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S.1 Online Display Advertising

In this Appendix, we describe a B2B setting in which sophisticated buyers strategically
reduce their demand and sellers use the available information to mitigate the ratchet effect.
Specifically, the market for online display (banner) advertising is economically relevant yet
sufficiently simple to apply our model’s insights. In this market, any publisher or website
owner can be a seller of advertising space; the demand for space comes from advertisers who
wish to reach final consumers with targeted messages. Worldwide spending on online display
ads totaled $53 billion in 2018 and made up 20% of all digital advertising revenues.1

This market shares the following key economic properties with our model:

• The buyers’ problem consists of choosing a flow volume of advertising at given prices.

• Sellers are able to price discriminate, both across buyers and over time, based on partial
information about buyers’ past purchases.

• Buyers are sophisticated and strategically manipulate their demand.

• Sellers are aware of the ratchet effect and take measures to mitigate it.

As such, this market can serve as a useful benchmark for our analysis of strategic consumer
behavior. In what follows, we provide some background on this market, before turning to
the more specific connections with our model and our results.

Background Most publishers of online content avail themselves of a Supply-Side Plat-
form (SSP)—a technology platform that enables them to manage their advertising space.
Examples of SSPs are the Rubicon Project, Oath Publisher Solutions (formerly Yahoo!), and
Google Ad Manager (formerly Doubleclick Ad Exchange). In most cases, when an Internet
user loads a page, the relevant SSP runs an auction to sell the advertising space in real time.2

This auction has three main features: (i) unlike in the case of sponsored-search auctions,
content is priced per impression (CPM, i.e., cost for a thousand impressions) rather than
pay-per-click; (ii) the second-price auction is by far the most widely adopted format; (iii)
many auctions have very few bidders, and hence reserve prices play a key role.

The last point is especially important for our model: in any display advertising auction,
the SSP has an incentive to match the user’s interests to the content of the ad. Furthermore,

1Source: Statista DMO 2019, available at https://www.statista.com/outlook/216/100/digital-
advertising/worldwide.

2Some advertising space is contracted on ahead of time (“guaranteed direct buying”), in which case the
forces in our model apply even more closely.
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in many online market places, buyers have access to rich dynamic contextual information
that predicts the consumers’ willingness to pay for their products (Golrezaei, Javanmard,
and Mirrokni, 2018). Consequently, SSPs allow advertisers to target a highly selected au-
dience, i.e., to condition their bids on all available characteristics of the user (e.g., through
cookies) and the webpage itself. Due to the extreme degree of targeting, many auctions have
fewer bidders than available advertising space slots. For example, a retailer targeting a user
who recently visited their website may be the sole bidder for that specific user.3 However,
while some alternative (negotiations-based) mechanisms have been suggested (Celis, Lewis,
Mobius, and Nazerzadeh, 2011), most of the ad space volume is still sold through auctions.

In such thin markets, the role of reserve prices is then crucial for revenue generation
(Milgrom, 2004). Indeed, because the second highest bid (if any) is often below the reserve
price, bidders can often purchase advertising space at de facto fixed prices. Consistent
with this interpretation, Ostrovsky and Schwarz (2016) quantify the impact of reserve prices
through a field experiment at Yahoo! and show that reserve price optimization alone was
responsible for raising the entire company’s revenues by 11% year-on-year. Overall, given
the large number of auctions run in a short amount of time, we can think of any bidder’s
problem as choosing what quantity to buy at the current reserve price. Crucially for our
model, reserve prices are personalized for different buyers and dynamically adjusted.

Dynamic (Reserve) Price Discrimination The large amount of data available to SSPs
allows sellers of advertising space to personalize the reserve prices at the individual bidder
level. For example, Google Ad Manager provides explicit resources for personalization. In
particular, it allows sellers to “[...] identify specific buyers, advertisers, or brands and asso-
ciate a minimum CPM or target CPM with them. [The seller] can apply multiple pricing
rules for a given ad [auction].”4 Theoretical and computational issues around the design
of personalized reserves are discussed, for example, in Paes Leme, Pal, and Vassilvitskii
(2016). In particular, setting the optimal (static) reserve prices requires knowledge of the
underlying distribution of bidders’ values. Not surprisingly then, the dynamic adjustment of
reserve prices as the sellers attempt to learn the bidders’ demands has attracted considerable
attention from researchers and practitioners alike.5

Sellers who participate in a SSP receive information that allows them to tailor reserve
3In the context of search advertising, Goldfarb and Tucker (2011) report that only in 6.5% of the auctions

in their sample were there sufficiently many bidders. A more recent paper by Beyhaghi, Golrezaei, Paes Leme,
Pal, and Siva (2018) suggests that the market is dominated by a small number of large bidders.

4See https://support.google.com/admanager/answer/2913506?hl=en.
5For example, according to the Rubicon Project (a leading SSP), “new floors are constantly set and re-set

for the inventory in response to changes in demand.” See https://rubiconproject.com/blog/using-dynamic-
price-floors-to-protect-publisher-value/.
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prices and to adjust them over time. As in our model, this information often consists of
low-dimensional summary statistics about individual bidders’ past behavior, rather than
elaborate bid-history data. For example, Hummel (2018) notes that “If a publisher signs up
for an online ad network such as the Google Display Network,6 that publisher will be given
reports about revenue and the number of ads shown that the publisher could then use in
refining reserve prices. However, the publisher would not be told the individual bids that
the advertisers had made in each auction.” Consequently, Hummel (2018) assumes in his
model that “the seller can only condition the reserve price on statistics about revenue and
the fraction of the time that an advertiser’s ad was shown, rather than allowing the seller to
condition the reserve price on the entire history of bids.”

The easiest protocol to update reserve prices exploits the dominant-strategy property
of the second-price auction: the seller can simply estimate the distribution of values based
on any available information about the buyers’ bids and then set the optimal Myersonian
reserve price. Of course, while this approach is tempting, bidding one’s true valuation in a
second-price auction is no longer a dominant strategy with a dynamic reserve price. In par-
ticular, a bidder’s dynamic incentives depend on the updating process for their personalized
reserve price. A large body of recent work in computer science and operations research fo-
cuses on diagnosing and solving this problem. For example, Amin, Rostamizadeh, and Syed
(2014) worry that bidders will shade down their bids “forgoing short-term surplus in order
to trick the algorithm into setting better prices in the future,” and Golrezaei, Lin, Mirrokni,
and Nazerzadeh (2017) claim, “[...] mitigating the negative impact of strategic behavior of
bidders, even in the second-price auction, is still an open problem.”

This is not just a matter of theory: there is ample evidence of buyers’ strategic behavior
in online advertising auctions, which we turn to next.

Buyers’ Strategic Behavior Online advertisers are sophisticated players who act strate-
gically. This was first shown by Edelman and Ostrovsky (2007), who documented Edgeworth
cycles in (what were at the time) first-price auctions for keyword search results. More re-
cently, an empirical study by Yuan, Wang, Chen, Mason, and Seljan (2014) on reserve
price optimization shows that bidders understand the mechanism, as static reserve prices in
second-price auctions do not affect their behavior. However, advertisers do shade their bids
when reserve prices adjust dynamically. Thus, the ratchet effect is a first-order concern for
sellers in these markets.

The potential for manipulation has only become more salient over time, as advertisers
6A collection of websites where Google places display advertising that includes proprietary as well as

external partner sites.
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employ automated bidding strategies. These strategies can be developed in-house or del-
egated to a demand-side platform (DSP) that manages several advertisers’ campaigns to
optimize their returns. Using machine-learning techniques to test different bids on different
“impressions” (combinations of consumers and web pages with certain characteristics), the
algorithms employed by major bidders and DSPs are quickly able to detect intertemporal
links across prices and deviate from truthful bidding.

Recent research in this area (Lahaie, Munoz Medina, Sivan, and Vassilvitskii, 2018) de-
velops tests based on bid perturbations that a buyer can use to identify the relationship, if
any, between past bids and future reserve prices. Among practitioners, the French demand-
side platform Criteo advertises its ability to reduce bids when the (static) second-price auc-
tion dynamics are manipulated by the seller, “When the engine anticipates manipulation
of second-price auction mechanics, Criteo will reduce bid prices across all bids until [these
mechanics] are restored.”7 These demand-shading techniques are explicitly described in the
paper by Abeille, Calauzènes, Karoui, Nedelec, and Perchet (2018).

Sellers’ Equilibrium Responses In response to ratcheting concerns, a large body of work
focuses on the problem of incentive-aware learning (Golrezaei, Javanmard, and Mirrokni,
2018), where the seller is trying to both learn both the distribution of values and optimize
reserve prices in real time against strategic bidders. Some of the suggested solutions to the
problem include the “bank accounts” mechanism, which allows a bidder to trade off current
losses (relative to the optimal amount of bid shading) with lower future reserves (Mirrokni,
Paes Leme, Tang, and Zuo, 2016). Other solutions consist of conditioning reserve prices on
coarser histories, e.g., average bids only. All of these are instances of scoresâ namely, scalars
used for learning and pricing.

Kanoria and Nazerzadeh (2017) suggest a different solution, i.e., to use other bidders’
behavior and to exploit the correlation structure in their underlying valuations when setting
personalized reserves. One may think this clever solution completely solves the incentives
problem in general. Recent evidence of coordinated bids, however, seems to undermine this
argument (Decarolis, Goldmanis, and Penta, 2017). In particular, the use of common DSPs
implies that several advertisers’ algorithms will internalize some of the externalities involved
in competitive bidding and optimally coordinate instead.

Closest to the message of our paper, Hummel (2018) studies repeated auctions in which
the seller tries to optimize future reserve prices by learning the distribution of bidders’ valu-
ations. He shows conditions under which the auctioneer benefits by “giving up” on dynamic

7See the Rubicon Project’s white paper “Maintaining the Equilibrium: How Dynamic Price Floors Pre-
serve the Integrity of the Automated Advertising Ecosystem,” available from the authors upon request.
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floors, setting reserve prices according to the worst-case distribution of values instead. This
result is in line with the optimality of uninformative scores (Proposition 7 in the paper),
in which the seller can do no worse in a static game than pricing without information, but
giving up on price discrimination can be profitable because it eliminates the ratchet effect.

This is also not just a theoretical result: some SSPs have already adopted this policy. In
particular, the Rubicon Project no longer uses discriminatory reserve prices that condition
on buyer-level information (i.e., characteristics or past bids). Specifically, the “Rubicon
Project’s Dynamic Price Floor algorithm applies Myerson’s framework and seeks to respect
all of the rules and requirements of a second-price auction. [...] It attempts to maximize
seller revenue without impacting a buyer’s incentive to bid their true value [...] As such, DSP,
buyer and advertiser data are not dimensions used in Rubicon Project’s Dynamic Price Floor
algorithm. This is a key differentiator between Rubicon Project’s algorithm and algorithms
employed by other exchanges.”

Therefore, different SSPs are heterogeneous in their approach to mitigating the ratchet
effect. Consistent with our model, some sellers view the value of information as sufficiently
high to encourage dynamic personalized pricing, while others prefer to limit the value of
strategic behavior. What is more striking is that the Rubicon Project came to this decision
explicitly acknowledging the possibility of manipulation: “Using buy-side dimensions when
setting price floors [results in] buyer distrust. The impact of buyer distrust may not be
immediate, but in the long term, this approach will result in changes in bidding behavior
and reduced liquidity.”8

8See the Rubicon Project’s white paper “Maintaining the Equilibrium: How Dynamic Price Floors Pre-
serve the Integrity of the Automated Advertising Ecosystem,” available from the authors upon request.
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S.2 Omitted Proofs

S.2.1 Section 4: Equilibrium Analysis

Theorem 1. The proof is completed after determining the rest of the coefficients and veri-
fying standard transversality conditions.

1. Determination of the remaining coefficients. From the three matching coefficient condi-
tions (system (A.3) in the paper), v2, v3 and v5 are determined using δ, α and β as follows:

v2 =
2δµ

λ
, v3 =

α + 2β

2λ
> 0, and v5 =

α− 1

λ
< 0.

As for v1 and v4 (corresponding to θ and θ2 in the value function) these can be obtained by
differentiating the HJB equation with respect to θ. Specifically,

(r + κ)[v1 + 2v4θ + v5M ] = (δµ+ αθ + βM) [1 + v5λ]− v5φ
[
M − µ+ λȲ

]
− 2v4κ(θ − µ)

leads to the additional equations

2(r + κ)v4 = α · [1 + λv5]︸ ︷︷ ︸
=α; system (A.3)

−2v4κ⇒ v4 =
α2

2(r + 2κ)
, and,

(r + κ)v1 = δµα + v5φ(µ− λȲ )⇒ v1 =
δµα

r + κ
+

φ(µ− λȲ )αβ

(r + κ+ φ)(r + κ)
.

The coefficient v0 can be found by equating the constant terms in the HJB equation—since
the value function is quadratic, there is no constraint on this coefficient.

2. Transversality Conditions and Admissibility of the Candidate Equilibrium Strategy. Re-
call that the candidate value function is of the form

V (θ,M) = v0 + v1θ + v2M + v3M
2 + v4θ

2 + v5θM.

Let Xt := (θt,Mt), t ≥ 0. While the initial condition of X := (Xt)t≥0 in the game is random,
verifying the optimality of consumer’s strategy requires evaluating payoffs at all histories of
Xt, t ≥ 0, i.e., at all possible realizations Xt = x, where x ∈ R2 is deterministic. Thus,
let (XQ,x

t )t≥0 denote the dynamic of X under an admissible strategy Q := (Qt)t≥0 when the
initial condition is x = (ϑ,m) ∈ R2. In this proof, the expectation operator E0[·] conditions
on this realized value, and the corresponding variance and covariance operators are also
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indexed by 0.
By Theorem 3.5.3 in Pham (2009), the transversality conditions to verify are:

1. For every x ∈ R2, and any admissible strategy Q, lim sup
t→∞

e−rtE0[V (XQ,x
t )] ≥ 0.

2. For every x ∈ R2, lim inf
t→∞

e−rtE0[V (XQ̂,x
t )] ≤ 0 where Q̂t = δµ+ αθϑt + βM Q̂,x

t , t ≥ 0.

We proceed in two lemmas.

Lemma 1. For any admissible strategy Q,

lim
t→∞

e−rtE0[MQ,x
t ] = lim

t→∞
e−rtE0[θϑt ] = lim

t→∞
e−rtE0[(θϑt )2] = 0.

Also, lim sup
t→∞

e−rtE0[(MQ,x
t )2] < 0.

Proof : Let x = (ϑ,m) ∈ R2. That lim
t→∞

e−rtE0[θϑt ] = lim
t→∞

e−rtE0[(θϑt )2] = 0 follows directly

from (θϑt )t≥0 being mean-reverting, as this implies that both the mean and variance of θt are
bounded. To see that lim

t→∞
e−rtE0[MQ,x

t ] = 0, observe first that

MQ,x
t = me−φt + [µ− φλȲ ][1− e−φt] +

ˆ t

0

e−φ(t−s)λQsds+

ˆ t

0

e−φ(t−s)σξdZ
ξ
t , t ≥ 0.

Thus, it suffices to show that the transversality condition holds for Jt :=
´ t

0
e−φ(t−s)λQsds,

as the rest of the terms trivially vanish in the limit. By Cauchy-Schwarz, however,

e−rtE0[Jt] ≤
(
e−rt
ˆ t

0

e−2φ(t−s)λ2ds

)1/2(
e−rt
ˆ t

0

E0[Q2
s]ds

)1/2

≤
(
e−rt
ˆ t

0

e−2φ(t−s)λ2ds

)1/2

︸ ︷︷ ︸
→0 as t→∞

(
E0

[ˆ ∞
0

e−rsQ2
sds

])1/2

︸ ︷︷ ︸
C(Q):=

.

We claim that C(Q) <∞ for any admissible strategy. Let V Q the corresponding payoff.
By (iii) in the notion of admissibility, we can separate this payoff into

V Q = E0

[ˆ ∞
0

e−rt[θtQt −Q2
t/2]dt

]
− E0

[ˆ ∞
0

e−rtPtQtdt

]
,

which are both finite. Also, since the first term is integrable, Fubini’s Theorem applies, and
thus ,

E0

[ˆ ∞
0

e−rt[θtQt −Q2
t/2]dt

]
=

ˆ ∞
0

e−rt[E0[θtQt]− E0[Q2
t ]/2]dt.
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Moreover, by Tonelli, C(Q) =
´∞

0
e−rtE0[Q2

t ]dt. But since E0[
´ T

0
Q2
tdt] < +∞ for all T > 0

(part (ii) in the definition of an admissible strategy), C(Q) = +∞ implies that E0[Q2
t ] =

O(eρt) for ρ ≥ r for large t. Using that E0[θtQt] < (E0[θ2
t ])

1/2(E0[Q2
t ])

1/2, and that E0[θ2
t ]

is bounded due to mean reversion, we deduce that the tail
´∞
T
e−rt[E0[θtQt] − E0[Q2

t ]/2]dt

cannot converge, and so the consumer’s payoff is −∞, a contradiction. It follows that
lim
t→∞

e−rtE0[Jt] = 0, and hence, that lim
t→∞

e−rtE0[MQ,x
t ] = 0.

