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Abstract

Environmental regulations can be costly, but they can also induce innovation that im-
proves productivity if the benefits outweigh the costs, and not all firms face the same
costs. We provide the first empirical evidence of a regulation enhancing firm productiv-
ity across the industrial sector, showing how differences in compliance costs matter for
understanding the impact of regulation on economic activity. We use a heterogeneous
difference-in-difference research design to study not only the “dirtiest” firms facing the
highest compliance costs but also those in “cleaner” (but still regulated) industries.
Productivity increases by 4% for firms in cleaner industries while there is no effect
on the dirtiest. This is driven partially by firm sorting. Private firms exit and sales
increase for state-owned enterprises. Private firms also invest in higher-skilled labor
and management yet there is no effect on new product output, suggesting that they
may innovate in their processes and practices.
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1 Introduction

Air pollution is one of today’s biggest barriers to economic growth. Not only does it play a

pivotal role in driving climate change, but it also creates substantial costs in and of itself.

It dampens worker productivity (Graff Zivin and Neidell 2012; Chang, Graff Zivin, Gross

and Neidell 2016 2019) and labor supply (Hanna and Oliva 2015), reduces life expectancy

(Ebenstein, Fan, Greenstone, He and Zhou 2013), and increases infant mortality (Chay and

Greenstone 2003; Arceo, Hanna and Oliva 2015). At the same time, environmental regula-

tions are also costly—particularly for industrial firms that often have to make large capital

investments in abatement technology or adjust their production processes to comply—which

has generated a long-standing “environment versus economy” discourse amongst policymak-

ers. Indeed, empirical analyses so far have primarily found that environmental regulation

hurts firm productivity (Kahn 1997; Greenstone 2002; Greenstone, List and Syverson 2012)

and reallocates labor away from regulated industries (Walker 2013).

However, not all firms face the same costs, and this heterogeneity has implications for

developing an understanding of how regulation impacts economic activity and competitive-

ness. While firms typically must invest to some degree, the level of investment required and

the strategies firms take to come into compliance, should they choose to do so, depend on

their current pollution intensity. Firms that pollute more typically must invest more—such

as by replacing old machinery—whereas those that already pollute less may only need to

make minor adjustments in their production processes and practices. And in both cases,

firms also have incentives innovate to reduce the cost of using pollution-intensive inputs.

Such investments may even improve performance and enhance productivity if the benefits

outweigh the costs.

In this paper, we study the impact of an environmental regulation on industrial firms’

productivity, and importantly, we estimate the effects on firms not only in the most pollution-

intensive industries (that face the highest compliance costs) but also those that are “cleaner”

(and still regulated). This allows us to capture the net effect, and in doing so, we provide the

first empirical evidence of environmental regulation enhancing firm productivity on average
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across the industrial sector.1 The findings are consistent with what is often considered the

“strong” version of the Porter Hypothesis. That is, regulation creates incentives for firms

to develop or adopt new technologies, processes, or practices, which can, in turn, enhance

productivity (Porter and Van der Linde 1995).

The theory behind the Porter Hypothesis is not new. However, while there is growing

evidence that environmental policy and regulation spur innovative activity like R&D and

patenting (i.e., the “weak” version of the Porter Hypothesis), relatively little is known about

whether this translates into productivity improvements.2 Greenstone (2002) and Green-

stone et al. (2012) offer the most robust analyses of air quality regulation and industrial

firm productivity to date, finding that the total factor productivity (TFP) of the most

pollution-intensive manufacturing plants declined in response to the U.S. Clean Air Act.3

As productivity is ultimately the key input into economic growth and competitiveness, con-

tinuing to build this evidence base is of first-order importance, and it is increasingly urgent

amidst productivity growth declines in developed countries and as developing countries face

widespread poverty yet disproportionately bear the burden of pollution.

To help narrow this knowledge gap, we specifically study China’s Two Control Zone

(TCZ) regulation, which was implemented in 1998 and set objectives for reducing sulfur

dioxide (SO2) emissions in about half of China’s prefectures. We use a heterogeneous

difference-in-difference research design, exploiting two main sources of variation that deter-

mine treatment status—whether a firm is located in a regulated prefecture and before/after

variation based on the regulation’s implementation timing—and we allow the effect to vary

based on whether the firm is in one of the dirtiest or “cleaner” industries.

1Hafstead and Williams (2018) also point out the importance of examining the net effect and study the
impact of pollution taxes on employment in a general equilibrium model, finding that employment decreased
in some industries but increased in others such that the net (negative) effect is small. Our work differs
by studying firm productivity and a regulation (rather than labor and taxes), by taking a reduced form
approach, and in our findings that there are positive effects even on some directly regulated firms.

2See Jaffe and Palmer (1997), Newell, Jaffe and Stavins (1999), Popp (2002), Aghion, Dechezlêpretre,
Hemous, Martin and Van Reenen (2016), Calel and Dechezlêpretre (2016), and Calel (2020). In addition to
not examining productivity, most of this work also studies market-based interventions like carbon taxes as
opposed to command-and-control regulation.

3He, Wang and Zhang (2020) more recently also found that regulation reduced firm productivity in
China but in the water context, and Bailey (2019) finds that carbon pricing reduces productivity of coal
power plants. See Dechezleprêtre and Sato (2017) and Cohen and Tubb (2018) for the latest reviews of the
literature. Most work so far on productivity studies it at the industry or country level. For example, Berman
and Bui (2001) find that firm productivity increased in response to a regulation for refineries in Los Angeles.
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We find that total factor productivity (TFP) increases by 4.3% for firms in less pollution-

intensive industries while there is no effect on those in more pollution-intensive industries.

The net average effect is thus positive. When we limit the sample to only industries that

are “responsive” (i.e., those whose productivity increases), the estimates increase to 16%

and 8%, respectively. These are the first results providing evidence that environmental

regulation enhances firm productivity across an entire sector to the best of our knowledge.

We would have drawn different conclusions that are more in line with the existing literature

if we did not also consider the effects on “cleaner” industries, highlighting the importance of

considering all regulated firms to understand the implications of environmental regulation

for industrial activity and growth.

A natural question that emerges from these results is whether the regulation was enforced

and that firms actually took action to reduce their pollution levels. If not, such productiv-

ity improvements would not be associated with the regulation itself. We examine this by

estimating the effect of the regulation on SO2 concentration—the pollutant targeted by the

TCZ regulation—using satellite-based data at the prefecture-month-year level and find that

pollution did indeed decrease by about 5%. This suggests that firms did make adjustments

in response to the regulation.

We conduct a series of additional tests to explore the underlying mechanisms driving our

results, and taken together, they suggest that firm sorting and innovative activity are likely

at play. There are no increases or reallocation of inputs, but sales and value-added increase,

leading to higher productivity of labor, capital, and intermediate inputs. Productivity gains

are thus associated with an output effect, and firm exit plays a role. The propensity to

exit increases by about 5% in response to the regulation but only for firms that were least

productive in the pre-regulation period, resulting in a higher average productivity. This type

of reallocation across firms is reasonable and brings efficiency improvements, as resource

misallocation is common in the developing country context.

Lastly, we explore whether firms innovate in response to the regulation as the Porter

hypothesis would suggest. We do not examine the effects on traditional innovation mea-

sures like patenting, since industrial firms are unlikely to develop new technologies unless

an environmental technology is already their core business. They are more likely to inno-
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vate in their processes and practices, and these innovations are less likely to be patented

(Hall, Helmers, Rogers and Sena 2013). Rather, we investigate whether firms start investing

in high-skilled workers—such as scientists and engineers—and whether they allocate more

resources towards management, which is critical for successfully integrating new knowledge

into processes and practices for it to affect productivity. We find that both average wages

and expenditures on management do indeed increase. Furthermore, there is no change in

output specifically associated with new products, suggesting that firms may be innovating

in their processes and practices if average wages and management expenditures are indeed

good proxies for investment in higher-skilled labor.

One caveat to this conclusion is that we cannot fully rule technology adoption as a

mechanism. Although we find no effect on capital, firms could displace old machinery with

more efficient and less pollution-intensive machinery, leading to a net-zero effect. That said,

since technology adoption typically does not require ongoing high-skilled labor (just workers

to operate the equipment) or additional ongoing management expenditures, we find process

and practice innovation to be a likely driver of productivity improvements.

To probe the underlying mechanisms further, we also study private firms and state-

owned enterprises (SOEs) separately given how incentive structures vary by firm ownership.

Environmental regulation evasion is common, and China has a long history of government

favoritism of the state sector. Local public officials—who are responsible for enforcing the

regulation—typically appoint the executives of SOEs and benefit from the relationships

(Barwick, Cao and Li Forthcoming; Lei forthcoming). This creates strong incentives for the

government to help SOEs survive, reducing the pressure on public sector firms to innovate.

