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Abstract

We study the optimal mechanism in position auctions in a common-value setting
where only ordinal information about the advertisers is posted and auctioneer revenue
depends on consumer belief about ad qualities. We show that when bidder valuations
are correlated, existence of a simple non-ironed optimal mechanism requires a stronger
condition that the usual increasing virtual valuation assumption. With fixed num-
ber of positions, the corresponding optimal decision rule (among all mixed and pure
strategies) is to allocate the ad positions to advertisers in decreasing order of quality.
More importantly, when the search engine also chooses the number of ads to post,
ignoring the consumer belief endogeneity will lead to posting too many ads compared
to what maximizes the search engine revenue. We also show that when only one ad
position is available, the optimal allocation rule uses a reserve price which is higher
than what is implied by Myerson 1981 [8] seminal work. Finally, we characterize the
optimal mechanism when cardinal information about advertiser quality is posted, and
we provide results on how search engine revenue compares under the two regimes.

1 Introduction

Since the huge surge in online search in the early years of 21st century search engines has
been increasingly relying on online advertisement as one of their main sources of revenue.
Online advertisements are allocated using “sponsored search” auctions, which are billions
of simultaneous auctions run by search engines to allocates ad slots displayed alongside
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organic search results. The three main search engines, Google, Yahoo! and Microsoft Bing
has generated billions of dollars in revenue from online auctions in 2011. Total advertising
revenues constitutes more % 96 of total revenues of Google in 2011 and 2012 ($36,531 of
$37,905 in 2011, and $43,686 of $46,039 in 2012). Advertising related revenue is not only
generated directly from the search engine website, but also from ad slots sold on affiliated
websites, shopping web pages, blogs, etc.

These sponsored search auction are generalized second price auction (GSP) run on a
pay-per-click basis: advertisers bid for keywords and phrases and once that keyword is
searched on the website, an online auction is run to allocated the ad slots. Bidders are
ranked by complicated functions of their current bids, reputation and other indicators and
some of them are displayed on the webpage along with the search results of the searcher
query. Once an ad is clicked, the bidder has to pay the search engine.

Given the pay-per-click payment scheme of the sponsored search auctions, in displaying
advertisements the search engine not only cares about the bids, but also about how many
clicks each ad receives (click-through-rate). Given that consumers (searchers) are the ones
who click on the displayed ads, their belief is essential to search engine revenue. Importantly,
how the search engine allocate the ads to advertisers feeds back into consumer belief about
the ads and affects the search engine revenue. This feed back effect has been mostly ignored
in the literature on sponsored search and click-through-rates are assumed to be exogenous
(for instance [3] and [4]), and has only recently been recognized ([2] and [5]). In this
paper, we would like to study the optimal revenue maximizing mechanism for allocating
these sponsored ads by explicitly modeling the endogenous belief of consumers (searchers)
about the ads and how it affects the search engine revenue. It turns out that endogenous
consumer beliefs are consequential for search engine optimal decisions rule: ignoring the
endogenous beliefs and taking them as constants leads the search engine to display too
many ads compared to what would maximize his expected revenue.

To study the optimal revenue maximizing mechanism when advertisers have interdepen-
dent valuations for ad slots, we build on the model by Athey-Ellison 2011 [2]. Since we am
interested in the optimal decision rule designed by the search engine, we need to be very
careful about how this decision affects consumer beliefs, which in turn generate clicks on
different ads. In fact this endogenous determination of beliefs is what makes this problem
particularly challenging, and is the main source of difference with the optimal mechanism
in a similar setting where click through rates are exogenous.

Intuitively speaking, consider a setting in which the number of clicks that an ad i receive
(i.e. its click through rate) depends on which ads are believed to be better than ad i, as
well as consumer belief about how good ad i is. In such setting advertiser value of each slot
depends on own quality and quality of better advertisers, as well as consumer beliefs own
quality. The principle’s choice of mechanism affects consumer beliefs, which feeds back on
the advertiser value from purchasing each slot.

In the first few sections of what follows we will assume that the search engine only
reveals ordinal information about ad qualities, i.e. the search engine only conveys the
relative ranking of the ads to consumers but does not tell them how good each ad is. We
show that with endogenous click-through-rate hyper-regularity of distribution of ad qualities,
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a strengthened version of familiar regularity (increasing virtual valuations) condition, is a
sufficient condition for existence of a non-ironed optimal mechanism. More importantly,
we show that the mechanism designer displays fewer ads compared to the case where click-
through-rates are exogenous. Consequently, if the search engine ignores the feed back effect
of the allocation rule into consumer beliefs, too many ads will be posted compared to
what is revenue maximizing. Then we will consider the case where cardinal information is
displayed, and finally provide results on how the revenue of the auctioneer compares across
the two settings.

As mentioned earlier, the major search engines use variations of (weighted) generalized
second price auctions to sell sponsored search links. [1], [11] and [3] study equilibria of such
auctions in a with exogenous click-through rates. In contrast, [2] characterizes equilibrium
strategies in a Generalized English auctions with endogenous click-through-rates: searchers
take clicking decisions rationally and follow a sequential search procedure. We will use
ingredients from this latter paper the study the optimal revenue maximizing mechanism in
sponsored search auctions.

The rest of the paper is organized as follows: Section 2 lays out the environment, section
3 studies a restricted version of the optimal mechanism with ordinal information and section
4 characterizes the full fledged optimal mechanism under certain conditions and also provide
results on more general cases. Section 5 characterizes the optimal mechanism when cardinal
information is revealed, and section 6 compares auctioneer revenue across the two cases.
Section 7 concludes.

2 Environment

There is a continuum of consumers. Each consumer has a need and visits a website to be
matched with a supplier and meet the need. The consumer receives a benefit of 1 if the
need is met and zero otherwise. In addition, consumer j has a privately observed search
cost sj for clicking any sponsored link. sj’s are drawn independently from distribution G(.).

There are N producers who want to advertise on the website. From now on, we will
simply refer to them as advertisers. Each advertiser has a quality, which is the probability
of him being able to meet the consumer need. An advertiser will get a payoff of 1 each time
a need is met. Let θi in [0, 1] denote the quality of advertiser i, drawn independently from
distribution Φ(.). An interesting special case which we will frequently go back to is when
both θi and sj are iid draws from uniform distribution on unit interval.

The search engine posts M ≤ N sponsored links on the a web page, and each ad appears
only once on the same page. If an ad is posted on a page, the owner (advertiser) is charged
according to the rule designed by the auctioneer.1

Consumers, once presented with a list of sponsored links, click optimally on the links
until their need is met or the expected benefit from clicking an additional ad falls bellow sj.
Most importantly, consumer expected benefit from clicking each ad depends on his belief
about the quality of this ad. 2

1Athey-Ellison 2011[2] assumes the auctioneer runs a generalized second price auction.
2In order to compute the equilibrium of the model, Athey-Ellison 2011 [2] makes two important as-
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A direct revelation mechanism consists of a decision (allocation) rule and a set of ex-
pected transfers for each participant. The search engine is a mechanism designer who asks
the bidders for their types (here qualities). The objects ad slots are then allocated using the
allocation rule and reported types, and each bidder pays or receives the designated trans-
fer. Without loss of generality we will focus on revenue maximizing mechanisms which are
truthfully implementable in Bayesian Nash Equilibria, i.e. mechanisms in which all bidders
find it optimal to report their true qualities.

Before rigorously defining the optimal mechanism, we need to introduce a few pieces
of notation. Let θ and θ̂ denote the N -vector of true and reported types, and let θi, θ

j

and θ[k] denote the type of bidder i, jth-highest bidder and bidder in ad slot (position) k,
respectively. Note that θj is the jth-order statistic of the qualities.

Let CTRk denote the number of clicks that an ad in position k receives. Note that
CTRk depends on the consumer belief about the ad quality if the consumer gets so far, as
well as the percentage of needs which are not met by the higher ads.

The consumers click on the posted ads based on their belief about the (order in) quality
of posted ads: they click on the ad that they believe has the highest quality first, and they
continue in descending order of qualities. So an equilibrium (as described later) where the
auctioneers posts a list of ads in descending order of (reported) qualities and consumers
click in a top-down manner will be an equilibrium with a consistent (self-fulfilling) belief
structure.

Define r(θ, θ̂) as the M -vector of needs at each position; which means the kth entry is
the percentage of consumer needs not met by any of the ads in position 1, 2, · · · , k − 1.
With the notation introduced above, r can be written as:

r(θ̂, θ) = (1, (1− θ[1]), · · · , (1− θ[1]) · ·(1− θ[k−1]), · · · )

Let XN×M(θ̂) denote the allocation rule. Xi, the ith row of matrix X, corresponds to
bidder i with Xik = 1 if bidder i is positioned in slot k. Moreover, let ti(X) be the transfer
that bidder i has to make with allocation X. Note that each bidder get at most one slot
and all ad positions are allocated, so we should have the following two criteria satisfied:∑

j

Xij ≤ 1 1 ≤ i ≤ N(1) ∑
i

Xij = 1 1 ≤ j ≤M(2)

Also, Let T (X(.)) = (T1(.), · · · , TN(.)) denote the set of transfers.

sumptions. First, they assume that given a list of ads, consumers believe that ads are sorted in decreasing
order of quality (and they show that this belief is consistent in equilibrium). Second, for the most part of
the paper they assume that exactly M ads are posted on each page. These two assumption guarantee a
simple form for consumer expected benefit if he considers to click on an ad. Athey-Ellison 2011 [2] finds an
equilibrium in which no advertiser wants to deviate from its bid. They show that advertisers bid truthfully
until they get on the list and then shade their bids. They also study the welfare maximizing reserve price
when there is only one ad slot available.
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Using the above definitions one can compute the click through rate for each position k.
Note that when a consumer j reaches an ad, he will click it only if the expected benefit from
clicking this link exceeds his search cost sj. Recall that we am looking for an equilibrium
in which when consumers see an ordered list of ads, they assume that the ads are ordered
in decreasing order of quality, so they believe the expected quality of the ad in position k
is lower than the expected quality of all ads in higher positions. As a result they consider
clicking on the kth ad only if they have already clicked on the first k− 1 ads and their need
is not met yet. Furthermore, they click on this ad only if its quality conditioned on all
the information so far (i.e. the fact that none of the higher ads has met their need) is still
higher than their search cost.

