data, exchange rates are 
hard to predict. Among developed countries over the  post-Bretton Woods period, 
exchange rates look like random walk without drift. Thus, how big could the drift 
of the wedge be?

Recent theoretical and empirical work in asset pricing sheds some light on this 
question. In theory, the expected changes in exchange rates come from the expected 
difference in stochastic discount factors and the expected value of the wedge. Alvarez 
and Jermann (2005) decompose the pricing kernel in a martingale component (denoted   
M  t+1  P   ) and a transitory component (denoted   M  t+1  T   ):   M t+1   =  M  t+1  P    M  t+1  T   , where  
  E t    ( M  t+1  P  )  = 1  and   M  t+1  T    is the inverse of the holding period return on an infinite 
maturity bond. The drift of the wedge is then equal to the  cross-country difference 
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Figure 2. Currency Risk Premia

Notes: The figure reports the foreign currency risk premium in logs (left panel), as well as in levels, from the per-
spective of the home investor (center panel) or foreign investor (right panel), against the first moment of the incom-
plete market wedge, denoted   E t    ( η t+1  )  . The figure is drawn assuming a maximum Sharpe ratio of 0.50 in both 
countries (  std t    ( m t+1  )  = 0.50  and   std t    ( m  t+1  ∗  )  = 0.50 ). The volatility of the wedge,   std t    ( η t+1  )  , is chosen to match 
the empirical volatility of the exchange rate changes (11 percent). The red dotted line shows each moment in a 
complete market model with the same SDF volatilities. The gray area indicates the value of the average carry trade 
excess return in the data: it is centered around the mean log excess return (4.4 percent, left panel) or the mean excess 
return from the perspective of the home and foreign investor (4.8 percent and  −4.0 percent  in the center and right 
panels); the area represents one standard error (1.3 percent) above and below the mean.
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in holding period returns of infinite maturity bonds ( hp r  t+1  ∞   ) once converted in the 
same units, and the difference in entropy of the martingale components of the SDF,7

   E t   [ η t+1  ]  =  E t   [Δ  s t+1  ]  +  E t   [hp r  t+1  ∗,∞ ]  −  E t   [hp r  t+1  ∞  ]  +  L t   ( M  t+1  P∗  )  −  L t    ( M  t+1  P  )  .

When the last two terms cancel out, for example when permanents shocks are the 
same across countries (  M  t+1  P∗   =  M  t+1  P   ), then the drift of the wedge is pinned down 
by the difference in holding period returns. Using  10-year bonds as proxies for the 
 long-term bonds, Lustig, Stathopoulos, and Verdelhan (2017) find that this differ-
ence is not statistically significant  post-Bretton Woods among developed countries. 
Thus, in this case, the drift should be zero.8

As we shall see, introducing a positive drift, while boosting risk premia, does not 
help with exchange rate cyclicality.

E. Exchange Rate Cyclicality

Figure 3 plots different measures of exchange rate cyclicality against the drift of 
the wedge. The parameters are the same as for Figures 1 and 2, where the volatility 
of the wedge is chosen to match the volatility of the exchange rate changes.

The left panel reports the cyclicality slope obtained in a regression of exchange 
rate changes on the difference between the foreign and home SDFs. As shown in 
Corollary 1, the cyclicality slope is the same in incomplete and complete markets 
under Assumptions 1 and 2, and thus equal to 1. Incomplete spanning models do 
not help addressing the cyclicality puzzle when agents trade  risk-free bonds in a 
log-normal world.

The right panel reports the correlation between the log home SDF and the change 
in the exchange rates,   corr t    (Δ  s t+1  ,  m t+1  )  . In complete markets, as already noted, 
the home currency appreciates when the home country experiences difficult times, 
as encoded in a large SDF:   corr t    (Δ  s t+1  ,  m t+1  )   is thus negative. For large values of 
the drift that help match the currency risk premium, incomplete spanning models 
reinforce this unappealing feature:   corr t    (Δ  s t+1  ,  m t+1  )   is even more negative than 
in complete market models. In this case, the incomplete market model is even less 
attractive than its complete market counterpart.

7 Start from the definition of the wedge in equation (3) and introduce the decomposition of the SDF:

   E t   [Δ s t+1  ]  =  E t   [ η t+1  ]  +  E t   [ m  t+1  
∗  ]  −  E t   [ m t+1  ]  

  =  E t   [ η t+1  ]  +  E t   [ m  t+1  
P∗  ]  −  E t   [ m  t+1  

P  ]  +  E t   [ m  t+1  
T∗  ]  −  E t   [ m  t+1  

T  ] . 

As usual, lower letters denote logs. Since the permanent component is a martingale, then   E t    ( m  t+1  P  )  = − L t    ( M  t+1  P  )  , 
where   L t    denotes the entropy of a variable (  L t    ( M  t+1  P  )  = 0.5 var t    ( m  t+1  P  )   in the case of a Gaussian SDF). By construc-
tion of the SDF decomposition,   E t   [ m  t+1  T  ]  = − E t   [hp r  t+1  ∞  ]  . 