Our results are consistent with favoritism behavior like this. It turns out that the effects

on exit and innovation are almost entirely driven by private firms, despite productivity in-

creasing for both SOEs and private firms. There is no exit of SOEs on average whereas the

propensity to exit increases by 5% for private firms, an effect that’s driven by older firms

only. This aligns with our previous finding that less productive firms are those that exit, as

older firms are more likely to rely on older and less efficient machinery. On the other hand,

the propensity to exit increases by 15% for both SOEs and private firms that are small,

although the number of firms that this equates to is much smaller for SOEs. This is in line
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with China’s “grasping the large, letting go of the small” approach to industrial reformation,

but there is still a small effect on larger firm exit, suggesting that China particularly favored

larger SOEs when “grasping.” Finally, we find positive effects on average wages and man-

agement expenditures only for private firms. Considering these heterogeneous effects across

firm ownership together points to the regulation being enforced unequally such that SOEs

benefit from protectionism, and this comes with potential threats to economic growth and

competitiveness given how small private firms are often key drivers of innovation.

Our paper makes several contributions. First and foremost, by studying how environmen-

tal regulation impacts not only the most pollution-intensive industries but also those that

are “cleaner,” we are able to shed new light on how environmental regulation and growth are

not always at odds. The two papers closest to ours are Greenstone (2002) and Greenstone

et al. (2012), who found that the U.S. Clean Air Act dampened the TFP of manufacturing

plants. Our alternative approach to studying how regulation impacts productivity and the

conclusions that it leads to complement this work.

The second main contribution of this paper is that we look under the hood of the firm

to explore the strategies firms take to comply with environmental regulation and whether

these translate into improved productivity. Our exploration of the channels through which

firms achieve such outcomes suggests that process and practice innovation at least part of

what drives productivity improvements. Even in non-environmental contexts, it is rare to

empirically connect innovation to productivity.

Our empirical setting is also important in its own right, as China is the world’s heaviest

polluter and a significant contributor to global economic activity. The literature focusing on

how environmental regulation and quality impacts other firm outcomes in China is growing

but less attention has been paid to productivity.4 One exception is He et al. (2020) who

study a water regulation and find that it reduced productivity. Another closely related paper

is Fan, Graff Zivin, Kou, Liu and Wang (2019)’s examination of how regulation stringency

impacts firm performance, also finding that it declined despite the adoption of new practices.5

4For example, some have studied how pollution impacts labor demand (Liu, Shadbegian and Zhang 2017;
Gray, Shadbegian, Wang and Meral 2014; Liu, Zhang and Geng 2018) and supply (Liu, Tan and Zhang 2021;
Fan and Grainger 2021).

5Tanaka, Yin and Jefferson (2014), an unpublished working paper, also study how the TCZ regulation
impacted firm productivity but they do not have before/after variation.
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Lastly, this paper is important and timely for policy in various settings. Our findings

challenge the narrative that often dominates political debates, suggesting that intervention

aiming to reduce pollution actually may be an effective tool for simultaneously fostering

economic development and environmental quality improvements.

This paper proceeds as follows. In Section 2, we discuss the institutional details of our

empirical setting and our research design. In Section 3, we describe our data and examine

the effect of the regulation on pollution to demonstrate that it “worked” before moving on to

our main analysis of productivity. We provide the main results in Section 4, and in Section

5, we explore the underlying mechanisms. We explore differences across firm ownership in

Section 6 and conclude in Section 7.

2 Background and Research Design

2.1 Air Pollution and Environmental Regulation in China

China’s rapid economic growth has come with significant increases in air pollution. In

particular, sulfur dioxide (SO2) emissions from the industrial sector were a major contributor

to China’s ambient air pollution through the 1980s and 1990s, which reached 23.7 million by

1995 and created severe acid precipitation in more than 30% of the country’s territory (Hao,

Wang, Liu and He 2001). According to the 8th Five-Year Plan (1991 to 1995) statistics, SO2

pollution level exceeded the Class II of Chinese National Ambient Air Quality Standards

(CNAAQS) for SO2 in 149 out of 280 surveyed prefectures.6 High levels of SO2 and soot are

severely detrimental to human health, with economic losses estimated to be about 95 billion

yuan (real value) in the year 1995 (Johnson, Liu and Newfarmer 1997).

This reality and increasing public concern led the Chinese government to introduce a

number of environmental regulations, eventually resulting in some of the most comprehensive

environmental regulation in the developing world to date. The first was the Air Pollution

Prevention and Control Law (APPCL) in 1987 (He, Huo and Zhang 2002). However, it

6According to Chinese National Ambient Air Quality Standards, annual average SO2 concentration level
below 20 µg/m3 is classified as Class I standard; Class II standard ranges from 20 µg/m3 to 60 µg/m3 ;
Class III standard is between to 60 µg/m3 and 100 µg/m3 .
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provided only a general provision related SO2 emissions and excluded the power sector, and

consequently, had very little impact on reducing SO2 emissions or acid rain. The government

amended the law in 1995 with a new article imposing more stringent regulations on specific

regions assigned as acid rain control zones and SO2 pollution control zones, which became

known as the Two Control Zones (TCZ) regulation.

2.2 The TCZ Regulation

The Two Control Zone (TCZ) regulation was enacted in 1998 and aimed to limit China’s total

SO2 emissions to be within 2000 levels by the year 2010, achieving urban ambient air sulfur

dioxide concentrations that would meet national environmental quality standards. Another

goal was to significantly reduce precipitation pH levels relative to 2000 levels. The national

government designated prefectures as being SO2 pollution control zones (i.e., regulated)

based on whether the prefecture’s average annual ambient SO2 concentrations exceeded the

national Class II standard, whether the prefecture’s daily average concentrations exceeded

the National Class III standard, and whether “high” SO2 emissions were recorded. Prefec-

tures were designated as acid rain control zones based on whether their average annual pH

values for precipitation were less than or equal to 4.5, sulfate deposition was greater than

the critical load, and high emissions were recorded.

These rules resulted in 175 regulated prefectures, spanning regions that accounted for

11.4% of the nation’s territory, 40.6% of the population, 62.4% of GDP, and 58.9% of SO2

emissions according to 1995 figures (Hao et al. 2001). Figure 1 illustrates their geographic

distribution.7

[FIGURE 1 HERE]

Although some aspects of the regulation were vague, it did lay out specific requirements

for some industries, imposing relatively stringent pollution control measures according to

nationally-mandated thresholds compared to previous efforts. The regulation particularly

targeted industries related to the life cycle of coal, namely coal mining, processing, and

combustion, given their particularly high contributions to SO2 pollution in China. China

7We detail our assignment of “regulated” in Section 3.
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consumed 963 metric tons carbon equivalent of coal in 1998, accounting for about 30% of

the world’s coal consumption that year (IEA 2020). The main coal users, like coal power

plants, industrial boilers, and kilns, contributed to approximately 35%, 34% and 11% of the

total SO2 emissions in TCZ regions (Hao et al. 2001).

The most explicit control measures were imposed on coal mining and thermal power

plants. No new coal mines with sulfur content higher than 3% or no new coal-burning power

plants in large and medium-sized prefectures (that were also in TCZ regions) could be built.

All new and existing coal mines with sulfur content higher than 1.5% had to be equipped with

coal washing facilities. Existing mines producing coal with sulfur content higher than 3%

were to be gradually shut down or have output restricted. All new and existing power plants

using coal with sulfur content higher than 1% had to be equipped with desulphurization

facilities; existing plants were required to take action to reduce SO2 emissions before 2000

and establish desulfurization facilities by 2010 (Hao et al. 2001).

Other polluting industries were also regulated but they were provided more flexibility in

how emissions reductions could be achieved. Firms in chemical, metallurgical, nonferrous

metal (including concrete), and building materials industries in TCZs, for example, had

to either construct waste gas treatment facilities (e.g., scrubbers) or “take other emissions

reduction measures,” such as retrofitting industrial boilers and kilns or switching to low-sulfur

or washed coal. The TCZ policy also generally promoted clean production and technical

renovation in all manufacturing processes to effectively reduce SO2 emissions.

2.3 Research Design

Our research design leverages two sources of variation created by the TCZ regulation: geo-

graphic variation based on whether a prefecture is designated as being regulated and timing

variation based on before/after based on the regulation’s implementation year. We examine

whether productivity changes after implementation are different for firms in TCZ prefectures

relative to those that are not regulated. In addition, we allow the effects to vary based on

whether the firm is in a more (“dirtier”) or less pollution-intensive (“cleaner”) industry as

measured by the proportion of total SO2 emissions generated by that industry.8 Although

8Our method for making these assignments are detailed in Appendix A.3.
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firms in “cleaner” industries face lower compliance costs, as they usually have to take less

extreme measures to meet the requirements, these are polluting industrial firms, so all firms

in TCZ prefectures are defined as “regulated.”

