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Abstract. In this paper, we review state-of-the-art methods for feature
selection in statistics with an application-oriented eye. Indeed, sparsity
is a valuable property and the profusion of research on the topic might
have provided little guidance to practitioners. We demonstrate empiri-
cally how noise and correlation impact both the accuracy - the number
of correct features selected - and the false detection - the number of
incorrect features selected - for five methods: the cardinality-constrained
formulation, its Boolean relaxation, `1 regularization and two meth-
ods with non-convex penalties. A cogent feature selection method is
expected to exhibit a two-fold convergence, namely the accuracy and
false detection rate should converge to 1 and 0 respectively, as the
sample size increases. As a result, proper method should recover all
and nothing but true features. Empirically, the integer optimization
formulation and its Boolean relaxation are the closest to exhibit this
two properties consistently in various regimes of noise and correlation. In
addition, apart from the discrete optimization approach which requires
a substantial, yet often affordable, computational time, all methods
terminate in times comparable with the glmnet package for Lasso. We
released code for methods that were not publicly implemented. Jointly
considered, accuracy, false detection and computational time provide
a comprehensive assessment of each feature selection method and shed
light on alternatives to the Lasso- regularization which are not as popular
in practice yet.
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1. INTRODUCTION

The identification of important variables in regression is valuable to practition-
ers and decision makers in settings with large data sets of high dimensionality.
Correspondingly, the notion of sparsity, i.e., the ability to make predictions based
on a limited number of covariates, has become cardinal in statistics. The so-called
cardinality-penalized estimators for instance minimize the trade-off between predic-
tion accuracy and number of input variables. Though computationally expensive,
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2 BERTSIMAS, PAUPHILET AND VAN PARYS

they have been considered as a relevant benchmark in high-dimensional statistics.
Indeed, these estimators are characterized as the solution of the NP-hard problem

(1) min
w∈Rp

n∑
i=1

`(yi, w
>xi) + λ‖w‖0,

where ` is an appropriate convex loss function, such as the ones reported in Table
1 (p. 2). The covariates are denoted by the matrix X ∈ Rn×p, whose rows are
the x>i ’s, and the response data by Y = (y1, ..., yn) ∈ Rn. Here, ‖w‖0 := |{j :
wj 6= 0}| denotes the 0-pseudo norm, i.e., the number of non-zero coefficients
of w. Alternatively, one can explicitly constrain the number of features used for
prediction and solve

(2) min
w∈Rp

n∑
i=1

`(yi, w
>xi) s.t. ‖w‖0 6 k,

which is likewise an NP-hard optimization problem [37]. For decades, such problems
have thus been solved using greedy heuristics, such as step-wise regression, matching
pursuits [35], or recursive feature elimination (RFE) [27].

Table 1
Relevant loss functions ` and their corresponding Fenchel conjugates ˆ̀ as defined in Theorem 1.

The observed data is continuous, y ∈ R, for regression and categorical, y ∈ {−1, 1}, for
classification. By convention, ˆ̀ equals +∞ outside of its domain. The binary entropy function is

denoted H(x) := −x log x− (1− x) log(1− x).

Method Loss `(y, u) Fenchel conjugate ˆ̀(y, α)

Ordinary Least Square 1
2
(y − u)2 1

2
α2 + yα

Logistic loss log
(
1 + e−yu

)
−H(−yα) for yα ∈ [−1, 0]

1-norm SVM - Hinge loss max(0, 1− yu) yα for yα ∈ [−1, 0]

Consequently, much attention has been directed to convex surrogate estimators
which tend to be sparse, while requiring less computational effort. The Lasso
estimator, commonly defined as the solution of

min
w∈Rp

n∑
i=1

`(yi, w
>xi) + λ‖w‖1,

and initially proposed by Tibshirani [42] is widely known and used. Its practical
success can be explained by three concurrent ingredients: Efficient numerical
algorithms exist [16, 21, 1], off-the-shelf implementations are publicly available
[22] and recovery of the true sparsity is theoretically guaranteed under admittedly
strong assumptions on the data [44]. However, recent works [41, 18] have pointed
out several key deficiencies of the Lasso regressor in its ability to select the true
features without including many irrelevant ones as well. In a parallel direction,
theoretical work in statistics [43, 45, 24] has identified regimes where Lasso fails
to recover the true support even though support recovery is possible from an
information theoretic point of view.

Therefore, new research in numerical algorithms for solving the exact formulation
(2) directly has flourished. Leveraging recent advances in mixed-integer solvers
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SPARSE REGRESSION 3

[6, 4], Lagrangian relaxation [39] or cutting-plane methods [5, 7], these works have
demonstrated significant improvement over existing Lasso-based heuristics. To the
best of our knowledge, the exact algorithm proposed by Bertsimas and Van Parys
[5], Bertsimas et al. [7] is the most scalable method providing provably optimal
solutions to the optimization problem (2), at the expense of potentially significant
computational time and the use of a commercial integer optimization solver.

Another line of research has focused on replacing the `1 norm in the Lasso
formulation by other sparsity-inducing penalties which are less sensitive to noise or
correlation between features. In particular, non-convex penalties such as smoothly
clipped absolute deviation (SCAD) [17] and minimax concave penalty (MCP) [49]
have been proposed. Both SCAD and MCP have the so-called oracle property,
meaning that they do not require a priori knowledge of the sparsity pattern to
achieve an optimal asymptotic convergence rate, which is theoretically appealing.
From a computational point of view, coordinate descent algorithms [8] have shown
very effective, even though lack of convexity in the objective function hindered
their wide adoption in practice.

Convinced that sparsity is an extremely valuable property in high-impact
applications where interpretability matters, and conscious that the profusion of
research on the matter might have caused confusion and provided little guidance
to practitioners, we propose with the present paper a comprehensive treatment of
state-of-the-art methods for feature selection in ordinary least square and logistic
regression. Our goal is not to provide a theoretical analysis. On the contrary, we
selected and evaluated the methods with an eye towards practicality, taking into
account both scalability to large data sets and availability of the implementations.
In some cases where open-source implementation was not available, we released
code on our website, in an attempt to bridge the gap between theoretical advances
and practical adoption. Statistical performance of the methods is assessed in terms
of Accuracy (A),

A(w) :=
|{j : wj 6= 0, wtrue,j 6= 0}|
|{j : wtrue,j 6= 0}|

,

i.e., the proportion of true features which are selected, and False Discovery Rate
(FDR),

FDR(w) :=
|{j : wj 6= 0, wtrue,j = 0}|

|{j : wj 6= 0}|
,

i.e., the proportion of selected features which are not in the true support.

1.1 Outline and contribution

Our key contributions can be summarized as follows:

• We provide a unified treatment of state-of-the-art methods for feature se-
lection in statistics. More precisely, we cover the cardinality-constrained
formulation (2), its Boolean relaxation, the Lasso formulation and its deriva-
tives, and the MCP and SCAD penalty. We did not include step-wise
regression methods, for they may require a high number of iterations in high
dimension and exist in many variants.
• Encouraged by theoretical results obtained for the Boolean relaxation of (2)

by Pilanci et al. [39], we propose an efficient sub-gradient algorithm to solve
it and provide theoretical rate of convergence of our method.
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4 BERTSIMAS, PAUPHILET AND VAN PARYS

• Wemake our code freely available as a Julia package named SubsetSelection.
Our algorithm scales to problems with n, p = 100, 000 or n = 10, 000 and
p = 1, 000, 000 within minutes, while providing high-quality estimators.
• We compare the performance of all methods on three metrics of crucial inter-

est in practice: accuracy, false detection rate and computational tractability,
and in various regimes of noise and correlation.
• More precisely, under the mutual incoherence condition, all methods exhibit

a convergence in accuracy, that is the proportion of correct features selected
converges to 1 as the sample size n increases, in all regimes of noise and
correlation. Yet, on this matter, cardinality-constrained and MCP formula-
tions are the most accurate. As soon as mutual incoherence condition fails
to hold, `1-based estimators are inconsistent with A < 1, while non-convex
penalties eventually perfectly recover the support.
• In addition, we also observe a convergence in false detection rate, namely the

proportion of irrelevant features selected converging to 0 as the sample size
n increases, for some but not all methods: The convex integer formulation
and its Boolean relaxation are the only methods which demonstrate this
behavior, in low noise settings and make the fewest false discoveries in other
regimes. In our experiments, Lasso-based estimators return at least 80% of
non-significant features. MCP and SCAD have a low but strictly positive
false detection rate (around 15− 30% in our experiments) as n increases and
in all regimes.
• In terms of computational time, the integer optimization approach is unsur-
prisingly the most expensive option. Nonetheless, the computational cost
is only one or two orders of magnitude higher than other alternatives and
remains affordable in many real-world problems, even high-dimensional ones.
Otherwise, the four remaining codes terminate in time comparable with the
glmnet implementation of the Lasso, that is within seconds for n = 1, 000
and p = 20, 000.

In Section 2, we present each method, its formulation, its theoretical underpin-
nings and the numerical algorithms proposed to compute it. In each case, we point
the reader to appropriate references and open-source implementations. We propose
and describe our sub-gradient algorithm for the Boolean relaxation of (2) also
in Section 2. Appendix A provides further details on our implementation of the
algorithm, its scalability and its applicability to cardinality-penalized estimators
(1) as well. In Section 3 (and Appendix B), we compare the methods on synthetic
data sets for linear regression. In particular, we observe and discuss the behavior of
each method in terms of accuracy, false detection rate and computational time for
three families of design matrices and at least three levels noise. In Section 4 (and
Appendix C), we apply the methods to classification problems on similar synthetic
problems. We also analyze the implications of the feature selection methods in
terms of induced sparsity and prediction accuracy on a real data set from genomics.
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SPARSE REGRESSION 5

1.2 Notations

In the rest of the paper, we denote with e the vector whose components are
equal to one. For q > 1, ‖ · ‖q denotes the `q norm defined as

‖x‖q =

(∑
i

|xi|q
)1/q

.

