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After limits on human mobility effectively reduced the spread of COVID-19 around the

world 1, 2, many countries began to reopen. When these reopenings began in the U.S., several

COVID-19 hotspots emerged, causing some local governments to reimpose local shutdowns.

However, we know little about the impacts of regional reopenings or subsequent shutdowns

3, 4, and have no quantitative evidence on the direct impact of a region’s reopening policies

on its own population’s mobility; the spillover effects of peer regions’ policies on a focal re-

gion’s mobility; the mediation of these effects by endogenous peer behavior across regions;

or the impacts of origin and destination policies on cross-region travel. Here we show that

individual states’ ad hoc local reopening policies significantly influenced mobility across the

entire U.S. due to inter-state travel and social influence. When all peer states locked down, fo-

cal county mobility dropped by 15-20% but increased by 19-32% once peer states reopened.

When an origin county was subject to a statewide shelter-in-place order, travel to counties

yet to impose lockdowns increased by 52-65%. If the origin reopened, but the destination

remained closed, travel to destination counties was suppressed by 9-17% for nearby counties

and 21-27% for distant counties. But, when a destination reopened while an origin remained

closed, people from the closed origins flooded into the destination by 11-12% from nearby
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counties and 24% from distant counties. Our findings demonstrate how reopenings con-

tribute to the emergence of new hotspots and, counterintuitively, how the re imposition of

shutdown orders can increase mobility as citizens flee to open peer regions. The research

highlights the risks of ad hoc local reopenings and the urgent need to coordinate COVID-19

reopenings across regions.

Population-scale digital trace data5 has been useful for studying the impacts of social dis-

tancing policies and what makes them successful6. Researchers have shown, for example, that

demographic attributes7, political partisanship8, 9, broadband access10, belief in science11, and in-

formation exposure12, 13 moderate compliance with social distancing policies. Holtz et al14 found

strong evidence of cross-county spillovers from shelter-in-place policies, underscoring the impor-

tance of governmental coordination to reduce a potential “loss from anarchy” in piecemeal imple-

mentations of closure policies across regions. Unfortunately, Holtz et al only analyzed data from

March and April, 2020, before shelter-in-place policies began to lift, and little systematic research

investigates the effects of subsequent reopening policies across regions.

If reopenings create substantial mobility and exhibit strong regional spillover effects, coun-

tries that reopen without national coordination could face significant difficulty in controlling the

resurgent spread of the coronavirus. We therefore combined data on the mobility of over 22 million

mobile devices, daily data on state-level closure and reopening policies, social media connections

among 220 million U.S. Facebook users, temperature and precipitation data from 62,000 weather

stations, and county-level census data to measure the direct impact of a focal state’s COVID-19
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closure and reopening policies on its own population’s mobility patterns; the spillover effects of

alter states’ closure and reopening policies on a focal state’s mobility patterns; and the mediation of

these effects by endogenous peer behavior across state and county borders from January 1st to July

1st, 2020. We further investigated the impacts of both origin- and destination-county closure and

reopening policies on cross-county mobility, capturing the travel related spillover effects created

by uncoordinated policies implemented across states and counties.

Our measures of human mobility are constructed using data provided by Safegraph. For each

county, we track the daily average number of locations visited by mobile devices, the proportion

of devices traveling more than 2km, the proportion of devices that spend over an hour away from

home, and the proportion of devices leaving home. Time series trends of these four measures

are plotted in Fig. 1A. For each origin-destination county pair, we tracked both the number and

proportion of devices moving from an origin county to a destination county. Differences in the log

number of devices traveling to specific counties before and after lockdowns and reopenings are

plotted in Fig. 1B.

We analyze state-level data on closure and reopening policies from the COVID-19 US State

Policy (CUSP) Database 15. Due to the different approaches taken by various states across the clo-

sure and reopening policy space, we simplify our analysis to three consolidated “policy periods:”

the “initial policy period” (ip), which covers the period from when a state implements its first clo-

sure policy of any kind until it implements a stay-at-home order; the “stay-at-home period” (sh),

which covers the duration of a statewide stay-at-home order or until the state starts to reopen; and
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the “reopening period” (ro), which starts after a state begins its reopening plan (Fig. 1C).

To construct peer policy and mobility measures, we rely on Facebook’s “Social Connected-

ness Index16” (SCI), which provides a measure of the intensity of Facebook connectedness between

geographic locations, generated from an anonymized snapshot of the entire Facebook friendship

network in the U.S. (Fig. 1D). These data are further supplemented with temperature and precip-

itation data from the Global Historical Climatology Network17 (GHCN) and county-level census

population estimates.

Analysis from a “no spillovers” difference-in-differences model indicate that statewide shelter-

in-place orders reduced mobility within a state by 5-6% on average (Fig. 2A). Once a state re-

opened, mobility increased by 3-5% on average, returning to levels statistically indistinguishable

from pre-pandemic levels. When accounting for alter state policy spillovers, these ego state policy

estimates, while lower, are not significantly different from the base model estimates. Consistent

with Holtz et al14, we also find strong evidence of spillover effects in social distancing policies and

closures, and extend the analysis to reopenings. When all alter states begin implementing social

distancing policies, ego county mobility drops by 4-7%. When all alter states impose a lockdown,

ego county mobility drops by an additional 15-20%. However, after all alter states begin reopen-

ing, an ego county’s mobility increases by 19-32%. All of these effects account for ego counties’

policies and estimate the additional effects of alter states’ policies on ego county mobility.

When we further account for endogenous alter state mobility behavior using an instrumental

variables analysis, the coefficients of alter-state closures and reopenings become statistically indis-
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Figure 1: Data on Mobility Behaviors, State Policy Timing, and Social Connectedness.
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(A) shows the time series trends for the number of locations visited per device, the proportion of devices
traveling more than 2 km, the proportion of devices the spend more than an hour away from home, and the
proportion of devices leaving home. Each color represents the averages across clusters of 10 states grouped
by how soon they reopened. (B) shows examples of the difference in travel to a destination county for the
3 weeks before and after a lockdown or reopening. (C) plots the count of states that enter into a particular
policy period on each day. (D) shows examples of the population-weighted social connectedness index used
to construct socially weighted measures of alter state policies and behavior.
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tinguishable from zero, indicating that alter state policy effects on ego counties are largely mediated

by endogenous peer mobility behavior in alter states. The estimate of the peer effect coefficient

itself is also quite significant, ranging from 1.8-2.2, meaning that a 1% change in out-of-state peer

mobility causes between a 1.8-2.2% change in ego county mobility (Fig. 2B).

Our cross-state mobility analysis also shows clear evidence of policy spillovers (Fig. 3).

We find that destination counties under statewide shelter-in-place orders receive 8-14% less cross-

state traffic compared to pre-pandemic levels. These estimates also exhibit notable heterogeneity

as travel from “distant” counties decreased by 13-18%, while there is no measurable impact on

travel from “nearby” counties. As expected, reopenings boost travel to destination counties, by

12-13%, with no detectable differences between effects on nearby or distant counties.