Following the notation introduced in Athey-Ellison 2011 [2], let z1, · · · , zM be Bernoulli
random variables equal to one with θ[1], · · · , θ[M ] probabilities, i.e. zk = 1 if the ad in
position k meets the consumer need and zero otherwise. Let θ̄[k] denote the expected
quality of the advertiser in the kth position of a sorted list, given the mechanism in place
and the fact that the first k − 1 advertisers has failed to meet consumer need, i.e. θ̄[k] =
E[θ[k]|z1 = · · · = zk−1 = 0, X(.)]. As consumers believe that ads are sorted, conditioned
on reaching position k in the sorted list, a consumer will click on the ad if sj ≤ θ̄[k], which
happens with probability G(θ̄[k]). Note that θ̄[k] represents a conditional mean. [2] shows
that if qualities are uniformly distributed on [0, 1] and precisely M ads are posted, this
probability can be computed in closed form:

P
(
sj ≤ θ̄[k]

)
= G

(N + 1− k
N + k

)
Define C1×M as the vector of the above probabilities for the M positions:

C = (G(θ̄[1]), · · · , G(θ̄[k]), · · · , G(θ̄[M ]))(3)

Under uniform assumption for both qualities and search costs C can be written as the
following:

C = (
N

N + 1
,
N − 1

N + 2
, · · · , N + 1− k

N + k
, · · · )(4)

The click through rate at position k is CTRk = rkCk, so we can write the vector of click
through rates as:

CTR = r(θ̂, θ) ◦ C

which is the Hadamard (element-by-element) product of the two vectors r and C. Note
that unlike [3], click through rates are endogenously determined in this model. Finally,
utility of advertiser i can be written as:

ui
(
θ,X(θ̂)

)
=
(
Xi(θ̂) �

(
r(θ̂, θ) ◦ C

))
θi − Ti(θ̂; θ)(5)

ui
(
θ,X(θ̂)

)
=
(
Xi(θ̂) �

(
r(θ̂, θ) ◦ C

))
(θi − ti(X))(6)
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One can observe that the utility of each player depends on all the reported types (through
the decision rule), his own true type, and the true type of all the players positioned in
higher slots. This makes it clear why we are not in a private value setting anymore.

In the next section we will first define the optimal mechanism properly and solve for
a restricted version of it in order to provide some intuition for the regularity condition
required for existence of optimal mechanism, and how it is different from a private value
setting. With this primary intuition, we proceed to characterizing the full-fledged optimal
mechanism without the restriction. We fully characterize the optimal mechanism for some
parameter values and provide partial generalizations for other case.

3 Optimal Mechanism with Fixed Number of Ads

In this section, we will solve for the optimal revenue maximizing mechanism in which the
mechanism designer posts and ordered list of precisely M ads, so there will not be any
empty ad slots. Intuitively, posting M ads might be suboptimal if ad qualities are all fairly
low, but we start with this restriction in order to show a necessary condition for existence
of optimal mechanism in the common value setting with endogenous click through rates,
which is stronger than what is required when click through rates are exogenous.

Note that by revelation principal we can restrict our attention to the set of direct mech-
anisms

(
X(θ̂), T1(θ̂; θ), · · · , TN(θ̂; θ)

)
, in which the auctioneer (search engine) allocates M

non-homogeneous goods (ad slots) to M players (advertisers). The game is the follow-
ing: The search engine asks advertiser to report their types (i.e. quality of meeting the
consumer’s need). The reports are submitted and based in the submitted reports, M ad-
vertisers are chosen and their ads are posted on the search page (X(.)). In addition, each
advertiser should make a transfer to the auctioneer({Ti(.)}Ni=1).

Bayesian incentive compatibility requires that

Eθ−i

[
ui
(
X(θi, θ−i), Ti(θi, θ−i), θ

)]
≥ Eθ−i

[
ui
(
X(θ̂i, θ−i), Ti(θ̂i, θ−i), θ

)]
(7)

i.e., conditioned on the fact that all other bidders are playing truthfully (reporting their
true types), each player i can not benefit from misreporting his type. Note that advertiser
i’s utility depends on all the reports, his own true quality as well as true quality of some
other advertisers, specifically advertisers who end up being listed before i. As mentioned
earlier, this is why we have a common-value setting.

Finally, for any distribution Φ(x), let V (x) = x− 1−Φ(x)
φ(x)

be the virtual valuation function,

and define I(x) as the ratio of the virtual valuation to quality, i.e. I(x) = V (x)
x

. Distributions
with non-decreasing virtual valuations are called regular distributions. [6] has defined the
following strengthened version of regularity, which turns out to be a key property for the
optimal mechanism here:

Definition 1. (Hyper-regularity) [6] A hyper-regular distribution is a regular distribution

with non-decreasing I(x) = V (x)
x

.
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Given the above definition, the following theorem summarizes the main result of this
section:

Theorem 1. Let advertiser qualities be drawn independently at random from a distribution
Φ(.) on unit interval. The auctioneer is restricted to posting an ordered list of exactly M
sponsored links. Consider the allocation rule X∗ in which the auctioneer posts the ordered
list of M highest-quality ads in descending order of quality. Define the set of expected trans-
fers {T̄i(θ̂; θ)}Ni=1 according to Myerson 1981 [8] to satisfy Bayesian incentive compatibility.

For any arbitrary (non-negative) distribution of search costs G(.), a sufficient condition
for decision rule X∗ to be revenue maximizing and Bayesian incentive compatible is that
Φ(.) is hyper-regular.

In the rest of this section, we will explain the main steps of the proof using the special
case where both Φ(θ) and G(s) are uniform distribution. Details of the derivation can be
found in the appendix.

Expected utility of advertiser i from reporting truthfully when all other players are also
reporting truthfully can be written as:

Ui(θi) = θiv̄i(θi) + T̄i(θi)

The main important point is to realize that although the total transfer Ti(.) depends directly
on some of the true types (beyond its dependence on the reports), it does not depend on
own true type directly since all the direct dependence comes from the click through rate at
position that advertiser i gets, which in turn only depends on the true quality of advertisers
listed before i and not on the true quality of i himself.

As a result, one can apply the classic result of Myerson 1981 [8] to calculate the set of
Bayesian incentive compatible transfers as the following:

T̄i(θi) = Ui(θi)− θiv̄i(θi) +

∫ θi

θi

v̄i(s)ds

with Ui(0) = 0. Note that once the optimal allocation rule is driven, one needs to make
sure v̄i(θi)is increasing.

The auctioneer seeks to maximize his total revenue, i.e. the total transfer from all the
advertisers, which can be written as

∑
i Eθ
[
− Ti(θi)

]
, or equivalently,

∑
i Eθi

[
− T̄i(θi)

]
.

The auctioneers maximization problem will be:

max
X(.),{Ui(.)}Ni=1

∑
i

∫ 1

0

[
θiv̄i(θi)− Ui(θi)

]
φi(θi)dθi(8)

where v̄i(θ̂i) =

∫
θ−i

(
Xi(θ̂i, θ−i) �

(
r(θ̂i, θ−i) ◦ C

))
s.t. (i)X(.) feasible

(ii) v̄i(θi) non-decreasing ∀i

(iii) Ui(θi) = Ui(θi) +

∫ θi

0

v̄i(s)ds, ∀i ∀θi

(iv) Ui(θi) ≥ 0 ∀i ∀θi
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With some further algebra, and specializing φ(.) and G(.) to be the uniform distribution
the above constraint maximization simplifies to

maxX(.)

∫ 1

0

· · ·
∫ 1

0

( N∑
i=1

(
Xi(θ) �

(
r(θ) ◦ C

))(
2θi − 1

))
dθN · · · dθ1(9)

subject to constraints (i) and (ii).
We will first look for a feasible allocation rule X(.), and then show that the resulting

v̄i(.) is increasing for each advertiser i. We claim that efficient ordering, i.e. sorting the
sponsored ad list in descending order of qualities, maximizes the auctioneer’s revenue. In
order to prove the above claim, we will first prove two intermediate lemmas which will then
entail the main theorem.

Let J(.) denote the expression we are integrating over. i.e.

J(X(.), θ) =
n∑
i=1

(
Xi(θ) �

(
r(θ) ◦ C

))(
2θi − 1

)
(10)

If we can find an allocation rule X(.) which maximizes J(.) for every vector of realized θ,
then clearly it will maximize the expected revenue (i.e the J(.) function integrated over all
realizations of θ) as well. Note that the value of J(.) only depends on the M qualities which
are chosen by the allocation rule on the list.