8 Overall, either  long-term bond returns are more predictable than we know, or the drift in the wedge has to be 
equal to the risk premium of the permanent shocks. For example, a risk premium of 8 percent in the United States 
and 13 percent in a foreign country, if purely driven by permanent shocks to the SDFs, would entail a drift of 5 per-
cent. In the data, average aggregate equity returns tend to be higher in the United States than in other developed 
countries, suggesting that the drift may be close to 0 if not negative.
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The tight link between exchange rate cyclicality and currency risk premia is inde-
pendent from the  cross-country correlation of SDFs, as shown below:

   corr t    ( m t+1  , Δ  s t+1  )  =   
 cov t    ( m t+1  , Δ  s t+1  )   _______________  

 std t   ( m t+1  )  std t   (Δ  s t+1  ) 
   

 = −   
 E t   [r x  t+1  FX  ]  +   1 _ 2    var t   [r x  t+1  FX  ] 

   __________________  
 std t    ( m t+1  )  std t   (Δ  s t+1  ) 

   =   −S R  t  FX  _ 
 std t    ( m t+1  ) 

   , 

where  S R   FX   denotes the Sharpe ratio on the currency risk premium. Note that this 
expression is valid in complete and incomplete markets. As we lower the correlation 
between exchange rates and the home stochastic discount factor, we also lower the 
currency Sharpe ratios proportionally. When the correlation is zero, the risk pre-
mium is zero. To change the sign of this correlation, one would need to write a 
model with negative currency risk premia.

Overall, incomplete spanning models where agents trade  risk-free bonds in 
a log-normal world may help match the volatility of exchange rate changes, but 
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Figure 3. Exchange Rate Cyclicality

Notes: The figure reports the slope coefficient in a regression of the difference in log SDFs,   m  t+1  ∗   −  m t+1    on the log 
change in exchange rates (left panel) and the correlation between the log home SDF and the change in the exchange 
rates,   corr t    ( m t+1  , Δ  s t+1  )  , (right panel) against the first moment of the incomplete market wedge, denoted   E t    ( η t+1  )  . 
The red dotted line shows the values of these three moments when markets are complete. The figure is drawn assum-
ing a maximum Sharpe ratio of 0.50 in both countries (  std t    ( m t+1  )  = 0.50  and   std t    ( m  t+1  ∗  )  = 0.50 ).
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they then only increase the exchange rate risk premia at the cost of introducing 
exchange rate predictability, and they do not improve the exchange rate cyclicality. 
To illustrate these general results, we turn now to some specific models.

III.  Model-Specific Examples

In this section, we first consider some  model-specific examples of our general 
framework, from the simple  consumption-CAPM model to its extension to jumps 
and to dynamic asset pricing models. We end the paper with a brief review of the 
existing incomplete market models of exchange rates as seen through the lenses of 
our general results.

A. A Simple  Consumption-CAPM Example

In the tradition of Lucas (1982), consider a model in which the domestic and 
foreign representative agents have power utility with risk aversion coefficient  γ . 
The domestic aggregate consumption growth  Δc  consists of a standard Gaussian 
component  w ∼ N (μ,  σ   2 )  . The same applies to foreign consumption growth:   
w   ∗  ∼ N ( μ   ∗ ,  σ   2,∗ )  . The domestic and foreign consumption growth rates are thus

(14)  Δ  c t+1   =  w t+1  , 

(15)  Δ  c  t+1  ∗   =  w  t+1  ∗  , 

where the correlation of domestic and foreign shocks is   ρ w, w   ∗    . Assume that the 
incomplete market wedge takes the form:   η t+1   = γ  d t+1   , where  d ∼ N ( μ d  ,  σ  d  2 )  . 
The correlations between the initial consumption growth shocks and the wedge are 
denoted   ρ w,d    and   ρ  w   ∗ ,d   . In this case, Proposition 1 implies that the wedges satisfy

(16)   μ d   =  γ   2   σ  d  2 /2 +  ρ w, d    γ   2  σ σ d  , 

(17)  − μ d   =  γ   2   σ  d  2 /2 −  ρ  w   ∗ , d    γ   2   σ   ∗  σ d  . 

With only two consumption growth innovations, the only interesting case is as fol-
lows: the domestic investor cannot invest in any foreign risky asset. If the foreign 
investor could invest in more assets, then the additional covariance restrictions in 
equation (13) would apply, and markets would be complete.9 We thus focus on the 
case where investors can only invest in  risk-free bonds.

Volatility.—In the absence of wedges, the volatility of the exchange rate changes is   
γ   2   σ   ∗2  +  γ   2  σ   2  − 2 γ   2   ρ w, w   ∗    σ σ   ∗  . Adding the wedge, as shown in Corollary 1, reduces 

9 These conditions imply that   d t+1    is orthogonal to   w t+1    and   w  t+1  ∗   , because the log return on the domestic (for-
eign) risky asset is affine in the domestic (foreign) innovation. The additional covariance restrictions in equa-
tion (13),   ρ w,d   = 0  and   ρ  w   ∗ ,d   = 0 , combined with equations (16) and (17), imply that   σ d   = 0  and   μ d   = 0 . We 
are back in the case of complete markets:   η t+1   = 0 .
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the exchange rate variance by   γ   2  σ  d  2  . The unspanned shocks   d t+1    are  countercyclical, 
i.e., negatively correlated with domestic consumption growth, and as a result, always 
reduces the exchange rate’s volatility.

Cyclicality.—The  Backus-Smith correlation coefficient is given by

  corr t   (Δ c t+1   − Δ c  t+1  ∗  , Δ  s t+1  )  =   
 √ 

___________________________
     γ   2  σ   ∗,2  +  γ   2  σ   2  − 2 γ   2  ρ w, w   ∗    σ σ   ∗  −   (γ  σ d  )    2       _____________________________    

 √ 
_____________________

    γ   2  σ   ∗,2  +  γ   2  σ   2  − 2 γ   2  ρ w, w   ∗    σ σ   ∗   
   ≥ 0 .

The correlation is smaller than 1, its complete markets value, but always positive. In 
the symmetric case where the drift   μ d    is zero, the unspanned risk is always negatively 
correlated with domestic consumption growth, as implied by equation (16), and posi-
tively correlated with foreign consumption growth, as implied by equation (17).

