Neural Networks and Other Nonparametric
Techniques in Economics and Finance

Andrew W. Lo

Harris & Harris Group Professor of Finance

Massachusetts Institute of Technology

Because financial data contain important nonlinearities, neural networks and other
nonlinear models can be extremely useful in financial modeling. These models are not
always preferable to linear approaches, however, and understanding of their benefits
and drawbacks can help the modeler make choices. Moreover, alternative nonparamet-
ric techniques may be more useful than neural nets in some cases; a useful technique that
closely approximates human estimation, for example, is kernel regression.

Recent advances in the theory and implementation
of (artificial) neural networks have captured the
imagination and fancy of the financial community.l
Although they are only one of the many types of
statistical tools for modeling nonlinear relationships,
neural networks seem to be surrounded by a great
deal of mystique and, sometimes, misunderstand-
ing. Because they have their roots in neurophysiol-
ogy and the cognitive sciences, neural networks are
often assumed to have brain-like qualities: learning
capacity, problem-solving abilities, and ultimately,
cognition and self-awareness. Alternatively, neural
networks are often viewed as “black boxes” that can
yield accurate predictions with little modeling effort.

In this presentation, I hope to remove some of
the mystique and misunderstandings about neural
networks by providing some simple examples of
what they are, what they can and cannot do, and
where neural nets might be profitably applied in
financial contexts.® I will also discuss several other
types of nonparametric techniques to emphasize the
connection between neural networks and more

The adjective “artificial” is often used to distinguish mathe-
matical models of neural networks from their biological counter-
parts. For brevity, I shall omit this qualifier for the remainder of
this paper although it will be implicit in all of my references to
neural networks.

ZSince this is meant to be an introductory talk, I will not
hesitate to sacrifice rigor for clarity. More mathematically inclined
readers are encouraged to consult Hertz, Krogh, and Palmer (1991)
for the general theory of neural computation, White (1992) for the
statistics of neural networks, and Ait-Sahalia and Lo (1994) and
Hutchinson, Lo, and Poggio (1994) for financial applications.

standard statistical models of nonlinear relations. As
with all emerging technologies, neural networks
have been touted by some as a revolution and criti-
cized by others as snake oil. In fact, they are neither:
Neural networks are an interesting and potentially
powerful way to model complex relations in some,
but surely not all, applications.

Motivation for Using Neural Nets

The motivation behind most nonlinear modeling
techniques is to determine a useful answer to the
following simple question: How are the variables X
and Y related? This is a question that can be asked
on several different levels. For example, consider
Figure 1, which depicts a scatter diagram of observa-
tions (X Y;). Is this relationship linear or nonlinear?
Despite the pervasiveness of linear models in tradi-
tional financial analysis (e.g., the Sharpe-Lintner
capital asset pricing model and Ross’s arbitrage pric-
ing theory), they are a rather small subset of the set
of all possible models. Because, by definition, non-
linear models deal with all relationships that are not
linear, they are a considerably “larger” set of models
than linear models. Only recently have academics
and financial analysts begun to realize that financial
data contain important nonlinearities.

On another level, we can ask whether the rela-
tion depicted in Figure 1 is deterministic or random.
Although I myself do not find this distinction very
useful, it has attracted considerable attention in some
financial circles, particularly in those that apply the
mathematics of nonlinear dynamics and “chaos” to

25



Figure 1. Scatter Plot of a Nonlinear Relationship

Y
-
2 ml ..
) x
.- -.. . T
"B _— .
x
.:'-. b l--.. n g " X
. . F . "" M
. [ . " . -l.
x L -
o, "o, n
n_m
L L.
" x "
n
n

Source: Andrew W. Lo.

investment management (see Hsieh 1991 for an ex-
cellent overview).

On yet another level, we can ask whether Figure
1 exhibits a predictable relation between X and Y;
does observing X help us to forecast Y, or is Y unfore-
castable? Does having additional X variables—a
multifactor model—yield better forecasts of Y? Also,
Y can be discrete instead of continuous. For exam-
ple, Y would be discrete if we were predicting classi-
fications such as whether a security is a good
investment or a bad one or whether a counterparty
is a good credit risk or a poor one.

You see how difficult it can be to answer the
question: How are X and Y related? There are many
questions within this seemingly simple question,
and without additional structure and information,
the question has no single answer. While neural
networks can provide a fairly broad set of answers to
the question of how X and Y are related (see the
section “What Neural Networks Can Do” for an
example), they should not be viewed as black boxes;
they do “connect” inputs to outputs, but what hap-
pens in-between is critical to the interpretation (and
exploitation) of the nonlinearities captured by the
network.?

Now, before I turn to a formal discussion of
neural networks, let me provide one simple financial
example that motivates our interest in nonlinear
models. This example, first suggested by Professor
Robert Merton, involves allocating assets each
month between Treasury bills and the S&P 500 In-
dex, starting January 1926 and ending December
1993. Now, a $1 investment in Treasury bills, rolled
over from month to month, grows to $12 at the end
of this 67-year period, whereas the same investment
in the S&P 500 grows to $800. What if you had
perfect market-timing skills so that, at the start of

3To see why, consider the nonlinear stock selection system

©-94 in the presentation “Data-Snooping Biases in Financial
Analysis” contained in this proceedings.

