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THIS SUPPLEMENT PROVIDES Monte Carlo results and additional proofs for theoretical
results presented in the paper.

S1. MONTE CARLO STUDY

The purpose of this Monte Carlo analysis is twofold. First, we assess the quality of the
approximations to the size-power tradeoffs in the Gaussian location model. Second, we
investigate the extent to which the theory derived for the Gaussian multivariate location
model generalizes to time series regression with stochastic regressors.

S1.1. Estimators and Design

For a given kernel or WOS estimator, we use four values of b, chosen so that ν =
8�16�32�and 64. The tests are labeled accordingly, for example, NW16 is the Newey–
West (Bartlett) test with ν = 16 equivalent degrees of freedom. For reference, for T =
200, NW32 has a truncation parameter of (3/2)T/ν, which rounds up to 10. For the WOS
estimators, we consider tests with equal weights wj = 1/B, so ν = B. Tests use fixed-b
critical values unless stated otherwise. We specifically examine the following HAR tests:

1. NW: Kernel estimator with Bartlett/Newey–West kernel, k(x)= (1 − |x|)1(|x| ≤ 1).
2. KVB: The Kiefer–Vogelsang–Bunzel (2000) test, that is, NW with S = T (ν = 3/2).
3. QS: k(x)= 3[sin(πx)/(πx)− cos(πx)]/(πx)2.
4. EWP: Equal-weighted WOS estimator using the Fourier basis, {φ2j−1(s)�φ2j(s)} =

{√2 cos(2πjs)�
√

2 sin(2πjs)}, j = 1� � � � �B/2.
5. cos: Equal-weighted WOS estimator using the Type II cosine basis, {φj(s)} =

{√2 cos[πj(s− 1/2
T
)]}, j = 1� � � � �B.

6. SS-basis: Equal-weighted split-sample WOS estimator (see Section S2.2 below).
In the location model, the data are generated according to equation (3) in the main

text, where uit , i = 1� � � � �m are independent and follow either a Gaussian AR(1) or an
ARMA(2�1), with all m disturbances having the same parameter values. For the regres-
sion model, the data are generated following yt = x′

tβ + ut , where xit , i = 1� � � � �m and
ut are independent Gaussian AR(1) processes. Under the null, β = 0. Under the local
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alternative, β= T−1/2Σ−1
XXΩ

1/2δ for m=1, where δ is the local alternative index value and
ΣXX = T−1

∑T

t=1 xtx
′
t (for the location model, ΣXX = I, as in the text). For m= 2, we set

β= T−1/2Σ−1
XXΩ

1/2δ2, with δ2 = [δ 0]′. We conduct 100,000 replications for each design.

S1.2. Monte Carlo Results

This section presents some representative results; additional results are contained in
the working paper version of this paper (Lazarus, Lewis, and Stock (LLS, 2017)) and in
Lazarus, Lewis, Stock and Watson (LLSW, 2018). All results are displayed in finite-sample
counterparts of Figure 1. For these figures, the axes are not scaled, so that the units are
the size distortion and the power loss. The theoretical tradeoffs from Theorem 4(ii) are
shown as lines, and the Monte Carlo results are presented as scatter points.

Location Model. Figure S1 presents results for QS, EWP, and NW tests in the location
model with Gaussian AR(1) disturbances in the m= 1 case with AR parameter ρ= 0�5
and T = 200. The Monte Carlo results for QS and EWP are close to their theoretical
curves. The small-b approximation is less good for Newey–West: the NW Monte Carlo
scatter appears to follow a curve that has the same shape as the theoretical curve, but is
shifted out. KVB is a limiting case of Newey–West with ST = T (so b = 1 and ν = 1�5),
that is, KVB is NW1.5, so KVB lies on the NW Monte Carlo curve.

LLS (2017) contains figures with additional results for the location model, which we dis-
cuss briefly here. For m= 2 with AR(1) errors, ρ= 0�5, and T = 200, the frontier fits the
simulations slightly better for QS and EWP than in the m= 1 case, but somewhat worse
for NW. We find in addition that, for m= 1 and 2 and with either AR(1) or ARMA(2�1)
disturbances, fit (distance from the scatter points to their theoretical tradeoff) improves
with T , deteriorates as ω(2) increases, is better for q= 2 kernels than q= 1, and does not
appreciably deteriorate as process parameters are changed holding ω(2) constant. The
first two results are unsurprising. Our interpretation of the third finding is that the order
of approximation of the expansions is o((bT)−q), so the remainder is of a smaller order
for q = 2 than for q = 1 kernels. The larger values of b used with the NW kernel for a
given ν may also play a role. Overall, the simulation results accord with the theory.

FIGURE S1.—Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss for QS,
Newey–West, and EWP tests. Location model, m= 1, AR(1), ρ= 0�5, and T = 200.
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FIGURE S2.—Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss for QS,
Newey–West, and EWP tests. Stochastic regressor, m = 1, AR(1), ρ = 0�5, T = 200. Theoretical curves are
for the Gaussian location model.

Stochastic Regressor. Figure S2 shows the QS, EWP, and NW tests on the coefficient
on a single stochastic regressor, where both the regressor and dependent variable have
AR(1) disturbances with ρ = 0�5 and T = 200 (intercept included in the regression but
not tested). In this DGP, zt is AR(1) but non-Gaussian. For reference, the theoretical
tradeoff curves are shown for the Gaussian location model. It appears that this depar-
ture from Gaussianity results in poor performance of the Gaussian small-b asymptotic
approximation and that there are missing terms in the expansion as suggested by the cal-
culations in Velasco and Robinson (2001). This said, several key qualitative results in the
theory continue to apply to the single stochastic regressor. First, for a given estimator,
the Monte Carlo results map out a size-power tradeoff that has a shape similar to the
Gaussian theoretical shape, just shifted out. Second, the tradeoffs for the QS and EWP
estimators are very close to each other. Third, the ranking across estimators is the same as
suggested by the theory and confirmed in the Monte Carlo analysis of the location model,
that is, the q = 1 tests are outperformed by the q = 2 tests. We find similar results for
other designs, kernels, and values of m, and further that the approximation improves for
higher values of T ; again see LLS (2017) and LLSW (2018).