Consider the following function H(.), which takes n numbers a1, a2, · · · , an along with
an integer m ≤ n as input:

H(a1, · · · , an;m) =
m∑
i=1

Ci

( i−1∏
j=1

(1− aj)
)(

2ai − 1
)

(11)

where Ci is the ith entry of vector C defined earlier. There are two key facts which are
worth mentioning: First, only the first m input arguments affect the value of the function.
Second, if we switch the position of two (unequal) inputs, e.g ai and aj (where i < j < m),
then the value of H(.) function will change, so the order of inputs matters for the function.

The important point to note here is that the H(.) function is actually the J(.) function
rewritten in a specific way. To be more precise, Let θ be the N -vector of realized qualities.
For any allocation rule X(.), consider the M quantities which are chosen to be posted on
the list, in the same order as implied by X(.); i.e (θ[1], θ[2], · · · , θ[M ]). Let θ{M+1···N} denote
the remaining θi’s in any random order (i.e. an (N −M)-vector), and append it to the
above list. We have:

J((θ1, θ2, · · · , θN , X(.)) = H(θ[1], θ[2], · · · , θ[M ], θ{M+1···N};M).

Intuitively, the kth term if the H(.) function corresponds to the payment from advertiser
in the kth position of the ad list . Since advertisers who are off the list do not make any
payments, there is no term associated with them in the H(.) function. The following lemmas
establish two useful properties of the H(.) function.

8



Lemma 1. Consider the n-sequence (a1, a2, · · · , an). If ak < ak+1 (k + 1 ≤ m), then
switching entries k and k + 1 can only increase H(.); i.e.

H(a1, · · · , ak, ak+1, · · · , an, ;m) < H(a1, · · · , ak+1, ak, · · · , an;m)

Proof. In the appendix.

Lemma 2. If am < ax (x > m), then switching entries am and ax can only increase H(.);
i.e.

H(a1, · · · , am, · · · ax, · · · , an;m) < H(a1, · · · , ax, · · · , am, · · · , an;m)

Proof. In the appendix.

With the above two lemmas we can prove our result in the special case of uniform
qualities and search costs. We present this special case and its proof in the following
corollary, and later use a very similar argument to prove the general theorem.

Corollary 1. When advertiser qualities and consumer search costs are drawn independently
at random from uniform distribution with support [0, 1], efficient ordering, i.e. sorting the
sponsored ad list in descending order of qualities, maximizes the auctioneer’s revenue and
is Bayesian incentive compatible.

Proof. Note that we can model the auctioneer choice as a two phase process: First, M
advertiser’s are chosen and then they are sorted in the desired order. The proof proceeds in
two steps: Step one shows that any list of chosen ads should be sorted in decreasing order
of quality (phase 2), and step two shows that the M highest-quality ads must be chosen
(phase 1). Both steps use the H(.) function defined above.

Let us assume the revenue maximizing list of chosen ads is not the M highest qualities
sorted in descending order. Let θ̃ denote the list of the N qualities in the following order:
The first M entries are the sorted list of ads chosen by the auctioneer, and the last N −M
entries are the qualities of the remaining advertisers (not posted online) in any random
order.The assumption that efficient ordering is not revenue maximizing implies:

(θ̃1, θ̃2, · · · , θ̃M) 6= (θ1, θ2, · · · , θM).

Recall that only (θ̃1, θ̃2, · · · , θ̃M) affects the revenue, and the quality of the rest of the
ads are irrelevant. First assume that θ̃ violates the first condition so that we don’t have
θ̃1 > θ̃2 > · · · > θ̃M . Let θ̃i and θ̃j be a pair of entries violating the above condition, i.e. we
have i < j and θ̃i < θ̃j. By Lemma 1, exchanging θ̃i and θ̃j only increases the revenue, so
the initial ordering could not be revenue maximizing, which contradicts the assumption. As
a result, any θ̃ chosen by the auctioneer should have the property that its first M elements
are sorted in decreasing order.

Now assume that θ̃ indeed satisfies the first condition, but it violated the second con-
dition, so that there exists an advertiser whose quality is between the M highest qualities,
but he is not included among the sponsored link ads. As a result, there exist i, j such that
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i ≤M < j and θ̃i < θ̃j. Since the first M elements are sorted in decreasing orders, we will
have θ̃M < θ̃j. Now by Lemma 2 switching θ̃M and θ̃j can only increase the revenue and
consequently the initial ordering could not be revenue maximizing.

The last thing that we need to show is that v̄i(.) is increasing in θi. This is trivial
since with this allocation rule, a higher θi results in a higher position, and so a larger click-
through rate (i.e larger entries in both C and r vector). Since v̄i(.) exactly corresponds to
the click-through rate that the advertiser will get, it will be increasing in θi which completes
the proof.

In order to get the results for general distributions, we need two more lemmas. Note that
these generalizations are interesting because its an inherently hard problem to approximate
these distributions, specially the search cost distribution. The next two lemmas establish
the result of the paper for any distribution of the search costs.

Lemma 3. For any arbitrary distribution of qualities, φ(.), if consumers believe that ads
are sorted in descending order of quality, their belief about the quality of an ad conditioned
on not being fulfilled by higher ads is decreasing as they go down the list; i.e. θ̄[k] ≥ θ̄[k+1].

Proof. In the appendix.

Lemma 4. When advertiser qualities are drawn independently at random from distribution
φ(.), for any arbitrary (non-negative) distribution of search costs, efficient ordering, i.e.
sorting the sponsored ad list in descending order of qualities, maximizes the auctioneer’s
revenue.

Proof. In the appendix.

We now have all the necessary means to prove the main result of the paper, which can
be viewed as a natural extension of the proof for Theorem 1. This proof is provided in the
appendix.

Theorem 1 says that there is a sufficient condition under which the search engine has
no incentive to use a mix strategy in allocating ad slots, neither does he have an incentive
to leave any high quality ads out of the posted list, and his decision rule is a BNE. This
is the analogous result to the classic optimal mechanism design problem (as studies for
instance in Myerson 1981 [8]. However, the important point is that the sufficient condition
for Bayesian incentive compatibility is not the same in the two cases: in particular, it is
stronger here. In other words, I(θi) increasing implies that V (θi)) is increasing, but the
reverse is not true.

The intuition behind this difference is very interesting. In most applications, when an
object is allocated to a bidder, he gets the benefit with probability one, so one only needs
to adjust for the rent required to induce truth telling and the adjusted value, i.e. virtual
valuation, should be increasing. This is not the case in the current problem. Here we have
that if advertiser i is allocated a spot, he would get a match only with probability θi, so
the virtual valuation adjusted for this probability is what should be increasing, i.e. I(θi)
rather than V (θi).
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4 Optimal Number of Ads

Assume the auctioneer commits to posting at most M , instead of exactly M links. In this
more general specification, the feasibility of an allocation rule is slightly different. Specif-
ically, condition (1) remains the same as before, but (2) is relaxed (into two conditions).
i.e, we will have: ∑

j

Xij ≤ 1 1 ≤ i ≤ N(12) ∑
i

Xij ≤ 1 1 ≤ j ≤M(13)

Xik > 0 only if
∑
i

Xij = 1 j ≤ k ≤M(14)

13 says there can be empty slots (i.e. number of posted ads can be less than number of
available positions), while 14 says slot k can be filled only if all the slots above k are already
filled up.

The revenue function keeps its original form, but the auctioneer have an extra degree
of freedom on the number of ads to post online, besides choosing which ads to post. As a
result, the generalized maximization problem can be written as

maxX(.),K≤M

∫ 1

0

· · ·
∫ 1

0

( N∑
i=1

(
Xi(θ) �

(
r(θ) ◦ C

))(
2θi − 1

))
dθN · · · dθ1

subject to the same conditions as specified in (8). Note that K is the number of posted ads
implied by X(.), and we have explicitly added it into choice variable only to be more clear.
The change is that in this generalized version, condition (ii) in (8), i.e. the feasibility of
X(.) is defined by (12,13,14) instead of (1,2).

This new choice variable for auctioneer has two implications. Recall that the auction-
eer’s optimization problem specified by (19) is the sum of M terms, where the ith term is
associated with (2θi − 1). Note that if θi <

1
2
, the ith term along with all the following

terms of the revenue function will be negative, which means they are actually reducing the
auctioneers revenue, so the auctioneer is better off shortening the list and dropping these
negative terms. The second implication is through vector C. The difficulty is that the
number of ads posted, k, affects conditioning information for consumer in computing θ̄[k].

θ̄[k] = E[θ[i]|z1 = · · · = zk−1 = 0, K ads are posted]

One can imagine that a larger K will potentially increase the above expectation for
each k ≤ K and so enhance the revenue as consumers would think that there are more
”high quality” ads, which gives the auctioneer an incentive to post as many ads as possible.
However, the fact is that consumers will endogenize this effect and won’t be ”fooled”.
Nevertheless, the feed-back effect is in fact present, and in the next section we will show
that in a special case it goes in the reverse direction. We believe the intuition carries over
to the general case.
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Note that since the number of bidders is N ( potentially N >> M), the choice of K can
in principal depend on all the reports. Before we proceed to the special case, we will present
a useful lemma that would which restrict the number of relevant reports in determining K
to M highest reports.