26

each month, you knew for sure which asset class
would perform better? Starting with a $1 investment
in January 1926 and switching your assets wholly
into Treasury bills or the S&P 500 each month de-
pending on which will have the higher return, what
would your investment become at the end of 19937
The answer: $1,038,317,644! No, this is not a typo-
graphical error; with perfect asset allocation skills, a
$1 investment in 1926 would have grown to over one
billion dollars in 1993.

Now, of course, no one has perfect asset alloca-
tion skills; therefore, in practice, the returns to asset
allocation may be only a small fraction of
$1,038,317,644. However, it does not take a very
large fraction of $1,038,317,644 to exceed the $800
return on the S&P 500! And this is perhaps the most
tantalizing aspect of investment management: Even
a very slight advantage in a very competitive market
can translate into handsome returns over time. De-
tecting and modeling nonlinearities might just pro-
vide such a slight advantage.

What Are Neural Networks?

To develop some basic intuition for neural networks,
consider a typical nerve cell, or “neuron.” A neuron
has dendrites (receptors) at different sites that react
to stimuli. These stimuli are transmitted along the
axon by an electrical pulse. If the electrical pulse
exceeds some threshold level when it hits the nu-
cleus, this triggers the nucleus to react—for example,
to make a particular muscle contract. This basic
biological unit is what mathematicians attempt to
capture in a neural network model.

Now, the human brain has approximately 100
billion neurons. Each neuron is relatively simple,
having the basic structure I just described. But when
such large numbers of these relatively simple nerve
cells are combined in parallel and allowed to interact
in nonlinear ways, these interactions can produce
very complex behavior, perhaps even human
thought. This is probably the single most compelling
feature of neural network models: the ability to cap-
ture complex phenomena through the combination
of many units (hence, the term “network”) of a sim-
ple mathematical model of a neuron.

Perhaps the first, and simplest, mathematical
model of the neuron—the binary threshold model—
was introduced by McCulloch and Pitts in 1943. Ac-
cording to their model,

]
Y,=013 1X; i 1
j=1

and



1ifx>0 2
O =10ifx<0[’

where X, represents the stimulus received at the jth
dendrite or receptor site at time ¢, and Y, represents
the neuron’s response at time ¢ to all the stimuli. In
Equation1,eachstimulus X;ismultipliedbyafactor
¥; called the “connection strength.” The connection
strength y; indicates how sensitive the neuron is to
stimulus from that receptor site. The larger the y;, the
more sensitive the neuron to that particular input.
After multiplication by the connection strengths, the
inputs are summed, and if this weighted sum ex-
ceeds the “threshold level” y, then according to
Equation 2, the neuron is “activated,” yielding a
value of 1 for Y. If the weighted sum does not exceed
the threshold level, then the neuron remains “dor-
mant,” yielding a value of 0 for Y,.

This model of the neuron is the simplest of its
kind, with only two output values, 0 or 1, but it does
capture the basic features of a nerve cell. However,
neurobiologists have come to realize that nerve cells
are not so simple, exhibiting considerably more com-
plex and subtle behavior than the binary threshold
model can capture. Nevertheless, as a purely statis-
tical tool, the binary threshold model may still be
useful for modeling nonlinear relations between a set
of inputs and an output. In fact, Equations 1-2 are
already a nonlinear model because the mapping ©
between the (possibly) continuous variables {Xj }and
the discrete Y, is indeed nonlinear.

In the 1940s, there was a tremendous amount of
interest and research in these kinds of systems, and
we are seeing a resurgence of this enthusiasm today.
Interestingly, one of the earliest motivations for de-
veloping the modern digital computer had nothing
to do with computing applications; it was to con-
struct a digital representation of the human brain!
No less a mathematician than John von Neumann,
often called the father of computer science, was
deeply interested in mathematical models of biologi-
cal systems. His ultimate goal was to construct a
machine that would mimic human thought, and it is
unfortunate that his untimely death interrupted this
particular line of research. Who knows what he
would have created had he been able to complete his
ambitious studies?’

With respect to current (nonbiological) applica-
tions, neural networks are used to give structure to

4t ¥ >0, the input Xjt is said to be “excitatory.” If ¥ <0, the
input is said to be “inhibitory.”

5Some thought-provoking philosophical musings and pre-
liminary research findings are contained in von Neumann’s (1958)
incomplete monograph The Computer and the Brain, which was
published posthumously.

data. Viewed as a statistical estimation technique,
neural networks are a flexible model of nonlineari-
ties. In this sense, they are just one example of a
nonparametric nonlinear estimation technique.
“Nonparametric” means that no parametric assump-
tions are required, such as the assumption of nor-
mally distributed errors for the typical linear
regression model.

In addition to being nonparametric, neural net-
work models also have a very useful feattre known
as the “universal approximation property.” This
property means that, with enough nodes or enough
hidden layers (to be defined shortly) and under cer-
tain conditions, a neural network can approximate
any nonlinear relationship, no matter how strange or
nonlinear.