This heterogeneous difference-in-differences approach allows us to identify the effect of

the regulation on firms in both more and less pollution-intensive industries. We estimate the

following model throughout our main analyses:

log(Yit) = β1(TCZp ∗Postt) +β2(TCZp ∗Postt ∗Polluters) +µp ∗ t+αi +γst + δsp + εit (1)

where Yit is firm i’s (log) total factor productivity (TFP) (or other outcomes) in year t,

TCZp is a “regulated” indicator equal to one for firms located in TCZ prefectures (p) and

zero otherwise, and Postt is an indicator equal to one in the post-policy years (from 1999

onwards) and zero otherwise.9 The variable Polluters is an indicator equal to one for firms

in more pollution-intensive industries (s) and zero otherwise.

The main coefficients of interest are β1 and β2. β1 captures the regulation’s effect on

firms in less pollution-intensive industries and β2 reflects the “extra” impact on the dirtiest

firms relative to those that are cleaner. The total effect on the dirtiest firms is the sum of

the two coefficients.

The two identifying assumptions of our research design are that: 1) trends in produc-

tivity are parallel for regulated and unregulated firms absent the regulation, and 2) there

are no spillover effects on firms in non-TCZ prefectures (i.e., the stable unit treatment val-

ues assumption (SUTVA) holds). One potential threat to identification is that treated and

untreated prefectures may be affected by macroeconomic shocks differently over time. For

example, since treatment was not randomly assigned—it was determined by historical pol-

lution levels—the pace of industrialization and development may systematically differ.

To account for this, we include prefecture-specific linear time trends, µp ∗ t. The most

flexible approach would be to use prefecture-year fixed effects instead, but doing so does

not allow us to estimate the effects on less pollution-intensive (but still regulated) firms. It

would be equivalent to estimating a triple-difference model and identifying the effects only

9We treat the year 1998 as “pre-policy” since there is a delay between the policy’s announcement at the
central government level and implementation at the local government level.
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on the dirtiest firms. In Section 4, we provide evidence that time trends sufficiently control

for these concerns, allowing us to address this potential bias while providing a more complete

picture of how the regulation affects industrial activity.

We include a rich set of additional fixed effects. Firm-level fixed effects (αi) control for

time-invariant mean differences in outcomes across firms, so our estimates can be interpreted

as within-firm effects. Industry-year fixed effects control for how industries may be affected

differently by shocks to economic activity (γst) and industry-prefecture fixed effects con-

trol for how industries may be affected differently across prefectures (δsp). Standard errors

are clustered at the prefecture level in our baseline specification, which is the conservative

approach relative to clustering at the industry or firm level (see Section 4.2).

3 Data, Productivity Measurement, and Regulation

Enforcement

In this section, we provide an overview of our data sources, how we address challenges with

the data, and our production function estimation strategy. We also provide evidence that

the regulation was enforced before moving on to our main results in the following section.

3.1 Data Overview

To study the TCZ regulation, we match several data sets that provide firm-level, prefecture-

level, and industry-level information for China’s industrial sector. We start by gathering

data on firms for the period 1996 to 2006 from the China Industrial Enterprise Database

(CIED), which is maintained through annual surveys conducted by the National Bureau of

Statistics. This database includes detailed accounting information that provides us with the

variables needed for calculating TFP (value-added, labor, capital, and intermediate inputs),

along with other key measures such as gross industrial output, sales, and more.

The CIED data include all state-owned enterprises (SOEs) as well as private firms with

annual sales exceeding 5 million Chinese yuan. It covers 40 two-digit Chinese Industrial Clas-

sification (CIC) industries, including mining, manufacturing, and public utilities. Although
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it does not contain the smallest firms in the economy, the aggregate industrial output and

employment included represents about 90% and 70%, respectively, of the whole industrial

sector according to 2004 figures (Brandt, Van Biesebroeck and Zhang 2012). We keep only

firms that appear at least once before and once after 1999, which we mark as the first year

that the TCZ policy is in effect. This allows us to include firm-level fixed effects and study

the policy impacts using within-firm variation.

This database has been used in a number of economics studies so far (e.g., Hsieh and

Klenow 2009; Song, Storesletten and Zilibotti 2011; Brandt et al. 2012; He et al. 2020).10 We

follow the preparation procedures developed by Brandt et al. (2012) that have been widely

adopted, such as their approach to matching firms over time and dropping observations

that violate standard accounting principles. All nominal financial values are converted to

real values (1998) using input and output deflators following Yang (2015) and He et al.

(2020). This entails using annual output price indexes for every 2-digit industry to construct

output deflators, and for input deflators, using industry-level intermediate input in National

Input-Output tables, which allows us to account for the dynamics of input prices in different

industries. See Appendix A for more detail.

One difference with the panel we construct relative to others in the literature is that we

extend the time covered to 1996-97 when the surveys were being piloted. During these years,

mostly only SOEs were included and the sample size is much smaller.11 Many other studies

using this data start from 1998, but given the timing of the TCZ regulation, it’s important

to have data dating back further to probe the validity of our research design. We consider

1998 a “pre-policy” year to allow for implementation and adjustment time, so we have one

year of fully comprehensive data and two years of pilot year data in the pre-policy period.12

We end up with about 24,000 firms in 1996 and 1997, increasing to around 165,000 firms in

1998 and 301,000 firms by 2006.

To determine whether firms are regulated, we obtain the list of cities designated with TCZ

10It is often referred to as the Annual Survey of Industrial Firms.
11Although the survey was only intended to include SOEs during these years, some of these firms are

actually considered private by the definition we follow described in Appendix A, as they may have gone from
being state-owned to private through the period we study.

12Many concerns with using the pilot data are alleviated by our analysis being within-firm. We also provide
robustness checks dropping the pilot data throughout the paper.
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regulatory status from Chinese government documentation (China State Council 1998). We

assume the production site is located at the recorded address, as we do not observe whether

firms have multiple sites.13 The government’s designations are made at the prefecture level

for acid rain control zones and at the district/county level for SO2 pollution control zones.

We assign TCZ status at the prefecture level, defining a prefecture as regulated if it contains

TCZ districts or counties, as there were several changes of administrative divisions during

the sample period. Moreover, districts and counties within the same prefecture are likely to

be governed under the same criteria set by the local administration.

We enhance these data with three additional sources that report prefecture-level char-

acteristics as well as SO2 emissions and concentration levels. From the China Statistical

Yearbook, we gather industry-specific SO2 emissions intensity information, which allows us

to designate firms as being in more or less pollution-intensive industries. We define firms as

more or less pollution-intensive if they belong to an industry accounting for at least 1% of

total SO2 emissions, which correlates very closely with coal consumption intensity. Appendix

Table C.1 provides a list of all industries in our data set and identifies those that we classify

as pollution-intensive, which align closely with the classifications of others in the literature

studying the United States (e.g., Greenstone (2002)).

Lastly, for our examination of whether the regulation was enforced, we collect SO2 pol-

lution data from two sources. First, we gather prefecture-year level SO2 emissions data

from the China Environmental Yearbook. However, these figures are reported by local gov-

ernment officials and may be subject to manipulation (Ghanem and Zhang 2014; Karplus,

Zhang and Almond 2018). Therefore, we also follow Chen, Oliva and Zhang (2017) to derive

satellite-based SO2 concentration levels using data from National Aeronautics and Space Ad-

ministration (NASA).14 The data are reported monthly at the 60 by 50 kilometer grid level.

We match this to Chinese prefectures by re-gridding the satellite data to their geolocations

using nearest-neighbor remapping. This results in a balanced prefecture-year-month panel

from January 1988 through December 2008. See Appendix A for more detail.

13Brandt et al. (2012) examine this and conclude that more than 95% of all observations are single-plant
firms.

14More specifically, we extract the variable “SO2 Surface Mass Concentration” from M2TMNXAER version
5.12.4, derived from the project of Modern-Era Retrospective analysis for Research and Applications version
2 (MERRA-2).
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3.2 Production Function Estimation

The CIED production and financial information allows us to measure firm-level total factor

productivity (TFP) following the method developed in Ackerberg, Caves and Frazer (2015).

We estimate production functions separately for each industry using the added value as the

dependent variable, capital as a state variable, and intermediate inputs as the proxy variable

(all in logs of the value plus one). We include year fixed effects to control for macroeconomic

shocks and firm fixed effects to account for unobserved firm-level characteristics as well as

age and an indicator for whether the firm is located in a TCZ prefecture as state variables

to account for how these firms might install more equipment to reduce emissions relative to

those in non-TCZ prefectures. We then use these estimates to construct firm-level TFP .

More detail can be found in Appendix A.