Lemma 5. With N advertisers and M ads (N > M), at most the highest M reported
qualities are relevant to determine K. Moreover, the K ads posted in equilibrium are the
K highest quality ads ordered in descending order of quality.

Proof. In the appendix.

Next we characterize auctioneers optimal decision when there is only one possible po-
sition, i.e. M = 1. Note that with a single available position, the search engine can post
either one ad or nothing (i.e. K = 1 or K = 0). In other words, a single available position
does not imply a single posted ad.

By Lemma 5 we already know that only the highest reported quality is relevant for
auctioneer’s optimal strategy. Also, Proposition 1 ensures that bidders report truthfully
if the allocation rule is monotone in each bidder’s report. So we assume truthful reports
and then show that the optimal auctioneer strategy is in fact monotonically increasing in
each bidder report. Throughout the rest of this section, we maintain the assumption that
consumer search costs are uniformly distributed. The assumption is made only for clarity
and all the results go through if the assumption is relaxed.

The following theorem lays out the optimal decision rule for the auctioneer, which is
basically the decision whether to post an ad or not.

Theorem 2. When there is only one possible ad position available, the optimal decision
rule for the auctioneer whether to post one ad or not is a cut-off rule. Specifically, there
exists a θ∗ such that he posts the highest ad if it is above θ∗, and otherwise posts no ads.

Moreover, let θ̃ be such that V (θ̃) = 0. The optimal decision is such that θ∗ > θ̃, i.e. in
order to generate higher expected revenue from higher quality bidders the auctioneer must
raise the bar; i.e. commit to post only very high quality ads (through a high reserved price).

Proof. In the appendix.

Why is the above comparison interesting? Note that θ̃ is what the cut-off would be
if consumer beliefs were exogenous. With the endogenous beliefs, there is a new trade-off
which leads the auctioneer to be more restrictive than before. The old reason to restrict
the allocation of the object, i.e. setting a positive reserve price to maximize revenue, is still
present here and restrict the low value bidders; but there is also a new reason to restrict
even further which is improvement in beliefs conditional on seeing an ad.

The idea of the proof is the following: posting better quality ads has two positive
effects for the auctioneer: First, bidders with higher qualities are willing to pay more
since their expected payoff conditional on receiving a click is higher. Second, it improves
consumer’s expectation of the posted ad (if one is posted). As a result, the auctioneer
commits not to post some moderate qualities which generate positive expected revenue
themselves (θ̃ < θ < θ∗ as defined in the theorem) in order to improve consumer’s belief

12



about the quality of the ads who end of being posted and generate more revenue from them.
In other words, the gain from improved consumer belief about better quality ads outweighs
the loss from not posting the moderate ads. A rigorous proof for general distributions is
provided in the appendix, but the following example can be very useful to understand the
essence of the proof.

Example 1. One available position, and N bidders.

Take the very simple case where there are N advertisers and only one available ad position.
Assume the quality of each bidder is drawn from a hypothetical distribution φ̂(.) such that
the first order statistic is uniformly distributed on the unit interval. The search engine can
choose to post one bidder or not.

Given Lemma 5 when there is only one available position, only the first order statistic of
the qualities matter for auctioneer decision whether or not to post an ad. With a little abuse
of notation, let θ denote the first order statistics. The mechanism designer maximizes:

∫ 1

0
θy(θ)dθ∫ 1

0
y(θ)dθ

∫ 1

0

V (θ)y(θ)dθ

where y(.) is the allocation probability. Note that the first term is the expectation of
consumers about the quality of the posted ad given auctioneer allocation rule, and the
second term is the “classic” expected revenue from allocating a single object to a single
bidder, i.e. if there was no feedback effect from allocation rule to consumer beliefs. Let
L =

∫ 1

0
y(θ)dθ. Note that value of L is invariant to any reordering of y(.). As a result, for

any fixed L, ”swapping” high y(.)’s from low to high θ increases both terms in numerator
(while keeping the denominator constant by assumption). Consequently, y(.) is a step
function and the jump (from 0 to 1) occurs at 1− L, i.e.

ŷ(θ) =

{
0 if θ < 1− L
1 if θ ≥ L

So the above optimization problem boils down to choice of optimal L (equivalently the
cut-off for y(.)).

For numerical purposes, assume N = 1.3 For this particular example with uniform
distribution, the jump of the step function happens at θ∗ =

√
3

3
> θ̃ = 1

2
. In other words,

the auctioneer chooses not to post some positive-revenue generating ads in order to boost
consumer expectation of the posted ads.

The next theorem provides a generalization of the previous theorem to a general case
of multiple ad positions. The full characterization of the optimal mechanism remains for
future work.

3Why am we making this ”extra” assumption? First of all note that conceptually, this is without
loss of generality since with one position only the first order statistic matter. Second, note that with one
position (and any number of bidders), the function we are integrating over is E[θ[k]|y(.)]V (θ)y(θ) where the
density in V (θ) is φ(θ), the distribution of each quality. On the other hand, the distribution function we
are integrating over is the distribution of first order statistic, φ1(θ). N = 1 means φ(.) = φ1(.) = U [0, 1],
which gives a clean cut numerical example.
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Theorem 3. Assume there are N bidders and M ad positions, and let θ̃ be such that
V (θ̃) = 0. No ad with quality θ < θ̃ will be posted.

Proof. In the appendix.

In order to build some intuition, consider the following different belief structure: Assume
consumers did not know what the true M is ex-ante and they believed it is equal to the
number of posted ads, i.e. they believed M = K. Under such belief structure the number
of posted ads does not enter the consumer information set that they use to compute the
expected ad qualities, so the optimal mechanism for the auctioneer is to use the mechanism
devised in the previous section (i.e. order the advertisers in descending order of reported
qualities), but on top of that cut out all the ads with quality θ such that V (θ) < 0 since
these ads generate negative revenue. This same reserve price would be optimal if click
through rates were exogenous.

Comparing the original and these latter auction conveys the main intuition behind the
theorem: The feedback effect from the optimal allocation rule to consumer belief leads the
auctioneer to be more picky about the choice of ads presented to consumers. This makes
the consumers more confident that they are more likely to get what they want if they click
on the sponsored ad, so they would click more on these higher quality ads. This is better for
the auctioneer: The auctioneer extracts more revenue from the better quality ads who are
more willing to pay more at the expense of not generating any revenue from some moderate
ads.4 In other words, being able to adjust the number of ads gives the auctioneer and extra
degree of freedom to signal the ad qualities to consumers and this ability incentivize the
mechanism designer to be more strict in his criteria for posting ads. Without this signal,
he has no incentive to leave out any ad that can generate positive expected revenue since
consumer belief about the quality of the posted ads cannot be affected anyways.

The following two examples provides some more intuition about Theorem 3.

Example 2. Two available positions with the same reserve price, and N bidders.

Assume there are N advertisers and two possible ad positions, M = 2. Also, assume
both qualities and consumer search costs are drawn from uniform distribution over the unit
interval, F (θ) = θ. Finally, assume that the search engine uses a reserve pricing rule to
post ads, and he can not set different reserve prices for the two positions.5 Let c denote the

4In general expected consumer welfare, i.e. expected needs met minus expected search cost is not
maximized at the same reserve price. In section 5 we show that if ad qualities are presented to consumers,
cut-off V (θ̃) = 0 is revenue maximizing, but welfare is not maximized at the same cut-off. The reason
is that with full information, consumers are best off being presented with as many ads as possible (only
constrained by maximum number of ad positions in the page); which is not optimal for the advertiser.
When only ordinal information is presented the problem is more subtle: consumers get an extra signal
when the auctioneer is able to choose the number of ads compared to when he is not, and in equilibrium
this signal is such that it gets more consumers to click on better ads which is welfare enhancing. On the
other hand, even more ads are left out which is welfare destroying.

5Obviously, removing this restriction can only increase the expected revenue since without this re-
striction, the auctioneer can still choose the same reserved price if he wants to. So this example is not
characterizing the optimal reserve prices. It is designed to show that the optimal reserve price assuming
independent valuations is not optimal now that we have interdependent values.
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Figure 1: Expected revenue as a function of reserve price for different number of advertisers
when there are two positions, and the same reserve price is used for both positions. Revenue
curve shifts up and flattens as N increases.

optimal reserve price. By lemma (5), only the first order statistic (FOS) and second order
statistic (SOC) of the reported qualities matter for the search engine.

The search engine solves the following maximization problem:

max
c

∫ 1

c

∫ c

0

E[θ1|θ1 ≥ c, θ2 < c]V (θ1)f1,2(θ1, θ2)dθ2dθ1+∫ 1

c

∫ θ1

c

[
E[θ1|θ1, θ2 ≥ c]V (θ1) + E[θ2|θ1, θ2 ≥ c, z1 = 0](1− θ1)V (θ2)

]
f1,2(θ1, θ2)dθ2dθ1

where

E[θ1|θ1 ≥ c, θ2 < c]: expectation of FOS when FOS/SOS is larger/smaller than c.

E[θ1|θ1, θ2 ≥ c]: expectation of FOS when FOS & SOS are larger than c.

E[θ2|θ1, θ2 ≥ c, z1 = 0]: expectation of SOS when FOS & SOS are larger than c

and first ad did not meet consumer need.