Many nonparametric techniques also share this
universal approximation property (see the section
“Other Nonparametric Techniques,” for example),
so neural networks should not be preferred on these
grounds. Instead, it is often argued that neural net-
works are computationally more efficient in some
specific applications. One feature rarely emphasized
about neural networks in financial applications is
that, because they are fairly simple, many of them
can be “strung together” in parallel, yielding extraor-
dinary gains in computational speed. However, the
most commonly used computers today are not yet
parallel. Thinking Machines Corporation does mar-
ket its Connection Machine,6 and some other mas-
sively parallel processors are available at the high
end of the market, but the typical computer is not
able to take advantage of this property. In fact, par-
allel computation is one of the main advantages of
neural networks.

Examples of other nonlinear estimation tech-
niques include splines, wavelets, kernel regression,
projection pursuit, radial basis functions, nearest-
neighbor estimators, and perhaps the most accurate
of all, human intuition. The question is not so much
whether one technique is preferred over another but,
rather, how they compare overall to linear alterna-
tives, and in which particular application is one more
efficient and accurate than another? Most of them
have the universal approximation property, so what
is more relevant is which is right for a particular
application.

A Neural Network Primer

To set up a neural network, we first define the target
varijable Y (or dependent variable, in the terminology

6Ur\fortunately, Thinking Machines Corporation has just
tiled for bankruptcy, perhaps an indication that the market is not
yet ready to take full advantage of the computational efficiency
that neural networks can provide.

27



of linear regression) and the set of inputs {Xj} (or
explanatory variables) that are used to forecast or
explain Y. The weighted sum of the inputs, weighted
by the connection strengths {y} (or coefficients), is
then compared against the threshold level p. This
comparison requires an activation function ©(-) that
determines the state of the neuron. However, for
most financial applications, a 0-1 response is not
appropriate. For example, if we are attempting to
forecast equity returns, the response should be con-
tinuous since returns are continuous. In this case, we
want a continuous activation function, not Equation
2. Figure 2 provides an example of a continuous
activation function, often called the “logistic” or “sig-
moid” function, which is graphed alongside the 0-1
activation function, Equation 2, often called the
“Heaviside” function.

We are now ready to define the most basic neural
network model on which most current applications
are built: the “single-layer feedforward perceptron”
with a continuous (logistic) activation function:

J 3\
Yt:® Z Y]X]t , (3)
=1
where
0= @
T l+exp(x)

As before, the inputs are multiplied by the connec-
tion strengths and summed. However, observe that
the threshold level it is no longer subtracted from the
sum in Equation 3. Without loss of generality, we can
let one of the inputs, say Xy, take on the value -1 for
every t; hence, the connection strength v, of Xy, plays
the same role as | in Equation 1. Such networks are
called “feedforward” because there is no feedback
from the output layer back to the input layer (see
Hertz, Krogh, and Palmer 1991, Chapter 7, for a
discussion of “recurrent” networks in which feed-
back is allowed). Despite the simplicity of Equation
3, it is the basis of even the most complex neural
networks used in practice.

Now, in general, it is almost impossible to obtain
a perfect fit or forecast of the output Y, given the
inputs {X;}; hence, there will almost always be some
erTor €;. ”therefore, we can recast the neural network
model in a more general statistical framework in
which the target Y, is related to an unknown non-
linear function m(Xyy, ..., Xj,) plus an error term:

Yy=mXyy .., Xp) +e ®)

The goalis to find the function m(-) that works “best.”

28

If m(-) were restricted to be linear and “best” meant
minimum mean squared error, ordinary least
squares or linear regression would be the solution to
this problem. But because we wish to allow m to be
nonlinear, the problem is considerably more compli-
cated, and this is where nonparametric nonlinear
techniques such as neural networks come into play.
The neural network model can be viewed as an esti-
mate r/r\z(-) of the function m(-); hence,

]
LX) =6 > X |- ©6)
j=1

?tzrlt\'l(xlt yoe .

Back-Propagation versus Nonlinear Least

Squares
How do we specify the connection strengths {y;}?
They must be estimated. The popular notion that
neural networks can “learn” is based on the process
of successive estimates of {y;} as new data are ac-
quired; in neural network parlance, the network is

Figure 2. Activation Functions

Logistic Function

[— ——————————— 11

Heaviside Function

L 1 |
-10 -5

Source: Andrew W. Lo.



“trained” on the data. In particular, we might con-
sider selecting {yj} to minimize the sum of squared
“errors” or differences between the target and the
network output:

t ]
Min Y | Y -0} vXp |- %)
h 1= j=1

If ©(:) were linear, the solution to Equation 7 would
be linear regression. But since ©(-) is assumed to be
nonlinear, the solution to Equation 7 must be ob-
tained by another method: nonlinear least squares.
Nonlinear least squares is a well-known technique
for optimizing nonlinear functions and is available
in many computer packages.