For any d-dimensional vector x, we denote with x[j] the jth largest component of
x. Hence, we have

x[1] > · · · > x[d].

2. SPARSE REGRESSION FORMULATIONS

In this section, we introduce the different formulations and algorithms that
have been proposed to solve the sparse regression problem. We focus on the
cardinality-constrained formulation, its Boolean relaxation, the Lasso and Elastic-
Net estimators, the MCP and SCAD penalty.

2.1 Integer optimization formulation

As mentioned in introduction, a natural way to compute sparse regressors is to
explicitly constrain the number of non-zero coefficients, i.e., solve

(2) min
w∈Rp

n∑
i=1

`(yi, w
>xi) s.t. ‖w‖0 6 k,

where ` is an appropriate loss function, appropriate in the sense that `(y, ·) is
convex for any y . In this paper, we focus on Ordinary Least Square (OLS), logistic
regression and Hinge loss, as presented in Table 1 on page 2. Unfortunately, such
a problem is NP-hard [37] and believed to be intractable in practice. The original
attempt by Furnival and Wilson [23] using "Leaps and Bounds" scaled to problems
with n, p in the 10s. Thanks to both hardware improvement and advances in
mixed-integer optimization solvers, Bertsimas et al. [6], Bertsimas and King [4]
successfully used discrete optimization techniques to solve instances with n, p in
the 1, 000s within minutes. More recently, Bertsimas and Van Parys [5], Bertsimas
et al. [7] proposed a cutting plane approach which scales to data sizes of with
n, p in the 100, 000s for ordinary least square and n, p in the 10, 000s for logistic
regression. To the best of our knowledge, our approach is the only method which
scales to instances of such sizes, while provably solving such an NP-hard problem.

2.1.1 Convex integer formulation Bertsimas and Van Parys [5], Bertsimas et al.
[7] consider an `2-regularized version of the initial formulation (2),

(3) min
w∈Rp

n∑
i=1

`(yi, w
>xi) +

1

2γ
‖w‖22 s.t. ‖w‖0 6 k,

where γ > 0 is a regularization coefficient. From a statistical point of view, this
extra regularization, referred to as ridge or Tikhonov regularization, is needed
to account for correlation between features [30] and mitigate the effect of noise.
Indeed, regularization and robustness are two intimately connected properties, as
illustrated by Bertsimas and Fertis [3], Xu et al. [47]. In addition, Breiman et al.
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6 BERTSIMAS, PAUPHILET AND VAN PARYS

[9] proved that subset selection is a very unstable problem and highlighted the
stabilizing effect of Ridge regularization. Introducing a binary variable s ∈ {0, 1}p
to encode the support of w and using convex duality, problem (3) can be shown
equivalent to a convex integer optimization problem as stated in the following
theorem.

Theorem 1. [7, Theorem 1] For any convex loss function `, problem (3) is
equivalent to

(4) min
s∈{0,1}p:s>e6k

max
α∈Rn

f(α, s) :=

− n∑
i=1

ˆ̀(yi, αi)−
γ

2

p∑
j=1

sjα
>XjX

>
j α

 ,

where ˆ̀(y, α) := maxu∈R uα− `(y, u) is the Fenchel conjugate of the loss function
` [see 2, chap. 6.4], as reported in Table 1. In particular, the function f is
continuous, linear in s and concave in α.

In the special case of OLS, the function f is a quadratic function in α

f(α, s) = −1

2
‖α‖2 − Y >α− γ

2
αXsX

>
s α,

where XsX
>
s :=

∑p
j=1 sjXjX

>
j . As a result, the inner maximization problem can

be solved in closed form: The maximum is attained at α?(s) = −(In+γXsX
>
s )−1Y

and the objective value is

max
α

f(α, s) =
1

2
Y >(In + γXsX

>
s )−1Y.

2.1.2 Cutting-plane algorithm Denoting

c(s) := max
α∈Rn

f(α, s),

which is a convex function in s, the cutting-plane algorithm solves the convex
integer optimization problem

min
s∈{0,1}p

c(s) s.t. s>e 6 k,

by iteratively tightening a piece-wise linear lower approximation of c. Pseudo-code
is given in Algoritm 2.1 (p. 7). Proof of termination and details on implementation
can be found in Bertsimas and Van Parys [5] for regression and Bertsimas et al.
[7] for classification. This outer-approximation scheme was originally proposed
by Duran and Grossmann [15] for general nonlinear mixed-integer optimization
problems.

2.1.3 Implementation and publicly available code A naive implementation of
Algorithm 2.1 would solve a mixed-integer linear optimization problem at each
iteration, which can be as expensive as explicit enumeration of all feasible supports
s. Fortunately, with modern solvers such as Gurobi [26] or CPLEX [12], this
outer-approximation scheme can be implemented using lazy constraints, enabling
the use of a single Branch-and-Bound tree for all subproblems.

imsart-sts ver. 2014/10/16 file: sparse_regression.tex date: January 24, 2019



SPARSE REGRESSION 7

Algorithm 2.1 Outer-approximation algorithm
Require: X ∈ Rn×p, Y ∈ Rn, k ∈ {1, ..., p}
t← 1
repeat
st+1, ηt+1 ← argmins∈{0,1}p,η

{
η :

∑p
j=1 sj 6 k, η > c(si) +∇c(si)>(s− si), ∀i = 1, . . . , t

}
t← t+ 1

until ηt < c(st)− ε
return st

The algorithm terminates when the incumbent solution is ε-optimal for some
fixed tolerance level ε (we chose ε = 10−4 in our simulations). We also need to
impose a time limit on the algorithm. Indeed, as often in discrete optimization,
the algorithm can quickly find the optimal solution, but spends a lot of the time
proving its optimality. In our experiment, we fixed a time limit of 60 seconds
for regression and 180 seconds for classification. Such choices were guided by
confidence in the quality of the initial solution s1 we provide to the algorithm
(which we will describe in the next section) as well as time needed to compute c(s)
and ∇c(s) for a given support s.

The formulation (3) contains two hyper-parameters, k and γ, to control for the
amount of sparsity and regularization respectively. In practice, those parameters
need to be tuned using a cross-validation procedure. Since the function to minimize
does not depend on k, any piece-wise linear lower approximation of c(s) computed
to solve (3) for some value of k can be reused to solve the problem at another
sparsity level. In recent work, Kenney et al. [32] proposed a combination of
implementation recipes to optimize such search procedures. As for γ, we apply
the procedure described in Chu et al. [11], starting with a low value γ0 (typically
scaling as 1/maxi ‖xi‖2) and inflate it by a factor 2 at each iteration.

To bridge the gap between theory and practice, we present a Julia code which
implements the described cutting-plane algorithm publicly available on GitHub1.
The code requires a commercial solver like Gurobi or CPLEX and our open-source
package SubsetSelection for the Lagrangian relaxation, which we introduce in
the next section. We also call the open-source library LIBLINEAR [19] to efficiently
compute c(s) in the case of Hinge and logistic loss.

2.2 Lagrangian relaxation

As often in discrete optimization, it is natural to consider the Boolean relaxation
of problem (4)

(5) min
s∈[0,1]p : e>s6k

max
α∈Rn

f(α, s),

and study its tightness, as done by Pilanci et al. [39].

2.2.1 Tightness result The above problem is recognized as a convex/concave
saddle point problem. According to Sion’s minimax theorem [40], the minimization
and maximization in (5) can be interchanged. Hence, saddle point solutions (ᾱ, s̄)
of (5) should satisfy

ᾱ ∈ arg max
α∈Rn

f(α, s̄), s̄ ∈ arg min
s∈[0,1]p

f(ᾱ, s) s.t. s>e 6 k.

1https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
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8 BERTSIMAS, PAUPHILET AND VAN PARYS

Since f is a linear function of s, a minimizer of f(ᾱ, s) can be constructed easily
by selecting the k smallest components of the vector (−γ

2 ᾱ
>XjX

>
j ᾱ)j=1,...,p. If

those k smallest components are unique, the so constructed binary vector must be
equal to s̄ and hence the relaxation (5) is tight. In fact, the previous condition is
necessary and sufficient as proven by Pilanci et al. [39]:

Theorem 2. [39, Proposition 1] The Boolean relaxation (5) is tight if and only
if there exists a saddle point (ᾱ, s̄) such that the vector β̄ := (ᾱ>XjX

>
j ᾱ)j=1,...,p

has unambiguously defined k largest components, i.e., there exists λ ∈ R such that
β̄[1] > · · · > β̄[k] > λ > β̄[k+1] > · · · > β̄[p].

This uniqueness condition in Theorem 2 seems often fulfilled in real-world
applications. It is satisfied with high probability, for instance, when the covariates
Xj are independent [see 39, Theorem 2]. In other words, randomness breaks
the complexity of the problem. Similar behavior has already been observed for
semi-definite relaxations [31, 48]. Such results have had impact in practice and
propelled the advancement of convex proxy based heuristics such as Lasso. Efficient
algorithms can be designed to solve the saddle point problem (5) without involving
sophisticated discrete optimization tools and provide a high-quality heuristic for
approximately solving (4) that could be used as a good warm-start in exact
approaches.