When we expand our this analysis to include all possible origin-destination policy interac-

tions (Fig. 4), several more key findings emerge. When origin counties were in their initial policy

period (having implemented social distancing policies but before shelter-in-place orders were im-

posed), destination policies did not measurably impact cross state mobility. But, when origin

counties entered the stay-at-home period (having implemented statewide shelter-in-place orders),

travel to distant counties decreased by 10% while travel to nearby counties increased by 52-65%,

if those counties had not yet implemented a shelter-in-place order. Once destinations implemented

shelter-in-place orders, distant cross-state travel decreased by 14-16%, with no detectable effect on

nearby cross-state travel. When a destination reopened and an origin was still locked down, people

from origin counties not in that state flooded into the destination, by 11-12% from nearby counties
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Figure 2: Empirical Estimates of Ego State Policy, Alter State Policy, and Endogenous Peer
Behavior on County-Level Mobility.
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Figure 3: (A) plots the estimated impact of both ego and alter state policies. The top row corre-
sponds to ego state’s policy periods and the bottom row corresponds to the alter states’ policy pe-
riods. The x-axis denotes the the model specification used to generate the estimates: “base” which
corresponds to DiD without spillovers, “ap” which corresponds to DiD with alter state policies,
and “ap + iv” which corresponds DiD with alter state policies and endogenous peer behavior. The
“base” and “ap” estimates are produced using weighted least squares, with weights determined by
county population. The “ap + iv” estimates are produced using two stage weighted least squares,
where peer behavior is instrumented for with using alter state weather. (B) plots the coefficient
estimates of ego state policy and endogenous peer behavior. The magnitudes of the endogenous
peer effects are scaled to point estimates of the ego state policy.
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Figure 4: Empirical Estimates of Origin and Destination Policies on Cross-State Travel.
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In this figure, the left block corresponds to the origin policy periods, while the the right block corresponds
destination policy periods, denoted across the x-axis as initial policies, shelter-in-place, and reopening. The
top row reflects policy effects on the number of devices moving from an origin to a destination, estimated
using OLS and the bottom row reflects policy effects on the proportion of origin devices moving from an
origin to a destination estimated using WLS with weights proportional to origin county population. Colors
correspond to estimates produced using all pairs in blue, distant pairs (¿ 100km) in orange, and nearby pairs
(¡ 100km) in green. 2-way origin and destination state clustered standard errors are used to compute 95%
confidence intervals.

8



and 24% from distant counties. If the origin had reopened, but the destination was still closed,

travel to both nearby and distant destination counties was suppressed by 9-17% and 21-27% re-

spectively. Once both origin and destination counties reopened, there was a 14-19% increase in

travel from distant origins, though there was no change in travel from nearby origins.

To our knowledge, ours is the first large-scale study of the impacts of reopenings on mo-

bility, explicitly estimating cross-state spillovers and the mediation of cross-state policy effects

by peer behaviors. But, this work is not without its limitations. First, while the Safegraph panel

is sufficiently large to minimize concerns about sampling error, it may exhibit sampling bias as

mobile device ownership significantly varies by age and income.1 While Safegraph has shown

their panel is geographically consistent with US Census population estimates,2 it is not clear if

certain demographics are over- or under-represented as no device-level demographic data is col-

lected by Safegraph. Though it is reassuring that we find similar results when using mobility data

provided by Facebook as a robustness check, there are also concerns about the representativeness

of Facebook’s data as well. Second, while we investigated potential anticipatory or lagging be-

haviors, our analysis does not explore the impacts of discrete reopening policies (e.g. resuming

restaurant dine-in service or lifting gathering restrictions) and instead measures average changes in

mobility behavior across “policy periods.” Third, our analysis only captures variation in state-level

closures and reopenings and ignores the relatively few instances in which local- or county-level

policy differs from the state. We encourage such analysis for reopenings in future work because

disputes between states and localities may further thwart efforts to reduce mobility and control the

1See https://www.pewresearch.org/internet/fact-sheet/mobile/. Accessed August 2020.
2See https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset. Accessed August 2020.
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Figure 5: Empirical Estimates of Origin and Destination Policy Interactions on Cross-State
Travel.
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Figure 6: Each block in the figure corresponds to different origin policy periods: initial policies,
shelter-in-place, and reopening from left to right. The top row reflects policy effects on the number
of devices moving from an origin to a destination, estimated using OLS and the bottom row reflects
policy effects on the proportion of origin devices moving from an origin to a destination estimated
using WLS with weights proportional to origin county population. Different values along the x-
axis of each column correspond to different destination policy periods: destination initial policies
Dest:(ip), destination shelter-in-place Dest:(sh), and destination reopening Dest:(ro). Within each
column, the marginal effects of each destination policy given the origin policy. Colors correspond
to estimates produced using all pairs in blue, distant pairs (¿ 100km) in orange, and nearby pairs (¡
100km) in green. 2-way origin and destination state clustered standard errors are used to compute
95% confidence intervals.
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pandemic. Fourth, our analysis is restricted to mobility outcomes and purposefully avoids extrapo-

lating to health outcomes like morbidity and mortality. While it is widely believed that reductions

in mobility drive reductions in new infections and their associated deaths18, rigorously establishing

the causal chain from cross-state spillovers to infection rates and deaths is beyond the scope of this

paper.

Despite these limitations, our work provides critical information for policy makers, espe-

cially given the importance of restricting mobility to prevent the spread of COVID-19. Though

many countries have seemingly reopened safely, new hotspots may yet emerge, forcing govern-

ments to reimpose mobility restrictions. Our results show that it is crucially important to take

spillover effects into account when formulating national policy and for national and local policies

to coordinate across regions where spillovers are strong. Our results suggest that reimposing lo-

cal social distancing or shelter-in-place orders may be far less effective than policy makers would

hope when peer states and counties remain reopened, due to travel and peer influence. In fact,

such closure policies may actually be counterproductive19, 20 as they can encourage those in locked

down regions to flee to reopened regions, potentially causing new hotspots to emerge. Our analysis

demonstrates that such travel spillovers are not only systematic and predictable, but also large and

thus meaningful to our public health.

Methods

Empirical Methodology Our empirical methodology is grounded in a reduced form econometric

approach called difference-in-differences (DiD), a widely used approach across economics, po-

11



litical science, and public health for policy evaluation. We begin with a basic model that only

incorporates each county’s own state policy specified as follows:

log(Yit) = δ(ip)D
(ip)
it + δ(sh)D

(sh)
it + δ(ro)D

(ro)
it + f(Wit) + αi + τt + εit, (1)

where log(Yit) are the log transformed mobility outcomes. The policy variables, D(ip)
it , D(sh)

it , and

D
(ro)
it are binary indicators that take the value 1 once county i is subject to a statewide closure

policy of any sort (ip), a stay-at-home order (sh), and reopening (ro) respectively. The associated

parameters δ(ip), δ(sh), and δ(ro) estimate the marginal mobility effects of moving into the corre-

sponding policy periods. f(Wit) flexibly controls for the potential non-linear effects of weather

using a “double machine learning” approach 21, while αi and τt denote a set of county and time

fixed effects and εit denotes the error term.