V (θ) = θ − 1− F (θ)

f(θ)

Note that there is a slight abuse of notation in using V (.), i.e. V (x) = x− 1−F (x)
f(x)

(i.e. 2x−1

in this particular example), regardless of the actual distribution of x. In particular, in this
example θ1 and θ2 are first and second order statistics of N uniform random variables so
they are not distributed uniformly anymore. Also, recall that z1 is the Bernoulli random
variable which takes value 0 if a match does not happen when the consumer clicks on the
first ad. Finally, f1,2(θ1, θ2) = NF (θ2)N−2 is the joint distribution of first and second order
statistic.

The first term in the sum is the expected revenue when only one ad is posted, i.e. only
the highest order statistic of qualities is above the reserve price c. The second term has
both highest and second highest quality ads posted since they are both above the reserve
price. Note that the second term has two parts: the expected revenue from the first ad and
the expected revenue from the second ad which is clicked if the first click is unsuccessful.
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Figure 2: Optimal reserve price as a function of number of advertisers. There are two ad
positions and the same reserve price is used for both.

Figure 1 shows how the expected revenue changes as a function of reserve price for
different values of N . The lowest curve corresponds to N = 2. The revenue is maximized
at a single reserve price c > 1

2
, which is in line with Theorem 3. Theorem 3 implies that

with endogenous click through rates (due to endogenous beliefs), the mechanism designer
restrict the set of chosen ads further compared to if beliefs where exogenous. The above
example shows that although setting a single reserve price for two positions may not be
the optimal decision rule for the mechanism designer, even in the set of such rules the best
reserve price is greater than 1

2
, which would be the optimal reserve price if beliefs where

exogenous and we where in a Myerson 1981 [8] world. As N increases, revenue curve shifts
up pointwise since the expectation of first and second order statistics are increasing in
number of advertiser. Moreover, the revenue curve becomes almost flat and then it drops.
In other words, revenue becomes less sensitive to the choice of reserve price which is very
intuitive: as N gets large it becomes more likely that the first two order statistics are quite
large, so there is not much gain to setting a reserve price. However, the optimal reserve
price is increasing in N , although the sensitivity of revenue to reserve price sharply decreases
as N increases. Figure 2 depicts the optimal (same) reserve price (for two positions) for
different number of advertisers.

Example 3. Two available positions with (potentially) different reserve prices, and N
bidders.

If the mechanism designer is restricted to use reserve pricing, but can set different reserve
prices for the two slots, the optimal rule would be of the following form:

y(θ1, θ2) =


2 ads posted θ1 ≥ c2, θ

2 ≥ c2

1 ad posted θ1 ≥ c1, θ
2 < c2

No ad posted Otherwise

where c1(c2). The above rule implies that c1 (c2) is the reserve price on the first (second)
position. It is important to note that c1 ≤ c2, otherwise the decision rule is inconsistent.
Also, since by definition θ2 ≤ θ1, with some more algebra it can be shown that the above
rule is the only consistent rule with two (potentially) different reserve prices.
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With this rule in mind, the search engine objective function is very similar to Example
2:

max
c1,c2

∫ 1

c1

∫ min{c2,θ1}

0

E[θ1|θ1 ≥ c1, θ
2 < c2]V (θ1)f1,2(θ1, θ2)dθ2dθ1+∫ 1

c2

∫ θ1

c2

[
E[θ1|θ1, θ2 ≥ c2]V (θ1) + E[θ2|θ1, θ2 ≥ c2, z

1 = 0](1− θ1)V (θ2)
]
f1,2(θ1, θ2)dθ2dθ1

Numerical maximization shows that for small values of N , the mechanism designer chooses
c1 ≈ c2. As N gets large the gap between the two reserve prices widen, but as mentioned
in Example 2 the left tail of the revenue curve is almost flat for large N , so the effect of
lowering c1 compared to c2 on expected revenue is almost negligible.

So what is the punch line? we have shown that similar to a setting with private valua-
tions, with common values the auctioneer always chooses to post the highest quality ads,
which is not surprising (although the required regularity condition is more strict here).
Where the two settings differ when it comes to setting the reserve price: with common
valuation the optimal reserve price is higher. So if a search engine is setting reserve prices
for sponsored search ads using traditional formulas, they are doing it wrong! They should
set higher reserve prices for a very clear reason: The search engine wants a reserve price
not just to eliminate negative marginal revenue bidders at the current beliefs, but also to
improve beliefs about ad quality.

5 Posting List of Reported Qualities

In this section, we study the scenario in which the auctioneer posts the qualities reported
by the advertisers along with their ads on the search page. Note that the cardinal in-
formation imposes a natural ordering on the ads (order of being clicked). We start with
uniform distribution of qualities, but arbitrary distribution G(.) for search costs. We can
formulate the advertiser’s utility function in a similar fashion as in the previous section
with one modification: As the consumers observe the exact qualities, their expectation of
link qualities does not affect their search behavior, and they click only if the posted quality
is larger than their search cost. As a result, we will have:

ui
(
θ,X(θ̂)

)
=
(
Xi(θ̂) � r(θ̂, θ)

)
G(θ̂i)

(
θi − ti(X)

)
(15)

ui
(
θ,X(θ̂)

)
=
(
Xi(θ̂) � r(θ̂, θ)

)
G(θ̂i)θi − Ti(X)(16)

Observe that as in the previous section, advertiser utility depends on his own true type
only linearly (although it depends on his announced type in a more complicated fashion
than before). Consequently, all the arguments of the previous section hold here as well. We
will state the main theorem of this section, which is analogous to Theorem 1 in a general
setting, and then derive the special case of uniform qualities and uniform search costs as a
corollary.
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There are a few subtleties involved with this problem. The first one relates to the
definition of the allocation rule X(.). Recall that in the previous case, the order in which
ads were shown determined the order in which they were being clicked. Note that here
the auctioneer only decides on which M ads to post online, and after that there is no
choice of ordering, since the posted qualities themselves impose a specific order of being
clicked. So basically in our notation for X(.), the auctioneer chooses which rows he want
to put a 1 in (i.e. which ads he wants to post online), and the column of the 1 in each
row is determined by the rank of the quality of the advertiser who corresponds to that row,
relative to the rank of the other chosen advertisers. This means that the auctioneer is not
”free” to choose any allocation that he wants, i.e. since the consumers directly observe the
cardinal information on the reported qualities, the auctioneer can not attempt to increase
his revenue by misreporting the ordinal information. As an example, if θ̂i > θ̂j, the following

allocation is invalid: Xik1 = Xjk2 = 1, k1 > k2, because observing the θ̂i’s, the consumers
first click on i and then on j. As a result, in this case Xij = 1 means that the auctioneer
has chosen advertiser i, and j − 1 other advertisers with higher quality.

The next subtle point is how to interpret Lemma 1 and Lemma 2 which we proved in the
previous section. There, we basically devised a multi-step algorithm which the auctioneer
was to take and go from a non-efficient allocation to the efficient one and only increase the
revenue along the way. Here, those steps can not be materialized anymore, i.e. they don’t
have real world realization (i.e., the auctioneer can not enforce the consumers to click on
a lower-quality ad before a higher quality one). As a result, these steps only correspond
to intermediate values which are used to show that revenue in one case is higher than the
other case. Having these in mind, we state our last theorem which is analogous to Theorem
1:

Theorem 4. Let advertiser qualities be drawn independently at random from a distribution
Φ(.) with non-negative support [θ, θ̄] and increasing virtual valuations, V (θi) = θi− 1−Φ(θi)

φ(θi)
.

Also, Let θ̃ be such that V (θ̃) = 0. Let K be the number of ads with quality higher than θ̃.
Consider the decision rule X∗(.) in which the auctioneer sets the reserved quality to be θ̃, and
posts the list of min(M,K) highest-quality ads along with the their corresponding reported
qualities. For any arbitrary (non-negative) distribution of search costs, G(.), a sufficient
condition for X∗ to be revenue maximizing is that Φ(.) is hyper-regular for θi > x∗; which
is the same condition as in Theorem 1.

Proof. In the appendix.

The following corollary states the result for the special case where both search costs and
qualities are uniform random variables:

Corollary 2. Let advertiser qualities and consumer search costs be drawn independently
at random from uniform distribution with support [0, 1]. Moreover, assume the auctioneer
commits to posting at most M ads on the search page along with the reported qualities of
the advertiser. In this scenario, the revenue maximizing allocation rule is to post K ≤ M
highest-quality ads such that θK > 1/2 and θK+1 < 1/2.
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6 Revenue Comparison

In this section, we study how the revenue generated from the mechanism with only ordered
list of ads posted (section 4) compares to that of the mechanism in which ad qualities posted
as well (section 5). This question is very important since it sheds light on how willing search
engines are in providing information to consumers and has important welfare implications.
In order to analyze this question we restrict my attention to the case where there are N
advertisers and only one available ad position.

First note that there are two channels through which revenue can be enhanced: higher
volume of search, and higher per-click payments made by advertisers. In addition, higher
volume of search can itself come from two sourced: showing an ad more frequently, or more
search conditional on an ad being shown.

Let SVO (Search Volume Ordinal) and SVQ (Search Volume Quality) denote the ex-
pected total search volume when ordinal and quality information about qualities are posted,
respectively.6

SVO = G(E[θ1|θ1 > c)P (θ1 > c)

SVQ =

∫ 1

1
2

G(θ1)f1(θ1)dθ1

where c is the optimal reserved price and f1(.) is the distribution of first order statistic.
Consider the simple case when qualities and search costs are uniformly distributed,

G(s) = s, Φ(θ) = θ. We have already proved that c > 1
2
, so the total volume of search

is higher when quality is posted. Intuitively, when quality is not posted the search engine
commits to restricting himself further by setting a higher reserve price in order to get more
clicks when an ad is posted, but this commitment has a negative effect on the revenue
as well since it means the search engine posts an ad less frequently. On the other hand,
the number of clicks conditional on an ad being posted with no quality is higher than the
expected number of clicks conditional on an ad being posted along with its quality. However
with uniform search costs the first effect dominates and total search volume is always higher
if quality is posted.