Risk Premium.—When markets are complete, the currency risk premium in levels 
(defined from the perspective of the home investor) is given by   γ   2   σ   2  −  γ   2  ρ w, w   ∗    σ  σ   ∗  . 
Likewise, the currency risk premium in levels, this time defined from the perspective 
of the foreign investor, is equal to   γ   2   σ   ∗2  −  γ   2  ρ w, w   ∗    σ σ   ∗ .  When markets are incom-
plete, the currency risk premia change. The difference in the currency risk premium 
(defined from the perspective of the home investor) between the incomplete and 
complete market cases,  ΔRP = R P  t  IM  − R P  t  CM  , is equal to  ΔRP =  ρ w,d    γ   2  σ σ d   . 
Similarly, the difference in the currency risk premium (defined from the perspective 
of the foreign investor) is  ΔR P   ∗  = − ρ  w   ∗ ,d    γ   2  σ σ d   . Hence, the total change in the 
risk premia has to be negative; equations (16) and (17) imply that the sum of the last 
two expressions is negative. In simple words, a positive drift to mitigate the effect on 
currency risk premia from the perspective of the domestic investor implies a larger 
decline for the other investor. The Lucas (1982) model provides a simple example to 
our  preference-free results. We now extend the model to include jumps.

B. A  Consumption-CAPM with Jumps

As before, the domestic and foreign representative agents have power utility with 
identical risk aversion  γ . But consumption growth in each country consists of a 
standard Gaussian component and a jump component. The first component is the 
same as in the previous  consumption-based example; it is denoted  w  and normally 
distributed as  N ( μ,  σ   2 )  . The second component is a Poisson mixture of normals, 
denoted  z . Foreign variables are denoted with a ∗. Log consumption growth is the 
sum of these two components:

(18)  Δ  c t+1   =  w t+1   +  z t+1  , 

(19)  Δ  c  t+1  ∗   =  w  t+1  ∗   +  z  t+1  ∗  . 

At each date, the number of jumps  j  takes on  non-negative integer values with prob-
abilities   e   −ϖ   ϖ   j /j! . The parameter  ϖ , the jump intensity, is the mean of  j . Each jump 
triggers a draw from a normal distribution with mean  θ  and variance   δ   2   for the domes-
tic agent and with mean   θ   ∗   and variance   δ   ∗2   for the foreign agent. The jumps are thus 
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common across countries, but the jump sizes are not. Conditional on the number of 
jumps  j , the domestic jump component is normally distributed as   z t   | j ∼ N ( jθ, j δ   2 )  , 
while the foreign jump component is normally distributed as   z  t  ∗  | j ∼ N ( j θ   ∗ , j δ   2,∗ )  . If  
ϖ  is small, the jump model is well approximated by a Bernoulli mixture of normals. 
If  ϖ  is large, multiple jumps can occur frequently. This functional form is known as 
the Merton (1976) model. In the  macro-finance literature, it has been applied nota-
bly by Bates (1988); Naik and Lee (1990); Backus, Chernov, and Martin (2011); 
and Martin (2013).

Next, we introduce incomplete spanning in this model. We assume that the wedge 
takes the form   η t+1   = γ  d t+1   , where   d t+1    follows the same Poisson mixture as   z t+1   , 
but with parameters   θ d    and   δ d   . Conditional on the number of jumps  j , the jump 
and wedge components are jointly normal:   z t   | j ∼ N ( jθ, j δ   2 )   and   d t   | j ∼ N ( j θ d  , j δ  d  2 )  . 
We use   ρ z,d    and   ρ  z   ∗ ,d    to denote the correlation of jump sizes between the spanned and 
unspanned components of exchange rates. The jumps are common for the   z t+1    and   
d t+1    components.

RESULT 1: Following Proposition 2, the wedges satisfy the following restrictions:

(20)  −γ  θ d   +  γ   2  δ  δ d    ρ z,d   +    γ   2   δ  d  2  _ 
2
   = 0, 

(21)  γ  θ d   −  γ   2   δ   ∗   δ d    ρ  z   ∗ ,d   +    γ   2   δ  d  2  _ 
2
   = 0. 

Corollary 4 implies that the change in volatility from complete to incomplete span-
ning is given by

(22)   Δ  L t   =  L  t  IM  −  L  t  CM 

 = −γϖ  θ d   + ϖ  e   −γ θ   ∗ + γθ−  γ     2  ρ z, z   ∗   δ δ   ∗ +  (γδ)    2 /2+  (γ δ   ∗ )    2 /2  ( e    γ   2 δ δ d    ρ z,d    − 1) . 

When markets are complete, the foreign currency risk premium in levels ( from the 
perspective of the domestic investor) is given by

  E t   [r x  t+1  FX  ]  +  L t   [r x  t+1  FX  ]  =  γ   2   σ   2  + ϖ ( e   −γθ+  (γδ)    2 /2  − 1)  − ϖ ( e   −γ θ   ∗ +  (γ δ   ∗ )    2 /2  − 1) 

 + ϖ ( e   −γ θ   ∗ + γθ−2 γ     2  ρ z, z   ∗   δ δ   ∗ +  (γδ)    2 /2+  (γ δ   ∗ )    2 /2  − 1) . 