We extend this base specification to capture spillover effects with the following specifica-

tions:

log(Yit) = δ(ip)D
(ip)
it + δ(sh)D

(sh)
it + δ(ro)D

(ro)
it +

γ(ip)D
(ip)
−it + γ(sh)D

(sh)
−it + γ(ro)D

(ro)
−it + f(Wit) + αi + τt + εit

(2)

log(Yit) = β log(Y−it) + δ(ip)D
(ip)
it + δ(sh)D

(sh)
it + δ(ro)D

(ro)
it +

γ(ip)D
(ip)
−it + γ(sh)D

(sh)
−it + γ(ro)D

(ro)
−it + f(Wit) + αi + τt + εit,

(3)

whereD(ip)
−it ,D(sh)

−it , andD(ro)
−it denote the socially weighted average of alter states’ policies, weighted

by Facebook connectedness, and where the cross-state policy spillovers are captured by the terms

γ(ip), γ(sh), and γ(ro) respectively. Endogenous peer behavior is captured by log(Y−it), which is the
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log transformed socially weighted average of alter states’ mobility behavior. As estimation of peer

effects is generically confounded in observational data 22, we employ an instrumental variables

(IV) approach where we leverage alter county weather as a source of exogenous variation to prop-

erly identify the endogenous peer effect β14, 23–25. For these specifications, we limit our analysis to

the 2683 counties with a daily mean device count of at least 500 to minimize measurement error

induced by the Laplacian noise introduced by Safegraph’s differential privacy algorithm.

To measure the impact of policy on cross-county mobility, we employ the following specifi-

cations:

log(Yo→d,t) =
∑
m

λmD
m
ot +

∑
n

ψnD
n
dt + αo→d + τt + εo→d,t (4)

log(Yo→d,t) =
∑
m

λmD
m
ot +

∑
n

ψnD
n
dt +

∑
m

∑
n

πm,n(D
m
ot ∗Dn

dt) + αo→d + τt + εo→d,t (5)

Here, log(Yo→d,t) refers to the log transformed cross-state mobility from an origin county omoving

to a destination county in a different state d on date t. Origin and destination policies are denoted

by Dm
ot and Dn

dt respectively, where m,n ∈ {(ip), (sh), (ro)}; αo→d and τt correspond to directed

dyad and time fixed effects; and εo→d,t represents the error term. Equation 4 models the impacts

of origin and destination policies linearly whereas Equation 5 includes all possible interactions

between origin and destination policies.

Data Availability Access to Safegraph’s COVID-19 mobility data can be requested here. Access

to Facebook’s Social Connectedness Index can be requested by emailing sci data@fb.com. State-

level social distancing and reopening data is openly available here. Weather data is openly available
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here. Code will be made available to reviewers and upon publication.
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Supplementary Note 1: Data and Data Processing Procedures

Safegraph Data Our primary measures of human mobility are constructed from data pro-
vided by Safegraph1, a San Francisco-based company that sells data related to points of
interest that are relevant to businesses. Safegraph collects anonymized human geo-spatial
data from a number of partner mobile applications that need to obtain affirmative opt-in
consent from device users. We specificallymake use of Safegraph’s “Social DistancingMet-
rics” dataset which provides daily measures of mobility behavior aggregated at the census
block group level starting from January 1, 2020. In this data, each device’s “home” location
is assigned by determining its common nighttime location across a period of 6 weeks at a
geohash-7 granularity (approx. 153m × 153m). We specifically make use of the following
fields2:

• origin_census_block_group: The unique 12-digit FIPS code for the Census Block Group.
Please note that some CBGs have leading zeros.

• date_range_start: Start time for measurement period in ISO 8601 format of YYYY-MM-
DDTHH:mm:SS±hh:mm (local time with offset from GMT). The start time will be 12 a.m. of
any day.

• device_count: Number of devices seen in our panel during the date range whose home is
in this census block group. Home is defined as the common nighttime location for the device
over a 6 week period where nighttime is 6 pm - 7 am. Note that we do not include any census
block groups where the count <5.

1https://www.safegraph.com2Descriptions copied directly from https://docs.safegraph.com/docs/social-distancing-metrics

1

https://www.safegraph.com
https://docs.safegraph.com/docs/social-distancing-metrics


• bucketed_distance_traveled: Key is range of meters (from geohash-7 of home) and
value is device count. If a device made multiple trips, we use the median distance for the
device.

• completely_home_device_count: Out of the device count, the number of devices which
did not leave the geohash-7 in which their home is located during the time period.

• bucketed_home_dwell_time: Key is range ofminutes and value is device count of devices
that dwelled at geohash-7 of home for the given time period. For each device, we summed the
observed minutes at home across the day (whether or not these were contiguous) to get the
total minutes for each device this day. Then we count how many devices are in each bucket.
Beginning in v2, we include the portion of any stop within the time range regardless of whether
the stop start time was in the time period.

• destination_cbgs: Key is a destination census block group and value is the number of
devices with a home in census block group that stopped in the given destination census block
group for >1 minute during the time period. Destination census block group will also include
the origin census block group in order to see if there are any devices that originate from the
origin census block group but are staying completely outside of it.

To further preserve privacy, Safegraph applies a differential privacy algorithm1 to all
metrics that it computes other than device_count. We use this data to construct 4 mea-
sures of county level mobility and 2 measures of cross-county dyadic travel.

From this data, we construct the following 4 county-level measures of mobility: mean
census block group visted (mcgbv), proportion of devices with greater than 2km traveled
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(pgt2kmt), proportion of devices spendingmore than 1 hour away from home (pgt1hafh)
and proportion of not completely home devices (pnchd). We construct mcgbv by first sum-
ming across the number of non home census block groups in the destination_cbgs
field. We aggregate this count to the county level and simply divide by the count-level
sum of device_count. To build pgt2kmt, we first appropriately sum across the buck-
eted_distance_traveled field at the census block group level, aggregate to the county
level, and then divide by device_count. pgt1hafh is constructed in a similar manner, ex-
cept that we instead sum across the bucketed_home_dwell_time field. pnchd is sim-
ply defined as 1 minus completely_home_device_count divided by device_count
aggregated to the county level. In our analysis, we use the log transformations of each of
these measures: log_mcbgv, log_pgt2kmt, log_pgt1hafh, and log_pnchd. To min-
imize the impact of the Laplacian noise introduced by the differential privacy algorithm, we
limit our analysis to counties with a mean device_count greater than 500.

We also create the following 2 measures of cross-county dyadic travel: number of
devices moving from origin to destination ndotd and proportion of origin devices moving
from origin to destination pdotd. To construct both these measures, we first build the a
directed dyad list by keeping track of the origin_census_block_group and unrolling
the destination_cbgs. We then aggregate by summing values to the origin county /
destination county for each day to build ndotd. To get to pdotd, we simply divide ndotd
by each day’s county-level device_count. This data is quite sparse as there is little travel
between most county pairs on most days. For our analysis, we limit ourselves to directed
dyads with at least some travel between them for each day in our dataset.

COVID-19 US State Policy Database (CUSP) Our policy data comes from the COVID-19
US State Policy Database2 assembled by researchers at the Boston University School of
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Public Health. This database tracks all state-wide wide directives and mandates, but not
recommendations. It keeps track of state policies like gathering bans, entertainment clo-
sures, business closures, shelter-in-place orders, reopenings, andmore for all 50 states plus
Washington DC. As of this writing, the latest update to the database was made on Aug. 5,
2020. As mentioned in the main paper, we avoid quantifying the impact of each policy
individually, as there is simply not enough data to generate reliable estimates for such a
high-dimensional policy space. We instead consolidate our analysis down to 3 main pol-
icy periods: the period from the first statewide social distancing policy of any kind until a
shelter-in-place order takes effect or the “initial policies” period (ip); the period in which a
shelter-in-place order is in effect (or until reopening begins) or the “stay home” period (sh);
and the period after reopening begins or the “reopening” period (ro).