To conclude, observe that in (MQ,x
t )2 the only non-trivial terms are

Kt :=

(ˆ t

0

e−φ(t−s)Qsds

)2

and Lt :=

ˆ t

0

e−φ(t−s)Qsds

ˆ t

0

e−φ(t−s)dZξ
t .

However,

e−rtE0[Kt] ≤ e−rt
ˆ t

0

e−2φ(t−s)dsE0

[ˆ t

0

Q2
sds

]
≤ 1− e−2φt

2φ
C(Q) <

C(Q)

2φ
.

Also, by the same logic

e−rt[Lt] ≤ (e−rtE0 [Kt])
1/2

(
e−rtE0

[(ˆ t

0

e−φ(t−s)dZt

)2
])1/2

≤
(
C(Q)

2φ

e−rt[1− e−2φt]

2φ

)1/2

.

Thus, lim
t→∞

e−rtE0[Lt] = 0, from where lim sup
t→∞

e−rtE0[(MQ,x
t )2] <∞.

Lemma 2. (a) Under any admissible strategy Q, lim sup
t→∞

E0[V (XQ,x
t )] ≥ 0. (b) Under the

candidate equilibrium strategy Q̂, lim
t→∞

e−rtE0[V (XQ̂,x
t )] = 0. (c) (Q̂t)t≥0 is admissible.

Proof. To prove (a), we first show that lim
t→∞

e−rtE0[v5θ
x
tM

Q,x
t ] = 0 for any admissible Q.

Observe first that, by Cauchy-Schwarz,

|e−rtE0[θxtM
Q,x
t ]| ≤ (e−rtE0[(θxt )2])1/2︸ ︷︷ ︸

f(t):=

(e−rtE0[(MQ,x
t )2])1/2.︸ ︷︷ ︸

g(t):=

Since f, g > 0, we have that 0 ≤ lim sup
t→∞

fg ≤ lim sup
t→∞

f lim sup
t→∞

g. But lim sup
t→∞

g < ∞ and

lim sup
t→∞

f = lim
t→∞

f = 0, and so lim sup
t→∞

|e−rtE0[θxtM
Q,x
t ]| = 0. However, it is easy to see that

lim
t→∞

e−rtE0[θxtM
Q,x
t ] = 0 if and only if lim sup

t→∞
|e−rtE0[θxtM

Q,x
t ]| = 0.

With this in hand, and using the previous lemma,

lim
t→∞

e−rtE0[v0 + v1θ
ϑ
t + v2M

Q,x
t + v4(θϑt )2 + v5θ

ϑ
tM

Q,x
t ] = 0.
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Thus, lim sup
t→∞

e−rtE0[V (Xx
t )] = lim sup

t→∞
e−rtE0[v3(MQ,x

t )2]. However, the last term is non-

negative due to v3 = (α + 2β)/2λ > 0.
To show (b), observe that under the candidate equilibrium strategy,

dMt = [−φMt + ρ+ λ(αθt + βMt)]dt+ λσξdZ
ξ
t , t ≥ 0,

where ρ = φ[µ− λȲ ] + λδµ. Thus, the dynamics of (θt,Mt)t≥0 admit a solution given by

θϑt = e−κtϑ+ µ[1− e−κt] + σ2
θ

ˆ t

0

e−κ(t−s)dZs, and

M Q̂,x
t = e−(φ−βλ)tm+ ρ

1− e(φ−βλ)t

φ− βλ
+ λα

ˆ t

0

e−(φ−βλ)(t−s)θϑs ds+ σξ

ˆ t

0

e−(φ−βλ)(t−s)dZξ
t .

Since E0[θt] is bounded over t ∈ R+, so is E0[M Q̂,x
t ]. Also, Var0[θt] = σ2

θ [1 − e−2κt]/2κ. We
conclude that lim

t→∞
e−rtE0[Ψt] = 0 for Ψt ∈ {θt,M Q̂,x

t , θ2
t }. Furthermore,

Cov0[θϑt ,M
Q̂,x
t ] = λα

ˆ t

0

e−(φ−βλ)(t−s)Cov0[θϑt , θ
ϑ
s ]ds

where Cov0[θϑt , θ
ϑ
s ] =

σ2
θ

2κ
[e−κ(t−s) − e−κ(t+s)], t ≥ s. Thus, lim

t→∞
e−rtE0[θϑtM

Q̂,x
t ] = 0.

Now, Var0

[´ t
0
e−(φ−βλ)(t−s)dZξ

s

]
= [1− e−2(φ−βλ)t]/[2(φ− βλ)], which is bounded. Also,

Var0

[ˆ t

0

e−(φ−βλ)(t−s)θϑs ds

]
= Cov0

[ˆ t

0

e−(φ−βλ)(t−s)θϑs ds,

ˆ t

0

e−(φ−βλ)(t−s)θϑs ds

]
= e−2(φ−βλ)t

ˆ t

0

ˆ t

0

e(φ−βλ)(u+v)Cov0[θϑu, θ
ϑ
v ]dudv,

where the last equality follows from integrability and Fubini’s Theorem. Since

Cov0[θϑt , θ
ϑ
s ] =

σ2
θ

2κ
[e−κ(max{u,v}−min{u,v}) − e−κ(u+v)],

it is easy to verify that Var0

[´ t
0
e−(φ−βλ)(t−s)θϑs ds

]
is also bounded, and so Var0[MQ,x

t ] is

bounded. We conclude that lim
t→∞

e−rtVar0[M Q̂,x
t ] = lim

t→∞
e−rtE0[(M Q̂,x

t )2] = 0.

Finally, to show (c), observe that (θϑt − P̂t)Q̂t − (Q̂t)
2/2, where P̂t := δµ+ (α+ β)M Q̂,x

t ,
t ≥ 0, is quadratic in (θϑt ,M

Q̂,x
t ). Thus, there is C > 0 large enough such that |(θϑt Q̂t −

(Q̂t)
2/2| + |P̂tQ̂t| ≤ C[1 + (θϑt )2 + (M Q̂,x

t )2]. But from the previous arguments, the second
moments E0[(θϑt )2] and E0[(M Q̂,x

t )2] are bounded over R+, and hence, (iii) in the admissibility
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requirement holds. It is easy to see that (ii) holds via an identical argument, and observe
that we already showed that the controlled dynamics admit a solution under the candidate
equilibrium strategy. This concludes the proof. �

S.2.2 Section 5: Equilibrium Learning

Proof of Proposition 3. Part (i) is proved in section S.2.5 as part of the proof of Lemma
A.5 stated in the paper. As for (ii), suppose that ξt := (ξs : 0 ≤ s < t) is observed by firm
t, and let M∗

t := E[θt|F ξt ], t ≥ 0, where (F ξt )t≥0 denotes the filtration generated by (ξt)t≥0.
When the quantity demanded follows Qt = δµ+ αθt + βM∗

t , recorded purchases obey

dξt = (δµ+ αθt + βM∗
t )dt+ σξdZ

ξ
t ,

where (M∗
t )t≥0 satisfies the filtering equation

dM∗
t = −κ(M∗

t − µ)dt+
αγ(α)

σ2
ξ

[dξt − (δµ+ [α + β]M∗
t dt)].

In this SDE, γ(α) is the unique positive solution to x 7→ −2κx+σ2
θ−(αx/σξ)

2 = 0 (Theorem
12.1 in Liptser and Shiryaev 1977). As a function of (Zθ

t , Z
ξ
t )t≥0, therefore,

dM∗
t =

(
−

[
κ+

α2γ(α)

σ2
ξ

]
M∗

t + κµ+
α2γ(α)

σ2
ξ

θt

)
dt+

αγ(α)

σξ
dZξ

t .

Now, let

λ∗ =
αγ(α)

σ2
ξ

and ρ∗ =
1

ν(α, β)

(
κµ− αγ(α)δµ

σ2
ξ

)
(S.1)

where ν(α, β) satisfies (18) in the paper, i.e., ν(α, β) := κ + αγ(α)[α + β]/σ2
ξ > 0. In

particular, observe that dM∗
t = [−(κ+ λ∗α)M∗

t + κµ+ λ∗αθt]dt+ λσξdZ
ξ
t .

With this in hand, consider (Yt)t≥0 evolving according to

dYt = [−ν(α, β)Yt + δµ+ βρ∗ + αθt + βλ∗Yt]dt+ σξdZ
ξ
t .

11



From the proof of Lemma A.1 in the paper, if (Y0, θ0) is independent of (Zθ
t , Z

ξ
t )t≥0 and

E[Y0] =
δµ+ βρ∗ + αµ

ν(α, β)− βλ∗
, Var[Y0] =

1

2(ν(α, β)− βλ∗)

[
σ2
ξ +

α2σ2
θ

κ(ν(α, β)− βλ∗ + κ)

]
and

Cov[θ0, Y0] =
ασ2

θ

2κ(ν(α, β)− βλ∗ + κ)
,

the pair (θt, Yt)t≥0 is stationary Gaussian, as φ − βλ∗ = ν(α, β) − βαγ(α)/σ2
ξ = κ +

α2γ(α)/σ2
ξ > 0. Denote the previous process by (Y ν(α,β))t≥0, and note that

Yt = e−ν(α,β)tY0 +

ˆ t

0

e−ν(α,β)(t−s)dξs t ≥ 0.

Defining Xt = ρ∗ + λ∗Y
ν(α,β)
t , it is easy to verify that

dXt = [λ∗(δµ+ αθt + βXt)− ν(α, β)[Xt − ρ∗]] + λ∗σξdZ
ξ
t

= [−(κ+ λ∗α)Xt + κµ+ λ∗αθt]dt+ λ∗σξdZ
ξ
t ,

where in the last equality we used that ν(α, β) = κ+λ∗(α+β) and that λ∗δµ+ν(α, β) = µκ.
We conclude that M∗

t −Xt satisfies d[M∗
t −Xt] = −(κ+λ∗α)[M∗

t −Xt]dt, and therefore that
M∗

t −Xt = [M0 −X0]e−(κ+λ∗α)t for all t ≥ 0.
Notice, however, that since (Xt)t≥0 is stationary, stationarity of (M∗

t )t≥0 implies that
M∗

0 −X0 ≡ 0 a.s. To see this, notice first that M∗
0 −X0 cannot be random: otherwise, the

constraint that Var[Mt] must be independent of time becomes

Var[Xt]︸ ︷︷ ︸
independent of t

+e−2[κ+λ∗α]tVar[M∗
0 −X0] + 2e−[κ+λ∗α]t Cov[Xt,M

∗
0 −X0]︸ ︷︷ ︸

independent of t

= constant,

which cannot hold for all t ≥ 0. Thus, M0−X0 = C ∈ R. From here, however, C = 0, as the
requirement that E[M∗

t ] is independent of time would be violated otherwise. Consequently,
if beliefs are stationary,

M∗
t = Xt = ρ∗ + λ∗Y

ν(α,β)
t =

[
1

ν(α, β)

(
κµ− αγ(α)δµ

σ2
ξ

)]
+
αγ(α)

σ2
ξ

Y
ν(α,β)
t , for all t ≥ 0.

To prove the converse, consider (θt, Yt)t≥0 as in Lemma A.1 with φ = ν(α, β). We
aim to show that (Mt)t≥0 coincides with (M∗

t )t≥0 path-by-path of (Yt)t≥0. In fact, because
Mt = µ+λ[Yt− Ȳ ], with λ and Ȳ as in Lemma A.1, the task reduces to showing that, λ = λ∗

and µ− λȲ = ρ∗ when φ = ν(α, β), where λ∗ and ρ∗ are defined in (S.1).

12



With α > 0, inspection of (7) in the paper reveals that the stationarity condition φ−βλ >
0 implies that λ > 0. Thus, λ = Λ(φ, α, β), where the right-hand side is defined in (A.8) in
the paper. The equality λ = λ∗ then follows directly from (ii) in Lemma A.5 in the paper
(the proof of which can be found in Section S.2.5 in this Appendix).

To show the second equality, recall that Ȳ = µ[α+ β + δ]/φ. Thus, when φ = ν(α, β) =

κ+ λ∗(α + β) and λ = λ∗,

µ− λȲ =
µν(α, β)− λµ[α + β + δ]

ν(α, β)
=
µκ− λ∗δµ
ν(α, β)

= ρ∗.

This concludes the proof. �

Now we establish a stronger result than (iv) in Proposition 4 (Equilibrium Learning) in
section 5 in the paper.

Effect of noise—public histories case. σξ 7→ G(φ∗(σξ);σξ) is decreasing for σξ ∈ (0,∞).

Proof: Fix σξ > 0, and recall that φ∗(σξ) is the non-concealing score defined as a solution
to (19) in the paper. Using that

β = − α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)
and γ(α) =

α2(
√
κ2 + α2σ2

θ/σ
2
ξ − κ)

σ2
ξ

we obtain that ν := κ+ αγ(α)(α+β)

σ2
ξ

can be written as

ν = κ−
(
κ
√
s−
√
α2 + κ2s

)
(−ακ+ αφ+ κ+ r + φ)

√
s(κ+ α(−κ+ r + 3φ) + r + φ)

,

where s := σ2
ξ/σ

2
θ . We then solve the fixed point equation ν = φ for s, and we obtain

s∗(α, φ) =
α2(−ακ+ αφ+ κ+ r + φ)2

(φ− κ)(κ+ α(−κ+ r + 3φ) + r + φ)(α(φ− κ)(κ+ r + 3φ) + (κ+ φ)(κ+ r + φ))
.

Thus, a given pair (α, φ) characterizes the equilibrium with publicly observable signals for
s = s∗. We now compare s∗ with the expression that can be obtained by solving for s in the
equilibrium condition (A.19) in the paper, i.e.,

s = −α
3 (α2 (−κ(κ+ r) + 2rφ+ 3φ2) + α(2κ+ r)(κ+ r + φ)− (κ+ r + φ)2)

(α− 1)κ(κ+ r + φ)(κ− αr + r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)
.

13



By setting s = s∗ and solving for α and selecting the only root between 0 and 1, we obtain
an expression for the equilibrium coefficient α in the case of public signals in terms of the
persistence level φ∗ only:

α∗ =
2(ρ+ φ∗ + 1)√

(ρ+ 2φ∗)(ρ+ 6φ∗ − 4) + ρ+ 2
.

Finally,using that G(φ, α, β) = G̃(φ, α) with G̃ as in (A.22), and letting ρ := r/κ, we obtain

G(φ∗) =

√
(ρ+ 2φ∗)(ρ+ 6φ∗ − 4)− ρ− 2√
(ρ+ 2φ∗)(ρ+ 6φ∗ − 4)− ρ+ 2

,

which is increasing in φ∗. Finally, it is easy to show that φ∗ is decreasing in σξ: this is
obtained by substituting γ = (1 − G)σ2

θ/2κ and previous expression for β into the fixed
point condition ν = φ, and showing that the left-hand side is decreasing in both φ and σξ.
Therefore, G is itself decreasing in σξ. �

S.2.3 Section 6: Welfare Analysis

Expression for Consumer Surplus. In this section, expectation (and hence, variance
and covariance) operators are with respect to the prior distribution of (θ0, Y0).

Recall that, in equilibrium,

E[θt] = µ, Var[θt] =
σ2
θ

2κ
, Mt = µ+ λ[Yt − Ȳ ], λ :=

Cov[θt, Yt]

Var[Yt]
, and G(φ) =

Cov[θt, Yt]
2

Var[Yt]Var[θt]
.

Thus,

E[θtMt] = E[M2
t ] = Var[Mt] + µ2 =

Cov[θt, Yt]
2

Var[Yt]
+ µ2 = Var[θt]G(φ) + µ2.

Recall that consumer surplus is defined as the consumer’s ex ante equilibrium payoff
normalized by the discount rate, i.e., CS(φ) := E[Qt(θt − Pt − Qt/2)], where Pt = δ(φ)µ +

[α(φ) + β(φ)]Mt and Qt = δ(φ)µ + α(φ)θt + β(φ)Mt. Omitting the dependence on φ of all
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equilibrium coefficients, therefore,

CS(φ) = δµ

[
E[θt]

(
1− α

2

)
−
(
α +

3β

2

)
E[Mt]−

3δµ

2

]
+ α

[
E[θ2

t ]
(

1− α

2

)
−
(
α +

3β

2

)
E[Mtθt]−

3δµ

2
E[θt]

]
+ β

[
E[θtMt]

(
1− α

2

)
−
(
α +

3β

2

)
E[M2

t ]− 3δµ

2
E[Mt]

]
.

Using the above expressions for the first two moments of (θt,Mt),

CS(φ) =
σ2
θ

2κ
G(φ)

[
−α
(
α +

3β

2

)
+ β

(
1− α

2

)
− β

(
α +

3β

2

)]
︸ ︷︷ ︸

=−3(α+β)2/2+α2/2+β

+
σ2
θ

2κ

[
α
(

1− α

2

)]

+µ2

[
−α
(
α +

3β

2

)
+ β

(
1− α

2

)
− β

(
α +

3β

2

)
+ α

(
1− α

2

)]
︸ ︷︷ ︸

=−3(α+β)2/2+α+β

+ δµ2

[(
1− 3(α + β)

2
− 3α

2
− 3β

2

)
− 3δ

2

]
︸ ︷︷ ︸

=µ2δ[(1−3(α+β))−3δ/2]

.