Overall, we can draw three conclusions. First, the theoretical frontiers provide a good
description of estimator performance in the Gaussian location model. The fit is better for
q= 2 kernels than q= 1. Second, Monte Carlo performance is consistent with the theory.
In particular, the performance of q = 2 kernels is superior to that of q = 1 kernels in
this design, and the cost of using EWP relative to QS is low. As further illustration of the
latter theoretical result, Figure S3 plots the theoretical higher-order power loss from using
EWP relative to QS as a function of δ for various values of B, as discussed in Remark 5.
Third, the qualitative results for stochastic regressors are consistent with the theory for
the location model; however, the Monte Carlo points no longer lie on the tradeoff derived
for the Gaussian location model. We attribute this divergence of the theory and Monte
Carlo results to the non-Gaussianity of zt in the stochastic regressor case.1

1In results available in LLS (2017), we also examined the performance of tests based on plug-in higher-order
corrected critical values based on equation (20) of the text, using an estimated value of ω(q). HAR tests using
these plug-in critical values generally worked poorly compared to tests using standard fixed-b critical values.
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FIGURE S3.—Small-b approximation to power loss for EWP test compared to same-sized QS test, for dif-
ferent values of B in the EWP test. The figure plots the expression in (30) as a function of δ form= 1, α= 0�05
(see Remark 5).

S2. SUPPLEMENTAL PROOFS

S2.1. Additional Proofs of Main Results

We first provide two preliminary results needed for Theorems 1 and 5, and then
prove Theorem 1. Assume for the remainder of the supplement that Assumptions 1–4
hold.

LEMMA S1: For any weights {wj}, the Fourier basis minimizes |∑B

j=1wj
∫ 1

0 φj(s)φ
′′
j (s)ds|

across all WOS estimators up to an error of order o(1/T).

PROOF OF LEMMA S1: The complex Fourier expansion of any φj in a given basis is
again

φj(s)=
∞∑

l=−∞
ajle

−i2πls� (S.1)

where {ajl}l are the (inverse) Fourier coefficients of φj(s). For any orthonormal series,

1 =
∫ 1

0

∣∣φj(s)∣∣2
ds =

∞∑
l�l′=−∞

ajlājl′

∫ 1

0
e−i2πlsei2πl

′s ds=
∑
l

|ajl|2� and (S.2)

0 =
∫ 1

0
φj(s)φj′ �=j(s)ds=

∑
l

ajlāj′ �=j�l� (S.3)
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where ājl is the complex conjugate of ajl. The minimization problem for real φj is then

min
{ajl}

∣∣∣∣∣
B∑
j=1

wj

∫ 1

0
φj(s)φ

′′
j (s)ds

∣∣∣∣∣ ⇔ min
{ajl}

∣∣∣∣∣
B∑
j=1

wj
∑
l�l′
ajlājl′4π2l2

∫ 1

0
e−i2πlsei2πl

′s ds

∣∣∣∣∣
⇔ min

{ajl}

B∑
j=1

wj
∑
l

|ajl|2l2 (S.4)

subject to the constraints (S.2) and (S.3), along with aj0 = ∫ 1
0 φj(s)ds= 0.

For now, set the summation limits in (S.1) to ±T̄ for some T̄ > T , so (S.4) can
be written minA tr((AW )∗D(AW )) ⇔ minA tr(W 2A∗DA) s.t. A∗A = IB, where A =
[A1 A−1 A2 A−2 · · · AT̄ A−T̄ ]′, Al = [a1l a2l · · · aBl]′, A∗ is the conjugate transpose
of A, W = diag([√w1

√
w2 · · · √

wB]), and D = diag([1 1 4 4 · · · T̄ 2 T̄ 2]). From
(S.4), the objective is linear in the entries of A2 =A◦Ā, where ◦ is the Hadamard product
and Ā is the elementwise complex conjugate of A.

It will be convenient to transform this problem to minÃ tr(W̃ 2Ã∗DÃ) s.t. Ã∗Ã = I2T̄ ,
where W̃ = [IB 0B×(2T̄−B)]′W [IB 0B×(2T̄−B)] is padded with zeros relative to W , and Ã =
[A H] for some 2T̄ × (2T̄ − B) matrix H, so Ã, W̃ , and D are 2T̄ × 2T̄ . The objective

is again linear in the entries of Ã2 = Ã ◦ (Ã), which is doubly stochastic since Ã∗Ã= I2T̄

implies ÃÃ∗ = I2T̄ . Thus,

min
Ãs�t�Ã∗Ã=I2T̄

tr
(
W̃ 2Ã∗DÃ

) ≥ min
Υ

∑
j�l

wjl
2γjl� (S.5)

where Υ is a doubly stochastic matrix containing the values {γjl}. The right-hand side of
(S.5) is linear in the entries of Υ , and the set of doubly stochastic matrices {Υ } is compact
and convex. Thus, the minimum of the right-hand side is obtained at an extreme point of
this set. By Birkhoff’s theorem (e.g., Bhatia (1997, p. 37)), the extreme points of {Υ } are
the permutation matrices. Any permutation matrix P is unitary, so (S.5) in fact holds with
equality, and we can select Ã= arg minP tr(W̃ 2P ′DP).

Note that D and W̃ 2 are psd and diagonal, and D has its diagonal terms (eigenval-
ues) in ascending order. Given weights {wj}, assume first that the weights are ordered
descendingly, w1 ≥ w2 ≥ · · · ≥ wB, and therefore that W̃ 2 has its diagonal terms (eigen-
values) in descending order. In this case, the minimum of the objective is achieved triv-
ially by Ã = P = I2T̄ , so that the minimizing A is given by the first B columns of I2T̄ ;
equivalently, a2j′−1�j′ = a2j′�−j′ = 1, j′ = 1� � � � �B/2, ajl = 0 otherwise. Thus, from (S.1),
{φ2j′−1(s)�φ2j′(s)} = {e−i2πj′s� ei2πj

′s} = {√2 cos(2πj′s)�
√

2 sin(2πj′s)}, j′ = 1� � � � �B/2, so
we have in fact selected the Fourier basis. This applies for any T̄ used in the finite trunca-
tion of (S.1), so we can set arbitrary T̄ � T so as to apply Jackson’s inequality to obtain
that the statement holds to o(1/T).

If the weight values are not in descending order, use that W̃ 2 is psd and diagonal to write
its singular value decomposition as W̃ 2 = V W̃ 2

descV
′, where W̃ 2

desc is the diagonal matrix con-
taining the eigenvalues (diagonal terms) of W̃ 2 ordered descendingly. Then the problem
can be rewritten as minÃV tr(W̃ 2

descÃ
∗
V DÃV ) subject to Ã∗

V ÃV = I2T̄ , where ÃV = ÃV , so
that V has been absorbed into the argument to be minimized. But this is the same problem
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as in the case above, with W̃ 2 having its values in descending order. Thus, the minimum
achieved for (S.5) is equivalent for any set of weights regardless of their ordering. Thus,
for any set of weights, it is without loss to set them in descending order, in which case the
Fourier basis again achieves the minimum, completing the proof. Q.E.D.

LEMMA S2: For any WOS test using the Fourier basis, the value �(2)(k) is minimized with
respect to {wj} by the use of QS weights: w∗

j = w̄QS[1 − (j/B)2], where w̄QS = 6B
(B−1)(4B+1) .