Difference in revenue depends on concavity of both quality and search cost distributions
as well as number of bidders. Increasing the number of bidders acts through two different
channels: first, it increases the probability of the best ad being good enough to be posted
which enhances the revenue in both cases. Second, it enhances the expected quality of the
first order statistic, which only improves the revenue when quality is not posted.

Numerical analysis using the following functions provides some intuition about the rel-
ative total search and revenue. We have used F (θ) = θx, and G(s) = sm or G(s) =

1
1−e−m (1− e−ms).7 First note that (̃θ) is increasing in x (recall that V (θ̃) = 0, so (̃θ) is the
reserve price is quality is posted).

6In other words, SV O is the expected total search volume when only and ordered list of ads is posted,
and SV C is the expected search volume when qualities are also posted.

7This is a variation of exponential distribution adjusted to be a distribution over the unit interval.
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Figure 3: RevO (solid) and RevQ (dashed) as a function of reserve price c. Dashed and
solid lines are the expected revenue when qualilies are and are not posted, respective.
There are N = 5 adverstisers, quality distribution F (θ) = θ0.6 and search cost distribution
G(s) = 1

1−e−2 (1− e−2s).

This analysis shows that for the aforementioned classes of functions, both total search
volume and expected revenue is higher when quality is posted. Let RevO and RevQ denote
the expected revenue when ordinal and quality information is posted, respectively. Recall
that c is the reserve price used by the search engine if quality is not posted. Note that if
quality is posted, search engine will use θ̃ such that V (θ̃) = 0 as the reserve price, and given

the particular form used for F (θ), θ̃ can be computed in closed form, θ̃ = 1
1+x

− 1
x .

The following two figures provide a schematic view of this result. The first figure plots
the expected revenue when quality is posted and when it is not as a function of c for a
set of randomly chosen parameters. The second figure shows the behavior of difference in
revenue and total search as a function of reserve price c (used for posting ads when quality
is not posted) for the following parameter values: N = 5, x = 0.6 and m = 2.

The dashed line is the expected revenue when quality is posted (RevQ) and the solid
curve is the same thing when quality is not posted (RevO). Note that RevQ is independent
of choice of c, so it is a constant line. RevO changes with c, and it is maximized at θ∗ which
is the optimal reserve price and satisfies the theoretical prediction: θ∗ > θ̃.

The above parameter values were randomly chosen, but the relative placement of the
two curves is robust to change in parameters, so the optimal mechanism if quality is not
posted generates weakly lower expected revenue compared to the optimal mechanism if
qualities are posted. As m gets larger and search cost distribution becomes more concave,
search volume increases when quality is not posted, and the expected revenues converge.
N = 5, x = 0.6 and m = 2 is one such example.

The dashed curve is the difference in expected revenue when quality is posted and when
it is not, while the solid curve is the difference in total search volume among the two cases.

The above analysis suggests that to the extent that the above classes of distributions
are good approximations to advertiser and consumer characteristics, search engines have a
tendency to disclose the information that they obtain from advertisers (through their bid-
ding mechanism) to the consumers. More precise characterization of classes of distributions
for which this result holds remains for future research.
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Figure 4: ∆Rev=RevQ − RevO (dashed) and ∆Search=SVQ − SVO (solid) as a function
of reserve price c. Although posting ad qualities can decrease the search volume, but in
enhances the revenue since search is better directed. There are N = 5 adverstisers, quality
distribution F (θ) = θ0.6 and search cost distribution G(s) = 1

1−e−2 (1− e−2s).

7 Conclusion

In this paper we study the optimal revenue maximizing mechanisms in common value
position auctions. For the most part of the paper, we assume that the search engine only
reveals ordinal information about ad qualities, i.e. the search engine only conveys the
relative ranking of the ads to consumers but does not tell them how good each ad is. We
show that with endogenous click-through-rate hyper-regularity of distribution of ad qualities,
a strengthened version of familiar regularity (increasing virtual valuations) condition, is a
sufficient condition for existence of a non-ironed optimal mechanism. More importantly,
we show that the mechanism designer displays fewer ads compared to the case where click-
through-rates are exogenous. Consequently, if the search engine ignores the feed back effect
of the allocation rule into consumer beliefs, too many ads will be posted compared to what
is revenue maximizing.

We also study an extension in which cardinal information about ad qualities are posted
and we show how the optimal mechanism differs with the former case. Finally, we provide
some interesting revenue comparison results across the two cases, which can shed light on
the amount of information about advertisers that search engines are willing to share with
consumers.
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8 Appendix

8.1 Derivations of Section 3

Substitute 5 in 7 to get the truth-telling incentive compatibility constraint:

Eθ−i

[(
Xi(θi, θ−i) �

(
r((θi, θ−i), θ) ◦ C

))
θi − Ti(θi, θ−i)

]
≥

Eθ−i

[(
Xi(θ̂i, θ−i) �

(
r((θ̂i, θ−i), θ) ◦ C

))
θi − Ti(θ̂i, θ−i)

]

Note that the mechanism designer can have a per-click payment rule ti(θ̂) so that we
have:

Ti
(
θ,Xi(θ̂)

)
=
(
Xi(θ̂) �

(
r(θ̂, θ) ◦ C

))
ti(θ̂)

Further define the ”conditional benefit” as:

vi
(
θ,X(θ̂)

)
=
(
Xi(θ̂) �

(
r(θ̂, θ) ◦ C

))
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So that each advertiser utility function can be written as:

ui
(
θ,X(θ̂)

)
= θivi

(
θ,X(θ̂)

)
+ Ti

(
θ,Xi(θ̂)

)
Next we will use the following result from Myerson 1981 [8] to compute the Bayesian

incentive compatible set of transfers.

Proposition 1 (Myerson [8]). The social choice function f(.) = (k(.), t1(.), · · · , tN(.)) is
Bayesian incentive compatible if and only if, for all i = 1, · · · , N ,

• v̄i(.) is non-decreasing.

• Ui(θi) = Ui(θi) +
∫ θi
θi
v̄i(s)ds for all θi.

However, in order to be able to use this result we need to ascertain that vi(.) and Ti(.)
are in fact (directly) independent of θi itself, i.e. they are independent of own true type
but can depend on other players true type (as well as all the reported types).

Let us focus on vi(.), and then the exact same argument holds for Ti(.) as well. If the ad
of advertiser i is not chosen to be posted on the search page, then Xi is the all-zero vector,
and so vi(.) is zero and independent of θi. To see why the above independency condition
holds when slot j is allocated to advertiser i, i.e. Xij = 1 and θ[j] = θi,note that the vi(.)

function depends on θ only through r(θ, θ̂). Since each advertiser gets at most one position,
θ[k] 6= θi for all k 6= j, and as a result rj = (1 − θ[1]) · · · (1 − θ[j−1]), i.e. the only entry of
vector r which appears with a non-zero coefficient in vi(.), is independent of θi. Therefore,
vi(.) is independent of θi as well.

The rest of the derivation is straight forward. One can further refine the utility function
as the following:

ui
(
θ−i, X(θ̂)

)
= θivi

(
θ−i, X(θ̂)

)
+ Ti

(
θ−i, Xi(θ̂)

)
i.e. player i utility can be written as a linear function of his own type, θi. We am interested
in a truth-telling equilibrium, so it is appropriate to define v̄i(θ̂i) and T̄i(θ̂i) as the expected
”benefit” and transfer of player i given that he announces his type to be θ̂i and that all
players j 6= i truthfully reveal their types.

v̄i(θ̂i) = Eθ−i

[
vi
(
θ−i, X(θ̂i, θ−i)

)]
= Eθ−i

[
vi
(
θ̂i, θ−i

)]
T̄i(θ̂i) = Eθ−i

[
Ti
(
θ−i, X(θ̂i, θ−i)

)]
= Eθ−i

[
Ti
(
θ̂i, θ−i

)]
Recall that the advertisers qualities are independent. Using our new notation, advertiser

i’s expected utility from social choice function f(.) when his type is θi, he announces θ̂i and
everyone else reports truthfully can be written as

Eθ−i

[
ui
(
f(θ̂i, θ−i), θi|θi

)]
= θiv̄i(θ̂i) + T̄i(θ̂i)

Moreover, let Ui(θi) denote advertiser i’s expected utility from the mechanism condi-
tional on his type being θi and everyone (including i) reporting truthfully:

Ui(θi) = θiv̄i(θi) + T̄i(θi)
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Finally, using Proposition 1 the expected transfer function can be written as:

T̄i(θi) = Ui(θi)− θiv̄i(θi) +

∫ θi

θi

v̄i(s)ds

and per-click transfers (t1(θ), · · · , tn(θ)) should be chosen such that

Eθ−i

[
Xi(θ̂) �

(
r(θ̂, θ) ◦ C

)
ti(θ̂)

]
= T̄i(θ).