Introducing incomplete spanning wedges, Corollary 5 implies that the correspond-
ing change in the risk premium is given by

(23)  ΔR P t   = R P  t  IM  − R P  t  CM 

 = ϖ  e   −γ θ   ∗ + γθ−  γ     2  ρ z, z   ∗   δ δ   ∗ +  (γδ)    2 /2+  (γ δ   ∗ )    2 /2  ( e    γ   2 δ δ d   ρ z,d    − 1) . 
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When the wedge does not have a drift (  θ d   = 0 ), equations (22) and (23) imply 
that, again, the market incompleteness change the exchange rate volatility and the 
exchange rate risk premium by the same amount. More precisely, in the absence of 
a drift, the market incompleteness always reduces the exchange rate volatility and 
the exchange rate risk premium. Equations (20) and (21) imply that the correlation 
is given by   ρ z,d   = − ρ  z   ∗ ,d   = −0.5  δ d  /δ . The change in volatility and risk premium 
is thus negative:

(24)   ΔR P t   = R P  t  IM  − R P  t  CM 

 = ϖ  e   −γ θ   ∗ + γθ−  γ     2  ρ z, z   ∗   δ δ   ∗ +  (γδ)    2 /2+  (γ δ   ∗ )    2 /2  ( e   −    γ   2  δ  d  2  _ 2    − 1)  = Δ  L t   < 0. 

We turn to a simple calibration, where the wedge does not have a drift (  θ d   = 0 ) 
and countries are symmetric ( θ =  θ   ∗  ,  δ =  δ   ∗  ) in order to study the magnitudes of 
volatilities and risk premia.

Calibration.—We follow Backus, Chernov, and Martin (2011) and set the 
 risk-aversion parameter ( γ ) to 5.19, the mean (  μ ) and standard deviation ( σ ) of the 
normal consumption growth shocks to  2.3 percent  and  1 percent , the jump intensity  
ϖ  to  1.7 percent , the mean jump size  θ  to  −38 percent , and the jump size volatility  
δ  to  25 percent . These parameters were chosen to match the international evidence 
reported in Nakamura et al. (2013). We assume that the jump sizes are uncorrelated 
across countries, but the jumps are common. The absence of idiosyncratic jumps 
helps the model to generate low exchange rate volatility.

Figure 4 plots the exchange rate volatility   √ 
_

 2L    and the currency risk pre-
mium on a long position in foreign currency from the perspective of the home 
investor. In this calibration, there is no wedge that can simultaneously deliver 
a reasonable exchange rate volatility and a significant risk premium. When the 
variance of the jumps in the wedge reaches its maximum, the exchange rate 
volatility is still close to 20 percent and the currency risk premium is less than 
2 percent.

Finally, we also explored a calibration due to Backus, Chernov, and Martin 
(2011) that is based on equity index options rather than aggregate consumption 
growth data with more frequent but much smaller jumps. In this Merton model, 
we choose  γ  = 8.70,  σ = 2.53 percent ,  ω = 139 percent ,  θ = −0.74 percent , 
and  δ = 1.91 percent . These results are displayed in Figure 5, which, again, plots 
the exchange rate volatility   √ 

_
 2L    and the currency risk premium on a long position in 

foreign currency. When we use the more conservative calibration with smaller, more 
frequent disasters, we can match the exchange rate volatility, but the currency risk 
premia are too small. In addition, varying the coefficient of risk aversion does not 
resolve this tension. Since we cannot even match these two exchange rate moments 
in a rare disaster model, at least not in a model with zero drift in the wedges, we 
ignore the exchange rate cyclicality puzzle. The next section illustrates why the drift 
of the exchange rate wedge is not really a free parameter in a large class of dynamic 
asset pricing models.
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C. Dynamic Asset Pricing Models

We now extend our benchmark results to a large class of dynamic asset pric-
ing models. Specifying a law of motion for the stochastic discount factor further 
restrains the ability of the incomplete spanning wedge to address the main currency 
puzzles because it completely pins down the first moment of the wedge. We use 
the Cox, Ingersoll, and Ross (1985) model (denoted CIR) model to illustrate this 
finding. Similar results appear naturally in the case of CRRA preferences with het-
eroskedastic consumption, since that model is isomorphic to the CIR model. For the 
sake of clarity and space, we focus on a simple CIR model with  country-specific 
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Figure 4. Exchange Rate Volatility and Risk Premia in a 
 Barro-Rietz Disaster Version of the Merton (1976) Model

Notes: In the model, the incomplete spanning wedge follows the same Poisson mixture as the jump components 
of consumption growth. Each jump triggers a draw from a normal distribution with mean  θ  and variance   δ   2   for 
the domestic agent, with mean   θ   ∗   and variance   δ   ∗2   for the foreign agent, and with mean   θ d    and variance   δ  d  2   for the 
wedge. We assume that the wedge does not introduce  non-stationarity in exchange rates (  θ d   = 0 ), that the two 
countries’ consumption growth processes are symmetric ( θ =  θ   ∗  ,  δ =  δ   ∗  ) and that the jump components are not 
correlated across countries. We follow Backus, Chernov, and Martin (2011) and set the risk aversion parameter ( γ ) 
to  5.19 , the mean (  μ ) and standard deviation ( σ ) of the normal consumption growth shocks to  2.3 percent  and  
1 percent , the jump intensity ( ϖ ) to  1.7 percent , the mean jump size ( θ ) to  −38 percent , and the jump size volatil-
ity ( δ ) to  25 percent . The figure reports the exchange rate volatility (defined as   √ 

_
 2L   , where  L  denotes the average 

entropy) and the currency risk premium in levels from the perspective of the home investor,   E t   [r x  t+1  FX  ]  +  L t   [r x  t+1  FX  ]  , 
for the admissible combinations of the jump parameters   δ d   ≤ 2δ . The gray area represents the empirical counter-
part of each moment.
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factors. The online Appendix presents a CIR model with common factors and a 
 consumption-based model.