PROOF OF LEMMA S2: Note first that w̄QS = 6B/[(B − 1)(4B + 1)] is set so that∑B

j=1w
∗
j = 1. From (44), given the use of the Fourier basis, minimizing �(2)(k) is equiv-

alent to minimizing (
∑B

j=1wjj
2)1/2(

∑B

j=1w
2
j ). Write BQS = B. For any alternative set of

weights wj , write wj = w∗
j + εj . We allow for the sequence Balt for this set of weights

to differ from BQS (both must meet Assumption 4). If Balt > BQS, then set w∗
j = 0 for

j > BQS, so that wj = εj ≥ 0 for BQS < j ≤ Balt. If Balt < BQS, then correspondingly wj = 0
for Balt < j ≤ BQS. Write B̄= max(Balt�BQS). Since

∑B̄

j=1wj = 1, we have
∑B̄

j=1 εj = 0.
We then equate higher-order size for the two estimators and show that QS dominates

with respect to power. Equating higher-order size requires
∑B̄

j=1wjj
2 = ∑B̄

j=1w
∗
j j

2, so∑B̄

j=1 εjj
2 = 0. Further,

∑B̄

j=1w
2
j = ∑B̄

j=1(w
∗
j )

2 + 2
∑B̄

j=1 εjw
∗
j +∑B̄

j=1 ε
2
j , and

B̄∑
j=1

εjw
∗
j = w̄QS

BQS∑
j=1

[
1 −

(
j

BQS

)2]
εj

= w̄QS

{
B̄∑
j=1

[
1 −

(
j

BQS

)2]
εj +

Balt∑
j=BQS+1

[(
j

BQS

)2

− 1
]
εj

}
� (S.6)

The first term in (S.6) is zero given the steps above. For the second term, if Balt > BQS,
then as above, wj = εj ≥ 0 for BQS < j ≤ Balt, and therefore

∑Balt
j=BQS+1[(j/BQS)

2 − 1]εj ≥
0 (with equality if Balt < BQS). Thus,

∑B̄

j=1 εjw
∗
j ≥ 0. It is further trivially the case that∑B̄

j=1 ε
2
j ≥ 0. We conclude that

∑B̄

j=1w
2
j ≥ ∑B̄

j=1(w
∗
j )

2, with equality if and only if εj = 0 for
all j. Therefore, QS attains greater higher-order power for equivalent higher-order size,
and thus minimizes �(2)(k), relative to all alternative WOS estimators using the Fourier
basis. Q.E.D.

PROOF OF THEOREM 1: (i) For kernel estimators, under the equivalent of our Assump-
tions 1, 2, and 4, Sun (2014, p. 675) gives equation (15) directly. For WOS estimators,
write

EΩ̂OS
j = E

(√
1
T

T∑
t=1

φj(t/T)ẑt

)(√
1
T

T∑
t=1

φj(t/T)ẑt

)′

= 1
T

T∑
t=1

T∑
s=1

φj(t/T)φj(s/T)�s−t +O(1/T)

=
T−1∑

u=−(T−1)

1
T

min(T�T+u)∑
t=max(1�u)

φj

(
t

T

)
φj

(
t

T
− u

T

)
�u +O(1/T)� (S.7)
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where the O(1/T) term in the second line arises due to the approximation of ẑt with zt
under Assumption 1 (see, e.g., the proof of Theorem 2 in Sun (2011)). Thus,

EΩ̂WOS −Ω=
T−1∑

u=−(T−1)

{[
B∑
j=1

wj
1
T

min(T�T+u)∑
t=max(1�u)

φj

(
t

T

)
φj

(
t

T
− u

T

)]
− 1

}
�u

−
∑
|u|≥T

�u +O
(

1
T

)
� (S.8)

For q≤ 2 (shown later to be without loss of generality), by Assumptions 1(b) and 4,∣∣∣∣∑
|u|≥T

�u

∣∣∣∣ ≤ ∑
|u|≥T

|�u| ≤ 1
T 2

∑
|u|≥T

|u|2|�u| = o
(
T−2

) = o((B/T)q)� (S.9)

so we may focus on the first summation in (S.8). Further, T−1 = bqT q−1(bT)−q =
o((bT)−q) by Assumption 4, so that O(1/T)= o((bT)−q).

We may then, following the device in Theorem 1(i) of Phillips (2005), write

EΩ̂WOS −Ω=
LT∑

u=−LT

{[
B∑
j=1

wj

T

min(T�T+u)∑
t=max(1�u)

φj

(
t

T

)
φj

(
t

T
− u

T

)]
− 1

}
�u

+
∑

LT<|u|<T

{[
B∑
j=1

wj

T

min(T�T+u)∑
t=max(1�u)

φj

(
t

T

)
φj

(
t

T
− u

T

)]
− 1

}
�u

+ o
((

B

T

)q)
� (S.10)

where LT < T is a positive integer sequence chosen such that

Tq

L
q+ζ
T Bq

+ LTB

T
→ 0� (S.11)

where ζ is as in Assumption 1(b). We have∣∣∣∣∣
∑

LT<|u|<T

{[
B∑
j=1

wj

T

min(T�T+u)∑
t=max(1�u)

φj

(
t

T

)
φj

(
t

T
− u

T

)]
− 1

}
�u

∣∣∣∣∣
≤

B∑
j=1

wj
∑

LT<|u|<T

∣∣∣∣∣
[

1
T

min(T�T+u)∑
t=max(1�u)

φj

(
t

T

)
φj

(
t

T
− u

T

)]
− 1

∣∣∣∣∣|�u|
≤ 2

∑
LT<|u|<T

|�u| ≤ 2L−q−ζ
T

∑
LT<|u|<T

|u|q+ζ |�u| =O
(
L

−q−ζ
T

) = o
((

B

T

)q)
� (S.12)

where the first inequality applies the triangle inequality, the second inequality uses that
|∑min(T�T+u)

t=max(1�u) φj(t/T)φj((t − u)/T)/T | ≤ |∑T

t=1(φj(t/T))
2/T | = 1 by Cauchy–Schwarz

(and therefore that |[∑min(T�T+u)
t=max(1�u) φj(t/T)φj((t − u)/T)/T ] − 1| ≤ 2), and where the first
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equality in the last line applies Assumption 1(b). (Setting T−1
∑T

t=1(φj(t/T))
2 = 1 in finite

samples for orthonormal φj is without loss; see after (S.20) below for further discussion.)
Equation (S.10) can thus be written, with kWOS

B�T (u/S) defined after (9) in the main text,

EΩ̂WOS −Ω=
LT∑

u=−LT

[
kWOS
B�T

(
u

S

)
− 1

]
�u + o

((
B

T

)q)

=
LT∑

u=−LT

{[
kWOS
B

(
u

S

)
− 1

](
1 + o

(
1
T

))}
�u + o

((
B

T

)q)