Derivation of Search Engine Objective Function.
Consider the maximization problem 8. Feasibility of Xi(.) means (1) and (2) are sat-

isfied. Conditions (ii) and (iii) ensure that the allocation rule and transfer functions are
Bayesian incentive compatible, and (iv) is the participation constraint, i.e. each advertiser’s
utility from participating in the auction must be higher than his utility from not doing so,
which is zero.

Note that if constraint (iii) is satisfied, then (iv) will be satisfied if and only if Ui(θi) ≥ 0
for all i. As a result, we can replace constraint (iv) with the following constraint:

(v) Ui(θi) ≥ 0 ∀i

To solve the optimization problem, substitute into the objective function for Ui(θi) using
constraint (iii) and consider only the payment from a single advertiser for the moment:

Eθi
[
− T̄i(θi)

]
=

∫ θ̄i

θi

(
θiv̄i(θi)− Ui(θi)

)
φi(θi)dθi

=

∫ θ̄i

θi

(
θiv̄i(θi)− Ui(θi)−

∫ θi

θi

v̄i(s)ds
)
φ(θi)dθi

=

[∫ θ̄i

θi

(
θiv̄i(θi)−

∫ θi

θi

v̄i(s)ds
)
φi(θi)dθi

]
− Ui(θi)(17)

Use integration by parts to simplify:∫ θ̄i

θi

(∫ θi

θi

v̄i(s)ds
)
φi(θi)dθi =

(∫ θ̄i

θi

v̄i(θi)dθi

)
−
(∫ θ̄i

θi

v̄i(θi)Φi(θi)dθi

)
=

∫ θ̄i

θi

v̄i(θi)(1− Φi(θi))dθi

and substitute in (17) to get:

Eθi
[
− T̄i(θi)

]
=

[∫ θ̄i

θi

v̄i(θi)
(
θi −

1− Φi(θi)

φi(θi)

)
φi(θi)dθi

]
− Ui(θi) =[∫ θ̄1

θ1

· · ·
∫ θ̄N

θn

vi(θ)
(
θi −

1− Φi(θi)

φi(θi)

)( N∏
j=1

φj(θj)
)
dθN · · · dθ1

]
− Ui(θi)
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Substitute for vi(.) and add up the transfers from all the advertisers to get the auctioneer’s
total revenue: ∫ θ̄1

θ1

· · ·
∫ θ̄n

θn

[( N∑
i=1

(
Xi(θ) �

(
r(θ) ◦ C

))(
θi −

1− Φi(θi)

φi(θi)

))
( N∏
j=1

φj(θj)
)
dθN · · · dθ1

]
−

N∑
i=1

Ui(θi)(18)

So the auctioneer chooses X(.), U1(θ1), · · · , UN(θN) to maximize the above expression
subject to constraints (i), (ii) and (v). For each advertiser’s transfer, if θi = θi the first term
of the transfer would be zero, so the auctioneer must set Ui(θi) = 0 for all i = 1, · · · , N to
maximize the revenue. Hence, the auctioneer problem reduces to choosing X(.) to maximize∫ θ̄1

θ1

· · ·
∫ θ̄n

θn

[( N∑
i=1

(
Xi(θ) �

(
r(θ) ◦ C

))(
θi −

1− Φi(θi)

φi(θi)

))
( N∏
j=1

φj(θj)
)
dθN · · · dθ1

]

subject to constraints (i) and (ii). As mentioned earlier, one interesting case is uniform
distribution for both qualities and search costs where have Φ(θi) = θi and φ(θi) = 1. With
these assumptions, the auctioneer’s maximization problem further simplifies to

maxX(.)

∫ 1

0

· · ·
∫ 1

0

( N∑
i=1

(
Xi(θ) �

(
r(θ) ◦ C

))(
2θi − 1

))
dθN · · · dθ1(19)

8.2 Proofs

Lemma 1.
The H(.) function in the two cases can be written as:

Hk,k+1 =
k−1∑
i=1

Ci

( i−1∏
j=1

(1− aj)
)(

2ai − 1
)

+ Ck

( k−1∏
j=1

(1− aj)
)(

2ak − 1
)

+ Ck+1

( k∏
j=1

(1− aj)
)(

2ak+1 − 1
)

+
m∑

i=k+2

Ci

( i−1∏
j=1

(1− aj)
)(

2ai − 1
)

25



Hk+1,k =
k−1∑
i=1

Ci

( i−1∏
j=1

(1− aj)
)(

2ai − 1
)

+ Ck

( k−1∏
j=1

(1− aj)
)(

2ak+1 − 1
)

+ Ck+1

( k−1∏
j=1

(1− aj)× (1− ak+1)
)(

2ak − 1
)

+
m∑

i=k+2

Ci

( i−1∏
j=1

(1− aj)
)(

2ai − 1
)

It is clear that switching ak and ak+1 leaves the first k − 1 terms of the H(.) function ,
as well as the last n− k+ 1 terms (k+ 2, k+ 3, · · · , n) intact. So we only need to compare
the kth and k + 1th term:

Hk+1,k −Hk,k+1 =
( k−1∏
j=1

(1− aj)
)[(

Ck(2ak+1 − 1) + Ck+1(1− ak+1)(2ak − 1)
)

−
(
Ck(2ak − 1) + Ck+1(1− ak)(2ak+1 − 1)

)]
> 0

It is enough to show(
Ck(2ak+1 − 1) + Ck+1(1− ak+1)(2ak − 1)

)
−(

Ck(2ak − 1) + Ck+1(1− ak)(2ak+1 − 1)
)

= 2Ck(ak+1 − ak)− Ck+1(ak+1 − ak) = (2Ck − Ck+1)(ak+1 − ak) > 0

The latter holds since both Ck > Ck+1 and ak+1 > ak, which completes the proof.
For the case of general distribution Φ(θ), the term 2ai − 1 is substituted by V (ai) =

ai − 1−Φ(ai)
φ(ai)

, so we get:

Hk+1,k −Hk,k+1 = (Ck − Ck+1)[V (ak+1)− V (ak)] + Ck+1[akV (ak+1)− ak+1V (ak)]

The first teem in the sum is positive, so a sufficient condition for Hk+1,k −Hk,k+1 > 0 is

V (ak+1)

ak+1

>
V (ak)

ak

Lemma 2.
With the same argument as in the previous lemma, switching these two entries only

affect the last term in the H(.) function, so it is enough to show that(m−1∏
j=1

(1− aj)
)[
Cm(2ax − 1)− Cm(2am − 1)

]
> 0

which is true since ax > am.

26



Lemma 3.
First note that since consumers believe that ads are sorted in descending order of qual-

ities, E[θ[i]] = E[θi], and consequently the ”unconditional” expectation of ad qualities de-
creases further down the list. But recall that θ̄[i] is a conditional mean, so we need to
show:

E[θi|z1 = · · · = zi−1 = 0] ≥ E[θi+1|z1 = · · · = zi−1 = zi = 0]

Note that E[θi+1|z1 = · · · = zi−1 = 0] ≥ E[θi+1|z1 = · · · = zi−1 = zi = 0]. In addition, by
definition of order statistic we have E[θi|z1 = · · · = zi−1 = 0] ≥ E[θi+1|z1 = · · · = zi−1 = 0],
which establishes the result.

Lemma 4.
First note that the search costs enter the advertisers utility and auctioneer revenue

functions through vector C. The only step of the proof which uses properties of C is
Lemma 1, which only uses the fact that for every i, Ci > Ci+1. Recall that Ci is the
probability that consumer search cost is lower than his belief about the quality of the ad
in position i condition on reaching this position, i.e. conditioned on the fact that all the
higher ads failed to meet his need. Let G(.) denote the cumulative distribution of consumer
search costs. As a generalization to vector C defined in (4), the generalized vector CG can
be written as:

CG =
(
G(θ̄1), G(θ̄2), · · · , G(θ̄N)

)
cince by lemma 3, θ̄[i] is non-increasing for any distribution of θi, C

G
i > CG

i+1 regardless
of what distributions of search costs and qualities are.

Theorem 1.
With firm qualities independently drawn from distribution Φ(.), and an arbitrary dis-

tribution G(.) for the search costs, the generalized C vector, and J(.) and H(.) functions
defined by (10,11) will take the following form:

CG =
(
G(θ̄1), G(θ̄2), · · · , G(θ̄N)

)
JG(X(.), θ) =

N∑
i=1

(
Xi(θ) �

(
r(θ) ◦ CG

))(
θi −

1− Φ(θi)

φ(θi)

)
HG(a1, · · · , an;m) =

m∑
i=1

CG
i

( i−1∏
j=1

(1− aj)
)(
ai −

1− Φ(ai)

φ(ai)

)
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We need analogous arguments as those of Lemma 1 and 2 here to get the desired result.
Since virtual valuation is increasing in θi, we know that if θi > θj, V (θi) > V (θj). It is
easy to see that with non-decreasing virtual valuations, Lemma 2 still holds in the general
case. In order for Lemma 1 to hold here we should have that for θi > θj which are in two
consecutive position:

CG
k V (θi) + CG

k+1(1− θi)V (θj) ≥ CG
k V (θj) + CG

k+1(1− θj)V (θi)

which along with lemma 3 and 4 gives the condition specified in the theorem.