Collecting terms in the last two lines yields

µ2

[
−3(α + β)2/2 + α + β + δ − 3δ(α + β)− 3δ2

2

]
= µ2

[
α + β + δ − 3

2

{
(α + β)2 + 2δ(α + β) + δ2

}︸ ︷︷ ︸
(α+β+δ)2

]

= µ2(α + β + δ)

[
1− 3

2
(α + β + δ)

]
,

= E[Pt]

(
µ− 3

2
E[Pt]

)
.

Since Var[Pt] = (α + β)2Var[M ] = (α + β)2 σ
2
θ

2κ
G(φ), we can write the first term in CS(φ) as

{α
2/2+β

(α+β)2
− 3/2}Var[P ], from where we obtain the desired expression for consumer surplus,

i.e., (21) in the paper.
Finally, notice that we can write the term that multiplies σ2

θG(φ)/2κ as

−3(α + β)2

2
+
α2

2
+ β = −α[α + 2β]︸ ︷︷ ︸

<0

+ β[1− α]︸ ︷︷ ︸
<0

−3β2

2
< 0.
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On the other hand, since −1/2 < β < 0 and α > 0, and 0 < α + β < 1,

−3

2
(α(φ) + β(φ))2 +

α(φ)2

2
+ β(φ) > 0− 1

2
− 3

2
= −2.

This concludes the proof. �

The value of information Var[Pt] is maximized to the left of φ∗. Observe that
Var[Pt] = [α(φ)+β(φ)]2Var[θt]G(φ). From the proof of Proposition 4, lim

φ→0,∞
G(φ) = 0. Also,

α + β is bounded. By continuity, we conclude that Var[Pt] has a global optimum that is
interior.

From (iii) in Proposition 4, however, G(φ) is maximized to the left of φ∗. Also, from
Lemma A.6, α′(φ) + β′(φ) < 0 over [κ, arg minα]. Since κ < φ∗ < arg minα, Var[Pt] cannot
attain a maximum in [φ∗, arg minα]. One can then verify that the total derivative of Var[Pt]

with respect to φ is negative over [arg minα,+∞) for all parameter values (r, κ, σθ, σξ). This
is done in scores.nb posted on our websites. �

Proof of Proposition 5. The final step for proving (i) and (ii) requires demonstrating
(A.23), i.e.,

lim
φ→0,+∞

[α(φ)− 1]2

R(φ)
= 0, and lim

φ→0,+∞

G(φ)

R(φ)− 1/8
> 0,

where R(φ) := [α(φ) + β(φ) + δ(φ)]
(
1− 3

2
[α(φ) + β(φ) + δ(φ)]

)
.

To this end, we can use the expressions (A.7) and (A.12) in Appendix A for β and δ,
respectively, to obtain,

[α(φ)− 1]2

R(φ)− 1/8
= − 8(α− 1)

(κ+ r + φ)(−ακ+ αφ+ κ+ r + φ)
×

[α2 (κ2 + r(κ+ 2r) + 5rφ+ 3φ2)− α(2κ+ r)(κ+ r + φ) + (κ+ r + φ)2]
2

α2 (−κ2 + 4r2 − κr + 13rφ+ 9φ2) + α(2κ+ r)(κ+ r + φ)− (κ+ r + φ)2
.

In addition, we can use expression (A.22) for G to obtain,

G(φ)

R(φ)− 1/8
=

8[κ+ α(−κ+ r + 3φ) + r + φ]

α(r + 2φ)(κ− αr + r + φ)(−ακ+ αφ+ κ+ r + φ)
×

[α2 (κ2 + r(κ+ 2r) + 5rφ+ 3φ2)− α(2κ+ r)(κ+ r + φ) + (κ+ r + φ)2]
2

α2 (−κ2 + 4r2 − κr + 13rφ+ 9φ2) + α(2κ+ r)(κ+ r + φ)− (κ+ r + φ)2
,

where we have omitted the dependence of α on φ. Consider now the first expression. To
examine the case φ → +∞, write α − 1 = λαβ/[r + κ + φ] in the first ratio. Recalling
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that (α, β, λ) → (1,−1/2, σ2
θ/[κσ

2
ξ ]) (proof of Proposition 3 in the paper), we have that the

numerator is of O(φ4) for φ large. In contrast, it is easy to see that the denominator is of
O(φ5). Thus, the first expression converges to zero as φ→ +∞. Regarding the case φ→ 0,
it is easy to see that since α → 1, the denominator converges to 4(κ + r)r3 > 0, while the
numerator converges to zero. Thus, the first expression attains the same value as φ→ 0.

Turning to the second expression, using that κ, r > 0 and α → 1 as φ → +∞, the
numerator is O(φ5) for φ large, where the associated constant is 8 × 4 × 16. Similarly, the
denominator is also O(φ5) for φ large, with constant 2 × 1 × 2 × 8. Thus, the limit is 16.
Finally, when φ→ 0, the denominator converges to 4r4κ. Instead, the numerator converges
to 64r5. Thus, the limit is 16r/κ > 0. This concludes the proof. �

S.2.4 Section 7: Hidden Scores

Proof of Proposition 7. The proof parallels the steps followed for proving Theorem 1. If
(θt, Yt)t≥0 is as in Proposition A.1 (Appendix A in the paper) with Qt = δhµ/2+αhθt+βhMt

and βh = −αh/2, we have that

λh =
αhσ2

θ(φ− βhλh)
(αh)2σ2

θ + κσ2
ξ (φ+ κ− βhλh)

and Ȳ h =
µ[δh/2 + αh + βh]

φ
.

In addition, (ii) in the same proposition becomes φ− βhλh = φ+ λhαh/2 > 0.
Observe that αh 6= 0 in equilibrium as well: otherwise, using that φ − βhλh > 0 in the

equation for λh implies that λh = 0, and so price is constant—but this leads to a demand
with unit weight on the type. Using that αh 6= 0 and φ − βhλh > 0, the same equation
implies that λh 6= 0.

Recalling that Pt = −E[Qt|Yt]/ζh, and using that Mt = µ+ λh[Yt − Ȳ h],

dPt = −α
hλh

2ζh
dYt = −α

hλh

2ζh
[(Qt − φYt)dt+ σξdZ

ξ
t ]

=

[
−α

hλh

2ζh
Qt − φ

(
Pt +

δhµ+ αhρhµ

2ζh

)]
dt− αhλh

2ζh
σξdZ

ξ
t , (S.2)

where ρh := 1 − λh[δh/2 + αh + βh]/φ. Thus, the consumer’s problem is to maximize her
utility subject to (S.2) and the law of motion of her type.

We guess a value function V = v0 + v1θ + v2P + v3P
2 + v4θ

2 + v5θP , which gives the
first-order condition

q = θ − P − αhλh

2ζh
[v2 + 2v3P + v5θ]︸ ︷︷ ︸

∂V/∂P

= −α
hλh

2ζh
v2 +

[
1− αhλh

2ζh
v5

]
θ +

[
−1− αhλh

ζh
v3

]
P.
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As a result, we obtain the matching-coefficients conditions

δhµ = −α
hλh

2ζh
v2, α

h = 1− αhλh

2ζh
v5 and ζh = −1− αhλh

ζh
v3. (S.3)

Moreover, by the Envelope Theorem,

(r + φ)[v2 + 2v3P + v5θ] = q

[
−1− v3

αhλh

ζh

]
− 2v3φ

[
P +

δhµ+ αhρhµ

2ζh

]
− κv5(θ − µ),

which leads to the system

(r + φ)v2 = δhµ

[
−1− v3

αhλh

ζh

]
− 2v3φ

δhµ+ αhρhµ

2ζh
+ κµv5

2(r + φ)v3 = ζh
[
−1− v3

αhλh

ζh

]
− 2v3φ

(r + φ)v5 = αh
[
−1− v3

αhλh

ζh

]
− κv5.

Using that v2, v3 and v5 can be written as a function of δhµ, αh and ζh, respectively, and
dividing by ζh in each equation, we obtain the following system

−(r + φ) 2δhµ
αhλh

= δhµ+ 2φ ζ
h+1
λhαh

δhµ+αhρhµ
2ζh

+ κµ2(1−αh)
αhλh

−2(r + 2φ) ζ
h+1
αhλh

= ζh

(r + φ+ κ)2(1−αh)
αhλh

= αh.

(S.4)

Observe that the last equation is independent of the other two. Also, the second equation
is linear in ζh given αh, while the first equation is linear in δh given ζh and αh. Thus, we
can solve for αh, ζh, and δh sequentially. We proceed by finding αh first.

It is immediate that αh ∈ (0, 1): (i) if αh < 0, the last equation in system (S.4) reads

φ− βhλh = φ+
αh

2
λh = (r + κ)

(
1

αh
− 1

)
+
αh

φ
< 0,

which contradicts stationarity; (ii) if αh = 1, the equation for λh implies that λh > 0, and so
the last equation in (S.4) yields that αh = 0, a contradiction; (iii) and if αh > 1, it follows
that λh < 0 from the same equation, but the equation for λh yields λh > 0 in a stationary
linear Markov equilibrium. Since we already know that αh 6= 0, it follows that αh ∈ (0, 1),
from where we conclude that λh > 0 using again the equation for λh.

Since αh > 0 and βh = −αh/2 < 0, the unique possible value for λh > 0 is given by
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Λ(φ, αh,−αh/2) as defined in (A.8) in the paper. The last equation in (S.4) then reads
Ah(φ, αh) = 0, where

Ah(φ, x) := (r + κ+ φ)(x− 1)− xΛ(φ, x,−x/2)
[
−x

2

]
, (φ, x) ∈ (0,∞)× [0, 1].

The final steps of the proof are as follows:

1. Existence and uniqueness of solution to Ah(φ, x) = 0, x ∈ [0, 1]. Lemma A.3 in Ap-
pendix A of the paper (i.e., the existence and uniqueness of α ∈ (0, 1) s.t. A(φ, α) = 0 in
the observable-score case), carries over to this setting. To see this, recall that A(φ, x) =

(r+κ+φ)(x−1)−xΛ(φ, x,B(φ, x))B(φ, x), whereB(φ, x) ∈ (−x/2, 0). It is then easy to
verify that the steps that showed that x ∈ [0, 1] 7→ H(φ, x) := −Λ(φ, x,B(φ, x))B(φ, x)

is strictly increasing also imply that x ∈ [0, 1] 7→ Hh(φ, x) := −Λ(φ, x,−x/2)[−x/2]

is strictly increasing. This is because, when B(φ, x) is replaced by −x/2 in H:
Bα(φ, α)α + B(φ, α) < 0 becomes −α < 0; `α(φ, α) > 0 becomes σ2

θα > 0; and
−αBα(φ, α) + B(φ, α) ≥ 0 becomes 0 ≥ 0, which were the critical steps to prove that
H was increasing. That αh solving Ah(φ, σ2

ξ , α) = 0, (φ, σ2
ξ ) ∈ (0,∞)2 (the dependence

on σ2
ξ made explicit) is of class C1 follows from an identical argument.

2. Determination of the rest of the coefficients. Returning to ζh, it is easy to see from
the second equation in (S.4) that

ζh = − 2(r + 2φ)

λhαh + 2(r + 2φ)
∈ (−1, 0),

where the bounds follow from αhλh > 0.

Regarding δh, observe that the first equation in system (S.4) is trivially satisfied if
µ = 0; in this case, the constant term in the demand function is simply zero. When
µ 6= 0, we can eliminate µ on both sides to obtain

−(r + φ)
2δh

αhλh
= δh + φ

ζh + 1

ζhλhαh
[δh + αhρh] + κµ

2(1− αh)
λhαh

where ρh = 1 − λh[δh/2 + αh + βh]/φ. Also, from the second equation in (S.4), (ζh +

1)/(ζhλhαh) = −1/[2(r + 2φ)]. Thus, the coefficient that multiplies δh in the previous
equation is given by

1

αhλh

[
−2(r + φ)− λhαh +

φ

2(r + 2φ)
αhλh − φ

4(r + 2φ)
(αhλh)2

]
.
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But observe that φαhλh/[2(r + 2φ)] ∈ (0, αhλh/4), and so the second term dominates
the third. We conclude that the previous expression is strictly negative, which implies
that the equation for δh admits a solution for all parameters.

The rest of the unknowns are determined as follows. First, v2, v3 and v5 are determined
from the matching-coefficient conditions (S.3) using δh, αh and ζh; it is easy to see that
all these equations admit a solution. The coefficients v1 and v4 can in turn be obtained
via the Envelope Theorem. Specifically,

(r + κ)[v1 + 2v4θ + v5P ] = (δhµ+ αhθ + ζhP )

[
1− v5

αhλh

2ζh

]
−v5φ

[
P +

δhµ+ αhρhµ

2ζh

]
− 2v4κ(θ − µ)

yields the additional equations

2(r + κ)v4 = αh
[
1− v5

αhλh

2ζh

]
︸ ︷︷ ︸

=αh from (S.3)

−2v4κ⇒ v4 =
(αh)2

2(r + 2κ)
and

(r + κ)v1 = δhαhµ− v5φ
δhµ+ αhρhµ

2ζh
⇒ v1 =

δhαhµ

r + κ
− v5φ(δhµ+ αhρhµ)

2ζh(r + κ)
.

The coefficient v0 in turn corresponds to

v0 =
1

r

[
−(δhµ)2 + v2

(
δhµ

αhλh

2ζh
− φδ

hµ+ αhρhµ

2ζh

)
+ v1κµ+ σ2

θv3 +

(
αhλhσξ

2ζh

)2

v4

]
,

which is obtained by equating the constant terms in the HJB equation.

3. Transversality conditions and admissibility of the candidate equilibrium strategy.

Recall that under any admissible strategy,

dPt =

[
−α

hλh

2ζh
Qt − φ

(
Pt +

δhµ+ αhρhµ

2ζh

)]
dt− αhλh

2ζh
σξdZ

ξ
t ,

whereas under the candidate equilibrium strategy, Qt = δhµ+ αhθt + ζhPt,

dPt =

[
−
(
φ+

αhλh

2

)
Pt −

(αh)2λh

2ζh
θt − µ

(
δhαhλh

2ζh
+ φ

δh + αhρh

2ζh

)]
dt− αhλhσξ

2ζh
dZξ

t .

Since φ and φ + αhλh/2 are strictly positive, both dynamics have the exact same
structure as the corresponding ones for (Mt)t≥0 in the observable-scores case. Moreover,
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from (S.3), the coefficient on P 2 in the value function is v3 = −(ζh + 1)ζh/[αhλh] > 0,
where the last inequality follows from ζh ∈ (−1, 0). It can be easily seen that these
facts imply that all the arguments used to prove Lemmas 1 and 2 in Section S.2.1 of
this supplementary Appendix also apply to the hidden-scores case.

4. Upper bound for ζh. To conclude, we derive the upper bound for ζh. Using the last
equation in the system (S.4),

λhαh =
(r + κ+ φ)2(1− αh)

αh
.

Consequently,

−ζh =
(r + 2φ)αh

(r + 2φ)αh + (r + κ+ φ)(1− αh)
=

1

1 + (r+κ+φ)(1−αh)
(r+2φ)αh

.

However, it is easy to see from (A.14)–(A.15) (proof of (ii) in Proposition 3 in Appendix
A) that the lower bound αh ≥ [r + κ + φ]/[r + κ + 2φ] also holds in the hidden case.
Thus,

1− αh

αh
≤ φ

r + κ+ φ
⇒ −ζh ≥ 1

1 + φ/[r + 2φ]
=
r + 2φ

r + 3φ
.

�

Proof of Proposition 8. We begin by proving (ii). A simple rearrangement of terms in
A(φ, αo) = 0 and Ah(φ, αh) = 0 shows that αo and αh are defined solutions to

Ã(φ, α) := −2(r + κ+ φ) + α (2r + κ+ φ) + αh(B(φ, α), α) = 0, and

Ãh(φ, α) := −2(r + φ+ κ) + α(2r + φ+ κ) + αh(−α/2, α) = 0,

respectively, where B(φ, α) ∈ (−α/2, 0) and

h(y, α) :=

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαyφ

κσ2
ξ

1/2

− σ2
θα[α + y]

κσ2
ξ

.

We now show that, given α > 0, y 7→ h(y, α) is strictly decreasing over R−. In fact, observe
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that ∂h(y, α)/∂y < 0 if and only if

(
σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)
σ2
θα

κσ2
ξ

− 2σ2
θαφ

κσ2
ξ

<
σ2
θα

κσ2
ξ

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαy

κσ2
ξ

1/2

⇔

(
σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)
− 2φ <

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαy

κσ2
ξ

1/2

.

If the left-hand side is negative, the result follows immediately. Suppose to the contrary that(
σ2
θα[α + y]/κσ2

ξ + φ+ κ
)
−2φ > 0. Squaring both sides of the inequality under study yields

−4

(
σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)
φ+ 4φ2 < −4σ2

θαyφ

κσ2
ξ

⇔ 0 <
σ2
θα

2

κσ2
ξ

+ κ,

which is always true. Because −α/2 < B(φ, α) < 0, we conclude that Ã(φ, α) < Ãh(φ, α) for
all α ∈ [0, 1]. But since Ã(φ, α) = 2A(φ, α) and Ãh(φ, α) = 2Ah(φ, α), and both α 7→ A(φ, α)

and α 7→ Ah(φ, α) are increasing (proofs of Theorem 1 and Proposition 9), it follows that
αo(φ) > αh(φ).