An alternative to nonlinear least squares that is
commonly used is an algorithm called “back-propa-
gation,” in which the connection strengths are up-
dated recursively in the following manner:

Y=Y TN X VO, x (Y, - 6),
]
0, =0 VXt |- ®)
=1

where v, = [f1 Vo - -
connection strengths based on time -1 information,
V0, is the vector of first derivatives of @, with respect
to the vy's, v, is the updated vector that takes into
account the information contained in the forecast
error Y; - ©,, and 1 is a parameter that determines
the sensitivity of the updating process to the forecast
error. As this algorithm is given more data, it will
update the model to determine a “better” set of ys.
Although at any given time ¢, y, generally does not
solve the minimization problem (Equation 7), it can
be shown that, eventually, v, will converge to the
nonlinear least squares solution.

But if the back-propagation estimate of yis only
guaranteed to converge to the solution of Equation 7
eventually (and it is virtually impossible to say how
long this will take in general), why not simply use the
nonlinear least squares estimate, which does solve
Equation 7? The typicaljustification for back-propa-
gation is the fact that it is an “on-line” method: Itis a
rule for updating the connection strengths given
only the current connection strengths and the most
recent observations of the inputs and target.7 In

'fY]t—l] is the vector of

"This terminology comes from the signal-processing litera-
ture, in which an on-line algorithm does not require switching off
the signal generator while it processes the most recent data,
whereas an off-line algorithm processes the most recent data

other words, we do not have to reprocess the entire
historical data set in order to estimate a new set of
connection strengths; today’s observation and to-
day’s {yj} are sufficient to arrive at the new {Yj}.

On-line methods are most useful when speed is
relatively more important than accuracy. For exam-
ple, while a guided missile is tracking its target in
flight, it cannot reprocess all of the accumulated
historical tracking data each time it receives new
coordinates for its target; otherwise, it would never
reach its target in real time. Instead, a guided missile
uses on-line methods for tracking its target, which
may not be as accurate as off-line methods but are
accurate enough for all practical purposes.

For financial applications, the distinction be-
tween on-line and off-line algorithms is not as critical
since off-line processing is, for most financial data
sets, almost instantaneous anyway. Perhaps for very
short term real-time trading systems, those involving
tick data, for example, an on-line algorithm may be
preferable to an off-line algorithm. But, in general,
on-line algorithms tend to be numerically unstable
and very slow to converge to the solution of Equation
7 in financial applications. If instantaneous process-
ing is not a critical factor, nonlinear least squares is
probably preferable. Recall that nonlinear least
squares does solve Equation 7 exactly for a given
sample, whereas back-propagation does so only ap-
proximately, as the sample size grows.

Hidden Layers

So far, we have considered the simplest neural
network model, a single-layer feedforward percep-
tron in which inputs are connected to an output
through a nonlinear activation function. Although
this specification does indeed capture some kinds of
nonlinearities, it does not possess the universal ap-
proximation property, a point forcefully made by a
simple counterexample in Minsky and Papert (1969).
In that example, Minsky and Papert constructed a
particularly simple nonlinear function, called the
“exclusive-OR,” or XOR, function, which no single-
layer feedforward perceptron can approximate.

The solution to the XOR problem was discovered
relatively recently by Rumelhart, Hinton, and Wil-
liams (1986), and it consists of adding a “hidden
layer” in between the network’s input and output
layer. In particular, instead of feeding inputs di-
rectly to the output, let the inputs be fed to several
activation functions:

together with all of the accumulated data from the past and usu-
ally does require switching off the generator until its processing
is complete.

29



/

]
O > 11Xt (- ©) XX |-

)
.0 EYK]'X]} ’ ©
=l =1

J=1

where the activation functions ©O(-) are all the same
but there are now K distinct sets of connection
strengths, one for each “node” of the hidden layer
(Figure 3). The output from each node kis multiplied
by a coefficient §;, summed over all K nodes, and
then fed into another activation function F(-). The
final output of this network is then

K (]
P=F | 380 > nX; (|- (10)

k=1 |j=1

With one hidden layer, the perceptron is now called
a “multilayer perceptron” (MLP), and it possesses
the universal approximation property. A single-
layer perceptron cannot capture all forms of non-
linearity; a multilayer perceptron can. MLPs are the
most common type of neural networks currently
used. Most commercially available neural network
software packages estimate MLPs, and they allow for
many hidden layers. In this way, by taking functions
of functions of functions, etc., you can quickly get
extraordinarily complex behavior from rather sim-
ple building blocks.

Figure 3. Feedforward Perceptron with a Single
Hidden Layer

Output

Hidden Layer

Input Layer

Source: Andrew W. Lo.

What Neural Networks Can Do

Even simple neural networks with only one hidden
layer can capture a variety of nonlinearities. Con-
sider, for example, the sine function plus a random
error term:

30

Y, = sin(X,) + 05¢,, (11)

where g, is a standard normal random variable. Can
a neural network extract the sine function from ob-
servations (X,,Y})?