Facebook Social Connectedness Index (SCI) The Social Connectedness Index3—released
as a part of Facebook’s Data for Good3 Initiative—constructs ameasure of “connectedness”
between two counties (or NUTS3 regions outside the US) based on the friendship ties be-
tween them. It is constructed from an anonymized snapshot of the global Facebook friend-
ship graphof over 2.45 billion users. Specifically, thescibetween twocounties is computed
as:

sciij = fb_connectionsijfb_usersi × fb_usersj (S1)
The numerator, fb_connectionsij is just the number of friendship ties that are empirically
observed between users in county i and j, while the denominator is simply the product
between the number of Facebook users that reside in county i (fb_usersi) and county j
(fb_usersj). Therefore sciij can be interpreted as the probability that a friendship link exists
between a randomuser that resides in i and a randomuser that resides in j. The SCI reports
a scaled_sci measure that divides each of the values by the maximum, multiplies by

3https://dataforgood.fb.com/
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1,000,000,000, and then rounding to the nearest integer.

The version of the SCI we use for our analysis is based on snapshot take on December
31, 2019. Rather than using the scaled_sci measure directly, we instead weight it by
the population of the friend county (using 2018 estimates from the US Census) to capture
the relative differences in the number of ties coming from alter counties. For example, the
scaled_sci between New York City and Boulder, Colorado is relatively low due to the
population of Facebook users in NYC. However, the number of friendship links between the
two counties is relatively high, again due to the fact of NYC’s population. Several examples
of this population weighted sci measure can be seen in Fig. 1d of main text.

Weather Data We use weather data from the National Oceanic and Atmospheric Associ-
ation’s (NOAA) Global Historical Climatology Network (GHCN). This data records daily ob-
servations of maximum temperature, precipitation, and other weather metrics for roughly
62,000 weather stations in the United States (see Menne et al4 for more details). In order to
construct measures of county level-weather, we begin by filtering out any weather stations
that are missing maximum temperature or precipitation measures entirely. We use the ge-
ographic coordinates of each weather station, along with shapefiles specifying county bor-
ders to determine which weather stations are contained in which counties. For counties
that contain three or more weather stations, we simply generate county precipitation and
max temperature by its weather stations.

However, out of 3,233 counties in the US, 243 have no weather stations and 967 have
fewer than three weather stations. For each of these counties, we assign the nearest three
stations within 100 kilometers of the county’s centroid. To generate county-level measures,
we again just take the average of these assigned weather stations. Though this procedure
assigns weather stations to nearly every county, there are still missing values for either pre-
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cipitation or max temperature for some county-day pairs. We fill in these missing values
by averaging across the nearest 3 stations without missing data. After this procedure, we
achieve 99.9% coverage of all county-days in our sample. We provide some visualizations
of county-level maximum temperature and precipitation across the United States in Supple-
mentary Figures 1 and 2.
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Supplementary Note 2: Difference-in-Difference Models

As mentioned in the main text, our base empirical approach to measuring the causal ef-
fects of COVID-19 policies and reopenings is difference-in-differences (DiD), much like sev-
eral other papers5–7. Themost basic version of DiD requiresmultiple observations over time
of at two groups, where one of the groups is exposed to some treatment or intervention at
some point. DiD works by comparing the change over time in the outcomes for this “treat-
ment” group, relative to the change over time for the “control group.” The key assumption
of DiD is “parallel trends” or the idea that the trends in outcome variable(s) would have been
the same had the treatment not occurred.

Base Model For our analysis, our base model is a commonly used adaptation of the basic
DiD model that simply employs unit and time fixed effects that allows for arbitrary or stag-
gered variation in treatment timing across different units4. Our base model specification is
as follows:

log(Yit) = δ(ip)D
(ip)
it + δ(sh)D

(sh)
it + δ(ro)D

(ro)
it + f(Wit) + αi + τt + εit (S2)

Here, log(Yit) refers one of the our four main mobility outcomes defined in Supplementary
Note 1, log_mcbgv, log_pgt2kmt, log_pgt1hafh, and log_pnchd, indexed by county
i on date t. D(ip)

it is a binary indicator that takes the value of 1 once county i’s state has
adopted some kind of social distancing policy. Similarly, D(sh)

it and D(ro)
it switch to 1 once i

is subject to a shelter-in-pace order or once i’s state starts to reopen, respectively. Due to
the way these binary indicators are coded (once they switch to 1, they do not switch back to
0), the associated parameters δ(ip), δ(sh), and δ(ro) capture the marginal effects conditional

48 has shown that the estimand of such staggered DiDmodels decomposes into a weighted average of allpossible two-group/two-period DiD estimators in the data.
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on the previous policies. More concretely, δ(ip) captures the average difference in mobility
between pre-pandemic levels and while counties have just started implementing social dis-
tancing policies; δ(sh) is then the average difference inmobility during the “stay home” period
compared to the δ(ip); and δ(ro) is then difference in mobility compared to δ(ip) + δ(sh). Put
differently, to estimate the differences in mobility from pre-pandemic levels and the reopen-
ing, we would need to sum δ(ip), δ(sh), and δ(ro). f(Wit) is a term that captures the effect
of local weather, which may be highly nonlinear, using a “double machine learning” (DML)
approach9. This procedure is explained in much greater detail in Supplementary Note 6. αi

and τt denote a set of county and time fixed effects respectively, while εit represents the
error term.

Alter Policy (AP) Model In additional to parallel trends, DiD also assumes the that the sta-
ble unit treatment value assumption (SUTVA) holds. Put more plainly, SUTVA simply states
that the effect of treatment does not “spillover” to the control groups. However, Holtz et al10
finds strong evidence for spillover effects in social distancing policy. We extend our base
model to account such effects as follows:

log(Yit) = δ(ip)D
(ip)
it + δ(sh)D

(sh)
it + δ(ro)D

(ro)
it +

γ(ip)D
(ip)
−it + γ(sh)D

(sh)
−it + γ(ro)D

(ro)
−it + f(Wit) + αi + τt + εit

(S3)
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The key differences here are the inclusion ofD(ip)
−it ,D(sh)

−it , andD(op)
−it which denote the socially

weighted average of alter state policy period indicators. More formally:

D
(ip)
−it =

∑
j

ωj→iD
(ip)
−it

D
(ip)
−it =

∑
j

ωj→iD
(ip)
−it

D
(ro)
−it =

∑
j

ωj→iD
(ro)
−it

Since we are focused on differences in state policy, we purposefully set weights ωj→i to be
equal to 0 if i and j belong to the same state. For counties belonging to different states
however, the weights are defined as follows:

ωj→i =
scaled_sciij ∗ nj∑
k scaled_sciik ∗ nk

: statei 6= statej, statei 6= statek

where nj is the 2018 US Census estimated population of county j. Similar to the δ parame-
ters, γ(ip), γ(sh), and γ(ro) are also considered marginal effects. One key difference however
is that the alter policy variables D(ip)

−it , D(sh)
−it , and D(op)

−it are not binary indicators, meaning
that each γ is interpreted as the marginal effect if all other states move onto that particular
policy period.

Pre-Trends Before moving on to our results, we first show that parallel trends is satisified,
at least in the pre-period. To start, in Figure 1A of the main text, it can be seen that the time
series of the various state quintile groups by reopening data generally all follow the same
trend, especially in the pre-pandemic period from Jan. 1, 2020 to Feb. 29, 2020. In Supple-
mentary Figure 3, we plot the average residuals of our 4 main mobility dependent variables
after partialing out county and date fixed effects limited only to the pre-pandemic period of
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our data. Looking at the residuals, it is difficult to discern any systematic trend amongst the
different groups. In fact, each series looks essentially like a randomwalk further supporting
the assumption of identical pre-trends.