We primarily rely on the Ackerberg et al. (2015) approach throughout the paper because it

improves upon previously-developed control function methods in two important ways. First,

it uses intermediate inputs as the proxy variable as opposed to investments, which is used in

Olley and Pakes (1996), to mitigate the “lumpy investments” challenge associated with firm-

level data. Second, it corrects the functional dependence problem that both Olley and Pakes

(1996) and Levinsohn and Petrin (2003) face.15 In our robustness checks, we also measure

TFP following Levinsohn and Petrin (2003), which still uses intermediate inputs as the

proxy variable but assumes that firms adjust immediately after experiencing a productivity

shock at no cost, and we examine single-factor productivity outcomes—labor, capital, and

intermediate input productivity as measured by added-value divided by each input—as more

transparent measures of productivity as well.

One potential concern with our TFP measure is that it is revenue-based rather than

quantity-based, so changes in productivity could be associated with firm-specific mark-ups

even though we deflate revenues using industry-specific price indices. Unfortunately, data on

quantities sold as opposed to revenue are not available, however we explore whether mark-ups

drive our results later by limiting the sample to the most competitive and for homogenous

15In practice, we implement single-step approach following Rovigatti and Mollisi (2018) with an “ACF
correction” rather than the two-step approach of Ackerberg et al. (2015), since the ACF method can be
extremely sensitive to the starting points passed to the optimization function. See Rovigatti and Mollisi
(2018) for more detail.
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goods markets. We discuss this more in Section 4.2 and conduct some robustness checks.

3.3 Pre-Regulation Firm and Prefecture Characteristics

Table 1 presents firm- and prefecture-level descriptive statistics in pre-policy years (1996-

1998). As expected since regulated regions were targeted based upon previous pollution

levels and this is strongly correlated with the degree of industrialization, firms in TCZ

prefectures are more productive, more capital-intensive, and have higher revenues, sales,

and profits (Panel A). There are also statistical differences in prefecture-level characteristics:

TCZ prefectures have higher GDP per capita, populations, and SO2 emissions intensity

(Panel B). Given these differences, an important component of our identification strategy

is controlling for time-invariant prefecture characteristics as well as how they may evolve

differently over time, as discussed in Section 2.3.

[TABLE 1 HERE]

3.4 Did the regulation “work?”

Before moving forward with our primary analysis of the regulation’s effect on firm produc-

tivity, it is important to ensure that the policy was actually enforced and that firms thus

faced compliance costs. If not, then any effects we find of the regulation on TFP are likely

not actually driven by the regulation. We explore this by examining whether the regulation

reduced SO2—the targeted pollutant—expecting larger declines in TCZ prefectures relative

to non-TCZ prefectures if the regulation was actually binding and changed firm behavior.

Starting with a descriptive analysis, we plot the raw SO2 emissions data from the China

Environmental Yearbook (Panel A) and SO2 concentration data from NASA (Panel B) over

time for TCZ and non-TCZ regions in Appendix Figure B.1. While emissions as opposed

to concentration most directly capture the pollution created by industrial firms—as concen-

tration is also a function of geographic-specific environmental factors—governments have an

incentive to misreport to suggest that they are in compliance. Such manipulation has been

documented for Chinese self-reported air pollution data (Ghanem and Zhang 2014; Karplus
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et al. 2018), making the data from the China Environmental Yearbook data less reliable

than data from NASA that is gathered using satellites.

By both measures, pollution decreases by more in TCZ regions. The decline is partic-

ularly steep in Panel A, as average emissions drop substantially immediately following the

regulation’s implementation.16 This may embed some data manipulation, but the NASA

SO2 concentration data also show a slightly more significant decline for TCZ prefectures,

although pollution in non-TCZ prefectures also declines.17

To provide further confidence that pollution decreased by more in regulated regions, we

estimate the effect of the regulation on SO2 concentration levels conditional on controls

(using the NASA data). In addition to not being subject to manipulation, the NASA con-

centration data are also more comprehensive, covering more prefectures and with a higher

time-resolution (the prefecture-year-month level). We estimate the following model:

log(Sptm) = β1(TCZp ∗ Postt) + αp + γm + δt + µp ∗ t+ εpt (2)

where log(Sptm) is the log of SO2 concentration levels (micrograms per square meter) in

prefecture p in year t and month m. The coefficient of interest is β1, capturing the effect

of the regulation on (log) SO2 concentration. TCZp is an indicator equal to one if the

prefecture is regulated by the TCZ regulation and zero otherwise, and Postt is equal to

one in the post-implementation period. We include month fixed effects (γm) to control for

seasonal differences in weather and economic activity, year fixed effects (δt) to control for

idiosyncratic shocks to economic or industrial activity in all prefectures, and prefecture-year

trends (µp ∗ t) to control for how industrial activity may change differently over time for

prefectures due to local factors.

The results are presented in Appendix Table C.2. When using the full data set covering

1988 through 2008, we find that the TCZ regulation reduced SO2 concentration levels by

3.7% (Column 1). Once limiting the sample to the time period that we study in our firm

analysis (1996-2006), the effect is enhanced slightly to a 4% reduction (Column 2). We then

16There is also a slight decrease in non-TCZ prefecture emissions for one year and they then increase again
thereafter.

17In both sets of data, pollution increases again after 2002 for all prefectures, which is consistent with
industrial activity increasing with China’s accession into the WTO.
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aggregate the data to the prefecture-year level, using annual average concentration levels as

the dependent variable, and find similar results. There is a 4.1% reduction when using data

for 1988 through 2008 (Column 3) and a 4.6% reduction when using data for 1996 through

2006 (Column 4). These results suggest that the regulation reduced SO2 concentration levels

in TCZ prefectures relative to reductions that occurred in non-TCZ prefectures.

There is also evidence from previous studies examining the TCZ regulation’s impact on

other outcomes demonstrating that it was “effective” (Tanaka 2015; Cai, Lu, Wu and Yu

2016), and documentation regarding firm closures and pollution treatment projects suggests

that the regulation was enforced as well. About 4,492 high-sulfur coal mines, 784 product

lines in small cement and glass plants, and 404 lines in iron and steel plants were closed

in TCZ zones by May 2001. Nearly 2,100 treatment projects—including boiler and kiln

retrofit, waste gas treatment, flue gas desalinization installation, and fuel-switching to low-

sulfur coal—were completed in regulated areas in the first half of 2000 (He et al. 2002).

4 Main Results

4.1 Effect of Regulation on Firm TFP

We begin by visually examining the effect of the TCZ regulation on firm (log) TFP by esti-

mating an event study version of Equation 1 and plot the coefficients in Figure 2 (absorbing

industry-prefecture fixed effects) along with their 95% confidence intervals. We allow the

effects to differ for firms in less and more pollution-intensive industries following our het-

erogeneous difference-in-differences research design. Panel A illustrates the effects for firms

in less pollution-intensive industries, which correspond to β1 of Equation 1. In Panel C,

we provide the effects on firms in more pollution-intensive industries relative to the effect

on firms in less pollution-intensive industries, which corresponds to the coefficient of the

interaction term (β2) of Equation 1. We also estimate a separate event study for “dirty”

firms only, showing the effects on firms in the most pollution-intensive industries relative to

pollution-intensive firms in unregulated regions (Panel B).

[FIGURE 2 HERE]
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Figure 2 provides three key insights. First, there are no statistical differences in TFP in

pre-policy years (conditional on industry-prefecture fixed effects). The magnitudes of the

effects are very close to zero and the trends appear to evolve similarly in pre-policy years.

This provides confidence that our first identifying assumption—that there are no other fac-

tors generating a systematic difference in TFP trends for firms in TCZ versus non-TCZ

prefectures besides the regulation—holds.18

Second, TFP begins to increase immediately after the TCZ regulation is implemented

for firms in less pollution-intensive industries (Panel A). In Panel C, we also see that there

is an immediate and sharp decrease in TFP for firms in more pollution-intensive industries

relative to those in less pollution-intensive industries. However, there is no effect at all on

firms in more pollution-intensive industries relative to dirty firms in unregulated prefectures

for the first several years after the regulation is implemented (Panel B). Their productivity

relative to non-TCZ firms does not decrease until 2004, which is likely due to another shift

in the economy around this time, as we can see that there is a similar decline for firms in

less pollution-intensive industries as well (Panel A).19

Third, these findings illustrate the importance of identifying the effect on both sets

of firms rather than only those in more pollution-intensive industries to fully capture the

regulation’s impact on industrial activity. When considering them both, we can see that there

is a net positive effect, as the regulation enhanced productivity for firms in less pollution-

intensive industries and had zero effect on firms in more pollution-intensive industries. If we

had only considered the effect on the latter and included the less pollution-intensive firms in

the control group, this would produce triple-difference estimates that essentially correspond

to those illustrated in Panel C. Our conclusion in that case would have been not only that

the regulation reduced the productivity of firms in more pollution-intensive industries, but

also that the overall net effect was negative. This also highlights how firms in less pollution-

intensive industries in regulated areas embody a poor control group, as they would be in a

triple-difference framework. Given how they are indeed affected by the regulation, including

18Although the standard errors are large in the years in which data collection was in its pilot stage (1996-
97), the point estimates are very similar to the 1998 estimates.