To answer this question, 500 (X,,Y,) pairs were
randomly generated subject to the nonlinear rela-
tionship (Equation 11) and a neural network model
was estimated using these artificial data {(or in the
jargon of this literature, a neural network was trained
on this data set). The particular neural network used
has one hidden layer and five hidden nodes® The
following equation is the result of training the neural
network on the data using nonlinear least squares:

9,=5282 — 14576 x ©(~1472 + 1.869 X))
- 5411 x ©(-2628 + 0641 X))
— 3071 x ©(13288 —2.347 X,)
+ 6320 x O(-2009 +4009X,)
+ 7892 x©(-3.316 +2484X,), (12)

where O(x) is the usual logistic function 1/(1 +
exp[—x]). This network has five identical activation
functions ©(-) (corresponding to the five nodes in the
hidden layer) and a constant term, and the activation
function F(-) for the output layer is assumed to be the
identity function F(x) = x. There are only two inputs,
X;and 1.

Now, Equation 12 looks nothing like the sine
function, so in what sense has the neural network
“approximated” the nonlinear relation, Equation 11?
In Figure 4, the data points (X,,Y,) are plotted as
squares, the dotted line is the theoretical relation to
be estimated (the sine function), and the solid line is
the relation as estimated by the neural network,
Equation 12. The solid line is impressively close to
the dotted line, despite the noise that the data points
clearly contain. Therefore, although the functional
form of Equation 12 does not resemble any trigono-
metric function, its numerical values do.

Figure 4 also shows that the neural network
estimate deviates from the sine curve more for some
values of X, than for other values of X;. For example,
when X, isnear 1.57, the solid line seems to dip below
the dotted line, deviating to a greater extent than for
other values of X;. Why is this? The answer lies in
the absence of data points above the dotted line and
the presence of data points below it when X is near
1.57. The MLP model can only reveal what is in the
data, and since there are more points below the

8There are no formal rules yet for optimally selecting the
number of hidden layers or nodes per layer, and this is one of the
primary drawbacks of neural network models. Currently, experi-
ence and heuristics are the only guides we have for specifying the
network “topology.”



Figure 4. Multilayer Perceptron Estimator of

EXIX)

0 1.57 3.14 4.71 6.28

Source: Andrew W. Lo.

dotted line than above it when X, is near 1.57, the
estimated curve will also inherit this bias. Like all
statistical models, neural networks are subject to es-
timation error. Nevertheless, this example demon-
strates that, if there is genuine nonlinearity in the
data, neural networks can capture it reasonably well.

What Neural Networks Cannot Do

Having seen what neural networks can do, it is time
to consider what they cannot do. Consider the well-
known law of supply and demand that is taught in
every introductory economics course: The price P
and quantity Q that clear a market are determined by
the intersection of the market’s supply and demand
curves. Let the (linear) demand curve at time ¢ be
given by

Qf =dy+d; P, +dyl, + €4, 13)

where P, is the purchase/selling price, I, is house-
hold income, and 8? is a random demand shock, and
let the (linear) supply curve at time f be given by

Qi =5y +51P;+5,C, + £, (14)

where C, is production costs and g is a random

supply shock. An economic equilibrium, or market
clearing, occurs when supply equals demand; hence,

=Qf=q, (15)

where Q) is the equilibrium quantity produced and
consumed at time ¢.

Suppose that the target Var1able to be forecasted
is the quantity demanded Qt as given by Equation
13,7 and we train an MLP with a single hidden layer
on all of the available inputs: equilibrium price P,,
production costs C,, household income I, and the
constant 1. Moreover, let us assume that this MLP is
given an infinite number of data points on which to
train! It can easily be shown that this single hidden-
layer MLP can never recover the demand curve
(Equation 13), despite the fact that the demand curve
is linear and despite the fact that the MLP is given an
infinite amount of data on all the relevant variables.

In fact, under the stated assumptions, the de-
mand curve can be readily estimated by a variant of
linear regression: two-stage least squares (also
known as instrumental variables estimation). This
linear procedure exploits the fact that what we ob-
serve in the data is neither the demand curve nor the
supply curve but, rather, the intersection of the two
(see Equation 15). Without this crucial piece of infor-
mation, neural networks and any other nonparamet-
ric, nonlinear estimation technique will never be able
to recover the demand curve.

Now, of course, one may cry “foul play” at my
example because I have purposely omitted Equation
15 from the network specification. But this is pre-
cisely the point. The network cannot “learn” Equa-
tion 15 by itself, contrary to popular belief, but must
have this structure built into its design to be able to
recover the demand curve. Of course, if I structured
the network topology to account for Equation 15, the
resulting network would perform as well as (if not
better than) two-stage least squares. But there will
always be a need for structure and information ob-
tained from outside the network because there are
simply too many nonlinear models to choose from,
and even an infinite amount of data is sometimes not
enough. Neural networks are not black boxes.