Results As the population sizes of various counties are quite heterogeneous, we estimate
Equations 2 and 3 using weighted least squares, where observations are weighted accord-
ing to their populations. This allows us to interpret our results as averages across human
mobility rather than averages across county mobility5. The results of estimating Equations
2 and 3 are presented in Supplementary Tables 1 and 2 respectively.

Consistent with previous work, both models indicate significant decreases in mobility
during statewide shelter-in-place orders. Specifically, both models’ point estimates indicate
mobility decreases of 4-6%, relative to the initial policy period (though this basically extends
to pre-pandemic levels given that ego state initial policy coefficients are generally not sta-
tistically significant and close to 0). However, as we should expect, once a state begins
reopening, mobility starts to increase. Again both models’ here are quite quantitatively con-
sistent, indicating a 3-5% increases in mobility. Overall, our estimates indicate that once
reopened, mobility is slightly depressed compared to pre-pandemic levels (computed by
summing the coefficients across all 3 policy periods), by 1-1.5% according to Table 1 and
2-2.5% according to 26. Consistent with Holtz et al10, our results indicate significant cross-
state policy spillovers. Our estimates suggest that once all alter states initiate social dis-
tancing, countymobility drops by 4-5%. If all other states implement a shelter-in-place order,
mobility will drop even further, by an additional 16-22%. In contrast, alter states reopenings

5Consider the following example of 2 counties, one with 1000 people and one with 9000 people. Supposethat a shelter-in-place order reduces mobility of county 1 by 10% and county 2 by 20% then the unweightedregression produce a shelter-in-place impact of 15%. In contrast, the weighted regression would produce ashelter-in-place impact of 19% which corresponds to the average decrease in mobility across the population.6The base model estimates are not statistically distinguishable from pre-pandemic levels, but the ASPSestimates are.
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have a generally larger but opposite effect, increasing county-level mobility by 20-32%.
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Supplementary Note 3: Instrumental Variables Model

In addition to uncovering strongpolicy spillover effects, Holtz et al10 showed that the spillovers
were largely mediated by endogenous peer behavior. To investigate if such behavior ex-
tends to reopenings we estimate the following specification:

log(Yit) = β log(Y−it) + δ(ip)D
(ip)
it + δ(sh)D

(sh)
it + δ(ro)D

(ro)
it +

γ(ip)D
(ip)
−it + γ(sh)D

(sh)
−it + γ(ro)D

(ro)
−it + f(Wit) + αi + τt + εit

(S4)

Compared to Equation 3 above, the only difference is the inclusion of log(Y−it) or the log
transformed weighted average of alter state’s mobility outcomes. As with the alter-policy
variables above, Y−it =∑j ωj→iYjt. However, the DiD framework is theoretically insufficient
at producing causal estimates of endogenous peer behavior due to challenges posed by si-
multaneity (aka the “reflection problem”11), correlated exposure to unobserved confounding
factors, and homophily12.

To address this issue, we shift our approach to instrumental variables (IV), an ap-
proach widely used in social sciences to address endogeneity concerns. To provide a basic
overviewof how IV functions, consider the following simple scenariowhereY = β0+β1X+ε,
but X is correlated with the error term ε. In such a setting, simply regressing Y on X will
produce a biased estimate of β1. A third variable Z can be considered an “instrument” forX
if it meaningful impacts X and is (conditionally) uncorrelated with the error term ε. These
two requirements or restrictions are known as relevancy and exclusion respectively. If Z
does indeed qualify as an instrument, consistent estimates of β1 can be recovered via a
2-stage least squares (2SLS) procedure whereX is first regressed on Z in to produce fitted
values X̂ = E[X|Z]. In the second stage, Y is then regressed on these fitted values ofX .
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In our case, our IV strategy exploits exogenous shocks alters’ mobility behavior stem-
ming from variation in alters’ weather. Similar weather IV approaches have been used to
measure emotional contagion13, peer effects in exercise behavior14, and social spillovers
in online news consumption15. Most relevantly, Holtz et al10 also leveraged weather instru-
ments to estimate the impact of endogenous peer behavior.

Weather Instruments and First Stage We construct our instruments from the county-level
weather dataset that we constructed described in Supplementary Note 1. In order to con-
struct our alter county instruments, we first we first construct a sequence of county-level
indicator variables that take a value of 1 if the amount of rainfall in county i on date t falls
within or exceeds a specific precipitation decile, conditional on non-zero precipitation7. We
generate a similar sequence of indicator variables for maximum temperature as well. To
avoid perfect multicolinearity, we remove only first max temperature decile indicator. We
need not remove the first precipitation decile as these deciles are computed only for non-
zero precipiation, meaning that “no precipitation” functions as the base case. We then con-
struct 19 alter-state weather measures again by taking the socially weighted averages of
of each of 10 preciptation and 9 max temperature deciles8 to form the alter state weather
instruments (W−it = V prcp,1

−it , ..., Qprcp,10
−it , Qtmax,2

−it , ..., Qtmax,10
−it ). This leads to the following first-

stage specification:

log(Y−it) = δfs(ip)D
(ip)
it + δfs(sh)D

(sh)
it + δfs(ro)D

(ro)
it + γfs(ip)D

(ip)
−it + γfs(sh)D

(sh)
−it + γfs(ro)D

(ro)
−it +

10∑
d=1

(
ζprcpd Qprcp,d

−it + ζ tmax
d Qtmax,d

−it

)
+ α−i + τt + ν−it

(S5)

7For example Qprcp,1
it = 1(prcpit > q) : q = argx Pr(prcpit ≥ x) = 0, Qprcp,2

it = 1(prcpit ≥ q) : q =

argx Pr(prcpit ≥ x) = 0.5, etc. It is also worth noting that this construction means that if V prcp,k
it = 1, then

V prcp,j
it = 1 : j < k.

8More formally: Qprcp,k
−it =

∑
j ωj→i ∗Qprcp,k

jt and Qtmax,k
−it =

∑
j wij ∗Qtmax,k

jt .
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In theory, we should be able to use these alter-state weather variables to instrument
for alter-state peer behavior, However, common major concern with weather instruments
is that geographically proximate locations tend to have similar weather. Theoretically, this
should not pose an issue: even if “alters’ weather” is highly correlated with “own weather,” it
should be conditionally ignorable so long as the effects of “own weather” are controlled for.
However, this can be quite challenging due to the potential nonlinearities and interactions
in the impact of weather. For instance, the likelihood of going outside is going to change
much more going from 0mm to 1mm of rain relative to going from 20mm to 21mm. In a
similar vein, the impact of rain is likely to be very different if it is a comfortable day outside
than if it is cold and dreary. Such complexitiesmay therefore cause a “technical” violation of
conditional ignorability since alters’ weather may by providing additional information about
own weather that cannot be captured linearly. As such, we adopt a flexible DML procedure
to model the impact of weather that we explain in greater detail in Supplementary Note 6.

Results The results of estimating Equation 4 can be found in Table 3. Included in this table
are the first-stage F-statistics testing the relevancy of the instruments. As can be seen in
the table, the F-stats range from 60-70 indicating that we do not have a weak instruments
problem.