2.2.2 Dual sub-gradient algorithm In this section, we propose and describe an
algorithm for solving problem (5) efficiently and make our code available as a Julia
package. Our algorithm is fast and scales to data sets with n, p in the 100, 000s,
which is two orders of magnitude larger than the implementation proposed by
Pilanci et al. [39].

For a given s, maximizing f over α cannot be done analytically, with the
noteworthy exception of ordinary least squares, whereas minimizing over s for a
fixed α reduces to sorting the components of (−α>XjX

>
j α)j=1,...,p and selecting

the k smallest. We take advantage of this asymmetry by proposing a dual projected
sub-gradient algorithm with constant step-size, as described in pseudo-code in
Algorithm 2.2. δ denotes the step size in the gradient update and P the projection
operator over the domain of f . At each iteration, the algorithm updates the
support s by minimizing f(α, s) with respect to s, α being fixed. Then, the
variable α is updated by performing one step of projected sub-gradient ascent with
constant step size δ. The denomination "sub-gradient" comes from the fact that
at each iteration ∇αf(αT , sT ) is a sub-gradient to the function α 7→ mins f(α, s)
at α = αT .

In terms of computational cost, updating α requires O (n‖s‖0) operations for
computing the sub-gradient plus at most O (n) operations for the projection on
the feasible domain. The most time-consuming step in Algorithm 2.2 is updating
s which requires on average O (np+ p log p) operations.

The final averaging step α̂T = 1
T

∑
t αt is critical in sub-gradient methods to

ensure convergence of the algorithm in terms of optimal value [see 2, chap. 7.5].

Theorem 3. [2, chap. 7.5] Assume the sequence of sub-gradients {∇αf(αT , sT )}
is uniformly bounded by some constant L > 0, and that the set of saddle point
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Algorithm 2.2 Dual sub-gradient algorithm
s0, α0 ← Initial solution
T = 0
repeat
sT+1 ∈ argminsf(αT , s)
αT+1 = P

(
αT + δ∇αf(αT , sT )

)
T = T + 1

until Stop criterion
α̂T = 1

T

∑
t α

t

return ŝ = argminsf(α̂T , s)

solutions Ā in (5) is non-empty. Then,

f (α̂T , ŝ) > f(ᾱ, s̄)− δL2

2
− dist2(α0, Ā)

2δT
,

where dist(α0, Ā) denotes the distance of the initial point α0 to the set of saddle
point solutions Ā.

As for any sub-gradient strategy, with an optimal choice of step size δ2, Theorem
3 proves a O(1/

√
T ) convergence rate in terms of objective value, which is dis-

appointingly slow. However, in practice, convergence towards the optimal primal
solution s̄ is more relevant. In that metric, our algorithm performs particularly
well as numerical experiments in Sections 3 and 4 demonstrate. The key to our
success is that the optimal primal solution is estimated using partial minimization

ŝ = arg min
s
f(α̂T , s),

as opposed to averaging
ŝ = 1

T

∑
t

st,

as studied by Nedić and Ozdaglar [38] and commonly implemented for sub-
gradient methods. In addition, even though we are solving a relaxation, we are
interested in binary vectors s, which can be interpreted as a set of features. To
that extend, averaging would not have been a suitable option since the averaged
solution is neither binary, nor k-sparse. With the extra cost of computing c(st)
for all past iterates st as well as c(ŝ), one can also decide to return the support
vector with the lowest value. This can only produce a better approximation of
argmins∈{0,1}p:s>e6k c(s).

2.2.3 Implementation and open-source package The algorithm terminates after
a fixed number of iterations Tmax which is standard for sub-gradient methods. In
our case, however, the quality of the primal variable s should be the key concern.
By computing c(st) at each iteration and keeping track of the best upper-bound
mint=1,...,T c(s

t), one can use the duality gap or the number of consecutive iterations
without any improvement on the upper-bound as alternative stopping criteria.
Computing c(st) increases the cost per iteration, with the hope of terminating
the algorithm earlier. By default, our implementation stops after Tmax = 200
iterations or when the duality gap is 10−4.

2δ =
dist(α0, Ā)

L
√
T

.
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The constant step size rule is difficult to implement in practice. Indeed, as seen
in Theorem 3, an optimal step size should depend on quantities that are hard do
estimate a priori, namely L and dist2(α0, Ā). In particular for logistic loss, L can
be arbitrarily large. Instead, one can use an adaptive stepsize rule such as

δT =
mint=1,...,T c(s

t)−maxt=1,...,T f(αt, st)

‖∇αf(αT , sT )‖2
.

We implemented such a rule and refer to Bertsekas [2, chap. 7.5] for proofs of
convergence and alternative choice.

We apply the same grid-search procedures as for the cutting-plane algorithm in
order to cross-validate the hyperparameters k and γ.

We make our code publicly available as a Julia package named SubsetSelection
and source repository can be found on GitHub3. Our code implements Algorithm
2.2 for six loss functions including those presented in Table 1. The package con-
sists of one main function, subsetSelection, which solves problem (5) for a
given value of k. The algorithm can be extended to more loss functions, and
cardinality-penalized estimators as well, as described in Appendix A.

2.3 Lasso - `1 relaxation

Instead of solving the NP-hard problem (1), Tibshirani [42] proposed replacing
the non-convex `0-pseudo norm by the convex `1-norm which is sparsity-inducing.
Indeed, extreme points of the unit `1 ball {x : ‖x‖1 6 1} are 1-sparse vectors. The
resulting formulation

(6) min
w∈Rp

n∑
i=1

`(yi, w
>xi) + λ‖w‖1,

is referred to as the Lasso estimator. More broadly, `1-regularization is now
a widely used technique to induce sparsity in a variety of statistical settings
[see 28, for an overview]. Its popularity has been supported by an extensive
corpus of theoretical results from signal processing and high-dimensional statistics.
Since the seminal work of Donoho and Huo [13], assumptions needed for the
Lasso estimator to accurately approximate the true sparse signal are pretty well
understood. We refer to reader to Candes et al. [10], Meinshausen and Bühlmann
[36], Zhao and Yu [50], Wainwright [44] for some of these results. In practice
however, those assumptions, namely mutual incoherence and restricted eigenvalues
conditions, are quite stringent and hard to verify. In addition, even when the
Lasso regressor provably converges to the true sparse regressor in terms of `2
distance and identifies all the correct features, it also systematically incorporates
irrelevant ones, a behavior observed and partially explained by Su et al. [41] and
of crucial practical impact.

2.3.1 Elastic-Net formulation The Lasso formulation in its original form (6)
involves one hyper-parameter λ only, which controls regularization, i.e., robustness
of the estimator against uncertainty in the data [see 47, 3]. At the same time, the
`1 norm in the Lasso formulation (6) is also used for its fortunate but collateral
sparsity-inducing property. Robustness and sparsity, though related, are two very

3https://github.com/jeanpauphilet/SubsetSelection.jl
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distinct properties demanding a separate hyper parameter each. The ElasticNet
(ENet) formulation proposed by Zou and Hastie [51]

(7) min
w∈Rp

n∑
i=1

`(yi, w
>xi) + λ

[
α‖w‖1 + 1−α

2 ‖w‖
2
2

]
,

addresses the issue by adding an `2 regularization to the objective. For α = 1,
problem (7) is equivalent to the Lasso formulation (6), while α = 0 corresponds to
Ridge regression. Although this extra regularization reduces bias and improves
prediction error, it does not significantly improve feature selection, as we will
see on numerical experiments in Section 3. In our view, this is due to the fact
that `1-regularization primarily induces robustness of the estimator, through
shrinkage of the coefficients [3, 47]. In that perspective, it leads to first-rate out-
of-sample predictive performance, even in high-noise regimes [see 29, for extensive
experiments]. Nonetheless, the feature selection ability of `1-regularization ought
to be challenged.

2.3.2 Algorithms and implementation For `1-regularized regression, Least Angle
Regression (LARS) [16] is an efficient method for computing an entire path
of solutions for various values of the λ parameter, exploiting the fact that the
regularization path is piecewise linear. More recently, coordinate descent methods
[20, 46, 21] have successfully competed with and surpassed the LARS algorithm,
especially in high dimension. Their implementation through the glmnet package
[22] is publicly available in R and many other programming languages. In a
different direction, proximal gradient descent methods have also been proposed,
and especially the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
proposed by Beck and Teboulle [1].

2.4 Non-convex penalties

Recently, other formulations have been proposed, of the form

(8) min
w∈Rp

n∑
i=1

`(yi, w
>xi) +

p∑
j=1

pλ,γ(|wj |),

where pλ,γ(·) is a function parametrized by λ and γ, which control respectively the
tradeoff between empirical loss and regularization, and the shape of the function.
We will consider two popular choice of penalty functions pλ,γ(·), which are non-
convex and are proved to recover the true support even when mutual incoherence
condition fails to hold [33].

2.4.1 Minimax Concave Penalty (MCP) The minimax concave penalty of Zhang
[49] is defined on [0,∞) by

pλ,γ(u) = λ

∫ u

0

(
1− t

γλ

)
+

dt =


λu− u2

2γ
if u ≤ γλ,

γλ2

2
if u > γλ,

for some λ > 0 and γ > 1. The rationale behind the MCP can be explained in the
univariate OLS case: In the univariate case, MCP and `1-regularization lead to the
same solution as γ →∞, while the MCP is indeed equivalent to hard-thresholding
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12 BERTSIMAS, PAUPHILET AND VAN PARYS

when γ = 1. In other words, in one dimension or under the orthogonal design
assumption, the MCP produces the so-called firm-shrinkage estimator introduced
by Gao and Bruce [25], which should be understood as a continuous tradeoff
between hard- and soft-thresholding.