19For instance, this is about when all of the tariff changes related to China’s accession into the WTO fully
were in place, even though they entered the WTO in 2001.
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them as part of the control group would bias the results.

Turning to the regression analysis, our results from estimating Equation 1 on firm-level

TFP are presented in Table 2. The estimates are consistent with the event study—there

is a positive effect on firms in less pollution-intensive industries and zero effect on heavier

polluters. We include only firm and year fixed effects in Column 1, add industry by prefecture

fixed effects in Column 2, and add industry by year fixed effects and prefecture-specific

linear time trends in Column 3.20 If we take Column 3 with our richest set of controls as

the baseline, we find that the TCZ regulation increases the productivity of firms in less

pollution-intensive industries by 4.3%. While TFP for firms in more pollution-intensive

industries decreases by 4.8% relative to those in more pollution-intensive industries, there

is no effect on them relative to firms in unregulated regions (i.e., the addition of the two

coefficients). The net effect on industrial firms in TCZ prefectures is therefore positive.

[TABLE 2 HERE]

Column 4 of Table 2 presents the results from estimating the triple-difference model of Equa-

tion ??, whereby the effect on less pollution-intensive firms is absorbed by fixed effects. These

results help demonstrate the importance of taking a heterogeneous difference-in-difference

approach rather than a triple-difference approach. Column 4 suggests that there is a 5.2%

decrease in TFP for the heavier polluters. However, these effects capture not just the treat-

ment in comparison to unregulated firms but also regulated ones in less pollution-intensive

industries. The negative effect in Column 4 is driven by the fact that there is a significant

positive effect on less pollution-intensive firms, and these firms embody a poor control group

since they are indeed affected.

Importantly, the -5.2% result of Column 4 is not statistically different from the -4.8% ef-

fect in Column 3. This provides evidence that controlling for how prefectures might respond

to macroeconomic shocks differently over time with prefecture-specific trends as opposed

to fixed effects is sufficient. That is, our results when using the heterogeneous difference-

in-difference approach do not appear to be biased by the exclusion of prefecture-year fixed

20While the main effects for the post-policy and regulated indicators are absorbed, the main effect for
“polluter” and its two-way interactions are not (we omit their estimates from this table). They are not
absorbed because industry fixed effects are at the 2-digit CIC level but we break the power industry into
thermal power vs. other using their 4-digit CICs.
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effects—they add little or no value in this case—while using prefecture-specific trends pro-

vides the benefit of allowing us to identify the effects on all firms.

Comparing Column 3 to Column 4 also illustrates why using a heterogeneous difference-

in-difference approach rather than a triple-difference approach is important for understanding

the implications of regulation for industrial activity. If we took the triple-difference approach,

our conclusions would be reversed—the takeaway would be that there is a negative and fairly

large effect—yet we see in Column 3 that the regulation’s effect on these firms’ productivity

is actually zero. One key observation here is that, because cleaner firms in regulated regions

are included in the control group in Column 4, the estimates reflect the effect on the dirtiest

firms not just relative to unregulated firms but also cleaner regulated firms. This helps

explain the key difference in the conclusions. Second, though, the results in Column 4 also

miss the positive effects on cleaner firms, which are important for fully understanding how

the regulation impacts economic activity.

4.2 Potential Threats to Baseline Findings and Robustness Checks

In this section, we conduct a series of additional empirical analyses to explore the validity

of our research design and to test whether our results are sensitive to our modeling choices

or variable creation.

4.2.1 Addressing SUTVA

A key identification assumption of our heterogeneous difference-in-difference research design

is that there are no spillovers or indirect effects of the regulation on firms in non-TCZ prefec-

tures (i.e., the stable unit treatment value assumption (SUTVA) holds). A potential threat

to this assumption is that firms in unregulated regions could become more productive once

the policy is implemented, since they do not face the regulatory costs that their competitors

in regulated regions face. However, this would attenuate our estimates, if anything. Spa-

tial sorting could also introduce bias. Firms that exit could have moved and re-opened in

non-TCZ regions. That said, it is extremely costly to move large manufacturing and power

plants—most likely much costlier than complying with the regulation for most firms—and
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coal mining can only occur where coal already exists.

A more likely scenario that could bias our results in either direction is related to migration

of high-skilled workers. Recent work has shown how pollution has increased migration away

from polluted cities in China, primarily for well-educated workers (Chen et al. 2017; Khanna,

Liang, Mobarak and Song 2021). Since non-TCZ regions are less polluted on average, high-

skilled workers may have been moving out of TCZ prefectures already, which would increase

productivity of firms in non-TCZ regions. Indeed, Khanna et al. (2021) find that pollution-

induced migration substantially reduces aggregate productivity when high-skilled workers

leave. On the other hand, the TCZ regulation could have induced migration of high-skilled

workers towards TCZ regions given the pollution reductions, which could dampen aggregate

productivity in non-TCZ regions.

We conduct two sets of analyses to provide evidence that the regulation did not induce

migration. First, we classify firms by technology intensiveness according to the OECD

(2011)’s criteria and examine whether the regulation has a differential impact on TFP for

high- and low-tech firms, assuming that high-tech firms employ more high-skilled workers.

We would expect high-tech firm productivity to increase by more than low-tech firms if the

regulation induced migration, as more educated workers would raise average productivity.

Second, we estimate the regulation’s effect on the fraction of firms and workers in each

prefecture that are in high-tech industries.21 If workers or firms in high-tech industries move

to TCZ regions, we would expect these measures to increase.

Appendix Table C.3 provides the findings, which are consistent with there being no

movement of high-tech workers or firms. In Columns 1 and 2, we use our firm-level data

to estimate a variation of the baseline model that interacts a dummy variable equal to one

if the firm is in a high-tech industry with our two policy treatment variables. There is no

differential impact of the regulation on the productivity of high- and low-tech firms when

using our baseline measure of TFP as the dependent variable (Column 1) as well as our

alternative TFP measure (Column 2).

In Columns 3 and 4, we aggregate the data to the prefecture-year level and estimate the

21This is similar to the approach taken by Fu, Viard and Zhang (2021) in their study of how pollution
impacts worker productivity.

20



TCZ regulation’s effects on the share of firms (Column 3) and workers (Column 4) that are in

high-tech industries. We include year and prefecture fixed effects as well as prefecture-specific

trends. We also control for the total number of firms (for each prefecture) in Column 3 and

the total number of workers in Column 4 to account for differences in how high-tech firms

and high-skilled workers are more likely to move to prefectures with these characteristics

in the first place. In both regressions, the effects are not only statistically insignificant but

also extremely close to zero in their magnitudes. These four tests provide confidence that

there is no systematic movement of high-tech firms or high-skilled workers between TCZ and

non-TCZ regions in response to the regulation.

4.2.2 Measuring Productivity

Many methods for estimating production functions and TFP have been developed in the

literature. We use the Ackerberg et al. (2015) approach in the baseline because it corrects

the simultaneity concerns of the commonly used Levinsohn and Petrin (2003) and Olley

and Pakes (1996) methods, and it uses intermediate materials as the proxy variable rather

than investments, which can be lumpy at the firm level. That said, since there tend to be

differences in estimated TFP across methods, we estimate the effects of an alternative TFP

measure that we construct following Levinsohn and Petrin (2003) to see whether our results

are sensitive to our choice. The results are presented in Column 1 of Appendix Table C.4

and are the same as in our baseline.

A second and perhaps more challenging concern related to our TFP measure is that it

is revenue-based rather than quantities-based. This introduces the risk of enhanced pro-

ductivity being associated with firms increasing mark-ups rather than actually improving

productivity. Unfortunately, we do not have access to data on quantities, which is frequently

the case in the literature. However, we indirectly explore whether mark-ups might be driving

the results by seeing whether they hold for homogenous goods markets specifically and for

markets that are most competitive. We would expect firms to not increase mark-ups (or at

least not by as much) in these contexts, as their market power is limited.

We first estimate our baseline model including only industries producing homogenous

goods, such as of electricity and water, smelting and pressing of metals, petroleum process-
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ing, and mining.22 The results become stronger (see Column 2 of Appendix Table C.4).

Productivity increases for both clean and dirty firms by 8%, although the coefficient for

dirty firms relative to clean is negative and just not statistically significant.