=
{

LT∑
u=−LT

[
kWOS
B

(
u

S

)
− 1

]
�u

}(
1 + o(1))+ o

((
B

T

)q)
� (S.13)

where the second line uses (10), along with the fact that kWOS
B�T (x) and kWOS′

B�T (x) are uni-
formly bounded for fixed B (since |φj(s)|� |φ′

j(s)| ≤ CB5/2 for some C <∞ by Assump-
tion 3), to obtain that kWOS

B�T = kWOS
B + o(1/T) by Riemann approximation, and the third

line uses that o(LT/T)= o(1) by (S.11).
Now note that under Assumption 3, in addition to |kWOS

B (x)| ≤ 1, we have kWOS
B (0)= 1,

kWOS
B (x)= kWOS

B (−x), and kWOS
B (x) is continuous since φ(u/T) is continuous for u/T ∈

[0�1]. And since φ is twice continuously differentiable, kWOS
B (x) is twice continuously

differentiable on [−B�0) ∪ (0�B]. Thus, defining kWOS′
B�+ (x) and kWOS′′

B�+ (x) as the first and
second right derivatives, respectively, of kWOS

B (x), we have kWOS
B (x) = 1 + kWOS′

B�+ (0)x +
1
2k

WOS′′
B�+ (0)x2 +o(x2) as x→ 0+. Since kWOS

B (x) is even, the first and second left derivatives
satisfy kWOS′

B�− (x)= −kWOS′
B�+ (x) and kWOS′′

B�− (x)= kWOS′′
B�+ (x), respectively, and thus kWOS

B (x)=
1 + kWOS′

B�+ (0)|x| + 1
2k

WOS′′
B�+ (0)x2 + o(x2) as x→ 0−. Thus, defining g1�B = −kWOS′

B�+ (0) and
g2�B = −kWOS′′

B�+ (0)/2, we can write

1 − kWOS
B (x)= g1�B|x| + g2�B|x|2 + o(|x|2

)
(S.14)

as x→ 0, from which it is clear from (11) that k(q)B (0) = gq�B. Using this with (S.13) and
the fact that S = T / B, we can follow Priestley (1981, p. 459) and write

EΩ̂WOS −Ω=
{

−
(
B

T

)q LT∑
u=−LT

1 − kWOS
B (u/S)

|u/S|q |u|q�u
}(

1 + o(1))+ o
((

B

T

)q)

= −2π
(
B

T

)q(
k
(q)
B (0)s

(q)
z (0)

)(
1 + o(1))+ o

((
B

T

)q)

= −2π
(
B

T

)q{(
lim
B→∞

k
(q)
B (0)

)(
1 + o(1))}s(q)z (0)+ o

((
B

T

)q)

= −2π
(
B

T

)q(
lim
B→∞

k
(q)
B (0)

)
s(q)z (0)+ o

((
B

T

)q)
� (S.15)

Using that μ= 0 for WOS estimators, (15) follows, with k(q)(0)= limB→∞ k
(q)
B (0).
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(ii) Using equation (10), we have for x > 0 that

kWOS′
B (x)= B−1

B∑
j=1

wj

(
−
∫ 1

B−1x

φj(s)φ
′
j

(
s−B−1x

)
ds−φj

(
B−1x

)
φj(0)

)
� (S.16)

so from part (i),

k
(q)
B (0)= g1�B = −kWOS′

B�+ (0)= B−1
B∑
j=1

wj

(∫ 1

0
φj(s)φ

′
j(s)ds+ (

φj(0)
)2
)
� (S.17)

Integrating by parts,
∫ 1

0 φj(s)φ
′
j(s)ds =φj(1)2 −φj(0)2 − ∫ 1

0 φj(s)φ
′
j(s)ds = φj(1)2−φj(0)2

2 .
Thus, with k(q)(0)= limB→∞ k

(q)
B (0) and Assumption 3 guaranteeing the existence of the

limit since wj = O(B−1) and
∑

j φj(s)
2 = O(B2), the first part of (16) follows. Similarly,

for x > 0,

kWOS′′
B (x)= B−2

B∑
j=1

wj

(∫ 1

B−1x

φj(s)φ
′′
j

(
s−B−1x

)
ds

)
� (S.18)

Using that k(2)B (0) = −kWOS′′
B�+ (0)/2 if q = 2, and taking B→ ∞, then delivers the second

part of (16), as the existence of this limit is again guaranteed under Assumption 3.
For the final statement, if k(1)(0) �= 0, then q = 1 follows immediately from (S.14) and

the definition of q after (11). If k(1)(0)= 0, note from Lemma S1 and (16) that the Fourier
basis minimizes k(2)(0) across WOS estimators, so k(2)(0) > 0 for all WOS estimators.
Thus, (11) gives that q ≤ 2, so from (S.14), if k(1)(0) = 0, then q = 2, as stated. This ex-
tends the classic result that psd kernel estimators have q≤ 2 to the implied mean kernels
of WOS estimators (and justifies the notational use of some q≤ 2 above (S.9)).

(iii) For kernel estimators, (17) restates Andrews (1991, Proposition 1(a)). For WOS
estimators, generalizing Sun (2011, p. 361) to the case of arbitrary WOS weights wj ,

var(vec Ω̂)=Ω⊗Ω(Im2 +Kmm)
1
T 2

T∑
t=1

T∑
τ=1

[
B∑
j=1

wjφj

(
t

T

)
φj

(
τ

T

)]2

+O
(

1
T

)

= (Im2 +Kmm)Ω⊗Ω 1
T 2

T∑
t=1

T∑
τ=1

[
B∑
j=1

wjφj

(
t

T

)
φj

(
τ

T

)]2

+ o(b)� (S.19)

where the second line follows from Magnus and Neudecker (1979, Theorem 3.1(ix)) and
the fact that T−1 = o(b) from Assumption 4. Further, by the orthonormality of {φj},

1
T 2

T∑
t=1

T∑
τ=1

[
B∑
j=1

wjφj

(
t

T

)
φj

(
τ

T

)]2

=
B∑
j=1

B∑
k=1

wjwk

[
1
T

B∑
j=1

φj

(
t

T

)
φk

(
t

T

)]2

=
B∑
j=1

w2
j

[
1
T

B∑
j=1

(
φj

(
t

T

))2
]2

=
B∑
j=1

w2
j � (S.20)

Note that these steps assume the orthonormality of {φj} applies for the finite-sample
inner product for all T , as in the working paper version of this paper (LLS (2017)). If
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�= [�1 · · · �B], where �j = [φj(1/T) φj(2/T) · · · φj(1)]′, does not satisfy ι′T�j = 0
and �′�/T = IB, the finite-sample � can be constructed as the orthonormalization of
the demeaned {�j}. Lemma A of Phillips (2005) then shows that for the unadjusted
series, �′�/T = IB + O(1/T), which implies that the finite-sample orthonormalization
adjustment introduces an error of at most order O(1/T) = o(b); equivalently, without
the adjustment, (S.20) would include an error of order o(b). Finally, we have from (14)
that ν−1 = B−1B

∑B

j=1w
2
j = ∑B

j=1w
2
j . Thus, along with (S.19) and (S.20), we have that

var(vec Ω̂)= ν−1(Im2 +Kmm)Ω⊗Ω+ o(b), as stated.
(iv)–(v) For kernel estimators, given Assumptions 1 and 2, equation (18) follows from

Sun (2014) equation (16), along withmcαm(b)= χαm+O(b), as shown below after equation
(S.29) in proving the expansions for WOS estimators. Equation (19) follows from the
proof of Sun (2014) Theorem 5 for the case of the Gaussian location model.