2.4.2 Smoothly Clipped Absolute Deviation (SCAD) Fan and Li [17] orginally
proposed the smoothly clipped absolute deviation penalty, defined on [0,∞) by

pλ,γ(u) =


λu if u ≤ λ
γλu− (u2 + λ2)/2

γ − 1
if λ < u ≤ γλ,

λ2(γ2 − 1)

2(γ − 1)
if u > γλ,

for some λ > 0 and γ > 2. The rationale behing the SCAD penalty is similar to
the MCP but less straightforward. We refer to Fan and Li [17] for a comparison of
SCAD penalty with hard-thresholding and `1-penalty and to Breheny and Huang
[8] for a comparison of SCAD and MCP.

2.4.3 Algorithms and implementation For such non-convex penalties, Zou and Li
[52] designed a local linear approximation (LLA) approach where, at each iteration,
the penalty function is linearized around the current iterate and the next iterate is
obtained by solving the resulting convex optimization problem with linear penalty.
Another, more computationally efficient, approach has been proposed by Breheny
and Huang [8] and implemented in the open-source R package, ncvreg. Their
algorithm relies on coordinate descent and the fact that the objective function in
(8) with OLS loss is convex in any wj , the other wj′ , j′ 6= j being fixed. For logistic
loss, they locally approximate the loss function by a second-order Taylor expansion
at each iteration and use coordinate descent to compute the next iterate.

3. LINEAR REGRESSION ON SYNTHETIC DATA

In this section, we compare the aforementioned methods on synthetic linear
regression data where the ground truth is known to be sparse. The convex integer
optimization algorithm of Bertsimas and Van Parys [5], Bertsimas et al. [7] (CIO in
short) was implemented in Julia [34] using the commercial solver Gurobi 7.5.0 [26],
interfaced using the optimization package JuMP [14]. The Lagrangian relaxation is
also implemented in Julia and openly available as the SubsetSelection package
(SS in short). We used the implementation of Lasso/Enet provided by the glmnet
package [22], available both in R and Julia. We also compared to MCP and SCAD
penalty formulations implemented in the R package ncvreg [8]. The computational
tests were performed on a computer with Xeon @2.3GhZ processors, 1 CPUs,
16GB RAM per CPU.

3.1 Data generation methodology

The synthetic data was generated according to the following methodology: We
draw xi ∼ N (0p,Σ), i = 1, .., n independent realizations from a p-dimensional
normal distribution with mean 0p and covariance matrix Σ. We randomly sample
a weight vector wtrue ∈ {−1, 0, 1} with exactly ktrue non-zero coefficient. We
draw εi, i = 1, ..., n, i.i.d. noise components from a normal distribution scaled
according to a chosen signal-to-noise ratio

√
SNR = ‖Xwtrue‖2/‖ε‖2. Finally, we
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compute Y = Xwtrue + ε. With this methodology, we are able to generate data
sets of arbitrary size (n, p), sparsity ktrue, correlation structure Σ and level of noise√
SNR. The signal-to-noise ratio relates to the percentage of variance explained

(PV E). Indeed, Hastie et al. [29] showed that

PV E =
SNR

1 + SNR
.

Accordingly, we will consider SNR values ranging from 6 (PV E = 85.7%) to 0.05
(PV E = 4.8%).

3.2 Metrics and benchmarks

Statistical performance of the methods is assessed in terms of Accuracy (A),

A(w) :=
|{j : wj 6= 0, wtrue,j 6= 0}|
|{j : wtrue,j 6= 0}|

,

i.e., the proportion of true features which are selected, and False Discovery Rate
(FDR),

FDR(w) :=
|{j : wj 6= 0, wtrue,j = 0}|

|{j : wj 6= 0}|
,

i.e., the proportion of selected features which are not in the true support. We refer
to the quantities in the numerators as the number of true features (TF ) and false
features (FF ) respectively. One might argue that accuracy as we defined it here is
a purely theoretical metric, since on real-world data, the ground truth is unknown
and there is no such thing as true features. Still, accuracy is the only metric
which assesses feature selection only, while derivative measures such as predictive
power depend on more factors than the features selected alone. Moreover, accuracy
has some practical implications in terms of interpretability and also in terms of
predictive power: Common sense and empirical results suggest that better selected
features should yield diminished prediction error. To that end, we also compare
the performance of the methods in terms of out-of-sample Mean Square Error

MSE(w) :=
1

n

n∑
i=1

(yi − x>i w)2,

which will be the metric of interest on real data. Note that the sum can be taken
over the observations in the training (in-sample) or test set (out-of-sample).

Practical scalability of the algorithms is assessed in terms of computational time.
In order to provide a fair comparison between methods that are not implemented in
the same programming language, we report computational time for each algorithm
relative to the time needed to compute a Lasso estimator with glmnet in the same
language and on the same data. For these experiments, we fixed a time limit of
60 seconds for the cutting-plane algorithm and considered 150 iterations of the
sub-gradient algorithm for the Boolean relaxation.

3.3 Synthetic data satisfying mutual incoherence condition

We first consider Toeplitz covariance matrix Σ =
(
ρ|i−j|

)
i,j
. Such matrices

satisfy the mutual incoherence condition, required by `1-regularized estimators
to be statistically consistent. We compare the performance of the methods in six
different regimes of noise and correlation described in Table 2 (p. 14).
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14 BERTSIMAS, PAUPHILET AND VAN PARYS

Table 2
Regimes of noise (SNR) and correlation (ρ) considered in our experiments on regression with

Toeplitz covariance matrix

Low correlation High correlation

Low noise

ρ = 0.2

SNR = 6

p = 20, 000

k = 100

ρ = 0.7

SNR = 6

p = 20, 000

k = 100

Medium noise

ρ = 0.2

SNR = 1

p = 10, 000

k = 50

ρ = 0.7

SNR = 1

p = 10, 000

k = 50

High noise

ρ = 0.2

SNR = 0.05

p = 2, 000

k = 10

ρ = 0.7

SNR = 0.05

p = 2, 000

k = 10

3.3.1 Feature selection with a given support size We first consider the case when
the cardinality k of the support to be returned is given and equal to the true
sparsity ktrue for all methods, while all other hyper-parameters are cross-validated
on a separate validation set. In this case, accuracy and false discovery rate are
complementary. Indeed, in this case

|{j : wtrue,j 6= 0}| = |{j : wj 6= 0}| = ktrue,

which leads to A = 1− FDR so that we may consider accuracy by itself.
As shown on Figure 1 (p. 15), all methods converge in terms of accuracy. That

is their ability to select correct features as measured by A smoothly converges to
1 with an increasing number of observations n → ∞. Noise in the data has an
equalizing effect on all methods, meaning that noise reduces the gap in performance.
Indeed, in high-noise regimes, all methods are comparable. On the contrary,
correlation is discriminating: High correlation strongly hinders the performance
of Lasso/ENet, moderately those of SCAD and very slightly CIO, SS and MCP
methods. Among all methods, `1-regularization is the less accurate, selects fewer
correct features than the four other methods and is sensitive to correlation between
features. SCAD provides modest improvement over ENet in terms of accuracy, in
comparison with CIO, SS and MCP. Unsurprisingly, we observe a gap between
the solutions returned by the cutting-plane method and its Boolean relaxation,
gap which decreases as noise increases. All things considered, CIO and the MCP
penalization are the best performing method in all six regimes, with a fine advantage
for CIO.

Figure 2 on page 17 reports relative computational time compared to glmnet in
log scale. It should be kept in mind that we restricted the cutting-plane algorithm
to a 60-second time limit and the sub-gradient algorithm to Tmax = 200 iterations.
All methods terminate in times of one to two orders of magnitude larger than
glmnet (seconds for the problem size at hand), contradicting the common belief
that `1-penalization is the only tractable alternative to exact subset selection.
Computational time for the discrete optimization algorithm CIO and sub-gradient
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Fig 1: Accuracy as n increases, for the CIO (in green), SS (in blue with Tmax = 200),
ENet (in red), MCP (in orange), SCAD (in pink) with OLS loss. We average
results over 10 data sets.
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16 BERTSIMAS, PAUPHILET AND VAN PARYS

algorithm SS highly depends on the regularization parameter γ. For low γ, which
are suited in high noise regimes, the algorithm is extremely fast, while it can take
as long as a minute in low noise regimes. This phenomenon explains the relative
comparison of SS with glmnet in Figure 2. For this is an important practical aspect,
we provide detailed experiments regarding computational time in Appendix B.1.
As previously mentioned, stopping the algorithm SS after a consecutive number of
non-improvements can drastically reduce computational time. Empirically, this
strategy did not hinder the quality of the solution in regression settings, but was
not as successful in classification setting, so we did not reported its performance.
As CIO has a fixed time limit independent of n, the relative gap in terms of
computational time with glmnet narrows as sample size increases.

Finally, though a purely theoretic metric, accuracy has some intuitive and
practical implications in terms of out-of-sample prediction. To support our claim,
Figure 3 (p. 18) represents the out-of-sample MSE for all five methods, as
n increases, for the six noise/correlation settings of interest. There is a clear
connection between performance in terms of accuracy and in terms of predictive
power, with CIO performing the best. Still, good predictive power does not
necessarily imply that the features selected are mostly correct. SCAD, for instance,
seems to provide a larger improvement over ENet in terms of predictive power
than in accuracy. Similarly, SS dominates MCP in terms of out-of-sample MSE,
while this is not the case in terms of accuracy.