In discrete time, the simplest version of the CIR model is defined by the following 
two equations:

  −log  M t+1   = α + χ  z t   +  √ _ γ  z t      u t+1  , 

   z t+1   =  (1 − ϕ) θ + ϕ  z t   − σ  √ _  z t      u t+1  , 
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Figure 5. Exchange Rate Volatility and Risk Premia in an  Option-Based Merton (1976) Model

Notes: In the model, the incomplete spanning wedge follows the same Poisson mixture as the jump components 
of consumption growth. Each jump triggers a draw from a normal distribution with mean  θ  and variance   δ   2   for 
the domestic agent, with mean   θ   ∗   and variance   δ   ∗2   for the foreign agent, and with mean   θ d    and variance   δ  d  2   for the 
wedge. We assume that the wedge does not introduce  non-stationarity in exchange rates (  θ d   = 0 ), that the two 
countries’ consumption growth processes are symmetric ( θ =  θ   ∗  ,  δ =  δ   ∗  ), and that the jump components are not 
correlated across countries. We follow Backus, Chernov, and Martin (2011) and set the risk aversion parameter ( γ ) 
to 8.70, the mean (  μ ) and standard deviation ( σ ) of the normal consumption growth shocks to  3.03 percent  and  
2.53 percent , the jump intensity ( ϖ ) to  139 percent , the mean jump size ( θ ) to  −0.74 percent , and the jump size 
volatility ( δ ) to  1.91 percent . The figure reports the exchange rate volatility (defined as   √ 

_
 2L   , where  L  denotes the 

average entropy) and the currency risk premium in levels from the perspective of the home investor,   E t   [r x  t+1  FX  ]  + 
 L t   [r x  t+1  FX  ]  , for the admissible combinations of the jump parameters   δ d   ≤ 2δ . The gray area represents the empirical 
counterpart of each moment.
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where  M  denotes the home stochastic discount factor. The disturbances   u t+1   ∼  
  (0, 1)   are i.i.d. over time.10 The foreign stochastic discount factor follows a simi-
lar law of motion but with its own factor   z  t  ∗   and shocks   u  t+1  ∗   :

  −log  M  t+1  ∗   = α + χ  z  t  ∗  +  √ 
_

  γ   ∗   z  t  ∗     u  t+1  ∗  , 

   z  t+1  ∗   =  (1 − ϕ) θ + ϕ  z  t  ∗  − σ  √ _  z t      u  t+1  ∗   .

As noted in equation (12), since the SDF is log-normal, the maximum Sharpe ratios 
at home and abroad are   std t    ( m t+1  )  =  √ _ γ  z t     , and   std t    ( m  t+1  ∗  )  =  √ 

_
  γ   ∗   z  t  ∗    , respec-

tively. The real version of this CIR model with  χ = 0  is isomorphic to a model in 
which the domestic (foreign) representative agent has power utility preferences over 
consumption with CRRA coefficient   √ _ γ    (  √ 

_
  γ   ∗    ) and aggregate consumption growth 

is heteroskedastic.
We assume that domestic investors can trade at least one risky domestic asset 

(e.g., a longer maturity bond) and the  one-period  risk-free bond, but they can only 
trade the foreign  risk-free bond. They cannot trade any foreign risky assets. All 
domestic shocks are spanned, but not the foreign shocks.

When markets are complete, the volatility of exchange rate changes is sim-
ply equal to   var t    (Δ  s t+1  )  = γ  z t   +  γ   ∗   z  t  ∗  . In order to describe the class of poten-
tial wedges, we define the target volatility of the incomplete spanning exchange 
rate as   var t    (Δ  s t+1  )  = κ  z t   +  κ   ∗   z  t  ∗  . As noted in Corollary 1, the implied volatil-
ity of the incomplete spanning exchange rate process is then equal to   var t    (Δ  s t+1  )   
= γ  z t   +  γ   ∗   z  t  ∗  −  var t    ( η t+1  ) ,  which implies that the volatility of the wedge is  
  var t    ( η t+1  )  =  (γ − κ)   z t   +  ( γ   ∗  −  κ   ∗ )   z  t  ∗ .  The following result defines the incom-
plete markets wedge that matches the desired volatility of the exchange rates while 
satisfying all the restrictions of Proposition 1.

RESULT 2: In the CIR model with  country-specific factors that define the domes-
tic   m t+1    and foreign   m  t+1  ∗    log stochastic discount factors, incomplete spanning leads 
to a wedge   η t+1    and an exchange rate process   S t    that satisfies  Δ  s t+1   =  η t+1   +  
m  t+1  ∗   −  m t+1    with variance   var t    (Δ  s t+1  )  = κ  z t   +  κ   ∗   z  t  ∗  , where   η t    follows:

(25)   η t+1   = ψ  z t   +  ψ   ∗   z  t  ∗  −  √ 
_

  (γ − λ)   z t      u t+1   +  √ 
_

   ( γ   ∗  −  λ   ∗ )   z  t  ∗     u  t+1  ∗  

 +  √ 
_

  (λ − κ)   z t      ϵ t+1   +  √ 
_

   ( λ   ∗  −  κ   ∗ )   z  t  ∗     ϵ  t+1  ∗   ,

10  In this model, log bond prices are affine in the state variable   z t   :   p  t   (n)   = − B  0  n  −  B  1  n   z t  .  The price of a one 

 period-bond is:   P    (1)   =  E t   ( M t+1  )  =  e   −α− (χ−  1 _ 2   γ)  z t   .  Bond prices are defined recursively by the Euler equation:   
P  t   (n)   =  E t   ( M t+1    P  t+1   (n−1)  )  . Thus the bond price coefficients evolve according to the following  second-order differ-
ence equations:

   B  0  
n  = α +  B  0  

n−1  +  B  1  
n−1  (1 − ϕ) θ, 

   B  1  
n  = χ −   1 __ 

2
  γ +  B  1  

n−1  ϕ −   1 __ 
2
     ( B  1  

n−1 )    
2
   σ   2  + σ √ __ γ    B  1  

n−1 . 
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where   ϵ t+1   ∼   (0, 1)   and   ϵ  t+1  ∗   ∼   (0, 1)   are i.i.d., and where the parameters  λ ,   
λ   ∗  ,  ψ , and   ψ   ∗   satisfy  κ ≤ λ ≤ γ ,   κ   ∗  ≤  λ   ∗  ≤  γ   ∗  , as well as

(26)  κ = γ −  √ _ γ    √ 
_

 γ − λ  , 

(27)   κ   ∗  =  γ   ∗  −  √ 
_

  γ   ∗     √ 
_

  γ   ∗  −  λ   ∗    ,

(28)  ψ = −   1 _ 
2
   (γ − κ) , 

(29)   ψ   ∗  =   1 _ 
2
   ( γ   ∗  −  κ   ∗ ) . 