For WOS estimators, first note that Assumption 1 directly implies that a multivariate
martingale functional central limit theorem holds for the partial sums of zt (see, e.g.,

Helland (1982)): for λ ∈ [0�1], we have that T−1/2
∑�Tλ�

t=1 zt
d−→Ω1/2Wm(λ), where �·� is the

greatest lesser integer function and Wm is an m-dimensional standard Brownian motion
on the unit interval. (This verifies an assumption by Sun (2013, 2014), whose results we
apply.) We thus have (extending the result after (14)) that Ω̂

d−→ Ω1/2(
∑B

j=1wjΞj)Ω
1/2′,

where Ξj are i.i.d. standard m-dimensional Wishart with one degree of freedom.
Therefore, as in Sun (2014, eqs. (8)–(9)), we have in this case that

mFT
d−→ η′

(
B∑
j=1

wjΞj

)−1

η≡mF∞�m�B� (S.21)

where η∼N(0� Im) and η is independent of Ξj for all j. Write

B∑
j=1

wjΞj =
(
ς11 ς12

ς21 ς22

)
� (S.22)

where ς11 ∈ R, ς22 ∈ R
(m−1)×(m−1), and so on. Then using Sun (2014, equation (10)), we

have equivalently thatmF∞�m�B ∼ ‖η‖2/(ς11 − ς12ς
−1
22 ς21). We then proceed to take a Taylor

expansion of Gm(z× (ς11 − ς12ς
−1
22 ς21)) around Gm(z) for arbitrary argument z. Note first

that it can be shown quickly (as in Lemma 3 of Sun (2014)) that

E(ς11)=
B∑
j=1

wj = 1�

E
(
ς11 − ς12ς

−1
22 ς21

) = 1 − (m− 1)

(
B∑
j=1

w2
j

)(
1 + o(1))

= 1 − ψ

B
(m− 1)+ o(b)�

E
[(
ς11 − ς12ς

−1
22 ς21

)2] = 1 + 2(2 −m)ψ
B

+ o(b)�

(S.23)
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where again B= b−1. Thus, a Taylor expansion gives that

P(mF∞�m�Bz)= E
[
Gm

(
z
(
ς11 − ς12ς

−1
22 ς21

))]
=Gm(z)−G′

m(z)z(m− 1)
ψ

B
+ 1

2
G′′
m(z)z

2

(
2
ψ

B

)
+ o(b)

=Gm(z)+ ψ

B

[
G′′
m(z)z

2 −G′
m(z)z(m− 1)

]+ o(b)� (S.24)

Using this and denoting by c̃αm�B the 1 − α quantile of the distribution mF∞�m�B, we have

1 − α=Gm

(
c̃αm(b)

)+ ψ

B

[
G′′
m

(
c̃αm(b)

)(
c̃αm(b)

)2 −G′
m

(
c̃αm(b)

)
c̃αm(b)(m− 1)

]+ o(b)� (S.25)

Moving to F∗
T , following Sun (2011, Lemma 3) and Sun (2014, Lemma 1), first define

the GLS estimator of β as β̂GLS = [(ιT ⊗ Im)
′V −1(ιT ⊗ Im)]−1(ιT ⊗ Im)

′V −1y , where ιT
is a T × 1 vector of ones, V = var([u′

1 u
′
2 · · · u′

T ]′), and y = [y ′
1 y

′
2 · · · y ′

T ]′, and define
ΩT�GLS = var[T 1/2(β̂GLS − β)]. The independence of the GLS estimator from Ω̂ (which is
in general not satisfied for the OLS estimator β̂ given autocorrelation in ut) allows for
a more convenient expansion of the test statistic. Applying Sun (2011, Lemma 3), Sun
(2014, Lemma 1), this expansion proceeds from the following representation:

P
(
mF∗

T ≤ z) =E
[
Gm

(
z

B

B−m+ 1
Θ−1
T

)]
+O(1/T)� (S.26)

whereΘT = e′
T [Ω1/2Ω̂−1Ω1/2′]eT , eT =Ω−1/2

T�GLS

√
T(β̂GLS −β0)/‖Ω−1/2

T�GLS

√
T(β̂GLS −β0)‖ and

where ‖ · ‖ is the Frobenius norm. Then applying Sun (2011, Theorem 4), Sun (2013,
Theorem 4.1), Sun (2014, Theorem 2), we can expand Θ−1 = 1 + L+Q+ op((bT)

−q +
b), where L = ([e′

TΩ
−1/2] ⊗ [e′

TΩ
−1/2]) vec(Ω̂ − Ω), Q = vec(Ω̂ − Ω)′(J1 − J2) vec(Ω̂ −

Ω)/2, J1 = [2Ω−1/2eTe
′
TΩ

−1/2]⊗ [Ω−1/2(eTe
′
T )Ω

−1/2], J2 =Ω−1/2eTe
′
TΩ

−1/2 ⊗Ω−1Kmm(Im2 +
Kmm) (see Sun (2014, p. 675)). From part (i) of the theorem, we have that EΩ̂ − Ω =
−(B/T)qkWOS(q)(0)

∑∞
j=−∞ |j|q�j +o((B/T)q), and therefore, again following the steps in

Sun (2011, Theorem 4), Sun (2013, Theorem 4.1), Sun (2014, Theorem 2),

E[L] = −(B/T)qkWOS(q)(0)ω(q) + o((bT)−q + b)� (S.27)

E
[
L2

] = 2
ψ

B
+ o((bT)−q + b) and E[Q] = −ψ

B
(m− 1)+ o((bT)−q + b)� (S.28)

Then expanding (S.26) as in those theorems,

P
(
mF∗

T ≤ z) =Gm

(
z

B

B−m+ 1

)
+G′

m(z)zE[L+Q]

+ 1
2
EG′′

p(z)z
2E

[
L2

]+ o((bT)−q + b)+O
(

1
T

)

=Gm(z)−G′
m(z)zω

(q)kWOS(q)(0)(bT)−q −G′
m(z)z

ψ

B
(m− 1)+G′′

p(z)z
2ψ

B

+ o(b)+ o((bT)−q)� (S.29)
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Set z = c̃αm(b) in this equation, and note that (i) c̃αm(b) = χαm + O(b) as in Sun (2014,
p. 665), and (ii)mFT = (B/(B−m+1))mF∗

T =mF∗
T (1+O(b)), so thatmcαm(b)= c̃αm(b)+

O(b)= χαm +O(b), where cαm(b) is the fixed-b critical value as in the text (i.e., the 1 − α
quantile of the limiting distribution for F∗

T with B fixed). Combining this with (S.25) then
gives the null expansion (18) for WOS tests.