We now turn to (i) and (ii). Recall that in the observable case, Qt = δµ+αθt +βMt and
Pt = δµ+ (α + β)Mt. Thus, omitting the dependence of all equilibrium coefficients on φ,

αo = α and πo1 = (α + β)λ,

where λ = Λ(φ, α,B(φ, α)).
To show (ii), we use the second equation in (A.6) to obtain

πo1 = (α + β)λ =
[λβ]2

r + 2φ
− βλ =

4[λβ]2 − 4βλ(r + 2φ)

4(r + 2φ)

[−2λβ + (r + 2φ)]2 − (r + 2φ)2

4(r + 2φ)
.

However, using the expression for ζh in the hidden-scores case,

πh1 := −α
hλh

2ζh
=

[αhλh]2 + 2(r + 2φ)αhλh

4(r + 2φ)
=

[αhλh + (r + 2φ)]2 − (r + 2φ)2

4(r + 2φ)
.

Thus, we must compare −2λβ with αhλh. However, from the last equation in (A.6) in
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Appendix A, and the last equation in (S.4) in this Appendix,

(r + κ+ φ)
2(1− α)

α
= −2λβ, and (r + κ+ φ)

2(1− αh)
αh

= αhλh,

But since 1 > αo > αh > 0, we have 0 < −2λβ < αhλh.9 It follows that 0 < πo1 < πh1 .
We conclude by proving (iii). To find the expected price and quantities in the hidden

case, observe that the equation for δh is given by the first equation in (S.4) in this Appendix:

−(r + φ)
2δhµ

αhλh
= δhµ+ φ

ζh + 1

αhλhζh
[δhµ+ αhρhµ] + κµ

2(1− αh)
αhλh

,

where ρh := 1− λh[δh + αh]/[2φ]. Also, from the second and third equations in (S.4) again,

ζh + 1

αhλhζh
= − 1

2(r + 2φ)
and κ

2(1− αh)
αhλh

= αh − (r + φ)
2(1− αh)
αhλh

.

Consequently, we can write

2(r + φ)

αhλh
[µ− (δhµ+ αhµ)] = δhµ+ αhµ− φ

2(r + 2φ)
[δhµ+ αhρhµ]. (S.5)

On the other hand, on-path prices and quantities in the hidden case take the form P h
t =

−[δhµ+ αhMt]/2ζ
h and Qh

t = δhµ+ αhθt + ζhP h
t . Hence,

Ph(φ) := E[P h
t ] = −µδ

h + αh

2ζh
and Qh(φ) := E[Qh

t ] = µ
δh + αh

2
= −ζhPh(φ).

From here, Ph(φ) = Qh(φ) if and only if µ = 0. In this case, expected prices and quantities
in the observable and hidden case all coincide, and their common value is zero. We assume
µ > 0 in what follows; in particular, Ph(φ) > Qh(φ) due to ζh ∈ (−1, 0).

Let P̄h(φ) = Ph(φ)/µ and observe that −ζhP̄h(φ) = (αh + δh)/2. In addition,

ρh := 1−λh δ
h + αh

2φ
⇒ δhµ+αhρhµ = µ(αh+δh)−λhαhµδ

h + αh

2φ
= −µζhP̄h(φ)

[
2− λhαh

φ

]
.

9As a corollary, −1 < ζo < ζh < 0. To see this, observe that ζo = β
α+β . Now, from the second equation for

the system (A.6) that defines (δ, α, β) in the observable case, (r+2φ)α+2β
λ = β2 ⇒ ζo = β

β+α = −2(r+2φ)
2(r+2φ)−2λβ .

On the other hand, in the hidden-scores case, ζh = − 2(r+2φ)
2(r+2φ)+αhλh .
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Plugging these expressions into (S.5), and multiplying the resulting equation by µ/2ζh yields

2(r + φ)

αhλh

[
1

2ζh
+ P̄h(φ)

]
= −P̄h(φ) + P̄h(φ)

φ

2(r + 2φ)

[
1− αhλh

2φ

]
⇒ P̄h(φ) =

r+φ
αhλhζh

−1 + φ
2(r+2φ)

− αhλh

4(r+2φ)
− 2(r+φ)

αhλh

=
2(r + φ)[2(r + 2φ) + αhλh]

8(r + φ)(r + 2φ) + (αhλh)2 − 2φαhλh + 4αhλh(r + 2φ)
, (S.6)

where in the last equality we used that ζh = −2(r+2φ)/[2(r+2φ)+αhλh]. The expression is
well-defined because 8(r+φ)(r+ 2φ) + (αhλh)2− 2φαhλh + 4αhλh(r+ 2φ) = 4(r+φ)[αhλh +

2(r + 2φ)] + (αhλh)2 + 2φαhλh > 0.

We first prove Q̄o(φ) > Q̄h(φ). Since Q̄h = −ζhP̄h, it follows that

Q̄h =
1

2 + (αhλh)2−2φαhλh+4αhλh(r+2φ)
4(r+φ)(r+2φ)

=
1

2 + αhλh

2(r+φ)
αhλh+4r+6φ

2(r+2φ)

.

Also, from (A.16) in the proof of Proposition 3 (Appendix A in the paper),

P̄o(φ) :=
Po(φ)

µ
=

r + φ

2(r + φ) + λ(α + β)
. (S.7)

Since Q̄o(φ) = P̄o(φ), the desired inequality holds if and only if

αhλh

2(r + φ)

αhλh + 4r + 6φ

2(r + 2φ)
>
λ(α + β)

r + φ
⇔ αhλh

2

αhλh + 4r + 6φ

2(r + 2φ)
>︸︷︷︸
(∗)

λ(α + β).

Now, using the equations that define α and αh we obtain

λ =
(r + κ+ φ)(α− 1)

αβ
and

αhλh

2
=

(r + κ+ φ)(1− αh)
αh

.

Also, using that β = B(φ, α) = −α2(r + 2φ)/[2(r + 2φ)α− (r + κ+ φ)(α− 1)], it is easy to
see that

α + β

αβ
=
α(r + 2φ)− (r + κ+ φ)(α− 1)

−α2(r + 2φ)
.

The inequality (*) then holds if and only if

(1− αh)[2(r + κ+ φ)(1− αh) + (4r + 6φ)αh]

2(αh)2(r + 2φ)
>

(1− α)[(r + κ+ φ)(1− α) + α(r + 2φ)]

α2(r + 2φ)
.
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Since α > αh, we have that 2(1−αh)2α2[r+ κ+ φ] > 2(1−α)2(αh)2[r+ κ+ φ]. It therefore
suffices to show that

(1− αh)α2(4r + 6φ)αh > (1− α)(αh)2α(2r + 4φ)

⇔ [1− αh]α2(2r + 4φ)αh + 2[1− αh]α2(r + φ)αh > (1− α)(αh)2α(2r + 4φ)

⇔ ααh[α− αh] + 2[1− αh]α2(r + φ)αh > 0,

which is always true.
To establish the ranking of prices, we introduce the following:

Lemma 3. A sufficient condition for P̄h(φ) > P̄o(φ) is

αh >
α2(r + 2φ)

α(r + 2φ) + (1− α)2(r + κ+ φ)
(S.8)

Proof. From (S.6) in this Appendix, and using that 8(r+ φ)(r+ 2φ) + (αhλh)2− 2φαhλh +

4αhλh(r + 2φ) = 4(r + φ)[αhλh + 2(r + 2φ)] + (αhλh)2 + 2φαhλh > 0, we can write

P̄h(φ) =
1

2 + αhλh[αhλh+2φ]
2(r+φ)[2(r+2φ)+αhλh]

.

As a result, using (S.7),

P̄o(φ) < P̄h(φ)⇔ αhλh

2

αhλh + 2φ

2(r + 2φ) + αhλh
< λ(α + β).

Using again that αhλh = 2(r + κ+ φ)(1− αh)/αh, λ = (r + κ+ φ)(α− 1)/[αβ], and

α + β

αβ
=
α(r + 2φ)− (r + κ+ φ)(α− 1)

−α2(r + 2φ)
,

The inequality of interest becomes

α2(r + 2φ)(1− αh)[αhλh + 2φ] < (1− α)αh[αhλh + 2(r + 2φ)]

×[α(r + 2φ)− (r + κ+ φ)(α− 1)]

⇔ α2(r + 2φ)[αhλh + 2φ] < (1− α)2αh[αhλh + 2(r + 2φ)](r + κ+ φ)

−2α2αh(r + φ)(r + 2φ)

+αhα(r + 2φ)[αhλh + 2(r + 2φ)]

⇔ α2(r + 2φ)[αhλh + 2φ+ 2αh(r + φ)] < (1− α)2αh[αhλh + 2(r + 2φ)](r + κ+ φ)

+αhα(r + 2φ)[αhλh + 2(r + 2φ)].
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But since αh < 1, the left-hand side is less than α2(r + 2φ)[αhλh + 2(r + 2φ)]. Inserting the
latter expression on the left-hand side and dividing by αhλh + 2(r + 2φ) > 0, we conclude
that the desired inequality is equivalent to α2(r+ 2φ) < (1−α)2αh(r+κ+φ) +αhα(r+ 2φ).
This concludes the proof of the lemma. �

Let s = σ2
ξ/σ

2
θ . We first write the equilibrium condition for α as in (A.19) in the paper,

and obtains an analogous expression for αh in the hidden case. Specifically,

0 =
(α− 1)(κ+ r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

α3(r + 2φ)
+
α(κ− α(κ+ r) + r + φ)

α3 + κs(κ− αr + r + φ)
,

0 =
2
(
αh − 1

)
(κ+ r + φ)

(αh)2
+

αh
(
κ− αh(κ+ r) + r + φ

)
(αh)3 + κs (κ− αhr + r + φ)

.

Solving both equations for s, we obtain the following expressions

s =
α3 (α2 (−κ(κ+ r) + 2rφ+ 3φ2) + α(2κ+ r)(κ+ r + φ)− (κ+ r + φ)2)

(1− α)κ(κ+ r + φ)(κ+ r(1− α) + φ)(κ(1− α) + α(r + 3φ) + r + φ)︸ ︷︷ ︸
So(α):=

,

s =
(αh)3

(
κ− αh(κ+ r + 2φ) + r + φ

)
2κ (αh − 1) (κ+ r + φ) (κ− αhr + r + φ)︸ ︷︷ ︸

Sh(αh):=

.

In particular, observe that since αh > [r + κ+ φ]/[r + κ+ 2φ], Sh(αh) is increasing.
Now fix α = α(φ) and consider the difference So(α)− Sh(AP (α)), where is the AP (α) is

the function defined by the right-hand side of (S.8). After simplifications, we obtain

So(α)− Sh(AP (α))

=[(κ+ r(1− α) + φ)(κ(1− α) + α(r + 3φ) + r + φ]
So(α)

2
×[

2

(κ− αr + r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

− (κ+ α2(κ+ r + φ)− α(2κ+ r) + r + φ)
−2
α3(r + 2φ)3

(−ακ+ αφ+ κ+ r + φ) (α2 ((κ+ φ)2 + 2κr)− α(2κ+ r)(κ+ r + φ) + (κ+ r + φ)2)

]
.

Finally, it can be verified that the term in parentheses is strictly positive for all α ∈ (0, 1)

and for all (κ, φ, r) ∈ R3
+—see scores.nb on our websites. Because in equilibrium we must

have So(α) = Sh(αh) = s, it follows that αh(φ) > AP (α(φ)) for all φ. This concludes the
proof of the proposition. �
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Before turning to the proof of Proposition 9, we need expressions for consumer surplus
and firms’ profits that are analogous to the ones derived in the beginning of Section S.2.3:

Lemma 4. For all φ ≥ 0 and σξ > 0,

CSh(φ) = Var[θt]α
h

(
1− αh

2

)
+ (−ζhE[Pt])

(
µ−

[
1

2
− 1

ζh

]
(−ζhE[Pt])

)
+ αh

(
αh

4

[
3

2
+

1

ζh

]
− 1

2

)
︸ ︷︷ ︸

<0

Var[θt]G
h(φ)

Πh(φ) = −ζhE[(P h
t )2]

where E[Pt] = µ[δh + αh]/[−2ζh] and Gh(φ) = Λ(φ, αh(φ),−αh(φ)/2).

Proof: Consumer surplus always takes the form E[Qt[θt−Pt−Qt/2]]. Using that Cov[θt,Mt] =

Var[Mt] = Var[θt]G
h(φ), it is easy to verify that

E[Qtθt] =
δhµ2

2
+ αh [Var[θt] + µ2]︸ ︷︷ ︸

=E[θ2t ]

−α
h

2
[Var[θt]G

h(φ) + µ2]︸ ︷︷ ︸
E[θtMt]

= µ2

(
δh + αh

2

)
+ αhVar[θt]−

αh

2
Var[θt]G

h(φ)

E[Q2
t ] =

(
δhµ

2

)2

+ [αh]2[Var[θt] + µ2] +

(
αh

2

)2

[Var[θt]G
h(φ) + µ2]

+δhαhµ2 − δhαh

2
µ2 − [αh]2[Var[θt]G

h(φ) + µ2]

= µ2

(
δh + αh

2

)2

+ [αh]2Var[θt]−
3[αh]2

4
Var[θt]G

h(φ)

E[QtPt] = − 1

ζh

(
δhµ

2

)2

− 1

ζh
αhδhµ2

2
− 1

ζh

(
αh

2

)2

[Var[θt]G
h(φ) + µ2]

= −µ
2

ζh

(
δh + αh

2

)2

− 1

ζh

(
αh

2

)2

Var[θt]G
h(φ)

Collecting terms that accompany Var[θt], Var[θt]G
h(φ) and µ2 yields

CSh(φ) = Var[θt]α
h
[
1− αh/2

]
+ Var[θt]G

h(φ)

[
−αh

2
+

3[αh]2

8
+

[αh]2

4ζh

]
+µ2

(
δh + αh

2

)[
1−

(
1

2
− 1

ζh

)(
δh + αh

2

)]

27



But since E[Pt] = µ[δh + αh]/[−2ζh], we can write

µ2

(
δh + αh

2

)[
1−

(
1

2
− 1

ζh

)(
δh + αh

2

)]
= (−ζhE[Pt])

(
µ−

[
1

2
− 1

ζh

]
(−ζhE[Pt])

)
.

As for the profits expression, it follows from Πh := E[P h
t Q

h
t ] and E[Qh

t |Yt] = −ζhP h
t . �

Proof of Proposition 9. From section S.3.3, the equilibrium variables of the observable
and hidden cases are of class C1 over (φ, σ2

ξ ) ∈ (0,∞)× [0,∞). Thus, to study the noiseless
limit case, we set σξ = 0 in the solutions of the observable and hidden cases (the former
literally understood as a noiseless case, while the latter understood as the C1 extension of
the equilibrium variables to σξ = 0). Letting CSxµ denote the consumer surplus as a function
of µ ≥ 0 in case x ∈ {o, h} in this case, we have that

CSoµ − CSo0 = E[Qo
t ]

(
µ− 3

2
E[Qo

t ]

)
= µ2 (r + φ)(r + 3φ)

2(2r + 3φ)2
, and

CShµ − CSh0 = E[Qh
t ]

(
µ−

[
1

2
− 1

ζh

]
E[Qh

t ]

)
= µ2 (r + φ)(r + 2φ)[r2 + 5rφ+ 8φ2]

8[r2 + 4rφ+ 4φ2]2

where the last equalities follow from the expressions for E[Qo
t ], E[Qh

t ] and ζh when σξ = 0

(section S.3) After straightforward manipulation of terms, if µ > 0,

CSoµ − CSo0 > CShµ − CSh0
⇔ 4(r + 3φ)[r4 + 24r2φ2 + 8r3φ+ 32rφ3 + 16φ4]

> (2r + 3φ)2[r3 + 6r2φ+ 18rφ2 + 16φ2].

It is then easy to verify that the strict inequality holds component-wise across all different
exponents as long as φ > 0, with equality at φ = 0.

On the other hand, the comparison between the remaining components can be obtained
by studying consumer surplus when µ = 0, namely, CSo0 − CSh0 . One can show that

CSo0 − CSh0 = Var[θ]f1(φ, r, κ)
{

2κ2(κ− r)r(κ+ r)(∆− r)

+φκ[2κr2(20r −∆) + r3(9r + ∆) + κ3(−6r + 8∆) + κ2r(13r + 17∆)]

+f2(r, φ, κ)}

where ∆ :=
√

(2φ+ r)(6φ+ r), and where f1 and f2 are strictly positive functions (as we
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show in the Mathematica file scores.nb). Thus, it suffices to show that

φκ[40κr3 + r3(9r + ∆) + κ3(−6r + 8∆) + κ2r(13r + 17∆)]

> 2κ2(r − κ)r(κ+ r)(∆− r) + 2φκ2r2∆.

Since ∆ > r, the inequality is trivially satisfies when κ ≥ r, as 2κ2(r−κ)r(κ+ r)(∆− r) < 0

and 2φκ2r2∆ < 17φκ3r∆ in this case. Suppose now that r > κ. Using that ∆2 − r2 =

φ(12φ+ 8r) the inequality can be written as

κ(∆ + r)[40κr3 + r3(9r + ∆) + κ3(−6r + 8∆) + κ2r(13r + 17∆)]

> 2κ2(r − κ)r(κ+ r)(12φ+ 8r) + 2κ2r2∆(∆ + r). (S.9)

Notice first that,

40κ2r3(∆ + r) > 40κ2r3[
√

12φ+ r] > 2κ2r3(12φ+ 8r) > 2κ2(r − κ)r(κ+ r)(12φ+ 8r).