Practical Considerations

Although MLP neural networks do have their roots
in biology, their current relation to biological phe-
nomena is metaphoric at best. When popular ac-

“This is not as frivolous an example as it may seem. In
particular, a significant portion of consumer marketing research is
devoted to estimating demand curves. Public policies such as
gasoline, alcohol, and cigarette taxes, energy tax credits, and in-
vestment incentives also often hinge on price-elasticity-of-de-
mand estimates. Finally, economic analysis of demand is
frequently the basis of damage awards in a growing number of
legal disputes involving securities fraud, employment discrimina-
tion, and antitrust violations.

31



counts of neural networks claim that they “learn,”
what they mean is that estimates of connection
strengths and other model parameters change when
confronted with new data. But virtually all statistical
models “learn” in exactly the same sense; for exam-
ple, linear regression parameters generally change
when confronted with additional data. Whether or
not neural networks learn in the same ways that
humans learn is an open question, primarily because
we do not yet have a satisfactory theory of how
humans learn. A neural network is one way to esti-
mate a nonlinear relation, but it is certainly not the
only way (as discussed in the next section).

In particular, neural networks have some advan-
tages and disadvantages. One advantage is the sim-
plicity with which neural networks can be
implemented on digital computers. They are espe-
cially simple to code in almost any higher-level pro-
gramming language such as C or Fortran; hence,
development time is reduced. This is often at the
expense of computer time, but given the continuing
decline in computing costs and increase in comput-
ing speed, this trade-off may be economically opti-
mal.

The main disadvantages of neural networks are
the need for theoretical restrictions in designing the
network topology and the tendency towards “over-
fitting,” in which the network yields an almost per-
fect fit in-sample by “memorizing” the data but
breaks down out-of-sample. Overfitting is more
likely to be a problem for nonlinear estimation tech-
niques because such techniques typically have many
more degrees of freedom than linear models (an
arbitrary number of nodes in each hidden layer, an
arbitrary number of hidden layers, etc.). Therefore,
nonlinear techniques can fit almost any set of data to
almostany degree of accuracy by simply “connecting
the dots.” But this implies nothing about the model’s
performance on new data; hence, a nonlinear model
with near-perfect fit may have almost no predictive
power.

Much of the success or failure of networks de-
pends on how much clean data you have, what the
“signal-to-noise” ratio is, and how good your theo-
retical restrictions are. For relatively small data sets,
nonlinear techniques will not work very well unless
there is a great deal of theoretical structure and infor-
mation available. Loosely speaking, there is a trade-
off between structure and sample size: With larger
samples, some structure may be recovered from the
data directly; with smaller samples, that structure
must be supplied. Of course, as the example in the
preceding section demonstrated, there are cases
where even an infinite amount of data cannot gener-
ate the structure needed to yield an accurate esti-
mate.

32

Another disadvantage of neural networks is the
difficulty in performing standard statistical inference
for estimates of the model’s parameters. This is a
result of the network’s layered structure. For exam-
ple, a simple t-test to see whether the connection
strength of one hidden node is statistically significant
requires many other assumptions about whether the
various connections above it will be significant. Be-
cause of the recursive nature of the networks, such
t-tests and related goodness-of-fit measures are al-
most impossible to interpret.

Other Nonparametric Techniques

To emphasize the fact that neural networks are not
the only way to capture nonlinear relations, I want
to present a popular alternative for estimating non-
linear relations nonparametrically: kernel regres-
sion. This is a very intuitive approach to estimating
nonlinearities based on taking “local averages.” To
see how it works, try to draw a continuous curve
free-hand through the scatter of points in Figure 1 so
as to obtain the “best” fit. Your drawing probably
looks something like Figure 5, a curve that passes
through the middle of the scatter plot.

Figure 5. Free-Hand Estimation of a Nonlinear

Relationship
Y
L
E BE I I
. W "
S
a ' | [
.:Jl -l. .rl . u .- p mm ™ «
n a u ". [ TTa n L Y
" = IL o | Yal al
[ § n a
a .d i..- . [ ]
.l.'-F |
LI I
[m |
11 .

Source: Andrew W. Lo.

What is the biological neural network (ie., in
you) doing to arrive at this free-hand curve? It is
computing local averages, visually. For example, to
estimate the value of the nonlinear function for val-
ues of X near 4, consider the group of points in
between the dashed lines surrounding the vertical
line centered at 2. Common intuition suggests pick-
ing a point somewhere in the middle of the vertical
range. This is your visual estimate of the value of the
function when X is near 4, and it is a local average of
the vertical distances of the points in between the
dashed lines around a. Similarly, in estimating the
value of the function for values of X near b, you also
pick a point somewhere in the middle of the group



of points in between the dashed lines around b. If
you continue to do this—taking vertical averages of
points around a small neighborhood of each value of
X—you will arrive at the free-hand curve drawn in
Figure 5.

This process of taking local averages can be for-
malized mathematically and yields the nonparamet-
ric, nonlinear estimation technique known as kernel
regression. The main subtlety invoived in kernel
regression is how to choose the width of the neigh-
borhood over which the local averaging is done,
often called the “bandwidth.” For example, if the
local averaging is over the entire range (correspond-
ing to dashed lines that enclose all the points in the
data set), the result would be a flat line. If the local
averaging is over very tiny intervals (corresponding
to dashed lines that contain a very small number of
points), the result would not be averaging but,
rather, connecting the points. Too wide a bandwidth
produces an estimated curve that is too smooth, and
too narrow a bandwidth produces an estimated
curve that is too choppy. The ideal bandwidth is
something in between these two extremes.