Next, we estimate the effects for firms in industries that appear to be the most competitive

in the year just prior to policy implementation. Our first approach is to calculate the aver-

age market share and HHI for each industry—using sales to determine market shares—and

include only industries that fall in the bottom quartiles of these distributions. The findings

are presented in Columns 3 and 4 of Appendix Table C.4 and are very similar to the base-

line. Lastly, we find the number of firms in each industry in the last year just before policy

implementation and estimate the effects only for firms in industries in the top quartile of the

distribution (Column 5). The results are again about the same as in the baseline.

4.2.3 Additional Robustness Checks

We conduct a few final tests related to some potential issues in the database and other eco-

nomic activities throughout the time period that we are studying and present the findings in

Appendix Table C.5. In Column 1, we drop the years in which the database was in pilot mode

(1996-1997), since this is not as comprehensive of a sample and primarily includes SOEs.

The magnitude and statistical significance decreases for firms in less pollution-intensive in-

dustries, but it remains positive and statistically significant, and the overall effect for firms

in more pollution-intensive industries remains statistically zero. In Column 2, we control

for China’s accession into the the WTO by including a dummy variable for years after 2001

and also interacting this dummy with the TCZ dummy in case firms in TCZ and non-TCZ

prefectures were affected differently. For example, firms that were already more advanced

and in industrialized regions may have been more likely to be exporters. The results become

stronger, if anything.23

In Column 3, we drop prefectures for which the number of unique firms is below 200

to ensure that we are comparing similarly-industrialized prefectures. In Column 4, we drop

firms for which their industry CIC changed over our sample period, and in Column 5, we drop

22Examples of industries that we do not define as those with homogenous goods are manufacturing of med-
ical and pharmaceutical products, food and beverage manufacturing, and special machinery manufacturing.

23We explore the importance of entry into the WTO more later.
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the year 2003 since we needed to use an alternative labor variable for this year (see Appendix

A for detail). The results remain statistically significant and have similar magnitudes to the

baseline findings. Finally, we ensure that our results hold when clustering standard errors at

different levels. We cluster by industry in Column 6 to account for how treatment intensity

varies by industry, and in Column 7, we cluster at the firm level to account for possible serial

correlation in the dependent variable. Our results become stronger in both cases.

Lastly, we conduct the same series of robustness checks but using the alternative TFP

measure following Levinsohn and Petrin (2003) and provide the findings in Appendix Table

C.6. The estimates for firms in less pollution-intensive industries range from 3.5% to 5.3%

and remain statistically significant, and the effects on the heavier polluters are still zero.

5 Mechanisms: Why Does Productivity Increase?

We now turn to investigating the underlying mechanisms of our findings and the strategies

firms take to comply with the regulation. In doing so, we examine industries with pro-

ductivity gains versus no effect or losses separately, and we also explore heterogeneity by

firm ownership given the political economy of regulation in China. We summarize what

conclusions we believe can be drawn about the mechanisms at play in Subsection 5.6.

5.1 “Responsive” vs. “Unresponsive” Industries

So we can explore the mechanisms that drive productivity gains, we start by estimating the

effects on TFP for each industry separately at the 2-digit CIC level to identify industries in

which the regulation enhanced productivity as opposed to reducing it or having no effect.

The results are presented in Appendix Table C.7. It turns out that, even though there

were no effects on TFP for heavier-polluting firms on average, productivity does actually

increase for three major “dirty” industries: smelting and pressing of ferrous metals (i.e., the

steel industry), chemical materials and products, and textiles. This is intuitive as these are

industries that are coal-intensive in their production processes, thus facing high compliance
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costs and having the incentive to make significant adjustments.24

Of the less pollution-intensive industries, TFP increases in petroleum and natural gas

extraction, ferrous metals mining and dressing, beverage manufacturing, and tobacco pro-

cessing. The first two industries are not particularly coal-intensive polluters on their own,

but they are upstream to pollution-intensive industries. The second two fall within the

broader category of industrial polluting-firms being “encouraged” to reduce SO2 emissions

under the regulation.25

Before moving on to explore what drives productivity improvements for “responsive”

industries as well as whether non-responsive industries may have responded to the regulation

but in ways that did not enhance productivity, we re-estimate our baseline model and main

set of robustness checks to find the average effect on responsive industries and non-responsive

industries separately. The results are provided in Table 3. Unsurprisingly, the positive effects

become much stronger for firms in less pollution-intensive firms and become positive and

large for firms in more pollution-intensive industries. The effects on TFP are 16% and 8%,

respectively, when using our baseline model in Column 1. On the other hand, when including

the “non-responsive” firms together as a sub-sample, we can see that productivity decreases

for firms in the dirtiest industries by about 6%. These findings therefore suggest that they

do indeed in respond as well but in ways that do not enhance their productivity, which we

further explore in the next sub-sections.

[TABLE 3 HERE]

5.2 Inputs, Output, and Single-Factor Productivity

One potential explanation of changes in productivity is input reallocation or changes in input

levels. In the industrial sector context, technology adoption is often an important channel

24Steel and chemicals, for instance, each account for 5-6% of total SO2 emissions in China and the textiles
industry accounts for 1-2% of emissions. There are no effects on any other dirty industries. Interestingly,
there is no effect on the productivity of thermal power and coal mining firms, the two industries that faced
the most specific regulatory requirements with thresholds to meet.

25The only two industries with declines in TFP were natural gas suppliers (CIC 45) and transportation
equipment manufacturing (CIC 37). Both of these are low SO2 emitters. The latter has a small sample size,
and when grouped with other equipment manufacturing, the effect goes away. We cannot point to an explicit
mechanism for natural gas suppliers’ decreased productivity, but one potential explanation is substitution
between gas and cleaner coal.

24



for reducing emissions (Popp 2011; Dechezleprêtre, Glachant and Ménière 2013), and end-

of-pipe and scrubber solutions are large capital investments. Labor could also increase since

continuous operation of pollution abatement equipment tends to require more workers. On

the other hand, firms could find innovative ways to use their capital, labor, and interme-

diate inputs more efficiently, such as by using lower sulfur-content fuel in their production

processes (which tends to be more efficient) or adopting new management practices that

improve operational efficiency without changing inputs, resulting in increased single-factor

productivity via an output channel.

We test whether productivity increases through the input or output channels by esti-

mating the regulation’s effects on inputs (labor, capital, and intermediate inputs), output

(value-added and sales), and single-factor productivity, which we define as value-added di-

vided by each input. The results are presented in Panels A and B of Table 4 for responsive

and non-responsive industries, respectively.

The overall takeaway from this set of results is that productivity gains for firms in re-

sponsive industries appear to be driven by an output effect whereas firms in non-responsive

industries start scaling down production. For responsive firms, there are no changes in in-

put (Columns 1-3), but both value-added and sales increase by 17% and 10%, respectively

(Columns 7 and 8), leading to increases in all three measures of single-factor productivity

(Columns 4-6). On the other hand, labor and intermediate inputs both decrease for dirty

firms in non-responsive industries, but capital increases for relatively clean. As value-added

and sales decrease in these industries for dirty firms while there is no change in output for

their relatively clean counterparts, these findings suggest that the cleaner firms invest in

new machinery—and they can bear the costs without it hurting performance—whereas the

dirtiest firms (facing the highest compliance costs) start to scale down production but not

yet retiring old equipment.

[TABLE 4 HERE]
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5.3 Firm Sorting

Another potential explanation for improved productivity is that the regulation drove out

inefficient firms. Resource misallocation is common in developing countries, which has been

shown to be the case for China (Hsieh and Klenow 2009; He et al. 2020), and turnover

and reallocation across firms could enhance average productivity. While He et al. (2002)

document exit of coal mining firms, this is not one of the industries for which productivity

increases, so further investigation of whether firm sorting can explain the results is needed.

To explore whether this occurs, we estimate the effects of the regulation on exit for

responsive and non-responsive firms including the full sample and then by splitting the

samples by their median pre-policy productivity level (see Table 5). On average, there

is no effect on exit for responsive and non-responsive industries, but when splitting the

sample, we can see that the least productive firms do indeed exit. The regulation increases

the propensity to exit by 5% for firms in responsive industries and 2.5% for those in non-

responsive industries. These findings suggest that efficient firm exit may be at play and we

explore this further later when examining private and state-owned enterprises separately.