On the other hand, we can write κ3(−6r + 8∆) = 6κ3(∆ − r) + 2κ3∆, each term being
positive. Thus,

κ(∆ + r)[r3∆ + 2κ3∆ + 17κ2r∆] > 2κ2r2∆(∆ + r)

⇔ κ(∆ + r)∆[r3 + 2κ3 + 17κ2r − 2κr2] > 0

⇔ κ(∆ + r)∆[r(r2 − 2κr + 17κ2) + 2κ3] > 0

which is clearly true. Since the remaining terms of the left-hand side of (S.9) are all positive,
we deduce that CSo0 − CSh0 > 0 for all φ > 0.

To prove (ii), set again σξ = 0 in the equilibrium objects and outcomes of both models.
We proceed in an analogous fashion, letting Πx

µ(φ) denote profits at φ > 0 as a function of
µ ≥ 0 when x ∈ {0, h}. Using the expression from section S.3 in this online appendix,

Πo
µ − Πo

0︸ ︷︷ ︸
µ2−component of Πo

= µ2 (r + φ)2

(2r + 3φ)2
, and

Πh
µ − Πh

0︸ ︷︷ ︸
µ2−component of Πh

= µ2 (r + 2φ)[(r + φ)(r + 3φ)]2

(r + 3φ)[2(r + φ)(r + 3φ) + 2φ2]2
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Straightforward manipulation then shows that, if µ > 0,

Πo
µ − Πo

0 > Πh
µ − Πh

0

⇔ 4[(r + φ)(r + 3φ) + φ2]2 > (r + 2φ)(r + 3φ)(2r + 3φ)2

⇔ 4(r + 2φ)3 > (r + 3φ)(2r + 3φ)2,

which is true for all φ > 0.
We now show that Πo

0 > Πh
0 for φ large enough. Indeed, using that in the observable case

α =
2(r + κ+ φ)

r + 2κ+
√

(r + 2φ)(r + 6φ)
and β = − α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)
,

it is easy to see that lim
φ→∞

(α, β) =
(

1√
3
,− 2√

3(3+
√

3)

)
. On the other hand, αh = (r + κ +

φ)/(r + κ+ 2φ)→ 1/2 as φ→∞. Thus,

lim
φ→∞

Πo
0(φ) = Var[θ]

(α + β)2φα

αφ+ κ(α + β)
=

(
1 +
√

3√
3(3 +

√
3)

)2

, and

lim
φ→∞

Πh
0(φ) = Var[θ]

r + 3φ

4(r + 2φ)

(αh)2φ

φ+ κ/2
=

3

32
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Thus, lim
φ→∞

Πo
0(φ) − Πh

0(φ) > 0, and hence, there exists φ̄ such that, for all µ ≥ 0, we

have that Πo
µ(φ) > Πh

µ(φ) for all φ > φ̄ when σ2
ξ = 0. (Observe, moreover, that since the

expressions involved are continuously differentiable functions of (φ, σ2
ξ ) ∈ (0,∞) × [0,∞),

uniform convergence of [CSoµ − CShµ ](σ, ·) and [Πo
µ −Πh

µ](σ, ·) as σξ ↘ 0 holds over compact
sets of levels of persistence—refer to Section S.3.3 for the details.)

Finally, we turn to (iii) and set σξ = 0 again. Let us begin with the comparison of
consumer surplus levels with the terms that do not depend on µ. For both the hidden and
the naive case, we consider the following expression

α− α2

2
+
αφ
(

1
4
α
(

1
ζ

+ 3
2

)
− 1

2

)
φ+ κ

2

,

where in the hidden case, α = φ+κ+r
2φ+κ+r

and ζ = −2φ+r
3φ+r

, while in the naive case α = 1 = −ζ.
Letting ρ := r/κ, the difference in these terms is given by

CSh0 − CSnaive
0 =

φ2(ρ(φ− 4)− 4φ− 2)

4(2φ+ 1)(ρ+ 2φ)(ρ+ 2φ+ 1)2
,
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which is negative for all φ if ρ < 4.
Now consider the terms proportional to µ2. We have

(CShµ − CSh0 )− (CSnaive
µ − CSnaive

0 ) =
µ2ρφ2

8(ρ+ 2φ)3
> 0 for all φ > 0.

Combining terms, we obtain

CShµ − CSnaive
µ ∝ µ2ρ+

(ρ+ 2φ)2(ρ(φ− 4)− 4φ− 2)

(2φ+ 1)(ρ+ 2φ+ 1)2
.

Evaluating this expression at φ = 0,+∞ we obtain two necessary conditions for the above

expression to be negative, i.e., µ <
√

4−ρ√
2
√
ρ
and µ < 2

√
ρ(2ρ+1)

ρ+1
. The file scores.nb shows these

conditions are also sufficient. �

Further properties.

1. αh is decreasing at a non-concealing point. From the proof of Proposition 7, αh ∈ (0, 1)

is defined via (r+κ+φ)(αh−1)+αH(φ, αh) = 0 where H(φ, α) := Λ(φ, α,−α/2)[α/2]

satisfies Hα > 0. Thus, the sign of [αh]′ is given by the sign of 1−αh(φ)−Hh
φ(φ, αh(φ)),

as in the proof of Proposition 5. In particular, replacing Bφ by 0 in (A.20) in the paper
yields that, at any φ∗,h satisfying (19) in Section 5 (with β = −α/2),

sign([1− αh(φ)− αh(φ)Hφ(φ, αh(φ))]|φ=φ∗,h) = sign

([
1− αh +

λαh[−αh/2]

φ+ κ

]
φ=φ∗,h

)
< 0.

2. The non-concealing score in the hidden case exists, is unique, and has more persistence.
Existence and uniqueness follows from identical arguments as those used in the proof
of (i)–(ii) in Proposition 5. Now, since αo + B(φ, αo) ≥ αo/2 and αo > αh, it follows
that νo(φ) ≥ νh(φ); therefore, φ∗,o ≥ φ∗,h, as each ν crosses the identity from above.

3. Quasiconvexity of αh and arg max
φ≥0

Gh(φ) := G(φ, αh(φ),−αh(φ)/2) < φ∗,h. They follow

identical arguments as the ones used in the observable case (Lemma A.4 and Proposi-
tion 4 in the paper).
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S.2.5 Appendix A: Omitted Proofs

Proof of Lemma A.5. We start by showing (ii). To this end, recall that when α > 0 and
β < 0, the quadratic in λ

λ =
ασ2

θ(φ− βλ)

α2σ2
θ + σ2

ξκ(φ− βλ+ κ)
, (S.10)

has a unique strictly positive root, which we denoted by Λ(φ, α, β). It then suffices to show
that αγ(α)/σ2

ξ > 0 solves the previous equation.
To this end, we omit the dependence of ν on (α, β) and of γ on α in what follows. Rewrite

(S.10) at φ = ν as −κσ2
ξβλ

2 +λ[α2σ2
θ +κσ2

ξ (ν +κ) +ασ2
θβ]−ασ2

θν = 0. However, using that

λκσ2
ξ (ν + κ) = λκσ2

ξ

(
2κ+

αγ

σ2
ξ

[α + β]

)
and ασ2

θν = ασ2
θ

(
κ+

αγ

σ2
ξ

[α + β]

)
,

we obtain

0 = λα2σ2
θ + 2κ2σ2

ξλ+ 2κλα2γ + κλαγβ − κλ2σ2
ξβ − ασ2

θκ−
α2γσ2

θ

σ2
ξ

[α + β] + ασ2
θβλ

= λα2σ2
θ + 2κ2σ2

ξλ+ κλα2γ − ασ2
θκ−

α3γσ2
θ

σ2
ξ

+ β

[
κλαγ − κλ2σ2

ξ −
α2γσ2

θ

σ2
ξ

+ ασ2
θλ

]
.

Setting λ = αγ/σ2
ξ , the first and last term of the first line in the second equality cancel out,

and the last bracket vanishes. Thus, we are left with

0 = 2κα

[
2κγ +

α2γ2

σ2
ξ

− σ2
θ

]
︸ ︷︷ ︸

≡0

,

which is true by definition of γ.
We now prove that ν(α, β) is an extreme point of φ 7→ G(φ, α, β), and verify (i) in the

process. For notational simplicity, we again omit any dependence on variables unless it is
strictly necessary. Recall that

G =
αΛ

φ+ κ− βΛ
.

Thus, Gφ = 0 if and only if Λφ(φ + κ) = Λ. We first check that this equality is satisfied at
(ν(α, β), α, β).

From (ii), Λ = αγ/σ2
ξ at the point of interest; hence, the claim reduces to showing that
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Λφ(ν(α, β), α, β) = αγ/σ2
ξ (ν + κ). However, it is easy to check that

Λφ =
ασ2

θ [1− βΛφ][α2σ2
θ + κ2σ2

ξ ]

[α2σ2
θ + κσ2

ξ (φ+ κ− βΛ)]2
.

Also, ν + κ − βΛ(ν(α, β), α, β) = 2κ + α2γ/σ2
ξ = σ2

θ/γ, where the last equality comes
from the definition of γ. Thus,

[α2σ2
θ + κσ2

ξ (φ+ κ− βΛ)]2
∣∣∣
φ=ν

=
σ4
θ [α

2γ + κσ2
ξ ]

2

γ2
=

σ4
θ [α

2

=σ2
θσ

2
ξ , by def. of γ︷ ︸︸ ︷

(α2γ2 + 2κγσ2
ξ ) +κ2σ4

ξ ]

γ2

=
σ4
θσ

2
ξ [α

2σ2
θ + κ2σ2

ξ ]

γ2
.

We conclude that at (ν(α, β), α, β),

Λφ =
γ2α

σ2
θσ

2
ξ

[1− βΛφ]⇒ Λφ [σ2
θσ

2
ξ + γ2αβ]︸ ︷︷ ︸

=2κγσ2
ξ+γ2α2+γ2αβ

= γ2α⇒ Λφ =
γα

σ2
ξ︸︷︷︸

Λ(ν(α,β),α,β)

× 1

2κ+ αγ[α+β]

σ2
ξ︸ ︷︷ ︸

1/(ν+κ)

,

which shows that ν is an extreme point of φ 7→ G(φ, α, β).
On the other hand, it is easy to verify that at an extreme point φ,

Gφφ =
ασ2

θ

2κ

Λφφ(φ+ κ)

[φ+ κ− βλ]2
.

Since α > 0, the sign of Gφφ is determined by Λφφ at that point. We now show that
Λφφ(φ, α, β) < 0 for all φ > 0, α > 0 and β < 0, and hence, that any extreme point of
φ 7→ G(φ, α, β) must be a strict local maximum. But this is enough to guarantee that
φ 7→ G(φ, α, β) has a unique extreme point, and hence that ν(α, β) is a global maximum.

Recall that Λ(φ, α, β) = [
√
`2(φ, α, β)− 4κ(σξσθ)2βαφ−`(φ, α, β)]/[−2κσ2

ξβ] where `(φ, α, β) :=

ασ2
θ [α + β] + κσ2

ξ (φ+ κ). Thus,

Λφ =
1

[−2κσ2
ξβ]︸ ︷︷ ︸

=:K1

[
κσ2

ξ`(φ, α, β)− 2κ(σξσθ)
2βα√

`2(φ, α, β)− 4κ(σξσθ)2βαφ
− κσ2

ξ

]
, and so

Λφφ = K2(φ)
{

(κσ2
ξ )

2(`2(φ, α, β)− 4κ(σξσθ)
2βαφ)− (κσ2

ξ`(φ, α, β)− 2κ(σξσθ)
2βα)2

}
,︸ ︷︷ ︸

J(φ):=

where K2(φ) := K1/[`
2(φ, α, β)− 4κ(σξσθ)

2βαφ]3/2. Since β < 0, we have that K1 > 0, from
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where K2 > 0. Moreover,

J(φ) = −4κ3σ6
ξσ

2
θβαφ+ 4κ2σ4

ξσ
2
θβα`(φ, α, β)− 4κ2(σξσθ)

4β2α2

= −4κ2σ4
ξσ

2
θαβ︸ ︷︷ ︸

>0, as β<0

[κσ2
ξφ− `(φ, α, β) + σ2

θβα]︸ ︷︷ ︸
=−α2σ2

θ−κ2σ
2
ξ by def. of `(φ,α,β)

< 0,

concluding the proof. �

Proof of Lemma A.6. Recall from Proposition 5 and its proof show (i) α is decreasing
at any point satisfying φ = ν(α(φ), β(φ)), and (ii) a point like that is shown to exist via a
simple application of the Intermediate Value Theorem. Importantly, neither step (nor the
derivation of the lower bound κ for φ∗) relies on knowledge of [α + β]′, which is used to
establish the uniqueness part of the proposition only.

That arg minα > κ follows from the proof of the same proposition. Also, arg minα < +∞
follows directly from α ∈ [1/2, 1], lim

φ→0,+∞
α = 1, and α being continuous.

To prove the last two parts, omit the dependence of α and β on φ and write

α + β = α

[
1− α(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)

]
=: αh(φ, α).

Thus, [α + β]′(φ) = α′[h+ αhα] + αhφ, where

hφ(α, φ) =
α(α− 1)(r + 2κ)

[2(r + 2φ)α− (r + κ+ φ)(α− 1)]2
< 0.

We will show that h + αhα > 0 over [κ,∞), which implies that α + β must be decreasing
over [κ, arg minα], and hence, at any point satisfying φ = ν(α(φ), β(φ)).

To this end, notice that

h+ αhα > 0 ⇔ [2(r + 2φ)α− (r + κ+ φ)(α− 1)][(r + 2φ)α− (r + κ+ φ)(α− 1)]

−α(r + 2φ)[2(r + 2φ)α− (r + κ+ φ)(α− 1)]

+α2(r + 2φ)[2(r + 2φ)− (r + κ+ φ)] > 0

⇔ 2(r + 2φ)2α2 + (r + κ+ φ)2(α− 1)2 − α(3α− 2)(r + 2φ)(r + κ+ φ) > 0.
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If φ ≥ κ, however,

2(r + 2φ)2α2 − α(3α− 2)(r + 2φ)(r + κ+ φ) + (r + κ+ φ)2(α− 1)2︸ ︷︷ ︸
>0

≥ α(r + 2φ)[2 (r + 2φ)︸ ︷︷ ︸
>r+κ+φ

α− 3α(r + κ+ φ) + 2(r + κ+ φ)]

≥ α(r + 2φ)(r + κ+ φ)[2− α] > 0,

and the result follows. As a final step, observe that since φ > 0 and α < 1,

2(r + 2φ)2α2 − α(3α− 2)(r + 2φ)(r + κ+ φ) + (r + κ+ φ)2(α− 1)2︸ ︷︷ ︸
>0

≥ α(r + 2φ)[α(φ− r − 3κ) + 2(r + κ+ φ)]

≥ α(r + 2φ)[−r − 3κ+ 2(r + κ)] = α(r + 2φ)[r − κ].

which is non-negative when r ≥ κ. This concludes the proof. �
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S.3 Noiseless Case

In this section we state the expressions that the equilibrium objects and outcomes take when
we set σξ = 0 in the solutions of the observable and hidden cases (section S.3.1). After this,
we explain how the expressions in each case can be obtained with minimal modifications
of the arguments used in the corresponding σξ > 0 counterpart (section S.3.2). Finally,
we establish regularity properties of all the equilibrium variables at σξ = 0 (section S.3.3).
Importantly, recall that the solution of the hidden-scores model when σξ = 0 should be
understood as a vanishing-noise limit of the hidden case with non-trivial noise: the reason is
that, when σξ = 0, the consumer can always keep track of her score (so this one is effectively
observable).

S.3.1 Equilibrium Objects and Outcomes when σξ = 0

From an operational perspective, the only substantial change is that the equation that λ
satisfies ((7) in the paper) is greatly simplified. This, in turn, allows us to find analytic
expressions for the signaling coefficient α in both the observable and hidden case. We state
below all the relevant expressions used in the paper; their derivation is straightforward.

Observable scores.

α =
2(r + κ+ φ)

r + 2κ+
√

(r + 2φ)(r + 6φ)
∈
(

1√
3
, 1

)
β = − α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)
∈
(
−α

2
, 0
)

λ =
φ

α + β
> 0

E[P ] = µ
r + φ

2r + 3φ

(
=

r + φ

2(r + φ) + λ(α + β)

)
∈
(µ

3
,
µ

2

)
E[Q] = E[P ]

G =
φα

φα + κ(α + β)

(
=

αλ

φ+ κ− βλ

)
∈ (0, 1)

Π = µ2 (r + φ)2

(2r + 3φ)2
+ Var[θ](α + β)2 φα

αφ+ κ(α + β)

(
= E[P 2] + Var[P ]

)
CS = Var[θ]α

(
1− α

2

)
+ E[P ]

(
µ− 3

2
E[P ]

)
+ Var[θ]

[
α2

2
+ β − 3

2
(α + β)2

]
G

36



Hidden scores.