Across our four main outcomes, several clear trends emerge. First, Ego State shelter-
in-place still has a statistically significant negative effect onmobility. While these estimates
are smaller in magnitude across the board, they are not quite statistically distinguishable
from the estimates found in Table 3. Second, again consistent with Holtz et al10, we find
strong evidence of endogenous peer effects. Our estimates indicate that a 1% increase
or drop in mobility by all peers in different states will cause mobility in an ego county to
increase or drop by approximately 2% using the 2SLS estimate. As with Holtz et al10, once
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we introduce endogenous peer behavior into our model, the alter state policy coefficients
move significantly closer to 0 and most are no longer statistically significant. Such results
seem to confirm that the effects of alter state policies are being mediated by peer behavior
in those states.
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Supplementary Note 4: Dyadic Travel Difference-in-differences

In this section, we explore the potential impacts of both origin and destination policies on
cross-state travel. As our policy variation is at the state level, we specifically focus on cross-
state county-pairs. Similar to Supplementary Note 2, our analysis is based on a difference-
in-differences approach, where we consider origin and destination policies as orthogonal
treatments.

Model Specifications Here we use the following 2 model specifications:

log(Yo→d,t) =
∑
m

λmD
m
ot +

∑
n

ψnD
n
dt + αo→d + τt + εo→d,t (S6)

log(Yo→d,t) =
∑
m

λmD
m
ot +

∑
n

ψnD
n
dt +

∑
m

∑
n

πm,n(D
m
ot ∗Dn

dt) + αo→d + τt + εo→d,t (S7)

log(Yo→d,t) refers to the oneof our log-transformedcross-countymobilitymetrics (log_ndotd,
log_ptotd described in Supplementary Note 1 above) based on the number of devices
identified with a home in an origin county o and stopping for at least one minute in a des-
tination county d. Dm

ot and Dn
dt denote origin and destination policies respectively, where

m,n ∈ {(ip), (sh), (ro)}. As with Equation 2 above, these policy are binary indicators that
flip to 1 once the corresponding policy period begins. This means that for Equation 6 the
associated parameters λ(ip), λ(sh), λ(ro), γ(ip), γ(sh), and γ(ro) are interpreted as the marginal
effect, but only within each parameter family9.

In Equation 7, which models all potential interactions between origin and destination
policies, the λs capture the marginal effects of origin policy if the destination is in the pre-

9That is to say each successive λ is marginal to only the previous λ’s and each successive γ is marginalto the previous γs
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policy period. Likewise, the γs capture themarginal effects of destination policy if the origin
is in the pre-policy period. The interaction parameters πm,n are then the additional marginal
effect above and beyond the sum of preceding parameters. That is, π(sh),(rop) is the addi-
tional marginal effect when compared to λ(ip)+λ(sh)+γ(ip)+γ(sh)+γ(ro)+π(ip),(ip)+π(ip),(sh)+
π(ip),(ro) + π(sh),(ip), π(sh),(sh). Lastly, αo→d and τt denote directed dyad and time fixed effects,
and εo→d,t captures the error term.

Pre Trends As with Supplementary Note 2, our analysis here is based on a difference-in-
differences approach. Naturally, this means that it is important to verify that there aren’t
any systematic differences in pre-trends. In Supplementary Figure 4, we plot the average
residuals of our 2 cross-state mobility variables after partialing out dyad and date fixed
effects for the period between Jan. 1, 2020 and Feb. 29, 2020. as with above, it is difficult
to find any systematic trend amongst the different groups organized around destination
county’s statewide reopening start. Again, each series looks a like a mean 0 random walk
suggesting that parallel trends does indeed hold.

Results The results from estimating Equations 6 and 7 are displayed in Supplementary
Tables 4 and 5. While log_ndotd is estimated using OLS, log_pdotd is estimated using
WLS where weights are proportional to origin county population.

Looking at Table 4, we generally see that the impacts of origin policy are generally sta-
tistically significant. However both destination closures and reopenings havemajor effects,
with closures decreasing cross-state travel by 13-18% from distant counties and reopenings
increasing travel by 12-13% from both nearby and distant counties. Evaluating all the inter-
actions effects is rather difficult, but after appropriately summing the coefficients we find
that destination policies did not have a meaningful effect on travel while origin counties
were in their initial policy period. However, once an origin starts sheltering-in-place, travel
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to distant counties decreased by 10% while travel to nearby counties increased by 52-65%,
if those counties had not yet implemented a shelter-in-place order. Once destinations im-
plemented shelter-in-place orders, distant cross-state travel decreased by 14-16%, with no
detectable effect on nearby cross-state travel, conditional on the origin also sheltering-in-
place. Once the destinations was reopened (but the origin was still locked down), travel
to destinations increased by 11-12% from nearby counties and 24% from distant counties.
In contrast, if the origin had reopened, travel to both nearby and distant locked down des-
tination counties was decreased by 9-17% and 21-27% respectively. Once the destination
reopened, conditional on the origin already being reopened, there was a travel from distant
origins increased by 14-19%.
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Supplementary Note 5: Robustness

To further support the results presented in the main text, we run a series of robustness
checks. To address concerns about the representativeness of our mobility data, we first be-
gin by replicating our results usingmobility data provided by Facebook. We also explore the
potential anticipation or lagging effects of policy with regards to mobility behavior. Lastly,
we provide additional validation of our statistical inference using Fischerian Randomization
Inference (FRI).

Replication with Facebook Data Here we make use of Facebook’s Data for Good Initia-
tive publicly available movement range maps10 which provide differentially private, daily,
county-level measures of mobility from Mar 1, 2020 onwards. Specifically, we make use of:
bing_tiles_visited_relative_change (btvrc), which captures the relative change11

in the number of “bing tiles” (0.6km × 0.6km blocks) visited by Facebook users in a given
county on a given day, and ratio_single_tile_users, which is simply the fraction of
Facebook users who are recorded staying within a single bing tile for that entire day. To
make this measure jibe with our other metrics, we subtract it from one to construct ra-
tio_not_single_tile_users (rnstu) and log transform it. Here, we restrict our data
the 2368 counties and 122 dates (March 1, 2020 to June 30, 2020) found in both the Face-
book and Safegraph datasets. Results from re-estimating Equations 2 and 3 are in Sup-
plementary Figure 5. The estimates produced using Facebook mobility measures are both
qualitatively and quantitatively similar to those produced using the Safegraph data, provid-
ing support for the generalizability of our results.

10https://dataforgood.fb.com/tools/movement-range-maps/11The baseline for thismetric is constructed by averaging across the number of bing tiles visited in Februaryacross each day of the week, excluding President’s Day.
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Lagging and Leading Policy Effects As our policymeasures are relatively blunt, we explore
whether there may be any leading or lagging effects of transitioning to different periods.
Here we re-estimate Equations 3 and 6 with the addition of 5 lagging and leading terms
for each policy parameters, plotted in Supplementary Figures 6 and 7 respectively. Note
that the leads and and lags are coded marginally so meaning that estimates are additive in
nature.