The class of incomplete spanning models built on the CIR framework has only two 
degrees of freedom, described by the two parameters  κ  and   κ   ∗  . Again, these two 
parameters determine the exchange rate volatility. Once they are chosen, the law of 
motion of the incomplete spanning wedge is entirely determined. Equations (26) 
and (27) implicitly pin down the parameters  λ  and   λ   ∗  . As equations (28) and (29) 
show, the drift term in the  η  process is not a free parameter either, it is determined 
by the other parameters of the model.11

The incomplete markets wedges leave the domestic and foreign term structure 
unchanged. The term   (γ − λ)   measures the exchange rate’s exposure to spanned 
shocks, while   (λ − κ)   measures the exposure to unspanned shocks. If we allow the 
domestic investor to trade any foreign risky bond, then the wedges are zero again:  
κ = γ = λ  and   κ   ∗  =  γ   ∗  =  λ   ∗  , because we need to impose two additional orthog-
onality conditions given by equation (13) between log returns and  η . This result is 
intuitive: if there are as many assets as exogenous shocks, markets are complete.

The key result is that the drift of the wedge is determined by the rest of the model; it 
is no longer a free parameter. Once we impose these dynamic  no-arbitrage restrictions 
on the drift term, the effect on currency risk premia is unambiguous. When markets 
are complete, the log currency risk premium is given by   E t   [r x  t+1  FX  ]  =   1 _ 2   (γ  z t   −  γ   ∗   z  t  ∗ ) ,  
while the currency risk premium in levels is given by  γ  z t   . When markets are incom-
plete, the risk premium in levels is always smaller than in complete markets because  
κ ≤ γ .

RESULT 3: In the incomplete market model described in Result 2, the risk premium 
in logs on a long position in foreign currency is

   E t   [r x  t+1  FX  ]  =   1 _ 
2
   [κ  z t   −  κ   ∗   z  t  ∗ ] . 

The risk premium in levels on a long position in foreign currency is always smaller 
in incomplete markets than in complete markets:

   E t   [r x  t+1  FX  ]  +   1 _ 
2
    var t   [r x  t+1  FX  ]  = κ  z t   ≤ γ  z t  . 

11 In the symmetric case, where  γ =  γ   ∗   (the two SDFs react in the same proportion to exogenous shocks) and  
κ =  κ   ∗   (the exchange rate volatility exhibit the same sensitivity to the two state variables), then equations (28) and 
(29) imply that  ψ = − ψ   ∗  , and the drift term is zero on average ( E [ μ t,η  ]  = 0 ). In the symmetric case, on average, 
the wedge has no impact on exchange rates.
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In the incomplete market model, the Fama slope coefficient in a regression of 
exchange rates ( −Δ s t+1   ) on the interest rate difference   r  t  ∗  −  r t    is

    
cov (−Δ  s t+1  ,  r  t  ∗  −  r t  )   _____________  

var ( r  t  ∗  −  r t  ) 
   = 1 +   1 _ 

2
     
κ (χ −   1 _ 2   γ)  +  κ   ∗  (χ −   1 _ 2    γ   ∗ ) 

   __________________   
  (χ −   1 _ 2   γ)    

2
  +   (χ −   1 _ 2    γ   ∗ )    

2
 
  . 

If incomplete spanning reduces the standard deviation of exchange rates by 50 per-
cent (  √ 

_
 κ/γ   = 0.5 ), then the currency risk premium is reduced by a factor of 0.25 

( κ/γ = 0.25 , implying a reduction by 75 percent).12 Since a real version of the 
CIR model is isomorphic to the  Consumption-CAPM with heteroskedastic con-
sumption growth, this result implies that incomplete spanning effectively reduces 
the representative agent’s risk aversion coefficient when pricing currency risk, but 
not for other risk sources.

To quantitatively illustrate the  trade-off between exchange rate volatility and risk 
premia, we adopt the following parameters for the two countries:   λ d   = −1.07 , 
 γ =  λ  d  2  ,  θ = 0.004428 ,  ϕ = 0.976 ,  α = 0 ,  χ = −1 +  λ  d  2 /2 ,  σ = 0.008356.  
These parameters match the mean  short-term interest rate, its volatility, and its auto-
correlation. They are close to those used in Backus, Foresi, and Telmer (1998): the 
only difference is that we defined  χ = −1 +  λ  d  2 /2  (instead of  χ = 1 +  λ  d  2 /2 ) 
in order to obtain  countercyclical  short-term interest rates, a necessary feature to 
replicate the uncovered interest rate (UIP) puzzle in this class of models.