The expansion under the local alternative uses the calculations above (extended to in-
corporate the local alternative) to apply the results of Sun (2011, Theorem 5(b)) and Sun
(2014, Theorem 5). Those calculations (omitted here, since they follow the same steps as
in those papers and above, but available upon request) yield the expansion

Prδ
[
F∗
T ≤ cαm(b)

] =Gm�δ2

(
χαm

)−G′
m�δ2

(
χαm

)
χαmω

(q)k(q)(0)(B/T)q

+ 1
2
δ2G′

m+2�δ2

(
χαm

)
χαm
ψ

B
+ o(b)+ o((bT)−q)� (S.30)

Rearranging gives (19).
(vi) Parts (ii)–(v) apply directly. For part (i), see Proposition S4 below. Q.E.D.

S2.2. Proofs for Remarks and Additional Statements

PROPOSITION S1—Section 2.2: The Ibragimov–Müller (2010) LRV estimator, which is
the sample variance of subsample estimators of β on B + 1 equal-sized subsamples, can be
expressed as an equal-weighted WOS estimator.

PROOF OF PROPOSITION S1: For convenience, suppose T/(B + 1) is an integer and
m= 1, though the derivation below applies straightforwardly to the more general cases.
The Ibragimov–Müller (2010) split-sample (SS) test statistic is then

tSS =
√
B+ 1( ¯̂

β−β0)/
√
S2
β̂
� where S2

β̂
= 1
B

B+1∑
i=1

(
β̂(i) − ¯̂

β
)2
� (S.31)

where β̂(i) is the estimator of β computed using the ith subsample and ¯̂
β= 1

B+1

∑B+1
i=1 β̂

(i).

Note that ¯̂
β−β0 = z̄0, and define Ω̂SS = [T/(B+ 1)]S2

β̂
. Let β̆ be the B+ 1 vector with

ith element β̆i = β̂(i), so that S2
β̂

= B−1β̆′(IB+1 − ιB+1(ι
′
B+1ιB+1)

−1ι′B+1)β̆, where IB+1 is the
(B+ 1)× (B+ 1) identity matrix and ιB+1 is the (B+ 1)-vector of 1’s. Define

�SS = √
(B+ 1)(IB+1 ⊗ ιT/(B+1))M

B
ι � (S.32)

where MB
ι is the (B+ 1)×B matrix of eigenvectors of IB+1 − ιB+1(ι

′
B+1ιB+1)

−1ι′B+1 associ-
ated with its B unit eigenvalues. Then

Ω̂SS = [
T/(B+ 1)

]
S2
β̂

= [
T/(B+ 1)

]
B−1β̆′(IB+1 − ιB+1

(
ι′B+1ιB+1

)−1
ι′B+1

)
β̆

= [
T/(B+ 1)

]
B−1

[
T/(B+ 1)

]−2
y ′(IB+1 ⊗ ιT/(B+1))

× (
IB+1 − ιB+1

(
ι′B+1ιB+1

)−1
ι′B+1

)(
IB+1 ⊗ ι′T/(B+1)

)
y

= (BT)−1(B+ 1)ẑ′(IB+1 ⊗ ιT/(B+1))
(
IB+1 − ιB+1

(
ι′B+1ιB+1

)−1
ι′B+1

)(
IB+1 ⊗ ι′T/(B+1)

)
ẑ
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= (BT)−1(B+ 1)ẑ′(IB+1 ⊗ ιT/(B+1))M
B
ι M

B′
ι

(
IB+1 ⊗ ι′T/(B+1)

)
ẑ

= ẑ′�SS�SS′ẑ/BT� (S.33)

where the first equality uses the definition of Ω̂SS, the second applies (S.31), the third

uses β̆= [T/(B+ 1)]−1[IB+1 ⊗ ι′T/(B+1)]y , the fourth uses ẑ = y − ¯̂
β and the properties of

IB+1 − ιB+1(ι
′
B+1ιB+1)

−1ι′B+1, the fifth uses the idempotence of IB+1 − ιB+1(ι
′
B+1ιB+1)

−1ι′B+1

and the definition of MB
ι , and the final equality uses the definition of �SS in (S.32).

Note that �SS is T × B, that ι′T�
SS = 0, and �SS′�SS/T = IB as required for series esti-

mators (for which �= [�1 · · · �B], where �j = [φj(1/T) φj(2/T) · · · φj(1)]′). Thus,
Ω̂SS is an equal-weighted WOS estimator as defined in (8) with basis matrix �SS. Q.E.D.

PROPOSITION S2—Section 3.3: The Fourier, Type II cosine, and Legendre polynomial
bases satisfy sups∈[0�1] |φ(n)j (s)| ≤ Cn�φj2n+1/2 for all j and n= 0�1�2, where φ(n)j (s) is the nth
derivative of φj and the constant Cn�φ does not depend on j, as required for Assumption 3.

PROOF OF PROPOSITION S2: The Fourier and cosine basis functions satisfy |φj(x)| ≤
1 for all j. For the Fourier basis, we have φ′

2j−1(s) = −2
√

2πj sin(2πjs), φ′
2j(s) =

2
√

2πj cos(2πjs), φ′′
2j−1(s) = −4

√
2π2j2 cos(2πjs), φ′′

2j(s) = −4
√

2π2j2 sin(2πjs), and
thus |φ′

k(s)|/j ≤ 2
√

2π, |φ′′
k(s)|/j2 ≤ 4

√
2π2, with k = 2j − 1�2j, for all j, so that the

condition is satisfied. Similarly, for the cosine basis, |φ′
j(s)|/j ≤ √

2π, |φ′′
j (s)|/j2 ≤ √

2π2,
so that the condition is satisfied.