Fisherian Randomization Inference As a robustness check, we use a Fisherian random-
ization inference16–19 (FRI) procedure to estimate the null distributions of different policy
coefficients for both Equations 3 and 6. We form these distributions by re-sampling our
data and shuffling the state policy assignments with each draw. Specifically, each state is
randomly assigned the policy vectors of a different state, without replacement. Overall, we
repeat this procedure 500 times and we plot the null distributions of the policy parameters
estimated using Equations 3 and 6 in Supplementary Figures 8 and 9 respectively. The es-
timates produced by our real data are represented as black lines. For coefficients originally
found to be statistically significant in our main analysis, we see that these generally take
extreme values in the null distributions.
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Supplementary Note 6: Double Machine Learning Weather Controls

To flexibly control for the impact of weather, we employ a “double machine learning” (DML)
procedure9. This approach is designed to estimate anddraw inferences on a low-dimensional
parameter in the presence of high-dimensional nuisance parameters. Consider the follow-
ing “canonical example” from Chernozhukov et al9 which we reproduce here:

Y = Dθ0 + g0(Z) + U, E[U |D,Z] = 0

D = m0(Z) + V, E[V |Z] = 0

Y denotes the outcome, D is a policy or treatment variable, θ0 is the low-dimensional pa-
rameter of interest, Z is a high-dimensional vector of covariates (g0(Z) can be considered
to be the high-dimensional nuisance parameter), and U and V are the errors. The basic in-
tuition behind DML is that g0(.) andm0(.) can be estimated using non-parametric statistical
methods (aka machine learning) and then “partialed out20” from both Y and D. Then one
simply regresses the residuals of the dependent variable on the residuals of the treatment
variable in order to estimate θ0. In order to provide guarantees that key moment conditions
are satisfied, the machine learning predictions needs to be orthogonalized which can be
achieved via sample splitting. As such, the general double ML algorithm is as follows:

1. Split the dataset intoK equal size partitions or “folds.” Let Fk, F
c
k : k ∈ 1, ..., K denote

each fold and its complement.12
2. Estimate g0 and m0 with some non-parametric statistical model of choice using only

the observations in Bc
1

12Suppose a dataset has 100 observations and is split into 5 block. B1 consists of observations 1-20 and
F c
1 := F2, F3, F4, F5 consists of the remaining observations 21-80.
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3. Form residuals Ỹ := Y − ĝ0(Z) and D̃ := D − m̂0(Z) only on observations in F1.
4. Regress Ỹ on D̃ to obtain an estimate of θ0. Overall, this estimate can be thought of

as function of F1 and F c
1 : θ̂0(F1, F

c
1 ).

5. Repeat steps 2-4 for the the remainingK − 1 folds
6. Form the final estimate of θ0 by averaging across all estimates: θ̂∗0 = 1

K

∑
k θ̂0(Fk, F

c
k )

In our case, we consider a county’s own weather to be the high-dimensional nuisance
parameter, as we are not principally interested in identifying the effect of own weather on
social distancing behavior. We use gradient boosted decision trees via XGBoost21, a state-
of-art machine learning algorithm, to estimate f(.) in Equations 2, 3, and 4 as well as the
effect of weather on any of the other variables included in our models. XGBoost is an en-
semble method that works by fitting a series of forward stage-wise decision trees aimed to
minimizing a specified loss function. To give a general idea of the basic procedure:

1. Fit an initial decision tree T1 that minimizesE [(Y − T1(X))2], where Y is the outcome
andX are the covariates or features.

2. Each successive tree is then fitted on the residuals of the previous state13:
Tn = argmin

T
E[(Y −

∑i=1
n−1 Ti(X)− T (X))2]

In order to prevent overfitting, this iterative process is stopped once out-of-sample predictive
performance starts to decline.

As with many other machine learning algorithms, there are a number of hyperparam-
eters that control this estimation procedure of XGBoost. In particular, we adjust:

13To be more precise, the degree to which each successive tree contributes to the ensemble can be con-trolled via tuning hyperparameter called a learning rate. We provide a little bit more detail on this below.
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• tree_depth: Controls the depth that each tree-based model is allowed to grow to.
The deeper the tree, the more complex the model.

• eta: Controls the “learning rate” or step size of each model. One way to think of this
parameter is as a form of regularization on each model step in order to prevent over-
fitting.

• nrounds: The maximum number of stages the fitting process is allowed to continue
on for.

We fix tree_depth to 2 and eta = 0.5, but allow nrounds to run up to a maximum of
100. Then, for each individual variable, the optimal number of rounds (given our choice of
tree_depth and eta) is determined via a cross-validation procedure for each variable
individually14. Once the optimal nrounds is determined, we form the residuals for all our
dependent variables and covariates by first partialing out the set of fixed effects and then
following the DML approach described above.

14We note that it would be more optimal to do an exhaustive grid search across the entire hyperparameterspace for each individual variable that needs to have the effect of weather partialed out. However, such agrid search would be extremely computationally expensive and would only yield very minor improvements inpredictive accuracy.
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Supplementary Note 7: Software

Data processing, analysis, and plotting was conducted in R22 and Python23. pandas24,
jsonlite25, and various tidyverse libraries26—dplyr, lubridate, readr, stringr,
tidyr, etc.—were used to process and prepare the data for analysis. Regression analysis
was performed using lfe27 and our DML approach relied on xgboost28. doMC29 was used
to parallelize computation. Tables were created using the stargazer package30. Plots
were generated using ggplot231, viridis, ggsci, and urbnmapr.
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Supplementary Figures

Supplementary Figure 1: Themaximumdaily temperature (in degrees Celsius) at the countylevel over four consecutive days. The brighter color indicates highermaximum temperature.
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Supplementary Figure 2: Daily precipitation (in millimeters) at the county level over fourconsecutive days. The brighter color indicates higher precipitation.
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Supplementary Figure 3: The average residuals across counties grouped by state-level re-opening date quintiles after partialing out county and date fixed effects from Jan 1, 2020.to Feb. 29, 2020.
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Supplementary Figure 4: The average residuals across dyads grouped by destination state-level reopening date quintiles after partialing out dyad and date fixed effects from Jan 1,2020. to Feb. 29, 2020.
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Supplementary Tables

Supplementary Table 1: Base Model Results
Dependent variable:

log_mcbgv log_pgt2kmt log_pgt1hafh log_pnchd
(1) (2) (3) (4)

Ego State Initial Policies −0.005 −0.002 0.001 0.003(0.006) (0.007) (0.006) (0.006)
Ego State Shelter-in-place −0.048∗∗∗ −0.059∗∗∗ −0.055∗∗∗ −0.050∗∗∗(0.008) (0.011) (0.011) (0.009)
Ego State Reopening 0.034∗∗∗ 0.046∗∗∗ 0.047∗∗∗ 0.036∗∗∗(0.007) (0.011) (0.011) (0.009)
Observations 470,106 470,106 470,106 470,106R2 0.049 0.043 0.043 0.048Adjusted R2 0.043 0.037 0.037 0.042
Note: State-Clustered Standard Errors are reported. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 2: Alters’ Policies Model Results
Dependent variable:

log_mcbgv log_pgt2kmt log_pgt1hafh log_pnchd
(1) (2) (3) (4)