αh =
r + κ+ φ

r + κ+ 2φ
(< α) ∈

(
1

2
, 1

)
βh = −α

h

2
< 0

λh =
2φ

αh
> λ > 0

ζh = −r + 2φ

r + 3φ

(
= − 2(r + 2φ)

2(r + 2φ) + αhλh

)
∈
(
−1,−2

3

)

E[P h] = µ
(r + φ)(r + 3φ)

2(r + φ)(r + 3φ) + 2φ2

=
µ

2 + αhλh(αhλh+2φ)
2(r+φ)[2(r+2φ)+αhλh]

 > E[P ]

E[Qh] = µ
(r + φ)(r + 2φ)

2(r + φ)(r + 3φ) + 2φ2
(= −ζhE[P h]) < E[Q]

Gh =
φαh

φαh + καh/2

(
=

αhλh

φ+ κ− βhλh

)
Πh = µ2 r + 2φ

r + 3φ

[
(r + φ)(r + 3φ)

2(r + φ)(r + 3φ) + 2φ2

]2

+ Var[θ]
r + 3φ

4(r + 2φ)
(αh)2 φ

φ+ κ/2(
= −ζh[E[(P h)2] + Var[P h]]

)
CSh = Var[θ]αh

(
1− αh

2

)
+ (−ζhE[P h])︸ ︷︷ ︸

=E[Qh]

(
µ−

[
1

2
− 1

ζh

]
(−ζhE[P h])

)

+Var[θ]αh
[
αh

4

(
3

2
+

1

ζh

)
− 1

2

]
Gh < CS

S.3.2 Equilibrium Analysis when σξ = 0

Existence of Linear Markov Equilibria in the Observable Case. The steps taken
in the equilibrium analysis performed when σξ > 0 (Lemma 2, Lemma A.1 and Theorem 1)
have direct counterparts when σξ = 0. Specifically:

1. Lemma 2 (Monopoly Price) does not change.

2. Lemma A.1 (Stationarity and Beliefs). It is easy to see that the long-run stationary
variance when σξ = 0 can be obtained by directly evaluating Γ at that value. This
does not alter the stationarity condition φ− βλ > 0, but it changes (7) to

λ =
ασ2

ξ (φ− βλ)

α2σ2
θ

.

3. Proof of Theorem 1.
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• Displays (A.3)–(A.6) remain unchanged.

• Lemma A.2. As in the σξ > 0 case, we cannot have a linear Markov equilibrium
with α = 0: in this case, the score does not covary with the type, and so Mt = µ;
but this implies that α = 1 at all times. Thus, from the equation for λ, we obtain
(α+ β)λ = φ. Since φ > 0, we have that α+ β 6= 0 and λ 6= 0. We conclude that

λ =
φ

α + β
6= 0.

The cases α < 0 and α ≥ 1 can be ruled out using the same arguments as in the
proof (with obvious modifications that employ the new expression for λ and that,
by stationarity, φ− βλ > 0⇔ αφ

α+β
> 0.)

• (A.7) is unchanged and (A.8) changes to λ = Λ = φ
α+β

> 0.

• We can replace the new expression for λ in (A.9) to obtain the equation

(r + κ+ φ)(α− 1)− φαB(φ, α)

α +B(φ, α)︸ ︷︷ ︸
=λαβ

= 0.

It can be easily shown that this function is strictly increasing in [0, 1], and hence,
that is has a unique root. Rearranging terms, we obtain the quadratic

α2[3φ2 + 2rφ− rκ− κ2] + α[r + κ+ φ][r + 2κ]− [r + κ+ φ]2 = 0,

which admits as a root

α =
2(r + κ+ φ)

r + 2κ+
√

(r + 2φ)(r + 6φ)
∈ (0, 1), φ > 0.

Hence, an analytic expression for α is obtained.

• The function D(φ, α) that defines δ does not change, so the new intercept in the
quantity process is obtained by inserting Λ = φ/(α + β) in the same expression.
The remaining coefficients of the value function, as well as the transversality and
admissibility conditions, are obtained via identical arguments.

Setting σξ = 0 in the equilibrium objects and outcomes of the hidden case. Recall
that the proof of existence of linear Markov equilibria when σξ > 0 in the hidden case follows
from identical steps as those performed in the observable counterpart (the only changes being
that β = −α/2, that ζh < −1 is endogenous, and that the equation defines δ is modified;
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see the proof of Proposition 7 in section S.2.4 for details).
Given 1–3 above just discussed, it is easy to see that all the equilibrium variables

(α, β, δ, λ,G) in the hidden-scores model admit an evaluation at σξ = 0 and can be ob-
tained using the same arguments used in the σξ > 0 case. In particular, since βh = −αh/2,
it follows that λh = φ/(αh + βh) = 2φ/αh, from where αh must satisfy

(r + κ+ φ)(αh − 1)− αh
(

2φ

αh

)
(
−αh

2
) = 0⇒ αh =

r + κ+ φ

r + κ+ 2φ
.

Deriving the rest of the terms in S.3.1 is straightforward from the results in section S.2.4.

Further properties of the equilibrium coefficients and outcomes when σξ = 0.
When σξ = 0, both in the observable and hidden cases:

• α is strictly decreasing, with lim
φ→0

α(φ) = 1 and lim
φ→+∞

α(φ) ≥ 1/2 (moreover, lim
φ→+∞

α(φ) ≥

1/
√

3 in the observable case);

• E[Pt] is strictly decreasing in φ, taking values in (µ/3, µ/2) (moreover, E[Pt] ∈ (3µ/8, µ/2)

in the hidden case)

• ν(α, β) = +∞ follows from ν(α, β) = κ + αγ(α)(α+β)

σ2
ξ

, αγ(α)

σ2
ξ

= 1
α

(√
κ2 + α2 σ

2
θ

σ2
ξ
− κ
)
,

and from α ∈ [1/2, 1] and α + β ∈ [1/4, 1] (α ∈ [1/
√

3, 1] and α + β ∈ [−1/2
√

3, 1] in
the observable case, ). Clearly φ∗(σξ) ↗ φ∗(0) = ∞ as σξ ↘ 0. Intuitively, a score
that decays infinitely fast essentially the “last purchase” while αh bounded away from
zero uniformly in φ > 0.

• lim
φ→+∞

G(φ) = 1.

S.3.3 Continuous Differentiability of the Model at σξ = 0

We address some continuity and limit properties of the model at σ2
ξ = 0, which allow us to

directly evaluate at σξ = 0 when examining the noiseless limit case for every fixed φ > 0,
and to extend results at that point to σ2

ξ > 0 by continuity.

(1) In the observable case, the equilibrium variables (α, β, δ, λ,G) are continuously
differentiable functions of (φ, σ2

ξ ) ∈ (0,∞)× [0,∞). We already know from Lemma A.3
in Appendix A in the paper that α(φ, σ2

ξ ) is of class C1 over the open set (0,∞)2, and so
are the rest of the variables, as these are continuously differentiable functions of (α, φ, σ2

ξ ).
It remains to show their continuous differentiability at points (φ, 0), φ > 0.
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To show this, we can equivalently look at the system (A.17)–(A.19) in the paper. In par-
ticular, using (A.19), the signaling coefficient α(φ, σ2

ξ ) ∈ (1/2, 1) satisfies F (φ, σ2
ξ , α(φ, σ2

ξ )) =

0 for φ > 0, where

F (φ, x, α) :=
(α− 1)(κ+ r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

α3(r + 2φ)
+

α(κ− α(κ+ r) + r + φ)

α3 + κx(κ− αr + r + φ)/σ2
θ

.

The notation simply emphasizes the system’s dependence on the variable x that replaces σ2
ξ ,

and that is now allowed to take negative values.
Observe that given any compact set [φ, φ] ⊂ (0,∞), we can always choose ε > 0 small

enough such that F (φ, x, α) : [φ, φ] × [−ε, ε] × [1/2, 1] → R is of class C1. Moreover, from
section S.3.1, F (φ, 0, 2(r+κ+φ)

r+2κ+
√

(r+2φ)(r+6φ)
) = 0 and its is easy to verify that

∂F

∂α
=

(
2κ+ r +

√
(r + 2φ)(r + 6φ)

)2

8(r + 2φ)(κ+ r + φ)2

×
(
r2 + 2κ

√
(r + 2φ)(r + 6φ) + 8rφ+ r

√
(r + 2φ)(r + 6φ) + 12φ2

)
> 0.

at the same point. By the Implicit Function Theorem, therefore, we conclude that α(φ, σ2
ξ )

can be extended to a continuously differentiable function over the desired set; the same
conclusion holds for the rest of the variables by composition of functions of class C1.

(2) In the hidden case, the equilibrium variables (α, β, δ, λ,G) admit a continuously
differentiable extension to {(φ, σ2

ξ )| φ > 0, σ2
ξ = 0}. The argument is identical to the

one in the observable case, but instead using

F h(φ, σ2
ξ , α

h) :=
2
(
αh − 1

)
(κ+ r + φ)

(αh)2
+

αh
(
κ− αh(κ+ r) + r + φ

)
(αh)3 + κx (κ− αhr + r + φ) /σ2

θ

= 0

that αh ∈ [1/2, 1] always satisfies, that αh(φ, 0) = r+κ+φ
r+κ+2φ

(stated in section S.3.1) and that

Fα

(
φ, 0,

r + κ+ φ

r + κ+ 2φ

)
=

(κ+ r + 2φ)3

(κ+ r + φ)2
> 0.

The decision to refer to an ‘extension’, as opposed to a property of the equilibrium coeffi-
cients over the domain under study, is because the hidden model is discontinuous at σξ = 0,
in the sense discussed in Appendix C in the paper.

(3) Uniform convergence of equilibrium variables over compact sets as σ2
ξ ↘ 0.
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Consider any compact set [φ, φ] ⊂ (0,∞) and a sequence (σn)↘ 0. Let f(φ, σn) denote any
continuously differentiable function of the equilibrium variables. Then,

(i) Pointwise convergence: for all φ ∈ [φ, φ], f(σn, φ)→ f(0, φ) as n→∞.

(ii) Equicontinuity. ∃K > 0 independent of n s.t. |f(σn, φ1)− f(σn, φ2)| < K|φ1 − φ2|.

(Part (i) is by continuity, and (ii) follows from ∂f
∂φ

(φ, σ) being continuous over the compact
set [φ, φ] × [0,max{σn : n ∈ N}].) We conclude that (f(σn, ·))n∈N converges uniformly to
f(0, ·) over [φ, φ], i.e., for all ε > 0, there is N > 0, s.t., for all n > N , |f(σn, φ)−f(0, φ)| < ε

for all φ ∈ [φ, φ]. This uniform continuity can be used in the proofs of Propositions 8, 11
and 12 to strengthen the statements to hold in neighborhoods of σξ = 0 for compact sets of
levels of persistence.
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S.4 Discretized Model and Limit Demand Sensitivity

This appendix introduces a sequence of discrete-time counterparts of our continuous-time
game that allows us to refine the concept of stationary linear Markov equilibrium by choosing
a sensitivity of demand equal to -1. More specifically, we will show that, along such sequence,
-1 is the limiting value of the sensitivity of demand arising from the consumer’s best-response
problem as the period length shrinks to zero.

Fix ∆ > 0 and consider a consumer who interacts with a sequence of short-run firms
in a stochastic game of period length ∆. Specifically, at each t ∈ T := {0,∆, 2∆, 3∆, ...}
the consumer shops for a product that is supplied by a single firm (firm t). The timing of
events over [t, t + ∆) is as in the baseline model: first, firm t posts a price; second, having
observed this price, the consumer chooses how much to buy; third, the purchase is recorded
with noise, and subsequently incorporated into the score. The same sequence of events then
repeats at [t+ ∆, t+ 2∆), but now with the next firm.

The discretized model consists of the dynamics

θt+∆ = θt − κ∆(θt − µ) +
√

∆εθt+∆

Yt+∆ = Yt − φ∆Yt +Qt∆ +
√

∆εξt+∆

where εθt ∼ N (0, σ2
θ) and εξt ∼ N (0, σ2

ξ ) are independent across time, and the sequences
(εθt )t∈T and (εξt )t∈T independent from one another. Finally, the consumer’s utility over period
[t, t+ ∆) given (θt, Pt, Qt) = (θ, p, q) takes the form

u∆(θ, p, q) =

(
(θ − p)q − q2

2

)
∆.

It is easy to see that if the firms conjecture a strategy for the consumer that is linear
in (p, θ,M) with weight −ζ 6= 0 on the current price, then, from their perspective, realized
prices, (Pt)t∈T, and realized quantities, (Qt)t∈T, satisfy Pt = E[Qt|Yt]/ζ, t ∈ T. Thus, firms
set prices and conjecture past quantities according to

Pt =
δ + (α + β)Mt

ζ
and Qt = δ + αθt + βMt, t ∈ {0,∆, 2∆, ...}, (S.11)

respectively, for some coefficients ζ, α, β and δ. We allow this conjectured coefficients to
depends on ∆. However, we make two assumptions. First, we restrict the analysis to the
case ζ > 0, α > 0, β < 0 and α + β > 0. Second, we assume that all the coefficients
are bounded in a neighborhood of ∆ = 0, and also bounded away from zero. Observe that
these are minimal properties that a meaningful dynamic extension of the outcome of a static
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interaction must have. In what follows, we omit the dependence of the coefficients on the
period length.

We now proceed in three steps. First, we find an expression for the weight that the
consumer’s best-response attaches to the current price when firms both set prices and form
beliefs using (S.11). Call this weight −ζ̂. Second, we show that at any history at which firm t

sets a price different than the one prescribed by (S.11), the consumer optimally responds with
the same linear strategy used along the path of (S.11); thus −ζ̂ is effectively the sensitivity of
demand. Third, we show that −ζ̂ goes to -1 as ∆↘ 0. Importantly, these steps hold under
any linear conjecture by the firms (in particular, for ζ 6= ζ̂), satisfying our requirements
on bounds. Thus, ζ̂ = 1 is a limiting property of the consumer’s best-response along the
sequence of games.

Step 1. Since from each firm’s perspective the score carries past quantities that satisfy
(S.11), Mt := E[θt|Yt] = ρ+ λYt for some ρ ∈ R and λ > 0 (potentially depending on ∆). In
this case,

Mt+∆ −Mt = λ[Yt+∆ − Yt] = λ[−φ∆(Mt − ρ)/λ+Qt∆ +
√

∆εξt+∆]

⇒ Mt+∆ = Mt − φ∆(Mt − ρ) + λQt∆ + λ
√

∆εξt+∆, t ∈ T.

Let V denote the consumer’s value function when facing prices as stated in (S.11). Then,
the following Bellman equation holds:

V (θ,M) = max
q∈R

{[(
θ − δ + (α + β)M

ζ

)
q − q2/2

]
∆ + e−r∆E[V (θ′,M ′)|(M, θ)]

}
s.t.

θ′ = θ − κ∆(θ − µ) +
√

∆εθ

M ′ = M − φ∆(M − ρ) + λq∆ + λ
√

∆εξ.

We look for a quadratic value function, i.e., V (θ,M) = v0 + v1θ + v2M + v3M
2 + v4θ

2 +

v5θM , where we omit the dependence of the coefficients on ∆. Letting X := (θ,M), we have
that V (X ′) = V (X) + DV (X)(X ′ − X) + 1

2
(X ′ − X)>D2V (X ′ − X), and straightforward
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algebra shows that the Bellman equation further reduces to

V (θ,M) = max
q∈R

{[(
θ − δ + (α + β)M

ζ

)
q − q2/2

]
∆ + e−r∆V (θ,M)

+e−r∆∆(−κ[θ − µ]Vθ + [−φ(M − ρ) + λq]VM +
1

2
Vθθ[∆κ

2(θ − µ)2 + σ2
θ ])

+e−r∆∆VθM [−κ(θ − µ)(−φ∆(M − ρ) + qλ∆)]

+e−r∆∆
1

2
VMM [φ2∆(M − ρ)2 + λ2q2∆ + λ2σ2

ξ − 2φλ∆(M − ρ)q])

}
.

The first-order condition of this problem reads

[1−e−r∆λ2∆VMM ]q = θ−δ + (α + β)M

ζ︸ ︷︷ ︸
p=

+e−r∆(λVM+∆VθM [−κ(θ−µ)λ]−VMMφ∆(M−ρ)λ),

from where the contemporaneous price has a weight equal to

−ζ̂ = − 1

1− e−r∆λ2∆VMM

= − 1

1− 2e−r∆λ2∆v3

in the consumer’s linear best-response. As we show in step 3, ζ, which enters as a parameter
in the consumer’s best-response problem, turns out to affect coefficient v3. In particular, to
show that lim

∆→0
ζ̂ = 1, it suffices that ∆v3 ↘ 0 while the rest of the terms that accompany it

remain bounded. We turn to the the sensitivity of demand first.

Step 2. Consider now a history at which firm t posts a price p 6= [δ + (α + β)Mt]/ζ. It is
easy to see that at any such history the consumer’s problem is of the form

max
q∈R

{[
(θ − p) q − q2/2

]
∆ + e−r∆E[V (θ′,M ′)|(M, θ)]

}
s.t. θ′ = θ − κ∆(θ − µ) +

√
∆εθ

M ′ = M − φ∆(M − ρ) + λq∆ + λ
√

∆εξ.