For the Legendre case, first denote the Legendre polynomial of degree j by Pj(x),
x ∈ [−1�1]. The Legendre basis functions are then defined as φj(s)= Pj(x)

√
2j + 1, for

s = (x+ 1)/2, so that the basis functions are shifted to s ∈ [0�1] and normalized such that∫ 1
0 φj(s)φk(s)ds = 1{j = k} (e.g., Abramowitz and Stegun (AS, 1965, p. 774)), as required

by definition. Thus, |φj(s)|/
√
j ≤ √

3, satisfying the requirement for the 0th derivative, as
|Pj(x)| ≤ 1 (Abramowitz and Stegun (1965, eq. 22.14.7)) and

√
2j + 1/

√
j ≤ √

3.
For the first and second derivatives, note first that the Legendre polynomial Pj(x) is

equivalent to the Jacobi polynomial P(α�β)j (x) with α = β = 0 (Abramowitz and Stegun
(1965, eq. 22.5.24)). Thus, applying a well-known property of Jacobi polynomial deriva-
tives (e.g., Shen, Tang, and Wang (2011, eq. (3.101))), we have that

dn

dxn
Pj(x)= dn

dxn
P(α�β)j (x)

∣∣∣∣
α=0�β=0

= �(j + 1 + n)
2n�(j + 1)

P(n�n)j−n (x)� (S.34)

j ≥ n, where �(·) is the gamma function. (Boundedness for the case j = 1, n= 2 is imme-
diate, as P ′′

1 (x)= 0.) And maxx∈[−1�1] |P(n�n)j−n (x)| = max |P(n�n)j−n (±1)| (Shen, Tang, and Wang
(2011, eq. (3.125))), so P ′

j(x) and P ′′
j (x) are maximized at a boundary point x= ±1. From

Shen, Tang, and Wang (2011, eq. (3.177a)–(3.177b)), at these points,

P ′
j(±1)= 1

2
(±1)j−1j(j + 1)� P ′′

j (±1)= 1
8
(±1)j(j − 1)j(j + 1)(j + 2)� (S.35)

The uniform boundedness of |P ′
j(x)|/j2 and |P ′′

j (x)|/j4 follows immediately. Then using
that φj(s)= Pj(x)

√
2j + 1 as above, we have that |φ′

j(s)|/j2+1/2 and |φ′′
j (s)|/j4+1/2 are uni-

formly bounded as well, as stated. Q.E.D.
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PROPOSITION S3—Remark 3: Statements (a)–(e) in Remark 3 hold.

PROOF OF PROPOSITION S3: (a) For kernel estimators, Priestley (1981, eq. (6.2.123))
extended a result of Parzen (1957) to show that given a process with known mean, equa-
tion (15) holds without the terms in b if bqT q−1 → 0. Thus,

bias
(
ŝz(0)

) =Eŝz(0)− sz(0)= −(bT)−qk(q)(0)s(q)z (0)+ o((bT)−q)� (S.36)

and this equation holds as well for WOS estimators (including with unknown mean) by
(13) and (15). For variance, (17) holds in both cases, so that

var
(
ŝz(0)

) = 2ν−1
(
sz(0)

)2 + o(b)� (S.37)

So up to higher-order terms, MSE(ŝz(0))= (bT)−2q(k(q)(0)s(q)z (0))
2 + 2bψ(sz(0))2, which

was shown by Priestley (1981, eq. (7.5.9)) to satisfy minb MSE(ŝz(0))∝ (�(q)(k))2q/(2q+1).
(b) Using the two equations from (a), the objective function evaluates to

a(bT)−qk(q)(0)
∣∣s(q)z (0)∣∣+ 2(1 − a)bψ(sz(0))2 + o((bT)−q)+ o(b)� (S.38)

The minimizing value of b is invariant, up to a multiplicative constant, to transformations
of the objective function of the form

a1(bT)
−qk(q)(0)

∣∣s(q)z (0)∣∣+ a2bψ
(
sz(0)

)2 + o((bT)−q)+ o(b)� (S.39)

for a1� a2 > 0. Sun and Yang (2020, p. 11) showed that (i) objective function (e) can be
expressed in this form, and (ii) its minimum is achieved for b∝ (k(q)(0)/ψ)1/(q+1)T−q/(q+1)

(see also LLSW (2018, rejoinder eq. (1))), so that the minimized objective function is, to
higher order and up to an additive constant, proportional to (�(q)(k))q/(q+1).

(c) By the proof of Corollary 1, both objectives can be expressed in the form (S.39), so
part (b) applies.

(d) See LLSW (2018, eqs. (24)–(25)).
(e) See part (b). Q.E.D.

PROPOSITION S4—Remark 5: For EWP and QS tests with equivalent higher-order size,
equation (30) in the text holds, with νEWP = B.

PROOF OF PROPOSITION S4: Fix a sequence B = 1/bEWP. To obtain equivalent higher-
order size using the QS test, Theorem 1(iv) gives that we must set

bQS =
√
kQS(2)(0)
kEWP(2)(0)

bEWP =
√
π2/10
π2/6

B−1 =
√

3
5
B−1� (S.40)

where the k(2)(0) values for the two tests are as in the proof of Theorem 5. Further,∫ ∞
−∞ k

2(x)dx= 6
5 for QS, so that given equivalent higher-order size, we have ν−1

EWP − ν−1
QS =

B−1 − 6
5

√
3
5B

−1. Plugging this into Theorem 3 yields the desired result. Q.E.D.

PROPOSITION S5—Remark 6:
(i) The Bartlett kernel and SS estimator both have q = 1, and the Bartlett kernel’s size-

power tradeoff curve is strictly below the SS tradeoff curve.
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(ii) The EWP estimator is asymptotically equivalent to the equal-weighted WOS estimator
using Type II cosine basis functions, and both have q= 2.

PROOF OF PROPOSITION S5: (i) We first consider the SS estimator. Note that the SS
basis functions (S.32) do not satisfy the differentiability requirement of Assumption 3.
Thus, for the SS estimator, we calculate EΩ̂SS directly; in doing so, we show that the
SS implied mean kernel is similar to the Bartlett kernel for a subsample of T/(B + 1)
observations (where it is assumed for notational simplicity that this ratio is integer-valued,
as the non-integer case follows immediately setting the subsample size to [T/(B+ 1)]).

First, given ȳi − ȳ ≡ 1
Ti

∑
t∈Ti yt − 1

T

∑T

t=1 yt (where, abusing notation, Ti denotes both
the number of observations in subsample i, Ti = T/(B + 1), and the subsample that t
indexes), we have ȳi − ȳ = 1

T

∑T

t=1((B + 1)1{t ∈ Ti} − 1)yt = B+1
T

∑T

t=1(1{t ∈ Ti} − 1
B+1)yt .