Lemma 5.
The second claim follows directly from the last two lemmas. Specifically, we can model

the optimal mechanism as a two-step procedure of first deciding on the optimal number of
ads (k) and then choosing which ads to post. Given k, using Lemma 3 and 4 it is always
optimal for the auctioneer to post the k highest (reported) quality ads in decreasing order of
quality. In other words for any choice of k the auctioneer always prefer to swap a candidate
lower quality ad for a higher quality one to be presented to consumers. So for every bidder
i, allocation rule is monotone in his reported type (quality).

Now, assume that the auctioneer uses a strategy which does not satisfy the criterion
stated in the lemma, i.e. k depends on some lth-order statistics of reported qualities where
M < l ≤ N . We will show that this rule can be replaced with another one which does not
have such dependence and does equally well in expectation.

The new strategy is implemented through a black-box which receives all the reports
and then pass them on to the auctioneer. The black-box works as following: It does not
change the highest M reports and pass them to the auctioneer as they are. Let the M th

highest report be c, i.e. θ[M ] = c. The black-box replaces each of θ[M+1], · · · , θ[N ] with a
draw from its corresponding conditional distribution conditional on θ[M ] = c.8 With this
transformation, the distribution of reports received by the auctioneer is the same as the
distribution of reports reported by bidders. As a result, although the auctioneer decision
rule generate different outcomes for each realization of reports with and without the black-
box, but the distribution of outcomes remain unchanged (since input distribution remains
unchanged) which means expected revenue remains unchanged. Since the M + 1st-N th

reported qualities has in fact been replaced by the black-box, the new strategy does not
depend on them and it satisfies the property explained in the lemma.

Theorem2.
As mentioned in the text, given Lemma 5 when there is only one available position, only

the first order statistic of the qualities matter for auctioneer decision whether or not to post
an ad. With a little abuse of notation, let θ and φ1(.) denote the first order statistics and

8Equivalently, it replaces the sub-vector [θ[M+1], · · · , θ[N ]] with a draw from its joint conditional distri-
bution conditional on θ[M ] = c.
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its distribution respectively. The auctioneer maximization problem can be written as the
following:

max
y(θ)

∫ 1

0

E[θ|1 ad is posted using y(θ)]V (θ)y(θ)φ1(θ)dθ

=

∫ 1

0
θy(θ)φ1(θ)dθ∫ 1

0
y(θ)φ1(θ)dθ

∫ 1

0

V (θ)y(θ)φ1(θ)dθ

where V (θ) =
(
θ − 1−Φ(θ)

φ(θ)

)
. Note that the first fraction is the conditional expectation of

the quality of the only posted ad if it is posted.
The same intuition as the one for the example in the text applies for general φ1(θ).

The only twist is that in the general case, K =
∫ 1

0
y(θ)φ1(θ)dθ which is not invariant to

reordering of y(θ). Note that since 0 ≤ y(θ) ≤ 1, y(θ)φ(θ) ≤ φ(θ). Consider the following
construction of ŷ(.) where ŷ(.) as large as possible for higher θ’s keeping K fixed. Intuitively,

let ŷ(θ) = 1 starting from θ = 1 and moving down to θ = 0 until K =
∫ 1

0
ŷ(θ)φ1(θ)dθ.

Define g(θ) = y(θ)φ1(θ)∫ 1
0 y(θ)φ1(θ)dθ

(and similarly ĝ(θ) for ŷ(.)). Note that g(θ)and ĝ(θ) are

PDFs themselves, and let G(θ) and Ĝ(θ) denote their CDFs respectively. By construction,
Ĝ FOSD G, so transforming y(θ) to ŷ(θ) increases both terms in the objective function.
As a result, the optimal decision rule should take the same form as haty(θ), i.e. a step
function.

Finally, assume θ∗ < θ̃.9 Construct the following ȳ(.) from y(.):

ȳ(θ) =


0 = y(θ) if θ < θ∗

0 6= y(θ) if θ∗ ≤ θ < θ̃

1 = y(θ) if θ̃ ≤ θ

Define g(θ)and ḡ(θ) as above and note that ḡ(θ)
g(θ)

is increasing in θ, so it satisfies the monotone

likelihood ratio property. Equivalently, Ḡ FOSD G, so substituting ȳ(.) for y(.) increases
both the first and second term in the objective function, so y(.) can not be the optimal
solution, i.e. θ∗ ≥ θ̃

Theorem 3.
Assume in the original setting the auctioneer optimal allocation rule is such that some

ad with quality θ < θ̃ will be posted in position j. If the auctioneer changes the rule such
that ad i can possibly by posted only if θi > θ̃, there are 3 effects we have to consider: First
is the effect of the allocation rule on expectation of consumers on quality of each posted
ad, second the revenue generated by each particular ad and third the effect of each ad on
the click-through-rate of all ads which are posted bellow that one.

9θ∗ is where the jump in the optimal solution y(θ) happens, and θ̃ is such tat V (θ̃) = 0 as defined in
the theorem.
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First consider the last two effects: an ad with negative virtual valuation generates
negative expected revenue, so the proposed modification to the existing rule will enhance
the revenue through this channel. Moreover since by Lemma 5 ads are posted in descending
order of quality, all ads in position j+ 1, · · · , k have negative virtual valuations as well. AS
a result changing the rule as described above would cut these ads as well and increase the
auctioneer revenue, and the third effect is irrelevant.

The most complicated effect is the first one, which is the feedback effect on consumer
expectations. Recall that the consumer expectation of the ad posted in position l can be
written as:

θ̄[l] = E[θ[l]|z1 = · · · = zl−1 = 0, k ads are posted]

Where k ads are posted represents the auctioneer rule which maps the reported qualities to
optimal number of ads. In other words, the expectation of lth order-statistic is taken over
its distribution conditional on the other order statistics being posted. Since the distribution
of the lth order-statistic conditional on higher values of jth order-statistic FOSD the one
conditional on lower values of jth order-statistic, the proposed changed in the allocation
rule can only improve the consumer expectations about the quality of each posted ad and
enhance the revenue. As a result the modifies rule generates higher revenue and the original
ad could not be optimal.

Theorem 4.
The proof method is the same as in Theorem 1, i.e. we will show that any choice

of ads that replaces a higher quality ad with a lower quality one is sub-optimal in terms
of revenue. Throughout this proof, when we refer to the ad in position i (since physical
position is irrelevant here), it means the ad which is ith option of the consumer to click, i.e.
the ith highest-quality posted ad.

Note that if there are at most k < M reported qualities higher than the threshold x∗,
the auctioneer is obviously better off posting only those k highest-quality ad. The reason is
that all the additional ads are going to be clicked after these highest k by the consumers, so
they generate negative revenue themselves, and only affect the click-through rate of some
other negative-revenue-generating ads (i.e. they have no effect on any positive revenue
generated from this search page), so it is better for the auctioneer to just cut the list at
position k+1 (i.e post k ads). The adverse effect of decreasing click-through-rate of positive
revenue generating ads by cutting negative-revenue-generating ads is not present when the
qualities are posted, or when consumers stop at ad j with some constant probability π.

So the only remaining case is when exactly k ads are posted. Assume that the revenue
maximizing list is not composed of the M highest quality ads. In this case the ad in position
k (with quality θj) is certainly not one of the k highest quality one, and at least one of the
best k ads (with quality θi) is out of the list. We show that swapping θi and θj and keeping
all the rest of the ads the same can only increase the revenue.

The main conceptual difference between this proof and that of 1 is that here, the inter-
mediate steps can not be materialized. Recall that the intermediate steps were picking a
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high quality ad who is outside and swapping it with the ad currently in the last position,
and then moving it up to its optimal position. Here, for instance, swapping θi and θj ”in
the last position” does not have an outside world realization unless θi is lower than the
quality of all the other ads currently on the list. Otherwise, consumers will automatically
click on θi before some of the other ads, so it will not be in position k any more. So this
last position swap only corresponds to an intermediate number, which is higher than the
revenue of the auctioneer with θj in the list, and lower than his revenue with θi in. If the
auctioneer has the power to enforce the consumers to click on θi after all other ads, although
it has a higher quality than some, the result of this last position swap would correspond to
that state.

In order to get Lemma 1 and 2 to work here we need to show that for θi > θj:

(i)
[
V (θi)G(θi) + (1− θi)V (θj)G(θj)

]
−
[
V (θj)G(θj) + (1− θj)V (θi)G(θi)

]
> 0

(ii) V (θi)G(θi)− V (θj)G(θj) > 0

The second condition holds trivially when θi > θj, and in order for the first condition to
hold independent of G(.), we should have θjV (θi) > θiV (θj), which means I(.) is increasing.

For the v̄i(.) function to be increasing, we need G(θi)V (θi) to be increasing if θi > x∗

(i.e if the ad has a chance of being on the list). Note that we have:(
G(θi)V (θi)

)′
= V ′(θi)G(θi) + V (θi)G

′(θi)

and we know that V ′(θi) > 0 and G′(θi), G(θi) ≥ 0 (G′ is the pdf of the search costs). In
addition, only θi’s with G(θi) > 0 are interesting, because otherwise the ad will not be
posted. So at any θi where V (θi) > 0, i.e. for θi > x∗, the above derivative is positive, and
as a result the function G(θi)V (θi) will be increasing, which is the desired result.

Note that here, we don’t have two forces in opposite directions in determining the
reservation wage. Here, vector C is determined by the posted qualities that consumers
observe, so it does not depend on the number of posted ads, so the only force driving
the reserve price is that the auctioneer does not want to post ads with negative virtual
valuation, which gives the desired result.
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