[TABLE 5 HERE]

5.4 Human Health and Worker Performance

There is increasing evidence in the literature that pollution impacts worker productivity

and performance as well as cognition, and thus another potential channel through which the

regulation impacts productivity could be through the pollution reduction itself. However,

two pieces of evidence from preceding sections suggest that this is not at play. First, when

considering single-factor productivity, we would expect only (or primarily) labor productivity

to be significant if health can explain the findings, but we find that capital- and intermediate

input productivity also increase substantially, and the magnitudes of the effects across the

three measures are similar. Furthermore, we would expect the effects to be largest for

workers in high-tech industries that are more likely to require high-skilled labor. We find no

statistical differences for firms in high- and low-tech industries, however, when we explore

this in Section 4.2.1.
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5.5 Induced Innovation

Lastly, productivity improvements could be driven by innovative activity. Firms can inno-

vate in various ways, such as by developing and adopting new technologies, processes, and

practices. We first explore this potential channel by examining whether firms start investing

in more high-skilled labor (e.g., scientists and engineers), estimating the effects on average

wages (Column 1 of Table 6. Average wages should increase if firms engage in innovative

activities, as this is the type of human capital required. We find that this is indeed the case

for both responsive and non-responsive cleaner firms but the effect is about double the size

for responsive firms—responsive firms increase average wages by 8.8% and non-responsive

firms’ average wages increase by 4.5%.26 Dirty firms also increase average wages by 8.8% in

responsive industries and 2.3% in non-responsive industries.

If high-skilled labor contributes to productivity improvements, these findings raise the

question as to why there is no change in productivity for non-responsive industries as well.

One explanation could be management quality. A key input required for turning the knowl-

edge produced by such workers into productivity gains is high-quality management of their

activities and adoption of the newly created innovations. We estimate the effects on ex-

penditures specifically on management and find that it is only cleaner responsive firms that

invest more in management in response to the regulation, suggesting that more time and

resources allocated to management are necessary to translate the high-skilled human capital

into improved productivity.

Finally, if these results do reflect innovative activity, understanding whether firms are

producing new technologies as opposed to improving their processes and practices can provide

deeper insight into the strategies they take to comply with the regulation. We estimate the

effects of the regulation on new product output and its percentage of total output (Columns

3 and 4 of Table 6) to test this, and the results are consistent with innovating in processes

and practices, as there are no effects on new product output for any set of firms. This

aligns with the type of innovative activity we would expect for these firms as well—unless

a firm’s main product is already an environmental technology, they are unlikely to start

producing one due to the regulation as opposed to either adopt new technologies or adjust

26Since labor does not change, these effects are driven by higher wages per worker.
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their operations in ways that help reduce pollution.

[TABLE 6 HERE]

5.6 Summary of Mechanisms

Taken together, these sets of results suggest that firms achieve productivity improvements

through an output effect rather than by reallocating or increasing inputs, and there are

two likely mechanisms underlying the main findings. First, firms that were previously less

productive exit, increasing average productivity. This is intuitive given how the additional

costs imposed by the regulation could make it unmanageable to compete with firms that

are already more productive. Second, although we remain cautious in our interpretation,

our findings suggest that the regulation may have induced process and practice innovation.

Moreover, when firms do invest in higher-skilled human capital, investing more time and

resources into management appears to be important for innovation to improve productivity.

6 Heterogeneity by Firm Ownership

We now probe the underlying drivers of our findings further by examining exit and innovative

activities for private firms and state-owned firms (SOEs) separately. Given China’s long his-

tory of protecting SOEs (Eaton and Kostka 2017)—such as by favoring them in product and

services purchasing (e.g., public procurement) to help them survive or subsidizing them such

that they face lower or zero compliance costs and have no incentive to change behavior—the

results of the previous subsection might mask important heterogeneity in firms’ strategies

that can shed light on the political economy of environmental regulation. Furthermore, such

heterogeneity may have implications for growth and competitiveness given how private firms

are on average significantly more productive than state-owned enterprises in China.

First, we estimate the effects of the regulation on exit for firms in responsive industries

for SOEs and private firms. We start by using the full baseline samples (Column 1) and

then split them based on firm age (Columns 2-3) and size (Columns 4-5), as evidence in the

innovation economics literature has shown that start-up firms are more likely to contribute
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significant innovations relative to older and larger firms.

We find that it is almost entirely private firms that exit (see Table 7). On average, the

propensity for private firms to exit increases by 5% whereas there is no effect on SOEs, and it

is only older private firms that exit. This is in line with our previous findings of less produc-

tive firms exiting, as older firms are more likely to be using older and less efficient machinery,

and it also begins to suggest that local government officials responsible for the regulation’s

enforcement may be protecting SOEs. Such behavior is not uncommon in China—local offi-

cials typically appoint the executives of SOEs and benefit from the relationships (Barwick et

al. Forthcoming; Lei forthcoming). This creates strong incentives for the government to help

SOEs survive, reducing the pressure on state sector firms to invest in pollution-abatement

technology or activities. On the other hand, the propensity to exit increases by about 15%

for both state-owned and private small firms, although the sample size is much larger for

private firms, so the level effect is much smaller for SOEs. This is consistent with China’s

known practice of protecting larger firms when new regulations are imposed, and although

the findings overall are still mostly driven by private firm exit, this does provide evidence of

there being some regulation enforcement for SOEs as well.

[TABLE 7 HERE]

Finally, we examine whether both SOEs and private firms engage in innovative activity,

as this was the second mechanism underlying our baseline results. The results from estimat-

ing the effects on average wages (Column 1), management expenditures per worker (Column

2), new product output per employee (Column 3), and the percentage of output associated

with new products (Column 4) are presented in Table 8 for SOEs and private firms. If

we interpret these outcomes as we did before, the findings indicate that it is only private

firms that innovate. There are no effects on any of these outcomes for SOEs. Instead, the

increases in average wages are entirely accounted for by private firms, as they increase by

14% for cleaner firms and 7% for dirtier firms. Furthermore, private firms’ expenditures in

management increase by 10% for cleaner firms (and do not change for dirty private firms).

There are again no effects on new product output for either sample, suggesting that pri-

vate firms’ investments in higher-skilled human capital go towards improving operational
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efficiency rather than developing new technologies.

[TABLE 8 HERE]

This heterogeneity suggests that the regulation is likely enforced primarily for private

firms—and private firms that do not exit respond in ways that lead to productivity im-

provements—shedding light on the political economy of environmental regulation. It also

provides new insight into how such favoritism and protection of the state sector impacts

China’s competitiveness. Given how younger and smaller firms typically are important

drivers of innovation relative to their older and larger counterparts, and how private firms

are far more productive than SOEs in China on average, the exit of these exact sets of firms

may have negative consequences for economic growth. If their exit is indeed due to unequal

enforcement for SOEs and private firms, political protectionism may be a detriment to the

potential productivity gains that could be achieved through environmental regulation.

7 Conclusion

Policy goals related to protecting the environment and driving economic growth are often

pitted against each other, implying that their objectives cannot be achieved simultaneously.

Our paper shows that they are not always at odds. By estimating the effects of an environ-

mental regulation on firms across the entire industrial sector, we find that the net effect on

productivity is positive, suggesting that environmental regulation can actually be an effective

tool for fostering development.

Our results importantly rely on considering how regulation impacts not just the “dirtiest”

industries that face the highest compliance costs. Ignoring the effects on less pollution-

intensive industries leaves out a critical component of industrial activity, and if we had done

so, we would have drawn the opposite conclusions. Such effects should be included when

assessing the costs and benefits of environmental regulation.
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MAIN TEXT TABLES

Table 1: Descriptive Statistics in Pre-Regulation Period (1996-1998)

Means St. Deviations Observations
TCZ Non-TCZ Difference TCZ Non-TCZ TCZ Non-TCZ
(1) (2) (3) (4) (5) (6) (7)

Panel A: Firm-Level Characteristics

TFP (log) 5.483 5.427 0.056*** 1.569 1.652 122,243 38,609
Labor (log) 5.466 5.493 -0.027*** 1.331 1.401 122,245 38,675
Capital (log) 9.192 9.076 0.117*** 1.881 1.877 122,245 38,675
Capital-Labor Ratio 87.51 69.38 18.13*** 308.33 225.89 122,245 38,675
Revenue (millions) 75.54 61.64 13.90*** 422.95 626.97 122,245 38,675
Sales (millions) 76.24 64.24 12.00*** 418.48 630.07 122,245 38,675
Profit (millions) 3.22 2.07 1.15** 52.44 126.85 122,245 38,675

Panel B: Prefecture-Level Characteristics

GDP per capita (10,000s) 9,665 6,579 3,086** 10,252 5,130 140 81
GDP growth rate (%) 12.03 15.51 -3.48 11.47 41.17 140 81
Population (10,000s) 426.46 346.95 79.51* 320.81 244.20 140 81
SO2 emissions (t/km2) 60.87 31.36 29.51*** 84.25 45.91 138 74
SO2 concentration (ug/m3) 15.94 9.36 6.58*** 9.71 9.43 22,836 22,968

Notes: Table provides descriptive statistics of firm-level (Panel A) and prefecture-level (Panel B) charac-
teristics in the pre-policy period. All monetary values are in real 1998 Yuan and variables are constructed
as explained in Appendix A. All prefecture-level statistics are drawn from yearly data except for the NASA
SO2 data, which is monthly. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 2: Effect of the TCZ Regulation on Firm TFP

Outcome Variable (log): TFP TFP TFP TFP
(1) (2) (3) (4)

TCZ * Post-Policy 0.035 0.035 0.043**
(0.022) (0.022) (0.022)

TCZ * Post-Policy * Polluter -0.037* -0.037* -0.048*** -0.052***
(0.020) (0.020) (0.017) (0.017)

Observations 762,957 762,957 762,957 762,922

Firm FEs x x x x
Year FEs x x
Industry x Prefecture FEs x x x
Industry x Year FEs x x
Prefecture x Year Trends x
Prefecture x Year FEs x

Notes: Table reports the effects of the TCZ regulation on (log) TFP with various sets of fixed
effects. In Column 1, we include only firm and year fixed effects. We add industry-by-prefecture
fixed effects in Column 2. In Column 3, we include prefecture-by-year linear trends, and in
Column 4, we include prefecture-by-year fixed effects. The effect on firms in less pollution-
intensive industries is in the first row and the effect on firms in more pollution-intensive industries
is in the second row. The two-way interactions are included as well as the “polluter” indicator.
The other two main effects are absorbed by the fixed effects. Standard errors are clustered at the
prefecture level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.