3.3.2 Feature selection with cross-validated support size We now compare all
methods when ktrue is no longer given and needs to be cross-validated from the
data itself.

For each value of n, each method fits a model on a training set for various
levels of sparsity k, either explicitly or by adjusting the penalization parameter.
For each sparsity level k, the resulting classifier incorporates some true and false
features. Figure 4 (p. 20) represents the number of true features against the number
of false features for all five methods, for a range of sparsity levels k, all other
hyper-parameters being tuned so as to minimize MSE on a validation set. To
obtain a fair comparison, we used the same range of sparsity levels for all methods.
Some methods only indirectly control the sparsity k through a regularization
parameter λ and do not guarantee to return exactly k features. In these cases, we
calibrated λ as precisely as possible and used linear interpolation when we were
unable to get the exact value of k we were interested in. From Figure 4, we observe
that in low correlation settings, CIO and MCP strictly dominate ENet, SCAD and
SS. There is no clear winner between CIO and MCP. When noise is low, CIO tends
to make less false discoveries, while the latter is generally more accurate, but the
difference between all methods diminishes as noise increases. In high correlation
settings, no method clearly dominates. CIO, SS and MCP are better for small
support size k, while ENet and SCAD dominate for larger supports. In high noise
and high correlation regimes though, Enet and SCAD seem to clearly dominate
their competitors. In practice however, one does not have access to "true" features
and cannot decide on the value of k based on such ROC curves. As often, we select
the value k? which minimizes out-of-sample error on a validation set. To this end,
Figure 5 (p. 21) visually represents validation MSE as a function of k for all five
methods.The vertical black line corresponds to k = ktrue. For each method, k?

is identified as the minimum of the out-of-sample MSE curve. From Figure 5,
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Fig 2: Computational time relative to Lasso with glmnet as n increases, for CIO
(in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD
(in pink) with OLS loss. We average results over 10 data sets.
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Fig 3: Out-of-sample mean square error as n increases, for the CIO (in green), SS
(in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with
OLS loss. We average results over 10 data sets.

imsart-sts ver. 2014/10/16 file: sparse_regression.tex date: January 24, 2019



SPARSE REGRESSION 19

we can expect the Lasso/ENet and SCAD formulations to select many irrelevant
features, while CIO, SS and MCP are relatively close to the true sparsity pattern.

As a result, for every n, each method selects k? features, some of which are
in the true support, others being irrelevant, as measured by accuracy and false
detection rate respectively. Figures 6 (p. 22) and 7 (p. 23) report the results of
the cross-validation procedure for increasing n. In terms of accuracy (Figure 6),
all five methods are relatively equivalent and demonstrate a clear convergence:
A → 1 as n → ∞. The first to achieve perfect accuracy is ENet, followed by
SCAD, MCP, CIO and then SS. On false detection rate however (Figure 7), the
methods rank in the opposite order. Among all five, CIO and SS achieve the
lowest FDR with FDR as low as 0% in low noise settings and around 30% when
noise is high. On the contrary, ENet persistently returns around 80% of incorrect
features in all regimes of noise and correlation. Concerning MCP and SCAD, in
low noise regimes, false detection rate quickly drops as sample size increases. Yet,
for large values of n, we observe a strictly positive FDR on average (around 15%
in our experiments) and high variance, suggesting that feature selection with these
regularizations is pretty unstable. As noise increases, FDR for those methods
remains significant (around 50%), with a fine advantage of MCP over SCAD. In
our opinion, this is due to the fact that MCP and SCAD, just like Lasso/ENet,
do not enforce sparsity explicitly, like CIO or SS do, but rely on regularization to
induce it.

3.4 Synthetic data not satisfying mutual incoherence condition

We now consider a "hard" correlation structure, i.e., a setting where the standard
Lasso estimator is inconsistent. Fix p, ktrue and a scalar θ ∈

(
1

ktrue
, 1√

ktrue

)
4

Define Σ as a matrix with 1’s on the diagonal, θ’s in the first ktrue positions of the
(ktrue + 1)th row and column, and 0’s everywhere else. Such a matrix does not
satisfy mutual incoherence [see 33, Appendix F.2. for a proof]. As opposed to the
previous setting, we fix wtrue =

(
1√
ktrue

, . . . , 1√
ktrue

, 0, . . . , 0
)
, and compute noisy

signals, for increasing noise levels (see Table 3 p. 19). In this setting, the `1-penalty
result in an estimator that puts nonzero weight on the (k + 1)th coordinate, while
MCP and SCAD penalties eventually recover the true support [33].

Table 3
Regimes of noise (SNR) considered in our experiments on regression

Low noise
SNR = 6

p = 20, 000

k = 100

Medium noise
SNR = 1

p = 10, 000

k = 50

High noise
SNR = 0.05

p = 2, 000

k = 10

4in our experiment we take θ = 1
2ktrue

+ 1
2
√
ktrue

.
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Fig 4: Number of true features TF vs. number of false features FF for the CIO
(in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD
(in pink) with OLS loss. We average results over 10 data sets with a fixed n.
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Fig 5: Out-of-sample mean square error as k increases, for the CIO (in green), SS
(in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with
OLS loss. We average results over 10 data sets with a fixed n.
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Fig 6: Accuracy A as n increases, for the CIO (in green), SS (in blue with
Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with OLS loss. We
average results over 10 data sets.
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Fig 7: False detection rate FDR as n increases, for the CIO (in green), SS (in
blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with
OLS loss. We average results over 10 data sets.
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3.4.1 Feature selection with a given support size We first consider the case when
the cardinality k of the support to be returned is given and equal to the true
sparsity ktrue. In this setting, `1-estimators are expected to always return at least
1 incorrect feature, while MCP and SCAD will provably recover the entire support
[33].

As shown on Figure 8 (p. 25), we observe empirically what theory dictates: The
accuracy of ENet reaches a threshold strictly lower than 1. Non-convex penalties
MCP and SCAD, on the other hand, see their accuracy converging to 1 as n
increases. Cardinality-constrained estimators CIO and SS, which are also non-
convex, behave similarly, although no theory like Loh and Wainwright [33] exists,
to the best of our knowledge. As far as accuracy is concerned (left panel), CIO
dominates all other methods. Interestingly, while ENet is the least accurate in
the limit n→ +∞, it is sometimes more accurate than non-convex penalties for
smaller values of n.

We report computational time in Appendix B.2.1.

3.4.2 Feature selection with cross-validated support size Behavior of the methods
when ktrue is no longer given and needs to be cross-validated from the data itself
is very similar to the case where Σ satisfies the mutual incoherence condition. To
avoid redundancies, we report those results in Appendix B.2.2.

3.5 Real-world design matrix X

To illustrate the implications of feature selection on real-world applications, we
consider an example from genomics. We collected data from The Cancer Genome
Atlas Research Network5 on n = 1, 145 lung cancer patients. The data set consists
of p = 14, 858 gene expression data for each patient. We discarded genes for which
information was only partially recorded so there is no missing data. We used this
data as our design matrix X ∈ Rn×p and generated synthetic noisy outputs Y , for
10 uniformely log-spaced values of SNR, as in Hastie et al. [29] (Table 4 p. 24).
We held 15% of patients in a test set (171 patients). We used the remaining 974

Table 4
Regimes of noise (SNR) considered in our regression experiments on the Cancer data set

SNR 0.05 0.09 0.14 0.25 0.42 0.71 1.22 2.07 3.52 6

PV E 0.05 0.08 0.12 0.20 0.30 0.42 0.55 0.67 0.78 0.86

patients as a training and validation set. For each algorithm, we computed models
with various degrees of sparsity and regularization on the training set, evaluated
them on the validation set and took the most accurate model. Figure 9 (p. 26)
represents the accuracy and false detection rate of the resulting regressor, for all
methods, as SNR increases. ENet ranks the highest both in terms of number of
true and false features. On the contrary, MCP is the least accurate, while making
fewer incorrect guesses. CIO, SS, SCAD demonstrate in-between performance.
Nevertheless, differences in feature selection does not translate into significant
differences into predictive power in this case (see Figure 20 in Appendix B.3 page
43).

As previously mentioned, these results are the conclusion of a cross-validation
procedure to find the right value of k. In Figure 10 (p. 27), we represent the

5http://cancergenome.nih.gov
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Fig 8: Accuracy (left panel) and out-of-sample mean square error (right panel) as
n increases, for the CIO (in green), SS (in blue with Tmax = 150), ENet (in red),
MCP (in orange), SCAD (in pink) with OLS loss. We average results over 10 data
sets with n = 500, ..., 3700, p = 20, 000, ktrue = 100.
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Fig 9: Accuracy and false detection as SNR increases, for the CIO (in green), SS
(in blue with Tmax = 150), ENet (in red), MCP (in orange), SCAD (in pink) with
OLS loss. We average results over 10 data sets with SNR = 0.05, ..., 6, ktrue = 50.

ROC curve corresponding to four of the ten regimes of noise. For low noise, ENet
is dominated by SCAD, SS, MCP and CIO. As noise increases however, ENet
gradually improves and even dominates all methods in very noisy regimes. These
ROC curves are of little interest in practice, where true features are unknown -
and potentially do not even exist. They raise, in our view, interesting research
questions about the cross-validation procedure and its ability to efficiently select
the "best" model.