Figure 6 reports the annualized volatility of the exchange rate and the UIP slope 
coefficients for all admissible combinations of the parameters  κ . The first panel plots 
the parameters  κ  and  λ  against the annualized volatility of the wedge,   std t    ( η t+1  )  . 
The second panel plots the annualized volatility of the exchange rate. The third 
panel plots the UIP slope coefficient in a regression of exchange rates ( −Δ  s t+1   ) on 
the interest rate difference   r  t  ∗  −  r t   . UIP implies that this slope coefficient is 1; in the 
data, it is statistically different from one and often negative. As the volatility of the 
wedge increases, the exchange rate volatility decreases. It can reach its empirical 
value, but only at the cost of driving the UIP slope coefficients to 1. The fourth panel 
reports the currency risk premium. In the model, as shown in Corollary 6, it varies 
with the state variable  z . In order to focus on potentially large values, it is here eval-
uated at the mean plus two standard deviations of the state variable  z . Even in this 
very favorable case, when the exchange rate volatility reaches its empirical value, 
the currency risk premium is zero.

These conclusions do not depend on the  country-specific nature of the factors. 
When we include common factors, we find that incomplete spanning still lowers the 
currency risk premium in levels and also forces the UIP regression coefficient to 1. We 
analyze this general case with common factors in the online Appendix, along with a 

12 Currency Sharpe ratios decrease as well, since for all   z t  ,  z  t  ∗  :

    
 E t   [r x  t+1  FX  ]  +   1 _ 

2
    var t   [r x  t+1  FX  ]   __________________  

 std t    (Δ  s t+1  ) 
   =   κ  z t   _ 

 √ 
_

 κ  z t   + κ  z  t  ∗   
   =  √ _ κ      z t   _ 

 √ 
_

  z t   +  z  t  ∗   
   ≤  √ _ γ      z t   _ 

 √ 
_

  z t   +  z  t  ∗   
   . 
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version of the Lucas (1982) model with heteroskedastic consumption growth. In 
this model, we show that incompleteness lowers the risk aversion of the represen-
tative agent by the same percentage amount as it lowers exchange rate volatility.

D. Existing Incomplete Market Models

We end this paper with an overview of the exchange rate literature on incomplete 
markets.

Pavlova and Rigobon (2012).—We start of our review of the existing incomplete 
market models with the work of Pavlova and Rigobon (2012) because it satisfies our 
Assumptions 1 and 2 and delivers  closed-form expressions. In their model, agents 
trade three assets (domestic and foreign stocks and an international bond), but are 
subject to four shocks (two endowment shocks and two preference shocks) and 
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Figure 6. Cox, Ingersoll, and Ross (1985) Example

Notes: The figure reports the wedge parameters, the annualized volatility of the exchange rate, the UIP slope coef-
ficient, and the currency risk premium for different volatilities of the incomplete spanning wedge. The first panel 
plots the parameters  κ  and  λ  that characterize the wedge against its annualized volatility,  st d t    ( η t+1  )  . The second 
panel plots the annualized volatility of the exchange rate. The third panel plots the UIP slope coefficient in a regres-
sion of exchange rates on the foreign minus domestic interest rates. If the uncovered interest rate parity were to hold, 
the UIP slope coefficient would be 1. The fourth panel reports the currency risk premium evaluated at the mean plus 
two standard deviations of the state variable. We adopt the following parameters for the two countries:   λ d   = −1.07 
,  γ =  λ  d  2  ,  θ = 0.004428 ,  ϕ = 0.976 ,  α = 0 ,  χ = −1 +  λ  d  2 /2 ,  σ = 0.008356 .
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markets are thus incomplete. Log preferences lead to the following equilibrium real 
exchange rate,   Q  t  IM  :

   Q  t  IM  =   
 θ H   (t)  +    W F    (t)  _ 

 W H    (t)     (1 −  θ F  ) 
  ______________  

1 −  θ H    (t)  +    W F    (t)  _ 
 W H    (t)     θ F  

      Y  t  ∗  _  Y t  
   , 

where   Y t    and   Y  t  ∗   are the domestic and foreign endowments,   θ H   (t)   denotes the domestic 
 intratemporal preference shocks, and   W H    (t)   and   W F    (t)   denote domestic and foreign 
wealth. In this model, the wealth ratio   W F    (t) / W H    (t)   is  time-varying. In an earlier con-
tribution, Pavlova and Rigobon (2007) consider a similar model, but with only one 
preference shocks, and thus as many shocks as assets. In Pavlova and Rigobon (2007), 
where markets are complete, the wealth ratio is constant and the same expression holds 
for the equilibrium real exchange rate,   Q  t  CM  . The two models are different: market 
incompleteness clearly changes the consumption allocation. But the incomplete mar-
ket model can be thought as introducing an additional source of variation in exchange 
rates. The ratio of the incomplete to complete market value of exchange rate is

     Q  t  IM  _ 
 Q  t  CM 

   =   
 θ H   (t)  +    W F    (t)  _ 

 W H    (t)     (1 −  θ F  ) 
  ______________  

1 −  θ H    (t)  +    W F    (t)  _ 
 W H    (t)     θ F  

   ×   
1 −  θ H    (t)  +    W F   _  W H      θ F    _____________  
 θ H   (t)  +    W F   _  W H     (1 −  θ F  ) 

    .

The FX wedge   η t+1    introduced in equation (7) captures the percentage change in 
this ratio   ( η t+1   = Δ  q  t  IM  − Δ  q  t  CM )  . Our approach offers a way to study the effects 
of incomplete market models on exchange rate puzzles without committing to any 
preferences or frictions. In Pavlova and Rigobon (2012), log preferences lead to 
smooth SDFs and thus low Sharpe ratio, contrary to the data and our Assumption 3.

Chari, Kehoe, and McGrattan (2002); Corsetti, Dedola, and Leduc (2008); 
Gabaix and Maggiori (2015).—We turn now to three interesting incomplete market 
models and show how they differ from our assumptions.