Thus, squaring and summing over subsamples, we have

1
B

B+1∑
i=1

(ȳi − ȳ)2

= 1
B

B+1∑
i=1

(
B+ 1
T

)2 T∑
t=1

T∑
s=1

(
1{t ∈ Ti} − 1

B+ 1

)(
1{s ∈ Ti} − 1

B+ 1

)
ytys� (S.41)

Taking the expectation of this value and rearranging,

E
1
B

B+1∑
i=1

(ȳi − ȳ)2

= B+ 1
B

1
T/B+ 1

T−1∑
u=−(T−1)

[(
1 −

∣∣∣∣ u

T/B+ 1

∣∣∣∣
)

1
{
|u| ≤ T

B+ 1

}
− 1
B+ 1

(
1 −

∣∣∣∣ uT
∣∣∣∣
)]
�u

= B+ 1
T

T−1∑
u=−(T−1)

[(
B+ 1
B

− B+ 1
B

∣∣∣∣ u

T/(B+ 1)

∣∣∣∣
)

1
{
|u| ≤ T

B+ 1

}
− 1
B

+ 1
B

∣∣∣∣ uT
∣∣∣∣
]
�u�

(S.42)

Converting E 1
B

∑B+1
i=1 (ȳi− ȳ)2 to EΩ̂SS requires multiplying by T/(B+1) given the form of

the statistic in (S.31) compared to the usual t-statistic. Thus, in this case defining S such
that T = S(B+1) given that there are B+1 subsamples and setting ν̃ = u/S, we can write
the SS implied mean kernel (i.e., the expression in brackets in (S.42)) as

kSS
B (ν̃)=

(
B+ 1
B

− B+ 1
B

|ν̃|
)

1
{|ν̃| ≤ 1

}− 1
B

+ 1
B(B+ 1)

|ν̃|� (S.43)

Thus, using the definition of the generalized first derivative in (11), we have kSS(1)
B (0) =

B+1
B

− 1
B(B+1) = B+2

B+1 → 1 as B → ∞. Because kSS(1)(0) �= 0, q = 1 for the SS estimator.
Further, comparing EΩ̂SS with Ω using (S.42), we obtain that Theorem 1(i) applies for
the SS estimator as well, and the tradeoff in Theorem 4(ii) applies. The value �(1)(kSS) is
equal to kSS(1)(0)= 1 given ψ= 1 for equal-weighted WOS estimators.
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For the Bartlett/Newey–West test, Priestley (1981) Table 7.1 gives k(1)(0)= 1 and q= 1,
while Table 6.1 gives that

∫ ∞
−∞ k

2(x)dx = 2/3, so that �(1)(kNW) = k(1)(0)
∫ ∞

−∞ k
2(x)dx =

2/3, from which we conclude that the Bartlett tradeoff dominates the SS tradeoff.
(ii) For the Fourier basis functions used in the EWP estimator, we have, as in

Proposition S2, φ′′
2j−1 = −4

√
2π2j2 cos(2πjs), φ′′

2j = −4
√

2π2j2 sin(2πjs), which give that∫ 1
0 φ2j−1(s)φ

′′
2j−1(s)ds = ∫ 1

0 φ2j(s)φ
′′
2j(s)ds= −4π2j2. Then applying Theorem 1(ii),

kEWP(2)
B (0)= −1

2
1
B

B/2∑
j=1

1
B2 2

(−4π2j2
) = π2

6
(B+ 1)(B+ 2)

B2

B→∞−→ π2

6
� (S.44)

Similarly, for cosine basis functions, using their limiting implied mean kernel form,
φ′′
j (s)= −√

2π2j2 cos(πjs) and
∫ 1

0 φ2�j−1(s)φ
′′
2�j−1(s)ds = −π2j2. Summing over j,

kcos(2)
B = −1

2
1
B

B∑
j=1

1
B2

(−π2j2
) = π2

6
(B+ 1)(B+ 1/2)

B2

B→∞−→ π2

6
� (S.45)

Results (S.44) and (S.45) and Theorem 1(ii) give that q = 2 for both estimators; these
results, along with ψ = 1 for equal-weighted WOS estimators, then imply given Theo-
rem 4(ii) that the estimators are asymptotically equivalent. Q.E.D.

PROPOSITION S6—Section 4.3: Assume that the remainder terms in equation (18) in the
text are o(b)+ o((bT)−q) uniformly in |ω(q)| ≤ ω̄(q). Then:

(i) The maximum weighted average power (WAP) test solving equation (31) in the text
features bWAP as stated in equation (32), with

ω̃(q) =
∫

|ρ|≤ρ̄

[
ω̄(q)(ρ)−ω(q)(ρ)

]
dΠ(ρ) and

d̃m�α�q =

⎛
⎜⎜⎝

∫
δ

G′
m�δ2

(
χαm

)
χαm dΠδ(δ)

1
2

∫
δ

δ2G′
m+2�δ2

(
χαm

)
χαm dΠδ(δ)

⎞
⎟⎟⎠

1
1+q

�

(S.46)

(ii) The power loss of the test using bWAP in (32) depends on k only through �(q)(k).
(iii) The test asymptotically delivering the highest WAP uses the QS kernel, and more gen-

erally, q= 1 kernels are asymptotically dominated by q= 2 kernels.

PROOF OF PROPOSITION S6: (i) Let c̄αm�T (b) be the size-adjusted critical value (20)
based on the boundary value of ω̄(q): c̄αm�T (b)= [1 + ω̄(q)k(q)(0)(bT)−q]cαm(b). From (18),
the null rejection rate of the test using this size-adjusted critical value, evaluated at the
true value of ω(q), is

Pr0

[
F∗
T > c̄

α
m�T (b)

] = α+G′
m

(
χαm

)
χαm

(
ω(q) − ω̄(q)

)
k(q)(0)(bT)−q + o(b)

+ o((bT)−q)� (S.47)

from which it follows that, for a given sequence b and under the assumed condition,

sup
ω(q)≤ω̄(q)

Pr0

[
F∗
T > c̄

α
m�T (b)

] ≤ α+ o(b)+ o((bT)−q)� (S.48)
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The expression for �P(ω(q)(ρ)�δ) in (31) then follows from an application of (34) in the
proof of Theorem 2 (omitting higher-order remainder terms). Solving (31) yields (32),
with ω̃(q) and d̃m�α�q as stated.

(ii)–(iii) Substituting bWAP in (32) into the expression for �P(ω(q)(ρ)�δ), we obtain that
the power loss of the test using the WAP-maximizing sequence is

�WAP
P = (

q−q/(1+q) + q1/(1+q))ãm�α�q[(k(q)(0))1/q
ψ
] q

1+q (ω̃(q)
) 1

1+q T
−q
1+q � (S.49)

where ãm�α�q = [∫ G′
m�δ2(χ

α
m)χ

α
m dΠδ(δ)]1/(1+q)[ 1

2

∫
δ2G′

m+2�δ2(χ
α
m)χ

α
m dΠδ(δ)]q/(1+q). Note

that �(q)(k)= (k(q)(0))1/qψ. The remaining stated results then follow. Q.E.D.
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