3.6 Summary and guidelines

In this section, we compared five feature selection methods in regression, in
various regimes of noise and correlation, and under different design matrices. Based
on those extensive experiments, we can make the following observations:

• As far as accuracy is concerned, non-convex methods should be preferred
over `1-regularization for they provide better feature selection, even in the
absence of the mutual incoherence condition. In particular, MCP, the cutting-
plane algorithm for the cardinality-constrained formulation, and its Boolean
relaxation have been particularly effective in our experiments.
• In terms of false detection rate, cardinality-constrained formulations improve

substantially over ENet and SCAD, and moderately over MCP.
• Computational time might still be the limiting factor in the use of such
methods in practice. To that matter, publicly available software, such
as the ncvreg package for SCAD and MCP estimators and our package
SubsetSelection for the Boolean relaxation, should be advertised to prac-
titioners since they compete with glmnet, which remains the gold standard
for tractability. For time can be a crucial bottleneck in practice, we provide
detailed experiments regarding computational time and scalability of the
algorithms in Appendix B.1.
• In practice, we should recommend using a combination of all these methods:
Lasso or ENet can be used as first feature screening/dimension reduction
step, to be followed by a more computationally expensive non-convex feature
selection method if time permits.
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Fig 10: True features against false features, for the CIO (in green), SS (in blue
with Tmax = 150), ENet (in red), MCP (in orange), SCAD (in pink) with OLS
loss. We average results over 10 data sets.
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• While Lasso/ENet performs poorly in low noise settings, its competes and
sometimes dominates other methods as noise increases. This observation
supports the view that `1-regularization is, first and foremost, a robustness
story [3, 47]: Through shrinkage of the coefficients, the `1 penalty reduces
variance in the estimator and improves out-of-sample accuracy, especially in
presence of noise. Experiments by Hastie et al. [29] even suggested that Lasso
outperforms cardinality-constrained estimators in high noise regimes. Our
experiments suggest that their observations are still valid but less obvious
as soon as the best subset selection estimator is regularized as well (with an
`2 penalty in our case).

4. SYNTHETIC AND REAL-WORLD CLASSIFICATION PROBLEMS

In this section, we compare the five methods included in our study on classifica-
tion problems. For implementation considerations, we use CIO and SS with the
Hinge loss and ENet, MCP and SCAD with the logistic loss.

4.1 Methodology and metrics

Synthetic data is generated according to the same methodology as for regression,
except that we now compute the signal Y according to

Y = sign(Xwtrue + ε),

instead of Y = Xwtrue + ε previously.
On synthetic data, feature selection is assessed in terms of accuracy A and false

detection rate FDR as in the previous section. Prediction accuracy, on the other
hand, is assessed in terms of Area Under the Curve (AUC). The AUC corresponds
to the area under the receiver operating characteristic curve, which represents
true positive rate against false positive rate. The AUC ranges from 0.5 (for a
completely random classifier) to 1. This area also corresponds to the probability
that a randomly chosen positive example is correctly ranked with higher suspicion
than a randomly chosen negative example. Correspondingly, 1−AUC is a common
measure of prediction error for real-world data.

4.2 Synthetic data satisfying mutual incoherence condition

In this section, we consider consider Toeplitz covariance matrix Σ =
(
ρ|i−j|

)
i,j
,

which satisfy mutual incoherence condition. We compare the performance of the
methods in six different regimes of noise and correlation described in Table 5 (p.
29).

4.2.1 Feature selection with a given support size We first conducted experiments
where the cardinality k of the support to be returned is given and equal to the
true sparsity ktrue for all methods. We report the results in Appendix C.1.1.

4.2.2 Feature selection with cross-validated support size We now compare the
methods on cases where the support size needs to be cross-validated from data.

For every n, each method selects k? features, some of which are in the true
support, others being irrelevant, as measured by accuracy and false detection
rate respectively. Figures 11 (p. 30) and 12 (p. 31) report the results of the cross-
validation procedure for increasing n. In terms of accuracy (Figure 11), all methods
increase in accuracy as n increases, although CIO and SS converge significantly
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Table 5
Regimes of noise (SNR) and correlation (ρ) considered in our experiments on regression with

Toeplitz covariance matrix

Low correlation High correlation

Low noise

ρ = 0.2

SNR = 6

p = 10, 000

k = 100

ρ = 0.7

SNR = 6

p = 10, 000

k = 100

Medium noise

ρ = 0.2

SNR = 1

p = 5, 000

k = 50

ρ = 0.7

SNR = 1

p = 5, 000

k = 50

High noise

ρ = 0.2

SNR = 0.05

p = 1, 000

k = 10

ρ = 0.7

SNR = 0.05

p = 1, 000

k = 10

slower than ENet, MCP and SCAD. However, this lower accuracy comes with the
benefit of a strictly lower false detection rate (Figure 12).

4.3 Synthetic data not satisfying mutual incoherence condition

As for regression, we now consider the covariance matrix that does not satisfy
mutual incoherence [33], in three regimes of noise (see Table 6 p. 29). We consider

Table 6
Regimes of noise (SNR) considered in our experiments on regression

Low noise
SNR = 6

p = 10, 000

k = 100

Medium noise
SNR = 1

p = 5, 000

k = 50

High noise
SNR = 0.05

p = 1, 000

k = 10

the case when the cardinality k of the support to be returned is given and equal
to the true sparsity ktrue.

Results are shown on Figure 13 (p. 32) and corroborate our previous observations
in the case of regression: the accuracy of ENet reaches a threshold strictly lower
than 1. Non-convex penalties MCP and SCAD, on the other hand, will see their
accuracy converging to 1, yet for a fixed n there are not necessarily more accurate
than ENet. Cardinality-constrained estimators CIO and SS dominate all other
methods, with a clear edge for CIO.
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Fig 11: Accuracy A as n increases, for the CIO (in green), SS (in blue with
Tmax = 200) with Hinge loss, ENet (in red), MCP (in orange), SCAD (in pink)
with logistic loss. We average results over 10 data sets.
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Fig 12: False detection rate FDR as n increases, for the CIO (in green), SS (in
blue with Tmax = 200) with Hinge loss, ENet (in red), MCP (in orange), SCAD
(in pink) with logistic loss. We average results over 10 data sets.
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Fig 13: Accuracy (left panel) and out-of-sample mean square error (right panel) as
n increases, for the CIO (in green), SS (in blue with Tmax = 150) with Hinge loss,
ENet (in red), MCP (in orange), SCAD (in pink) with logistic loss. We average
results over 10 data sets with n = 500, ..., 3700, p = 20, 000, ktrue = 100.
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4.4 Real-world design matrix X

To illustrate the implications of feature selection on real-world applications,
we re-consider the example from genomics we introduced in the previous section.
Our n = 1, 145 lung cancer patients naturally divide themselves into two groups,
corresponding to different tumor types. In our sample for instance, 594 patients
(51.9%) suffered from Adenocarcinoma while the remaining 551 patients (48.1%)
suffered from Squamous Cell Carcinoma, making our data amenable to a binary
classification task. Our goal is to identify a genetic signature for each tumor type,
which only involves a limited number of genes, to better understand the disease or
narrow the search for potential treatment for instance. We held 15% of patients
from both groups in a test set (171 patients). We used the remaining 974 patients
as a training and validation set. For each algorithm, we computed models with
various degrees of sparsity on the training set, evaluated them on the validation
set and took the most accurate model. Table 7 reports the induced sparsity k? and
out-of-sample accuracy in terms of AUC on the test set for each models. Results
correspond to the median values obtained over ten different training/validation
splits. Compared to the regression cases, we now have a real-world design matrix
X and real world signals Y as well.

Table 7
Median of the results on Lung Cancer data, over 10 different training/validation set splits.

Method Sparsity k? Out-of-sample AUC

Exact sparse 87.5 0.9798
Boolean relaxation 65 0.9821
Lasso 114 0.9814
ENet 398.5 0.9806
MCP 39 0.9741
SCAD 79.5 0.9752

The first conclusion to be drawn from our results is that the all the feature
selection methods considered in this paper, including the convex integer optimiza-
tion formulation, scale to sizes encountered in real-world impactful applications.
MCP and SCAD provide the sparsest classifiers with median sparsity of 39 and
79.5 respectively. At the same time, they achieve the lowest prediction accuracy,
which questions the relevance of the genes selected by those methods. The `1-based
formulations, Lasso and ENet, reach an AUC above 0.98 with 114 and 398.5 genes
respectively. In comparison, CIO and SS have similar accuracy while selecting
respectively only 87 and 65 genes.

5. CONCLUSION

In this paper, we provided a unified treatment of methods for feature selection
in statistics. We focused on five methods: the NP-hard cardinality-constrained
formulation (3), its Boolean relaxation, `1-regularized estimators (Lasso and
Elastic-Net) and two non-convex penalties, namely the smoothly clipped absolute
deviation (SCAD) and minimax concave penalty (MCP).

In terms of statistical performance, we compared the methods based on two
metrics: accuracy and false detection rate. A reasonable feature selection method
should exhibit a two-fold convergence property: the accuracy and false detection
rate should converge to 1 and 0 respectively, as the sample size increases. Jointly
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observed, these two properties ensure the method selects all true features and
nothing but true features.