To see kernel regression in action, Figure 6, Fig-
ure 7, and Figure 8 display kernel regression esti-
mates on the simulated sine-curve-plus-noise data of
Figure 4 for several bandwidths. If the averaging is
done over very small neighborhoods, as in Figure 6,
the kernel estimator is fitting noise as well as the
genuine sine curve; hence, the estimated curve is too
choppy. If the bandwidth is increased slightly, as in
Figure 7, the estimated curve looks about as good as
the MLP estimator in Figure 4. If the bandwidth is

Figure 6. Kernel Regression Estimator of Y;= sin(X)
+0.5¢;
(bandwidth h = 0.10)

Figure 7. Kernel Regression Estimator of Y;= sin(X)
+05¢,
(bandwidth h = 0.30)

E(YI1X)

3 ! I | = |
0 157 3.14 4.71 6.28
X
Kernel
W Data
....... Sin (X)

Source: Andrew W. Lo.

increased beyond this, as in Figure 8, the kernel is
averaging over too wide a region, and the resultis a
nearly flat line.

This nonparametric technique works just as well
as neural networks in some contexts, better in others,
and worse in yet others. The success of either of these
approaches depends intimately on the particular ap-
plication at hand.

Figure 8. Kernel Regression Estimator of Y;= sin(X)
+ 0.58t )
{bandwidth h = 2.00)

-3 [ | | =
0 1.57 3.14 4.71 6.28
X
Kernel
B Data
....... Sin (X)

Source: Andrew W. Lo.

0 1.57 3.14 471 6.28

Kernel
B Data

Source: Andrew W. Lo.

33



Conclusion

All quantitative models are approximations to
reality. The issue is not so much whether a model is
true or false but, rather, how good an approximation
it is to the reality we wish to capture. Nonlinearities

34

are important in the data, so using a nonlinear model
has advantages, but a variety of trade-offs must be
made. If you are mindful of these trade-offs, you will
find that nonlinear techniques can often shed a great
deal more light on the data than linear techniques.



Question and Answer Session

Andrew W. Lo

Question:  Couldn’t the quanti-
tative techniques you discussed
just be considered sophisticated
pattern-recognition techniques
(i.e., technical analysis)?

Lo: Thereis a very important
difference between the nonlinear
techniques I discussed and pure
pattern recognition: In the ap-
proach I discussed, economic and
financial theories impose some
stability and discipline on the
modeling process. One exercise |
give to my investments class is to
have them look at six plots of
data, of which one is historical
stock returns and the other five
are randomly generated numbers.
Their task is to pick out the plot
with “real” data. On average,
only one-sixth of the class picks
the right one, about what you
would expect from pure chance. I
invited a couple of technical ana-
lysts to my class to do the same
thing. Of course, they picked the
wrong ones.

Now, this is not to say that
technical analysis is useless; on
the contrary, some of my earlier
research suggests that technical
analysis can add value to invest-
ment strategies. The point of my
exercise was to show that we can
all see patterns in random data.
Relying solely on statistical tech-
niques, sclely on pattern recogni-
tion, can be very misleading. By
themselves, statistics and pattern
recognition techniques cannot tell
you what is going on in the data.
You must have some structure,
which can take the form of a
fancy economic model, 20 years
of trading experience, or your
own pet theories about what hu-
man psychology is doing over the
course of the business cycle. But
in the end, the best models are
those that bring some additional

structure and information to the
process of statistical analysis and
pattern recognition.

Question:  For nonparametric
techniques, what is the best ap-
proach to take in identifying and

constructing input variables?

Lo:  There are a variety of tech-
niques, but the most reliable is
“wetware,” the stuff between
your ears, the human brain. For
input variables, nothing can re-
place basic human judgment, in-
tuition, and whatever economic
models are available. For exam-
ple, you might have an economic
theory that says dividend yield af-
tects stock returns differently in
business cycle upturns than in
downturns. That theory might be
based on 40 years of living
through upturns and downturns
and reading the newspaper, or it
might be based on some funda-
mental insight about human psy-
chology. Using biological neural
networks is probably the most
powerful method for selecting in-
puts.

Inputs can be selected in
other ways too. Reading the re-
search of others is perhaps the
most common method; when you
read about an interesting anom-
aly or a clever relation that some-
one else has uncovered, you
might want to try it too. On a
more mechanical level, you could
use a higher-level statistical analy-
sis package and evaluate all possi-
ble combinations of input
variables to determine the best fit.
That is not a bad way of choosing
inputs as long as you are aware
that, even if no relationship exists,
you will find some very impres-
sive answers. Data snooping and
biases pose real problems for me-
chanical techniques of input-vari-

able selection, and you have to
take these risks into account.