In fact, since the deviation is not observed by subsequent firms, the consumer’s continuation
payoff given any fixed continuation strategy is unaffected by the deviation. But this implies
that her continuation value—i.e., her best continuation payoff among admissible strategies—
must be given by V found by solving the Bellman equation of the previous step. As a
result, the consumer’s optimal strategy is determined by the same first-order condition. In
particular, −ζ̂, the weight that the linear best-response attaches to the current price, is
effectively the sensitivity of demand.
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Step 3. It is straightforward to verify that v3 can be found by setting the coefficient on
M2 in the Bellman equation equal to zero. Such equation is

4ζ2∆λ2v2
3 + 2ζv3{ζ[(1−∆φ)2 − e∆r]− 2∆(1−∆φ)λ(α + β)}+ e∆r∆(α + β)2 = 0.

Letting Γ := ζ[(1−∆φ)2 − e∆r]− 2∆(1−∆φ)λ(α + β), the two solutions are given by

v±3 =
−Γ±

√
Γ2 − 4∆2λ2e∆r(α + β)2

2ζ∆λ2
.

The square root is well defined for small ∆ due to ∆2[ζ(r+2φ)+2λ(α+β)]2 and 4∆2λ2(α+β)2

being the terms that dominate for low ∆ in Γ2 and 4∆2λ2e∆r(α + β)2 respectively.
We now show that ∆v±3 ↘ 0 as ∆↘ 0 (but as we show below, v−3 is the root associated

with the equilibrium examined in the paper). To this end, observe that λ also depends on
∆. A calculation presented at the end of this appendix shows that this value satisfies the
equation F (∆, λ) = 0 where

F (∆, λ) := λ− σ2
θα(1− κ∆)[2(φ− βλ)− (φ− βλ)2∆]

σ2
ξ [2κ− κ2∆][(φ− βλ)(1− κ∆) + κ] + σ2

θα
2[2− κ∆− (φ− βλ)(1− κ∆)∆]

.

It is easy to verify that, at ∆ = 0, the previous equation reduces to the quadratic function
that determines the sensitivity of beliefs in the continuous-time game analyzed (equation (7)
in the paper). Let λ0 = Λ(φ, α, β) > 0, as in the paper. By definition of λ0, F (0, λ0) = 0.
Moreover, since β < 0 and λ0 > 0

∂F

∂λ
(0, λ0) =

(σ2
θα

2 + σ2
ξκ[φ+ κ− βλ0])2 + βσ2

θα[σ2
θα

2 + κ2σ2
ξ ]

(σ2
θα

2 + σ2
ξκ[φ+ κ− βλ0])2

>
σ4
θα

3[α + β] + σ2
ξσ

2
θακ

2[2α + β]

(σ2
θα

2 + σ2
ξκ[φ+ κ− βλ0])2

> 0

where the last inequality follows from α + β > 0. By the Implicit Function Theorem,
therefore, the exists ε > 0 and a unique continuously differentiable function λ(∆) such that
λ(0) = λ0, F (∆, λ(∆)) = 0, and λ(∆) > 0, for all ∆ ∈ [0, ε].

Since λ(·) is bounded in that set, and both λ(·) and ζ being bounded away from zero, we
conclude that

∆v±3 =
−Γ±

√
Γ2 − 4∆2λ2(∆)e∆r(α + β)2

2ζλ2(∆)
→ 0, as ∆↘ 0,

due to the rest of the coefficients being bounded and Γ := ζ[(1 − ∆φ)2 − e∆r] − 2∆(1 −
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∆φ)λ(α + β) also vanishing in the limit. This proves step 3.
Before showing that F (∆, λ) = 0 is the equation for the sensitivity of beliefs that makes

the quantity process (S.11) consistent with Bayesian updating, we make two observations.

1. It is easy to see that when ζ = 1, then, as ∆↘ 0,

v±3 →
2λ0(α + β) + (r + 2φ)±

√
[2λ0(α + β) + (r + 2φ)]2 − 4λ2

0(α + β)2

4λ2
0

the right-hand side being the two positive roots for the equation that v3 must satisfy in
the continuous-time program.10 However, an equilibrium condition of the continuous-
time model is 2λv3 = α + 2β (last equation in (A.3)). As a result, either

2λv+
3 = α + 2β or 2λv−3 = α + 2β

must hold. However, the previous conditions reduce to

r + 2φ±
√

(r + 2φ)2 + 4λ(α + β)(r + 2φ) = 2βλ.

Since β < 0 in the equilibrium found, only v−3 converges to the value of v3 in the
equilibrium studied.

2. In equilibrium, ζ̂ = ζ. Using v−3 , straightforward algebra shows that this condition
becomes

er∆(ζ − 1) = −Γ(ζ)−
√

Γ2(ζ)− 4∆2λ2(∆)er∆(α + β)2

=
4∆2λ2(∆)er∆(α + β)2

−Γ(ζ) +
√

Γ2(ζ)− 4∆2λ2(∆)er∆(α + β)2
.

where the dependence of Γ on ζ is being made explicit. For sufficiently small ∆,
however, (1 − ∆φ)2 − e∆r < 0 and so −Γ(ζ) > 0 for all ζ ≥ 1. The linearity of both
2(ζ − 1) and Γ(ζ) in ζ then yields the existence of ζ∗ such that the previous equality
holds. In particular, the convergence to of ζ to 1 along a sequence of equilibria must
be from above.

Equation for λ. We conclude with the derivation of the equation that λ must satisfy for
small ∆. For notational simplicity, we set µ = ρ = δ = 0, as the means and intercepts do

10This equation can be obtained as follows: first, use (A.3) to solve for (α, β, δ) as a function of (v2, v3, v5);
second, insert the first-order condition (display preceding (A.3)) into (A.4); and, finally, equate the coefficient
on M to zero in the resulting equation.
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not affect the sensitivity of beliefs.
Define the matrices

X :=

[
θ

Y

]
; A∆ :=

[
1− κ∆ 0

α∆ 1− (φ− βλ)∆

]
; B :=

[
σθ 0

0 σξ

]
~ε :=

[
εθ

εξ,

]

and notice that
X(j+1)∆ = A∆Xj∆ +

√
∆B~ε(j+1)∆, j ∈ N.

The solution to this difference equation is given by

X(j+1)∆ = Aj+1
∆ X0 +

√
∆Aj+1

∆

j∑
i=0

A
−(j+1−i)
∆ B~ε(j+1−i)∆.

To obtain a stationary Gaussian process, therefore, we impose first that X0 is Gaussian and
independent of (~εj∆)j∈N. Moreover, stationary requires that ~µ := E[X0] = 0, so as to obtain
E[Xj∆] = 0 for all j ∈ N. In addition, omitting the dependence on ∆, let Γ denote the
candidate covariance matrix of (Xj∆)j∈N. It follows that

Γ = Aj+1
∆ Γ(Aj+1

∆ )> + ∆Aj+1
∆

[
j∑
i=0

A
−(j+1−i)
∆ B2(A

−(j+1−i)
∆ )>

]
(Aj+1

∆ )>, ∀j ∈ N.

Moreover, taking consecutive differences leads to

0 = Aj∆
{
A∆ΓA>∆ − Γ

+ ∆A∆

[
j∑
i=0

A
−(j+1−i)
∆ B2(A

−(j+1−i)
∆ )>

]
A>∆ −∆

[
j−1∑
i=0

A
−(j−i)
∆ B2(Aj−i∆ )>

]
︸ ︷︷ ︸

=∆B2

 (Aj∆)>,

and thus, Γ is defined by the equation

A∆ΓA>∆ − Γ + ∆B2 = 0.

Straightforward algebra leads to the following equations for the unknowns Γ11 = Var[θj∆],
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Γ12 = Γ21 = Cov[θj∆, Yj∆], and Γ22 = Var[Yj∆], j ∈ N:

Γ11(1− κ∆)2 − Γ11 + ∆σ2
θ = 0

Γ11α∆(1− κ∆) + Γ12(1− (φ− βλ)∆)(1− κ∆)− Γ12 = 0

Γ11(α∆)2 + 2Γ12(1− (φ− βλ)∆)α∆ + Γ22(1− (φ− βλ)∆)2 − Γ22 + ∆σ2
ξ = 0.

This system has as a solution

Γ11 =
σ2
θ

2κ− κ2∆

Γ12 =
ασ2

θ(1− κ∆)

[2κ− κ2∆][φ− βλ+ κ− (φ− βλ)κ∆]

Γ22 =
1

2(φ− βλ)− (φ− βλ)2∆

[
σ2
ξ +

σ2
θα

2∆

2κ− κ2∆
+

2α[1− (φ− βλ)∆]σ2
θα(1− κ∆)

[2κ− κ2∆][φ− βλ+ κ− (φ− βλ)κ∆]

]
.

(In particular, observe that we recover the expression for Γ in continuous time by letting
∆→ 0 and replacing λ by λ0.) To conclude, because

λ =
Cov[θj∆, Yj∆]

Var[Yj∆]
=

Γ12(∆, λ)

Γ22(∆, λ)
,

straightforward algebra yields

λ =
σ2
θα(1− κ∆)[2(φ− βλ)− (φ− βλ)2∆]

σ2
ξ [2κ− κ2∆][(φ− βλ)(1− κ∆) + κ] + σ2

θα
2[2− κ∆− (φ− βλ)(1− κ∆)∆]

.

This concludes the proof. �
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S.5 Convexity Parameter in the Consumer’s Cost Func-

tion

S.5.1 Main Results

Consider a more general flow utility of the form

(θt − Pt)Qt − ψ
Q2
t

2
, ψ > 0.

We show that the main qualitative results of the paper still hold in this case.

Observable scores. With a flow utility as above, the static Nash equilibrium is

Qt =
θt − Pt
ψ

and Pt =
Mt

2
.

Thus, the ex ante static outcome is E[Qstatic
t ] = µ/2ψ = E[P static

t ]/ψ.
We aim to characterize a stationary linear Markov equilibrium supported by a sensitivity

of demand of 1/ψ. In this line, standard monopoly pricing with linear demand (i.e., the
analog of Lemma 2 in the paper to this setting) shows that the dynamic outcome (Qt, Pt)

must satisfy
Pt = ψE[Qt|Yt].

Thus, Pt = ψ[(α + β)Mt + δµ] if Qt = αθt + βMt + δµ along the path of play.
We present next the generalized version of Theorem 1 in the paper–to highlight the

changes relative to that result, we highlight ψ in what follows.

Proposition 5 (Observable scores). There exists a unique stationary linear Markov equilib-
rium in the observable-scores model. In this equilibrium, α ∈ (0, 1/ψ), is the unique solution
to the equation

a =
1

ψ
+

Λ(φ, a,B(φ, a))aB(φ, a)

r + κ+ φ
, a ∈ [0, 1/ψ], (S.12)

where Λ is as in the ψ = 1 case ((A.8)). In contrast, β and δ become

β = B(φ, α) := − α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1/ψ)
∈ (−α/2, 0) (S.13)

δ = D(φ, α) :=
κ(α− 1/ψ) + [α + 2B(φ, α)][φ− (α +B(φ, α))Λ(φ, α,B(φ, α))]

2(r + φ) + (α +B(φ, α))Λ(φ, α,B(φ, α))
,
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and the ratchet effect is at play: the average price and quantity satisfy

E[Qt] =
E[Pt]

ψ
=
µ

ψ

r + φ

2(r + φ) + (α + β)λ
<

µ

2ψ
= E[Qstatic

t ].

Proof: Refer to the proofs subsection.

In other words, the equilibrium analysis and ratchet effect are qualitatively unchanged,
as the convexity parameter ψ essentially scales the static benchmark. Of course, introducing
ψ 6= 1 introduces a wedge between the price and the quantity, as the static demand ceases to
have unit elasticity: as it is clear from the proposition, however, this wedge does not drive
the economics of the paper.

More critically, this convexity parameter does not affect the conclusions drawn from the
comparison of the observable- and hidden-score cases, as those are driven exclusively by the
relative sensitivity of demand across cases. The next result shows that, in the hidden case,
the equilibrium characterization is virtually identical to the ψ = 1 case, and that demand is
less price sensitive than its observable counterpart. In addition, the same ranking of signaling
coefficients ensues.

Proposition 6 (Hidden scores). There exists a unique stationary linear Markov equilibrium
in the hidden-scores model. In this equilibrium, αh ∈ (0, 1/ψ), is the unique solution to the
equation

a =
1

ψ
+

Λ(φ, a,−a/2)a[−a/2]

r + κ+ φ
, a ∈ [0, 1/ψ], (S.14)

with Λ as in the paper. The sensitivity of demand is given by

ζh = − 2(r + 2φ)

2(r + 2φ) + αhΛ(φ, ah,−ah/2)

1

ψ
.

Moreover, α(φ) > αh(φ) for all φ > 0.

Proof: Refer to the proofs subsection.

In other words, the sensitivity of the demand in the hidden case scales down the observ-
able counterpart, 1/ψ, by the same function as in the ψ = 1 case (of course the magnitude
is endogenous due to ah depending on ψ as well).

50



S.5.2 Proofs

Proof of Proposition 1. The proof for existence proceeds in the exact same way as
Theorem 1 in the paper, now with a price process of the form Pt = ψ[(α + β)Mt + δµ].
In particular, the systems (A.3)–(A.6) are modified as follows. First, the new first-order
condition in the HJB equation reads

q =
1

ψ
{θ − ψ[δµ+ (α + β)M ] + λ[v2 + 2v3M + v5θ]}

which leads to the following conditions on the equilibrium coefficients:

δµ = −δµ+
λv2

ψ
, α =

1

ψ
+
λv5

ψ
, and β =

2λv3

ψ
− (α + β). (S.15)

Second, by the Envelope Theorem,

(r + φ)[v2 + 2v3M + v5θ] = −ψ(α + β)[δµ+ αθ + βM ]− κ(θ − µ)v5

+[λ(δµ+ αθ + βM)− φ(M − µ+ λȲ )]2v3, (S.16)

which yields the following system of equations
(r + φ)v2 = −ψ(α + β)δµ+ κµv5 + [λδµ+ φ(µ− λȲ )]2v3

(r + 2φ)2v3 = −ψ(α + β)β + 2v3λβ

(r + κ+ φ)v5 = −ψ(α + β)α + 2v3λα.

(S.17)

Using that v2, v3 and v5 can be written as a function of α, β and δµ, this system becomes

(r + φ)2δµψ
λ

= −ψ(α + β)δµ+ ψκµα−1/ψ
λ

+ ψ[λδµ+ φ(µ− λȲ )]α+2β
λ

(r + 2φ)α+2β
λ
ψ = ψ [−(α + β)β + β(α + 2β)]︸ ︷︷ ︸

=(β)2

(r + κ+ φ)α−1/ψ
λ

ψ = ψ [−(α + β)α + α(α + 2β)]︸ ︷︷ ︸
=αβ

.

(S.18)
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and simplifying ψ on both sides:

(r + φ)2δµ
λ

= −(α + β)δµ+ κµα−1/ψ
λ

+ [λδµ+ φ(µ− λȲ )]α+2β
λ

(r + 2φ)α+2β
λ

= [−(α + β)β + β(α + 2β)]︸ ︷︷ ︸
=(β)2

(r + κ+ φ)α−1/ψ
λ

= [−(α + β)α + α(α + 2β)]︸ ︷︷ ︸
=αβ

.

(S.19)

From from the last two equations we obtain the expression for B(φ, α) in the proposition,
which is then inserted into the last equation to obtain the one for α. On the other hand,
the expression for Λ that defines λ is unchanged, as this one is derived using a quantity
process of the form Qt = αθt + βtMt + δµ. It is then straightforward to verify that the
same argument used to prove the existence and uniqueness of a solution to α-equation over
[0, 1] goes through for (S.12) when the domain becomes [0, 1/ψ] and B(φ, α) is as in (??)
(Lemma A.3 in Appendix A in the paper). Likewise, both the remaining coefficients of the
value function and the transversality conditions follow from identical arguments to those in
the ψ = 1 case.

To obtain the expression for the average quantity, we proceed as in the proof of (ii) in
Proposition 2. Specifically, using that the last two equations in (??) imply that (α+2β)(α+

β)λ = (r + 2φ)(α + 2β) + (r + κ+ φ)(α− 1/ψ) + (α + β)2λ, we obtain

δ =
κ(α− 1/ψ) + [α + 2β][φ− (α + β)λ]

2(r + φ) + (α + β)λ

=
κ(α− 1/ψ) + (α + 2β)φ− (r + 2φ)(α + 2β)− (r + κ+ φ)(α− 1)− (α + β)2λ

2(r + φ) + (α + β)λ

=
−(r + φ)[2(α + β)− 1/ψ]− (α + β)2λ

2(r + φ) + (α + β)λ
.

From here, it is easy to conclude that

E[Qt] = µ[α + β + δ] =
1

ψ

µ(r + φ)

2(r + φ) + (α + β)λ
<

µ

2ψ
= E[Qstatic

t ].

due to λ(α + β) > 0. This concludes the proof. �

Proof of Proposition 2. The proof for existence proceeds in the exact same way as
Proposition 9 in the paper. In particular, since the sensitivity of demand is endogenous,
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then, given a demand function the Q(p) = δµ+ αhθ + ζhp, the relationship

Pt = −E[Qt|Yt]/ζh

continues to hold on path. This implies, as in the ψ = 1 case, that (i) βh = αh/2 and that (ii)
we can use the price process as a state variable (the functional form of which is not directly
affected, as it depends only the previous displayed expression and on Qt = δµ+αhθt +βhMt

via the learning process). The factor ψ, however, will affect ζh via the first-order condition
in the consumer’s problem.