We simulate the incomplete market model of Chari, Kehoe, and McGrattan (2002), 
thanks to the code provided by the authors. In their model, the utility for period  t  is

  U (c, l, M/P)  =   1 _ 
1 − σ     [  (ω  c     

η−1
 _ η    +  (1 − ω)   (  M __ 

P  )    
  η−1

 _ η  
 )    

  η _ η−1  

 ]    

1−σ 

  + ψ    
  (1 − l)    1−γ  
 _ 

1 − γ    ,

where  c  denotes consumption,  l  labor,  M/P  real money balances, and  σ ,  ω ,  η ,  γ , and  
ψ  are model parameters ( η  here denotes the interest rate elasticity). The marginal 
utility of consumption is thus

   U c    (c, l, M/P)  = ω  c   −  1 _ η      [  (ω  c     
η−1

 _ η    +  (1 − ω)   (  M __ 
P  )    

  η−1
 _ η  
 )    

  1 _ η−1  

 ]    

−σ

  



2241LUSTIG AND VERDELHAN: INCOMPLETE SPANNING AND EXCHANGE RATESVOL. 109 NO. 6

and the SDF is   M t+1   = β  U c    ( c t+1  ,  M t+1  / P t+1  ) / U c    ( c t  ,  M t  / P t  )  . We slightly modify 
the code to compute the SDF, and use the following parameter values:  β = 0.99 , 
 η = 0.39 ,  ω = 0.94 , and  σ = 5  (as reported in their Table 5). The different 
versions of the incomplete market model (with or without multiple shocks, with 
 one-period or more sticky prices) deliver standard deviations of log SDFs that range 
from 0.14 to 0.17. The model thus does not deliver Sharpe ratios in line with our 
Assumption 3.

The same happens in the incomplete market model of Corsetti, Dedola, and Leduc 
(2008): in their model, the quarterly volatility of the stochastic discount factor is 
0.75 percent (and 0.52 percent when  HP-filtered as for the other variables in the 
paper).13 The model thus implies an annualized maximal Sharpe ratio of 0.015 that 
is an order of magnitude smaller than in the data (0.5). While the model offers many 
interesting insights, it is not built to describe risk premia.

The incomplete market model of Gabaix and Maggiori (2015) does not satisfy 
Assumption 2: in their model, domestic agents cannot buy foreign  risk-free bonds 
directly, they have to transact through a global intermediary.

Bakshi, Cerrato, and Crosby (2017).—Building on our work, Bakshi, Cerrato, 
and Crosby (2017) study the ability of additive wedges to address exchange rate 
facts. They do not impose that the wedge is log-normal. Thus, their results should be 
seen through the lenses of our findings in Section IIE when the log-normal assump-
tion is relaxed. Is an additive wedge then different from our multiplicative wedge? 
Only in the pathological case of negative stochastic discount factors. To see this, 
start from their definition of the wedge:

(30)     S t+1   _  S t  
   =    M  t+1  ∗   _  M t+1  

   +  λ t+1  , 

which is equivalent to

(31)     S t+1   _  S t  
   =    M  t+1  ∗   _  M t+1  

   (1 +  λ t+1      
 M t+1   _  M  t+1  ∗    ) . 

By comparison, our multiplicative wedge is defined as

(32)     S t+1   _  S t  
   =    M  t+1  ∗   _  M t+1  

    e    η t+1   . 

Recall that our results are valid for any pair of stochastic discount factors. By intro-
ducing a multiplicative wedge, we thus only consider the cases where the term 
 1 +  λ t+1  (  M t+1  / M  t+1  ∗  )  is positive. But can it be negative? Not if   M  t+1  ∗  / M t+1    is pos-
itive: since exchange rates are positive numbers, equation (31) implies that  1 +  
λ t+1  (  M t+1  / M  t+1  ∗  )  is positive. If   M  t+1  ∗  / M t+1    is negative, then there are some additive 
wedges   λ t+1    that are not described by our multiplicative wedge   e    η t+1    . But this case 

13 We thank Sylvain Leduc for explaining this to us.
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is pathological: in a  utility-based framework, it assumes that agents’ utility would 
decrease when consumption increases. A long tradition in economics only consider 
models with positive marginal utilities, i.e., utility increases when consumption 
increases.

IV. Conclusion

Our paper investigates whether incomplete spanning in international financial 
markets can account for the behavior of exchange rates. To answer this question, we 
allow for a great deal of market incompleteness by only enforcing the Euler equa-
tions on domestic and foreign  risk-free rates. To help resolve the currency volatility 
puzzle, the quantity of unspanned risk needed in currency markets is of the same 
size as the maximum Sharpe ratio. To increase the currency risk premium requires 
the introduction of a predictable exchange rate component. In a log-normal world, 
incomplete spanning does not address the exchange rate cyclicality: the covariance 
between exchange rate changes and relative SDFs remains positive, and the corre-
sponding slope coefficient remains at its complete market value of 1.

The limits of incomplete spanning underlines the robustness of the key exchange 
rate puzzles. In the future, the solutions to these puzzles may involve two ingredi-
ents. As suggested by complete market models, stochastic discount factors may be 
very highly correlated, even if macroeconomic series are not. To support this view 
further, researchers need to find direct evidence of such high correlations. In the 
realm of segmented markets, models that segment international currency markets by 
only allowing a subset of investors (see, e.g., Chien, Lustig, and Naknoi 2015 and 
Dou and Verdelhan 2015) to trade a complete (or incomplete) menu of international 
securities are promising. These models sever the link between aggregate quanti-
ties and real exchange rates by concentrating aggregate risk among a small pool 
of investors. But these segmented markets models face a challenging measurement 
test: researchers need to show that changes in exchange rates are highly correlated 
with the marginal utility growth of these market participants.
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