Most of the literature on feature selection so far has focused solely on accuracy,
from both a theoretical and empirical point of view. Indeed, on that matter, our
observations match existing theoretical results. When mutual incoherence condition
is satisfied, all five methods attain perfect accuracy, irrespective of the noise and
correlation level. As soon as mutual incoherence fails to hold however, `1-regularized
estimators do not recover all true features, while non-convex formulations do. In
all our experiments, Lasso-based formulations are the least accurate and sensitive
to correlation between features, while cardinality-constrained formulation and the
MCP non-convex estimator are the most accurate. As far as accuracy is concerned,
we observe a clear distinction between convex and non-convex penalties, which
echoes in our opinion the distinction between robustness and sparsity. Robustness
is the property of an estimator to demonstrate good out-of-sample predictive
performance, even in noisy settings, and convex regularization techniques are
known to produce robust estimators [3, 47]. When it comes to sparsity however,
non-convex penalties are theoretically more appealing, for they do not require
stringent assumptions on the data [33]. Because both properties should deserve
attention, we believe - and observe - that the best approaches are those combining
a convex and a non-convex component. The `1-regularization on its own is not
sufficient to produce reliably accurate feature selection.

In real-world applications, false detection rate is at least as important as
accuracy. We were able to observe a zero false detection rate for Lasso-based
formulations only under the mutual incoherence condition and in low noise settings
where SNR → ∞. Otherwise, false detection rate remains strictly positive and
stabilizes above 80% (we observed this behavior as early as for SNR 6 25).
False detection rate for non-convex penalties MCP and SCAD quickly drops as
n increases, but remains strictly positive (around 15− 30%) and highly volatile,
even for large sample sizes. The exact sparse formulation is the only method
in our study which clearly outperforms all other methods, in all settings, and
both for regression and classification, with the lowest false detection rate. Its
Boolean relaxation demonstrates a similar behavior but less acute, especially in
classification. In our opinion, such an observation speaks in favor of formulations
that explicitly constrain the number of features instead of using regularization
to induce sparsity. In practice, one could use Lasso or non-convex penalties as a
good feature screening method, that is to discard irrelevant features and reduce
the dimensionality of the problem. Nonetheless, in order to select relevant features
only, we highly recommend the use of cardinality-constrained formulation or its
relaxation, depending on available computing resources. Table 8 (p. 35) summarizes
the advantages and disadvantages we observed for each method.

Those observations would be of little use if the best performing method were
neither scalable nor available to practitioners. To that end, we released the code
of a cutting-plane algorithm which solves the exact formulation (3) in minutes for
n and p in the 10, 000s. Though computationally expensive, this method requires
only one to two orders of magnitude more time than other methods. We believe this
additional computational cost is affordable in many applications and justified by the
resulting improved statistical performance. For more time-sensitive applications, its
Boolean relaxation provides a high-quality approximation. We proposed a scalable
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sub-gradient algorithm to solve it and released our code in the Julia package
SubsetSelection, which can compete with the glmnet implementation of Lasso
in terms of computational time, while returning statistically more relevant features.
With SubsetSelection, we hope to bring to the community an easy-to-use and
generic feature selection tool, which addresses deficiencies of `1-penalization but
scales to high-dimensional data sets.

Table 8
Summary of the advantages and disadvantages of each method.

Method Pros and Cons

Exact sparse (+) Very good A/FDR. Convergence robust to noise/correlation.
(−) Commercial solver and extra computational time.

Boolean relaxation (+) Good A/FDR. Convergence robust to noise/correlation.
(−) Heuristic.

Lasso/ENet (+) Whole regularization path at no extra cost.
(−) FDR very sensitive to noise. A very sensitive to correlation.

MCP (+) Excellent A.
(−) Unstable FDR.

SCAD (+) Very good A.
(−) Unstable FDR. A sensitive to correlation.

APPENDIX A: EXTENSION OF THE SUB-GRADIENT ALGORITHM
AND IMPLEMENTATION

From a theoretical point of view, the boolean relaxation of the sparse learning
problem is often tight, especially in the presence of randomness or noise in the
data, so that feature selection can be expressed as a saddle point problem with
continuous variables only. This min-max formulation is easier to solve numerically
than the original mixed-integer optimization problem (3) because the original
combinatorial structure vanishes. Our proposed algorithm benefits from both
tightness of the Boolean relaxation and integrality of optimal solutions. In this
section, we present the Julia package SubsetSelection which competes with the
glmnet implementation of Lasso in terms of computational time, while returning
statistically more relevant features, in terms of accuracy but more significantly
in terms of false discovery rate. With SubsetSelection, we hope to bring to
the community an easy-to-use and generic feature selection tool, which addresses
deficiencies of `1-penalization but scales just as well to high-dimensional data sets.

A.1 Cardinality-constrained formulation

In this paper, we have proposed a sub-gradient algorithm for solving the following
boolean relaxation

min
s∈[0,1]p : e>s6k

max
α∈Rn

f(α, s),

where

f(α, s) := −
n∑
i=1

ˆ̀(yi, αi)−
γ

2

p∑
j=1

sjα
>XjX

>
j α

is a linear function in s and concave function in α. The function f depends on the
loss function ` through its Fenchel conjugate ˆ̀. In this paper, we mainly focused
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on OLS and logistic loss but the same methodology could be applied to any convex
loss function. Indeed, the package SubsetSelection supports all loss functions
presented in Table 9.

Table 9
Supported loss functions ` and their corresponding Fenchel conjugates ˆ̀ as defined in Theorem 1.
The observed data y ∈ R for regression and y ∈ {−1, 1} for classification. By convention, ˆ̀

equals +∞ outside of its domain. The binary entropy function is denoted as
H(x) := −x log x− (1− x) log(1− x).

Method Loss `(y, u) Fenchel conjugate ˆ̀(y, α)

Logistic loss log
(
1 + e−yu

)
−H(−yα) for yα ∈ [−1, 0]

1-norm SVM - Hinge loss max(0, 1− yu) yα for yα ∈ [−1, 0]
2-norm SVM 1

2
max(0, 1− yu)2 1

2
α2 + yα for yα 6 0

Least Square Regression 1
2
(y − u)2 1

2
α2 + yα

1-norm SVR (|y − u| − ε)+ yα+ ε|α| for |α| 6 1
2-norm SVR 1

2
(|y − u| − ε)2+ 1

2
α2 + yα+ ε|α|

At each iteration, the algorithm updates the variable α by performing one step of
projected gradient ascent with step size δ, and updates the support s by minimizing
f(α, s) with respect to s, α being fixed. Since s satisfies s ∈ [0, 1]p, s>e 6 k, and
f is linear in s, this partial minimization boils down to sorting the components
of (−α>XjX

>
j α)j=1,...,p and selecting the k smallest. Pseudo-code is given in

Algorithm 2.2.

A.2 Scalability

As experiments in Sections 3 and 4 demonstrated, our proposed algorithm
and implementation provides an excellent approximation for the solution of the
discrete optimization problem (3), while terminating in times comparable with
coordinate descent for Lasso estimators for low values of γ. Table 10 reports
some computational time of SubsetSelection for data sets with various values
of n, p and k. The algorithm scales to data sets with (n, p) = (105, 105)s or
(104, 106)s within a few minutes. More comparison on computational time are
given in Appendix B.1.

Table 10
Computational time of SS with Tmax = 200 for data sets with large values of n and p,

γ = 2 p/k/maxi ‖xi‖2/n. Due to the dimensionality of the data, computations where performed
on 1 CPU with 250GB of memory. We provide the average computational time (and the standard

deviation) over 10 experiments.

Loss function ` n p k time (in s)

Least Squares 10, 000 100, 000 100 12.90 (0.45)
Least Squares 50, 000 100, 000 100 28.45 (1.83)
Least Squares 10, 000 500, 000 100 33.00 (1.86)
Least Squares 10, 000 500, 000 500 43.00 (0.54)

Hinge Loss 10, 000 100, 000 100 37.26 (0.14)
Hinge Loss 50, 000 100, 000 100 160.73 (0.28)
Hinge Loss 10, 000 500, 000 100 157.09 (1.18)
Hinge Loss 10, 000 500, 000 500 59.74 (0.08)
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A.3 Extension to cardinality-penalized formulation

Our proposed approach naturally extends to cardinality-penalized estimators
as well, where the 0-pseudonorm is added as a penalization term instead of an
explicit constraint. Let us consider the `2-regularized optimization problem

(9) min
w∈Rp

n∑
i=1

`(yi, w
>xi) +

1

2γ
‖w‖22 + λ‖w‖0,

which corresponds to the estimator (1) in the unregularized limit γ → +∞.
Similarly introducing a binary variable s encoding the support of w, we get that
the previous problem (9) is equivalent to

(10) min
s∈{0,1}p

max
α∈Rn

f(α, s) + λe>s.

The new saddle point function s 7→ f(α, s) + λe>s is still linear in s and concave
in α. As before, its boolean relaxation

(11) min
s∈[0,1]p

max
α∈Rn

f(α, s) + λe>s

is tight if the minimizer of f(α, s) + λe>s with respect to s is unique. More
precisely, we prove an almost verbatim analogue of Theorem 2.

Theorem 4. The boolean relaxation (11) is tight if there exists a saddle point
(ᾱ, s̄) such that the vector (λ− γ

2 ᾱ
>XjX

>
j ᾱ)j=1,...,p has non-zero entries.

Proof. The saddle-point problem (11) is a continuous convex/concave minimax
problem and Slater’s condition is satisfied so strong duality holds. Therefore, any
saddle-point (ᾱ, s̄) must satisfy

ᾱ ∈ arg max
α∈Rn

f(α, s̄) + λe>s, s̄ ∈ arg min
s∈∈[0,1]p

f(ᾱ, s) + λe>s.