Specifically, the new first-order condition in the HJB equation reads

q =
1

ψ

[
θ − P − αhλh

2ζh
(v2 + 2v3P + v5θ)

]
.

As a result, we obtain the matching-coefficients conditions

δhµ = − 1

ψ

αhλh

2ζh
v2, α

h =
1

ψ

[
1− αhλh

2ζh

]
v5 and ζh =

1

ψ

[
−1− αhλh

ζh
v3

]
. (S.20)

Moreover, by the Envelope Theorem,

(r + φ)[v2 + 2v3P + v5θ] = q

[
−1− v3

αhλh

ζh

]
− 2v3φ

[
P +

δhµ+ αhρhµ

2ζh

]
− κv5(θ − µ),

which leads to the system

(r + φ)v2 = δhµ

[
−1− v3

αhλh

ζh

]
− 2v3φ

δhµ+ αhρhµ

2ζh
+ κµv5

2(r + φ)v3 = ζh
[
−1− v3

αhλh

ζh

]
− 2v3φ

(r + φ)v5 = αh
[
−1− v3

αhλh

ζh

]
− κv5.

Using that v2, v3 and v5 can be written as a function of δhµ, αh and ζh, respectively, and
dividing by ζhψ in each equation, we obtain the following system

−(r + φ) 2δhµ
αhλh

= δhµ+ 2φ ζ
h+1/ψ
λhαh

δhµ+αhρhµ
2ζh

+ κµ2(1/ψ−αh)
αhλh

−2(r + 2φ) ζ
h+1/ψ
αhλh

= ζh

(r + φ+ κ)2(1/ψ−αh)
αhλh

= αh.

(S.21)
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From the last equation in (S.4) it follows that αh must satisfy Ah(φ, αh) = 0, where

Ah(φ, a) := (r + κ+ φ)(a− 1/ψ)− aΛ(φ, a,−a/2)
[
−a

2

]
,

thus proving (S.14). Also, from the second equation in (S.4),

ζh = − 2(r + 2φ)

2(r + 2φ) + αhλh
1

ψ

as stated in the Proposition. One can then prove with identical arguments that αh is char-
acterized as the unique solution to this (S.14) over [0, 1/ψ], and that all the remaining steps
in the proof of Proposition 9 (analog of Lemma A.3, derivation of the remaining coefficients,
and transversality conditions) can be derived with the same ideas.

Finally, we can parallel the proof of (ii) in Proposition 10 to show the point-wise ranking
of the signaling coefficients. Specifically, we can write α and αh as solutions to

− 2

ψ
(r + κ+ φ) + α (2r + κ+ φ) + αh(B(φ, α);α) = 0

− 2

ψ
(r + φ+ κ) + α(2r + φ+ κ) + αh(−α/2;α) = 0

respectively, where B(φ, α) ∈ (−α/2, 0) and

y 7→ h(y;α) :=

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαyφ

κσ2
ξ

1/2

− σ2
θα[α + y]

κσ2
ξ

.

As shown in the paper, y 7→ h(y;α) is strictly decreasing over R− for each α > 0. But since
−α/2 < B(φ, α) < 0, and the left-hand sides of the two equalities are increasing functions
of α (Lemma A.3 and its hidden-case analog for ψ 6= 1), it follows that α(φ) > αh(φ). This
concludes the proof. �
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S.6 Sum of Two Scores

Overview. Let us start with a slightly more general specification, the justification of which
will be given after Lemma 1 below. There are two scores that obey

dY1t = (Qt − φ1Y1t)dt+ σ1dZ
1
t

dY2t = (Qt − φ1Y2t)dt+ ρσ2dZ
1
t + σ2

√
1− ρ2dZ2

t ,

where φ2 > φ1, and where ρ ∈ [0, 1] measures the degree of correlation of the shocks.
As in the baseline model, firm t chooses its price based on the observation of Yt := Y1t+Y2t

only, whereas the consumer observes the history of (Wt)t≥0.11

The first thing to notice is that (Wt)t≥0 is not Markov, which implies that the consumer’s
problem ceases to be recursive in (θt,Wt)t≥0. In fact, it is easy to verify that

dWt = (2Qt − φ2Wt + (φ2 − φ1)Y1t)dt+ (σ1 + ρσ2)dZ1
t + σ2

√
1− ρ2dZ2

t , (S.22)

so knowledge of Y1t is needed to assess the evolution of Wt. In particular, this implies that
the consumer will attempt to filter the components of Y1 and Y2 from the observations of
(Wt)t≥0 to forecast the evolution of prices.

To make the problem recursive, therefore, we can use as states the consumer’s beliefs
about Y1 and Y2.12 This can be done by filtering Y1 from the observations of W , and
then using that Wt − Y1t = Y2t also holds when (Y1, Y2) is replaced with the corresponding
posterior mean. Moreover, in order to have a stationary model, we require those beliefs to
be stationary.

Let Ŷit := E[Yit|FWt ], where (FWt )t≥0 is the filtration generated by (Wt)t≥0, and observe
that (Qt)t≥0 is ultimately a function of the paths of (θt,Wt)t≥0. The following lemma is a
direct application of the filtering equations for conditionally Gaussian systems (Chapter 12
in Liptser and Shiryaev, 1977):

11The case in which the consumer observes the histories of (Y1t, Y2t)t≥0 can be analyzed with the same
approach displayed here, as will become clear soon.

12The fact that the consumer can filter first (Y1, Y2) from W , and then optimize using the dynamics of
the posterior mean, is a consequence of the separation principle of Wonham (1960); for an application to
a particular class of linear-quadratic control problems, see chapter 16 in Liptser and Shiryaev (1977)—the
idea in that chapter easily extends to our setting.
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Lemma 7. Suppose that beliefs are stationary. Then,

dŶ1t = (Qt − φ1Ŷ1t)dt+
σ1(σ1 + ρσ2) + γ∗(φ2 − φ1)√

σ2
1 + 2ρσ1σ2 + σ2

2

dZt

dŶ2t = (Qt − φ2Ŷ2t)dt+
σ2(σ2 + ρσ1)− γ∗(φ2 − φ1)√

σ2
1 + 2ρσ1σ2 + σ2

2

dZt (S.23)

where

γ∗ =

√
b2 + (σ1σ2)2(1− ρ2)(φ2 − φ1)2 − b

(φ2 − φ1)2

is the steady state variance and b : −σ2
1φ2 + σ2

2φ1 + ρσ1σ2(φ1 + φ2). Moreover,

dZt :=
dWt − [2Qt − φ2Wt + (φ2 − φ1)Ŷ1t]dt√

σ2
1 + 2ρσ1σ2 + σ2

2

is a Brownian motion w.r.t. (FW )t≥0.

Proof. Refer to Theorem 12.7 in Lipster and Shiryaev (1977).

Observe that since Wt = Ŷ1t + Ŷ2t holds at all times, the process (θ, Ŷ1, Ŷ2) carries all the
relevant information for the consumer’s decision making (i.e., the problem is recursive).

There are two important observations that follow from the lemma. First, if ρ = 1—i.e.,
there is only one source of noise—we have that γ∗ = 0. In order words, if the consumer
only observes the sum of the scores, then, starting from any (non-trivial) initial degree of
uncertainty, learning is always non-stationary when ρ = 1.

To have a stationary model, therefore, we require ρ < 1. However, when ρ < 1, the model
just described is observationally equivalent to one in which the consumer observes a vector
(Y1, Y2) of scores subject to only one source of noise and volatilities as in Lemma 1. Thus,
in the next section we work with a generic tuple

dY1t = (Qt − φ1Y1t)dt+ σ1dZt

dY2t = (Qt − φ2Y2t)dt+ σ2dZt,

assuming that the consumer observes the histories of each component, whereas firm t only
observe the contemporaneous value of the sum, t ≥ 0.
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Equilibrium analysis. In this context, the natural object to characterize is an equilibrium
quantity process

Qt = δµ+ αθ + β1Y1t + β2Y2t.

The existence of a linear Markov equilibrium can be reduced to the existence of a negative
solution for a single equation that characterizes β1.

To derive the main equation, we take the sequence of steps followed in the determination
of a linear Markov equilibrium for a single score:

1. Steady state distribution (θ, Y 1, Y 2). Let

Xt =

 θtY1t

Y2t

 , A0 =

κµδµ
δµ

 , A1 =

 κ 0 0

−α φ1 − β1 −β2

−α −β1 φ2 − β2

 , B =

σθ 0

0 σ1

0 σ2

 , ZX
t =

[
Zθ
t

Zt

]
.

(S.24)
When βi < 0, i = 1, 2 (as we would expect in this model of the ratchet effect), the
matrix A1 is invertible, and we can write

dXt = A1(A−1
1 A0 −Xt)dt+BdZX

t

which is a three-dimensional Ornstein-Uhlenbeck process. Replicating the proof of
Proposition A.1 in the paper, its stationary distribution is Gaussian with mean

~µ :=

 µȲ1

Ȳ2

 := A−1
1 A0 (S.25)

and covariance matrix

Γ :=

Γ11 Γ12 Γ13

Γ12 Γ22 Γ23

Γ13 Γ23 Γ33

 satisfying BBT = A1Γ + ΓAT1 (S.26)

2. Consumer’s best-response problem. Equipped with ~µ and Γ, setting up the consumer’s
problem requires determining the price process. With unit demand sensitivity (which
also holds here), the price process must satisfy

Pt = E[Qt|Wt] = E[δµ+ αθ + β1Y1t + β2Y2t|Wt].
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However, the firms know that Wt = Y1t + Y2t ∼ N (W̄ ,Var[Wt]) where

W̄ = Ȳ1 + Ȳ2

Var[Wt] = Γ22 + Γ33 + 2Γ23 (S.27)

Define the sensitivities

λθ :=
Cov[θt,Wt]

Var[Wt]
=

Γ12 + Γ13

Γ22 + Γ33 + 2Γ23

λ1 :=
Cov[Y1t,Wt]

Var[Wt]
=

Γ11 + Γ23

Γ22 + Γ33 + 2Γ23

λ2 :=
Cov[Y2t,Wt]

Var[Wt]
=

Γ22 + Γ23

Γ22 + Γ33 + 2Γ23

. (S.28)

Thus, from firm t’s perspective,

E[θt|Wt] = µ+ λθ(Wt − W̄ )

E[Y1t|Wt] = Ȳ1 + λ1(Wt − W̄ )

E[Y2t|Wt] = Ȳ1 + λ2(Wt − W̄ ), (S.29)

and so the price process takes the form

Pt = δµ+ α[µ− λθ(Ȳ1 + Ȳ2)] + β1[Ȳ1 − λ1(Ȳ1 + Ȳ2)] + β2[Ȳ2 − λ1(Ȳ1 + Ȳ2)]

+(αλθ + β1λ1 + β2λ2)[Y1t + Y2t]

= π0(~φ, α, β1, β2) + π1(~φ, α, β1, β2)[Y1t + Y2t] (S.30)

The HJB equation reads

rV = sup
a∈R

(θ − p)q − q2/2 + VY1(q − φ1y1) + VY2(q − φ2y2) + Vθκ(µ− θ)

+
1

2

[
σ2
θVθθ + σ2

1VY1Y1 + σ2
2VY2Y2 + 2σ1σ2VY1Y2

]
(S.31)

and we look for a solution V = v0 + v1Y1 + v2Y2 + v3θ+ v4Y
2

1 + v5Y
2

2 + v6θ
2 + v7Y1Y2 +

v8Y1θ + v9Y2θ.

3. Equilibrium conditions. The FOC reads

q = θ − π0 − π1(y1 + y2) + v1 + v2 + 2v4y1 + 2v5y2 + v7y2 + v7y1 + v8θ + v9θ
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which yields the relationships

α = 1 + v8 + v9

β1 = 2v4 + v7 − π1

β2 = 2v5 + v7 − π1

δµ = v1 + v2 − π0.

In particular, we have that β2 = β1 + 2(v5 − v4), so we obtain

β1 = 2v4 + v7 − π1(~φ, 1 + v8 + v9, β1, β1 + 2(v5 − v4)) = β1(v4, v5, v7, v8, v9).

By the envelope theorem, moreover,

(φ1 + r)[v1 + 2v4y1 + v7y2 + v8θ] = [2v4 + v7 − π1][δµ+ αθ + β1y1 + β2y2]

−2v4φ1y1 − v7φ2y2 + v8κ(µ− θ)

(φ2 + r)[v2 + 2v5y2 + v7y1 + v9θ] = [2v5 + v7 − π1][δµ+ αθ + β1y1 + β2y2]

−2v5φ2y2 − v7φ1y1 + v9κ(µ− θ),

(κ+ r)[v3 + 2v6θ + v8y1 + v9y2] = [v8 + v9 + 1][δµ+ αθ + β1y1 + β2y2]

+2v6κ[µ− θ]− v8φ1y1 − v9φ2y2

so letting ~v = (v4, v5, v7, v8, v9), we obtain the following system of equations for ~v:

2(2φ1 + r)v4 = [2v4 + v7 − π1(~v)]︸ ︷︷ ︸
=β1(~v)

β1(~v)

2(2φ2 + r)v5 = [2v5 + v7 − π1(~v)]︸ ︷︷ ︸
=β2(~v)

β2(~v)

(φ1 + φ2 + r)v7 = [2v4 + v7 − π1(~v)]β2(~v)

(φ1 + r + κ)v8 = [2v4 + v7 − π1(~v)] [1 + v8 + v9]︸ ︷︷ ︸
α

(φ2 + r + κ)v9 = [2v5 + v7 − π1(~v)] [1 + v8 + v9]︸ ︷︷ ︸
α

(It is clear from here that we cannot have β1 = β2: the FOC would imply that v4 = v5,
and so the first two equations yield φ1 = φ2, a contradiction.)

Since v4 and v5 are the coefficients on Y 2
1 and Y 2

2 , and both of these states are being
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controlled, they are strictly positive: In fact, this is implied by the first two equations:

v4 =
β2

1

2(2φ1 + r)
and v5 =

β2
2

2(2φ2 + r)
.

Thus, v4 = v4(β1) and

2(2φ2 + r)v5 = β2
2 = [β1 + 2(v5 − v4)]2 = [β1 − 2v4(β1)]2 + 4[β1 − 2v4(β1)]v5 + 4v2

5

⇒ v5 =
−2[2β1 − 4v4(β1)− 2φ2 − r]±

√
4[2β1 − 4v4(β1)− 2φ2 − r]2 − 16[β1 − 2v4(β1)]2

8

⇒ v5 =
−2[2β1 − 4v4(β1)− 2φ2 − r]±

√
−16[β1 − 2v4(β1)][2φ2 + r] + [2φ2 + r]2]

8

We are seeking for β1 < 0, so both roots are positive. (As in our model, however, we
presume, that it is the smaller one that will work, in the sense that it will deliver a
negative β1.) Given a choice of root, we have v4(β1) and v5(β1).

On the other hand, we can subtract the 4th equation from the first in the system v4–v9

above to obtain

v7 =
2(2φ1 + r)v4(β1)− 2β1[v5(β1)− v4(β1)]

φ1 + φ2 + r
= v7(β1)

Finally, from the last two equations and β2 = β1 + 2(v5 − v4),

v9 =
φ1 + r + κ

φ2 + r + κ

β2

β1

v8 =
φ1 + r + κ

φ2 + r + κ

[
1 +

2[v5(β1)− v4(β1)]

β1

]
︸ ︷︷ ︸

ρ(~φ,β1):=

v8 = ρ(~φ, β1)v8.

Plugging this into the second to last equation we get

v8 =
β1

φ1 + r + κ− β1[1 + ρ(~φ, β1)]

⇒ v8 + v9 =
β1[1 + ρ(~φ, β1)]

φ1 + r + κ− β1[1 + ρ(~φ, β1)]
.

60



All this together, we obtain a single equation for β1 given by

β1 =
2β2

1

2(2φ1 + r)︸ ︷︷ ︸
=2v4

+
2(2φ1 + r)v4(β1)− 2β1[v5(β1)− v4(β1)]

φ1 + φ2 + r︸ ︷︷ ︸
=v7

− π1

(
~φ, 1 +

β1[1 + ρ(~φ, β1)]

φ1 + r + κ− β1[1 + ρ(~φ, β1)]
, β1, β1 + 2[v5(β1)− v4(β1)]

)
︸ ︷︷ ︸

π(~φ,α,β1,β2)=

(S.32)

where

v4 =
β2

1

2(2φ1 + r)

v5 =
−2[2β1 − 4v4(β1)− 2φ2 − r]±

√
−16[β1 − 2v4(β1)][2φ2 + r] + [2φ2 + r]2]

8

Ratcheting properties.

• β2 < β1 < 0: If instead 0 > β2 > β1, we would have β2
2 < β2

1 . However, from the first
two envelope conditions

2(2φ1 + r)

β2
1

v4 =
2(2φ2 + r)

β2
2

v5.

Since φ2 > φ1, it must be that v5 < v4. But β2 = β1 + 2(v5 − v4) then would imply
that β2 < β1, a contradiction.

• α < 1. Follows from β2 < β1 < 0⇒ v5 < v4 ⇒ ρ > 0⇒ v8 < 0⇒ v8 + v9 < 0.

Finally, the expressions for Γ coefficients as well as the equation for β1 are in a Mathe-
matica code, and can be send upon request.
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