Question: When you described
how you approached the sine-
wave net, you said you selected
one hidden layer and five nodes
through experience. Isn’t most of
the knowledge of a neural net em-
bedded in the particular structure
of the net? For instance, I would
assume that, when we learn, we
do so by building links between
specific individual neurons in our
brain. If so, isn’t a detailed de-
sign of all the hidden layers and
nodes and their meanings re-
quired to build a truly successful
net?

Lo:  Yes, such a design would
be required to build a truly suc-
cessful model of human thought
or biological systems. For exam-
ple, neurophysiologists have al-
ready compiled a great deal of
evidence that demonstrates the
importance of network topology
for biological functions. How-
ever, as a statistical model of eco-
nomic phenomena, a single
hidden layer can match virtually
any kind of nonlinear phenome-
non as long as you have a suffi-
cient number of nodes in the
hidden layer. Nevertheless, there
can be great increases in network
efficiency and accuracy by care-
tully designing the network topol-
ogy. Unfortunately, this is still
more of an art than a science, and
we have to fall back on human in-
tuition and experience to guide
our design process.

Question: Do techniques such
as Box-Jenkins ARIMA, Fourier
transforms, etc., have value in
solving the same problems as
neural networks? If so, what are
the relevant efficiencies,

35



pros/cons, and so forth?

Lo: Fourier analysis, which is
another example of a nonlinear
nonparametric estimation tech-
nique, is quite similar to neural
networks in how it captures non-
linear phenomena. A neural net-
work with a single hidden layer
and many hidden nodes can be
viewed as a “series expansion” of
a nonlinear function. The Fourier
series is also a series expansion of
a nonlinear function but in terms
of sines and cosines. You can
also construct an expansion in
terms of exponentials (wavelets).
Therefore, there is a close connec-
tion between neural networks,
Fourier analysis, and other series
expansion techniques.

However, Box-Jenkins
ARIMA models are linear models;
the inputs are mapped linearly to
an output. Although these mod-
els are useful, often providing
good approximations of what
you are trying to capture, they
are still linear. So, if you are try-
ing to capture a nonlinear rela-
tionship, you will not be able to
do it by ARIMA models.

To emphasize the importance
of nonlinearities in financial appli-
cations, I recently completed a
study in which I used neural net-
work models to price and hedge
options (see Hutchinson, Lo, and
Poggio 1994). I chose option pric-
ing as the test bed for this neural
network analysis because options
are inherently nonlinear instru-
ments. The nonlinearity is clearly
defined in the payoff of the op-
tion. For comparison, I used a lin-
ear regression to estimate the
option price as a function of
strike price, current stock price,
and various other inputs. Not
surprisingly, the linear model did

36

poorly, whereas several different
nonlinear techniques did consid-
erably better.

As a general rule of thumb,
you should first have a good idea
of the phenomena you are trying
to capture with your quantitative
model before you begin your sta-
tistical analysis. If the phenom-
ena are truly nonlinear, then
there is a good chance that non-
linear techniques can add value
to your analysis. If, however, the
nonlinearities are rather unimpor-
tant, then you may be much bet-
ter off sticking with more
standard techniques like linear re-
gression and ARIMA models.

Question:  Is a back-propaga-
tion network different from multi-
layer perceptrons? Can
back-propagation have multiple
hidden layers too?

Lo:  The term “back-propaga-
tion network” is quite misleading
because it associates a technique
for estimating connection
strengths with the network. Back-
propagation is one way to esti-
mate the connection strengths of
a multilayer perceptron; non-
linear least squares is another
way. Therefore, the two concepts
are really distinct. They tend to
be so closely associated because
back-propagation was originally
introduced as a model of learning
behavior, but it is now well
known that it is a rather ineffi-
cient means of training a network.

Question: In a neural net, how
does the number of observations
required relate to the number of
hidden layers, the number of
nodes, and the number of inputs?

Lo: Thisis an excellent ques-

tion, but one for which I don’t
have a satisfactory answer. Asl
mentioned before, the specifica-
tion of network topology is still
more of an art than a science, and
no one has yet developed an opti-
mal algorithm for choosing the
number of hidden layers, nodes
per layer, inputs, etc. These
choices must rely almost com-
pletely on experience and intui-
tion, and undoubtedly will
depend heavily on the specific ap-
plication at hand. What works
for foreign exchange rates may be
completely inappropriate for
mortgage-backed securities.
Therefore, a great deal more re-
search needs to be done before
your question can be answered
satisfactorily.

Question:  One of the most im-
portant features of neural net-
works is the ability to deal with
“holes” in the data. From a con-
ceptual viewpoint, how do the
nets accomplish this?

Lo: Like any other nonparamet-
ric nonlinear technique, neural
networks deal with holes in the
data by a kind of fancy interpola-
tion. For example, if observation

1 of a variable is 5.0 and observa-
tion 3 is 7.0, how would you inter-
polate the value of a missing
observation 2? A linear interpola-
tion would simply take the mid-
point: 6.0. A nonlinear
interpolation is similar but takes
into account the curvature of the
data around the missing observa-
tion. In essence, neural networks
fill in holes by the kind of local av-
eraging on which kernel regres-
sion is based.