If there exists ᾱ such that (λ − γ
2 ᾱ
>XjX

>
j ᾱ)j=1,...,p has non-zero entries, then

there is a unique s̄ ∈ arg mins∈∈[0,1]p f(ᾱ, s) + λe>s. In particular, this minimizer
is binary and the relaxation is tight.

This theoretical result suggests that the Lagrangian relaxation (11) can provide
a good approximation for the combinatorial problem (9) in many cases. The
same sub-gradient strategy as the one described in Algorithm 2.2 can be used to
solve (11), with a slightly different partial minimization step: Now, minimizing
f(α, s) + λs>e with respect s ∈ [0, 1]p for a fixed α boils down to computing
the components of (λ − γ/2α>XjX

>
j α)j=1,...,p and selecting the negative ones,

which requires O (np) operations. This strategy is also implemented in the package
SubsetSelection.

APPENDIX B: NUMERICAL EXPERIMENTS FOR REGRESSION -
SUPPLEMENTARY MATERIAL

In this section, we provide additional material for the simulations conducted in
Section 3 on regression examples.
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(b) SS

Fig 14: Absolute computational time as n× γ increases, for CIO (left panel), SS
(right panel), with OLS loss. We fixed p = 5, 000, ktrue = 50, SNR = 1, ρ = .5 and
k = ktrue, and averaged results over 10 data sets. We report results for n = 500,
n = 1, 000 and n = 2, 000 (from light to dark)

B.1 Synthetic data satisfying mutual incoherence condition

We first consider the case where the design matrix X ∼ N (0,Σ), with Σ a
Toeplitz matrix. In particular, Σ satisfies the so-called mutual incoherence condition
required by Lasso estimators to be statistically consistent. In this setting, we provide
more details about the computational time comparison between algorithms for
sparse regression presented in Sections 3.

B.1.1 Impact of the hyper-parameters k and γ The discrete convex optimization
formulation (3) and its Boolean relaxation (5) involve two hyper-parameters: the
ridge penalty γ and the sparsity level k.

Intuition suggests that computational time would increase with γ. Indeed, when
γ → 0, w? = 0 is an obvious optimal solution, while for γ → +∞ the problem
can become ill-conditioned. We generate 10 problems with p = 5, 000, ktrue = 50,
SNR = 1 and ρ = .5 and various sample sizes n, fix k = ktrue and report absolute
computational time as n× γ increases in Figure 14 (p. 38). For small values of γ,
both methods terminate extremely fast - within 10 seconds for CIO and in less
than 2 seconds for SS. As γ increases, computational time sharply increases. For
CIO, we capped computational time to 600 seconds. For SS, we limited the number
of iterations to Tmax = 200. Regarding the sparsity k, the size of the feasible space
{s ∈ {0, 1}p : s>e 6 k} grows as pk. Empirically, we observe (Figure 15 p. 39)
that computational time increases at most polynomially with k.

B.1.2 Impact of the signal-to-noise ratio, sample size n and problem size p
As more signal becomes available, the feature selection problem should become
easier and computational time should decrease. Indeed, in Figure 16 (p. 39), we
observe that low SNR generally increases computational time for all methods
(left panel). The correlation parameter ρ (right panel), however, does not seem
to have a strong impact on computational time. In our opinion, with SNR = 1,
the effect of correlation on computational time is second order compared to the
impact of noise.

Figure 17 (p. 40) represents computational for increasing p, n/p being fixed
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(b) SS

Fig 15: Absolute computational time as k increases from 5 to 1, 000, for CIO (left
panel), SS (right panel), with OLS loss. We fixed p = 5, 000, ktrue = 50, SNR = 1,
ρ = .5 and n = 1, 000, and averaged results over 10 data sets. We report results
for γ = 2iγ0 with i = 0, 2, 4 (from light to dark) and γ0 =

p

n ktrue maxi ‖xi‖2
.
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(a) SNR, for ρ = .5
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(b) Correlation ρ, for SNR = 1

Fig 16: Absolute computational time as signal-to-noise or correlation increases, for
CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange),
SCAD (in pink) with OLS loss. We fixed p = 5, 000, ktrue = 50, and n = 1, 000,
and averaged results over 10 data sets. We report results of CIO and SS with
k = ktrue and γ =

p

2nktrue maxi ‖xi‖2
.
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(a) p, for n/p = 1/5
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(b) Sample size n/p, for p = 5, 000

Fig 17: Absolute computational time as dimension p or sample size n increases, for
CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange),
SCAD (in pink) with OLS loss. We fixed p = 5, 000, ktrue = 50 and averaged
results over 10 data sets. We report results of CIO and SS with k = ktrue and
γ =

p

2nktrue maxi ‖xi‖2
.

and for increasing n/p, p being fixed. As shown, all methods scale similarly with p
(almost linearly), while CIO and SS are less sensitive to n/p than their competitors.

B.2 Synthetic data not satisfying mutual incoherence condition

We now consider a covariance matrix Σ, which does not satisfy mutual incoher-
ence, as proved in [33].

B.2.1 Feature selection with a given support size Figure 18 on page 41 reports
relative compared to glmnet (left panel) and absolute (right panel) computational
time in log scale. As for the case where mutual incoherence is satisfied, all methods
terminates within a 10-100 factor with respect to glmnet.

B.2.2 Feature selection with cross-validated support size We compare all methods
when ktrue is no longer given and needs to be cross-validated from the data itself.
Figure 19 on page 42 reports the results of the cross-validation procedure for
increasing n. In terms of accuracy (left panel), all four methods are relatively
equivalent and demonstrate a clear convergence: A → 1 as n → ∞. On false
detection rate however (right panel), behaviors vary among methods. Cardinality-
constrained estimators achieve the lowest false detection rate (0− 30%), followed
by MCP (10− 60%), SCAD (20− 70%) and then ENet (c.80%). In case of ENet,
this behavior was expected, for `1-estimators are provably inconsistent, so that
FDR must be positive when A = 1.

B.3 Real-world design matrix X

In this section, we consider a real-world design matrix X and generated synthetic
noisy signals Y for 10 levels of noise. Figure 20 (p. 43) represents the out-of-sample
MSE of all five methods as SNR increases. As mentioned, the difference in MSE
between methods is far less acute than the difference observed in terms of accuracy
and false detection.
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(c) High noise

Fig 18: Relative (left panel) and absolute (right panel) computational timeas n
increases, for CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP
(in orange), SCAD (in pink) with OLS loss. We average results over 10 data sets.
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Fig 19: Accuracy A (left panel) and false detection rate FDR (right panel) as n
increases, for the CIO (in green), SS (in blue with Tmax = 150), ENet (in red),
MCP (in orange), SCAD (in pink) with OLS loss. We average results over 10 data
sets.
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Fig 20: Out-of-sample MSE as SNR increases, for the CIO (in green), SS (in
blue with Tmax = 150), ENet (in red), MCP (in orange), SCAD (in pink) with
OLS loss. We average results over 10 data sets with SNR = 0.05, ..., 6, ktrue = 50.

APPENDIX C: NUMERICAL EXPERIMENTS FOR CLASSIFICATION -
SUPPLEMENTARY MATERIAL

C.1 Synthetic data satisfying mutual incoherence condition

C.1.1 Feature selection with a given support size We first consider the case
when the cardinality k of the support to be returned is given and equal to the true
sparsity ktrue for all methods.

As shown on Figure 21 (p. 44), all methods converge in terms of accuracy. That
is their ability to select correct features as measured by A smoothly converges
to 1 with an increasing number of observations n→∞. Compared to regression,
the difference in accuracy between methods is much narrower. MCP now slightly
dominates all methods, including CIO and SS. The suboptimality gap between
the discrete optimization method and its Boolean relaxation appears to be much
smaller as well and the two methods perform almost identically.

Figure 22 on page 45 reports relative computational time compared to glmnet in
log scale. It should be kept in mind that we restricted the cutting-plane algorithm
to a 180-second time limit and the sub-gradient algorithm to Tmax = 200 iterations.
glmnet is still the fastest method in general, but it should be emphasized that
other methods terminate in times at most two orders of magnitude larger, which
is often an affordable price to pay in practice. Combined with results in accuracy
from Figure 21, such an observation speaks in favor of a wider use of cardinality-
constrained or non-convex formulations in data analysis practice. As previously
mentioned, for the sub-gradient algorithm, using an additional stopping criterion
would drastically cut computational time (by a factor 2 at least) but would also
deteriorate the quality of the solution significantly for such classification problems.

Figure 23 (p. 46) represents the out-of-sample error 1−AUC for all five methods,
as n increases, for the six noise/correlation settings of interest. There is a clear
connection between performance in terms of accuracy and in terms of predictive
power, with CIO performing the best. Still, better predictive power does not
necessarily imply that the features selected are more accurate. As we have seen for
instance, MCP often demonstrates the highest accuracy, yet not the highest AUC.
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Fig 21: Accuracy as n increases, for the CIO (in green), SS (in blue with Tmax = 200)
with Hinge loss , ENet (in red), MCP (in orange), SCAD (in pink) with logistic
loss. We average results over 10 data sets.
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Fig 22: Computational time relative to Lasso with glmnet as n increases, for CIO
(in green), SS (in blue with Tmax = 200) with Hinge loss, ENet (in red), MCP (in
orange), SCAD (in pink) with logistic loss. We average results over 10 data sets.
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Fig 23: Out-of-sample 1−AUC as n increases, for the CIO (in green), SS (in blue
with Tmax = 200) with Hinge loss, ENet (in red), MCP (in orange), SCAD (in
pink) with logistic loss. We average results over 10 data sets.
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