Ego State Initial Policies −0.011∗∗ −0.011 −0.008 −0.004(0.005) (0.006) (0.006) (0.006)
Ego State Shelter-in-place −0.043∗∗∗ −0.052∗∗∗ −0.047∗∗∗ −0.043∗∗∗(0.007) (0.009) (0.009) (0.007)
Ego State Reopenings 0.026∗∗∗ 0.035∗∗∗ 0.035∗∗∗ 0.027∗∗∗(0.007) (0.010) (0.010) (0.008)
Alter States Initial Policies −0.061∗∗∗ −0.068∗∗ −0.068∗∗ −0.052∗∗(0.018) (0.028) (0.028) (0.023)
Alter States Shelter-in-place −0.179∗∗∗ −0.232∗∗∗ −0.243∗∗∗ −0.213∗∗∗(0.046) (0.057) (0.056) (0.048)
Alter States Reopenings 0.180∗∗∗ 0.264∗∗∗ 0.282∗∗∗ 0.206∗∗∗(0.028) (0.042) (0.040) (0.032)
Observations 470,106 470,106 470,106 470,106R2 0.087 0.085 0.090 0.095Adjusted R2 0.082 0.080 0.085 0.090
Note: State-Clustered Standard Errors are reported. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 3: IV 2SLS Results
Dependent variable:

log_mcbgv log_pgt2kmt log_pgt1hafh log_pnchd
(1) (2) (3) (4)

Ego State Initial Policies −0.005 −0.002 0.0003 0.002(0.006) (0.008) (0.007) (0.006)
Ego State Shelter-in-Place −0.032∗∗∗ −0.036∗∗∗ −0.030∗∗∗ −0.028∗∗∗(0.005) (0.007) (0.006) (0.005)
Ego State Reopening 0.014∗∗ 0.014 0.013 0.012∗(0.007) (0.010) (0.010) (0.007)
Alter States Initial Policies −0.037∗∗ −0.032 −0.041∗ −0.037∗(0.018) (0.025) (0.023) (0.020)
Alter States Shelter-in-Place 0.018 0.045 0.048 0.029(0.025) (0.035) (0.036) (0.027)
Alter States Reopening 0.039∗∗ 0.031 0.031 0.029(0.018) (0.033) (0.030) (0.023)
Endogenous Alter States Behavior 1.835∗∗∗ 2.228∗∗∗ 2.193∗∗∗ 2.073∗∗∗(0.190) (0.235) (0.217) (0.193)
First-Stage F 71.879 60.895 62.580 72.430
Observations 470,106 470,106 470,106 470,106R2 0.476 0.402 0.467 0.492Adjusted R2 0.473 0.398 0.464 0.489
Note: State-Clustered Standard Errors are reported. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 4: Dyadic Travel Results
Dependent variable:

log_ndotd log_pdotd
(1) All (2) Nearby (3) Distant (4) All (5) Nearby (6) Distant

Origin Initial Policies −0.009 0.012 −0.016 0.002 0.085 0.0005(0.027) (0.025) (0.035) (0.034) (0.051) (0.035)
Origin Shelter-in-Place −0.040 −0.117∗∗∗ −0.012 0.081∗∗∗ −0.137∗∗∗ 0.090∗∗∗(0.026) (0.034) (0.026) (0.029) (0.045) (0.029)
Origin Reopening 0.068∗ 0.106∗∗∗ 0.065 0.001 0.090∗∗ 0.002(0.040) (0.036) (0.044) (0.055) (0.044) (0.061)
Destination Initial Policies −0.0003 0.010 −0.004 0.002 0.036 0.002(0.028) (0.020) (0.029) (0.030) (0.030) (0.031)
Destination Shelter-in-Place −0.112∗∗ −0.095∗∗∗ −0.110∗ −0.189∗∗∗ −0.061 −0.193∗∗∗(0.051) (0.032) (0.057) (0.045) (0.046) (0.045)
Destination Reopening 0.127∗∗∗ 0.165∗∗∗ 0.130∗∗∗ 0.118∗∗∗ 0.185∗∗∗ 0.124∗∗∗(0.033) (0.025) (0.032) (0.040) (0.029) (0.042)
Observations 3,107,468 708,708 2,398,760 3,107,468 708,708 2,398,760R2 0.764 0.905 0.664 0.853 0.928 0.819Adjusted R2 0.762 0.905 0.662 0.853 0.927 0.818
Note: 2-way Origin State and Destination State Clustered Standard Errors are reported. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 5: Dyadic Travel With Interactions
Dependent variable:

log_ndotd log_pdotd
(1) All (2) Nearby (3) Distant (4) All (5) Nearby (6) Distant

Origin Pre-Policies × 0.038 0.034 0.032 0.055∗ 0.053 0.055∗Destination Initial Policies (0.034) (0.026) (0.034) (0.030) (0.034) (0.030)
Origin Pre-Policies × −0.135∗ −0.059 −0.140 −0.201∗∗∗ −0.132∗∗ −0.196∗∗∗Destination Shelter-in-Place (0.070) (0.042) (0.085) (0.030) (0.050) (0.035)
Origin Pre-Policies ×Destination Reopening (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Origin Initial Policies × 0.024 0.041 0.013 0.058 0.100∗ 0.058Destination Pre-Policies (0.029) (0.027) (0.039) (0.042) (0.053) (0.044)
Origin Initial Policies × −0.072∗∗ −0.054∗∗ −0.067∗∗ −0.106∗∗∗ −0.048 −0.108∗∗∗Destination Initial Policies (0.027) (0.026) (0.030) (0.026) (0.031) (0.028)
Origin Initial Policies × 0.119∗∗ 0.024 0.141∗∗ 0.148∗∗∗ 0.121∗∗ 0.143∗∗∗Destination Shelter-in-Place (0.054) (0.058) (0.070) (0.041) (0.049) (0.043)
Origin Initial Policies × 0.068 0.154∗∗∗ 0.062 0.141∗∗ 0.267∗∗∗ 0.147∗∗Destination Reopening (0.052) (0.046) (0.050) (0.068) (0.084) (0.071)
Origin Shelter-in-Place × −0.006 −0.364∗∗∗ 0.058 0.192∗∗∗ −0.399∗∗∗ 0.193∗∗∗Destination Pre-Policies (0.035) (0.115) (0.043) (0.067) (0.075) (0.071)
Origin Shelter-in-Place × 0.004 0.290∗∗∗ −0.029 −0.057 0.293∗∗∗ −0.048Destination Initial Policies (0.041) (0.102) (0.043) (0.058) (0.100) (0.059)
Origin Shelter-in-Place × −0.094∗∗ −0.110∗∗ −0.098∗∗ −0.111∗∗∗ −0.060 −0.111∗∗∗Destination Shelter-in-Place (0.038) (0.045) (0.037) (0.036) (0.050) (0.039)
Origin Shelter-in-Place × 0.064 0.070∗∗ 0.065 −0.032 0.003 −0.032Destination Reopening (0.041) (0.034) (0.042) (0.053) (0.061) (0.054)
Origin Reopening × 0.175∗∗ 0.143∗∗ 0.198∗∗ 0.124 0.256∗∗ 0.129Destination Pre-Policies (0.069) (0.058) (0.079) (0.101) (0.122) (0.109)
Origin Reopening ×Destination Initial Policies (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Origin Reopening × −0.110∗∗ 0.019 −0.147∗∗∗ −0.142∗∗ −0.075 −0.147∗∗Destination Shelter-in-Place (0.043) (0.039) (0.048) (0.067) (0.103) (0.069)
Origin Reopening × −0.010 −0.097∗∗ 0.003 0.008 −0.164∗∗ 0.009Destination Reopening (0.045) (0.038) (0.052) (0.042) (0.062) (0.045)
Observations 3,107,468 708,708 2,398,760 3,107,468 708,708 2,398,760R2 0.764 0.905 0.665 0.854 0.928 0.819Adjusted R2 0.763 0.905 0.663 0.853 0.928 0.818
Note: 2-way Origin State and Destination State Clustered Standard Errors are reported. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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