37



Table 3: Effects on TFP for Firms in “Responsive” vs. “Non-Responsive”
Industries

Outcome Variable (log): TFP TFP TFP TFP TFP TFP TFP TFP
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: “Responsive”
TCZ * Post-Policy 0.160*** 0.117*** 0.161*** 0.174*** 0.141*** 0.155*** 0.160*** 0.160***

(0.041) (0.039) (0.042) (0.042) (0.041) (0.041) (0.040) (0.035)

TCZ * Post-Policy * Polluter -0.077* -0.032 -0.077* -0.092** -0.056 -0.069* -0.077* -0.077**
(0.041) (0.041) (0.041) (0.042) (0.042) (0.041) (0.032) (0.038)

Observations 144,451 135,835 144,451 142,595 138,311 132,264 144,451 144,451

Panel B: “Non-Responsive”
TCZ * Post-Policy 0.025 0.021 0.037 0.026 0.023 0.026 0.025* 0.025***

(0.022) (0.021) (0.023) (0.022) (0.021) (0.022) (0.014) (0.009)

TCZ * Post-Policy * Polluter -0.063*** -0.068*** -0.063*** -0.063*** -0.061*** -0.060*** -0.063** -0.063***
(0.020) (0.021) (0.020) (0.021) (0.021) (0.020) (0.028) (0.014)

Observations 618,501 592,466 618,501 607,662 583,479 564,245 618,501 618,501

Baseline x
Drop Pilot Data x
Control for WTO Entry x
Drop if Low Firm Count x
Drop Changed Industry x
Drop 2003 x
Cluster SEs by Industry x
Cluster SEs by Firm x

Notes: Table reports the regulation’s effects on TFP (log) when including only firms in “responsive” indus-
tries (i.e., industries for which the regulation enhanced TFP). Column 1 is comparable to the baseline main
results in Column 3 of Table 2. In Columns 2-7, we conduct the same set of robustness checks as we do for
for the full sample in Appendix Table C.5. All baseline FEs are included. Standard errors are clustered at
the prefecture level in all cases except Columns 7-8. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 4: Effects on Inputs, Output, and Single-Factor Productivity

Outcome variable (log): Labor Capital Intermed. VA/L VA/K VA/M VA Sales
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: “Responsive”

TCZ * Post-Policy 0.011 0.030 0.065 0.159*** 0.140*** 0.106*** 0.170*** 0.102***
(0.023) (0.036) (0.041) (0.041) (0.045) (0.033) (0.044) (0.039)

TCZ * Post-Policy * Polluter -0.007 -0.016 -0.023 -0.077* -0.068 -0.061* -0.084* -0.055
(0.025) (0.034) (0.040) (0.040) (0.044) (0.032) (0.044) (0.039)

Observations 144,512 144,512 144,512 144,512 144,512 144,512 144,512 144,393

Panel B: “Non-Responsive”

TCZ * Post-Policy 0.018 0.031** 0.018 0.018 0.005 0.019 0.037 0.026
(0.012) (0.014) (0.019) (0.022) (0.023) (0.019) (0.023) (0.019)

TCZ * Post-Policy * Polluter -0.044*** -0.045*** -0.070*** -0.038** -0.037 -0.012 -0.082*** -0.070***
(0.013) (0.015) (0.019) (0.019) (0.022) (0.018) (0.022) (0.018)

Observations 618,723 618,723 618,723 618,723 618,723 618,723 618,723 618,175

Notes: Table reports the effects of the TCZ regulation on inputs (labor, capital, and intermediate inputs
in Columns 1-3) and single-factor productivity (measured as value-added over each input in Columns 4-6).
Firms in responsive industries are included in Panel A and those in non-responsive industries are in Panel
B. All baseline FEs are included. Standard errors are clustered at the prefecture level. Asterisks denote
*p <0.10, **p <0.05, ***p <0.01.

39



Table 5: Effect of the TCZ Regulation on Firm Exit

Outcome Variable: Exit Exit Exit
Sample: Full Least Productive Most Productive

(1) (2) (3)

Panel A: “Responsive”

TCZ * Post-Policy 0.010 0.050* 0.014
(0.016) (0.026) (0.017)

TCZ * Post-Policy * Polluter 0.012 -0.015 0.011
(0.015) (0.025) (0.017)

Observations 144,512 64,592 79,914

Panel B: “Non-Responsive”

TCZ * Post-Policy 0.010 0.025** 0.007
(0.009) (0.011) (0.010)

TCZ * Post-Policy * Polluter 0.012 0.008 0.008
(0.008) (0.010) (0.009)

Observations 618,723 283,309 335,411

Notes: Table reports effects of the TCZ regulation on exit for responsive (Panel A) and non-
responsive (Panel B) industries. The full sample is included in Column 1 and the samples are
split by the median pre-policy productivity levels in Columns 2 and 3. All baseline FEs are
included. Standard errors are clustered at the prefecture level. Asterisks denote *p <0.10,
**p <0.05, ***p <0.01.
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Table 6: Evidence of Innovative Activity: Effects on Wages, Management
Expenditures, and New Products

Outcome Variable (log): Avg. Wages Manage. Exp New Product New Product
per Worker Output % of Output

(1) (2) (3) (4)

Panel A: “Responsive”
TCZ * Post-Policy 0.088*** 0.074** 0.104 -0.001

(0.028) (0.035) (0.089) (0.004)

TCZ * Post-Policy * Polluter -0.026 -0.079* -0.043 -0.001

(0.027) (0.043) (0.085) (0.004)

Observations 143,863 142,983 126,374 126,374

Panel B: “Non-Responsive”

TCZ * Post-Policy 0.045*** 0.007 0.036 -0.001
(0.014) (0.016) (0.062) (0.002)

TCZ * Post-Policy * Polluter -0.022* -0.022 -0.022 -0.001
(0.013) (0.018) (0.045) (0.002)

Observations 615,953 608,502 548,806 548,806

Notes: Columns 1 and 2 provide the effects on average wages and expenditures on management per employee, respectively.

Columns 3 and 4 provide the effects on new product output level and its percentage of total output, respectively. All

baseline FEs are included. Standard errors are clustered at the prefecture level. Asterisks denote *p <0.10, **p <0.05,

***p <0.01.
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Table 7: Effect on Exit in Responsive Industries by Firm Ownership, Age,
and Size

Outcome Variable: Exit Exit Exit Exit Exit
Sample: Full Young Older Small Larger

(1) (2) (3) (4) (5)

Panel A: State-Owned Firms

TCZ * Post-Policy 0.008 0.144 0.009 0.156* -0.003
(0.024) (0.151) (0.024) (0.082) (0.023)

TCZ * Post-Policy * Polluter 0.025 -0.088 0.026 0.088 0.033
(0.024) (0.161) (0.024) (0.087) (0.024)

Observations 34,134 880 33,004 3,095 30,459

Panel B: Private Firms

TCZ * Post-Policy 0.052** 0.043 0.054** 0.153** 0.033*
(0.020) (0.056) (0.023) (0.071) (0.018)

TCZ * Post-Policy * Polluter -0.018 -0.016 -0.016 -0.053 -0.003
(0.018) (0.060) (0.020) (0.075) (0.017)

Observations 108,670 5,680 101,247 11,859 94,697

Notes: Table reports effects on exit by firm ownership, age, and size for firms in responsive industries. The full sample is

included in Column 1. Firms that are younger and older than 5 years old are included in Columns 2 and 3, respectively. Firms

with fewer or more than 50 employees are included in Columns 4 and 5. All baseline FEs are included and standard errors are

clustered at the prefecture level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 8: Effect on Wages, Management Expenditures, and New Product
Output by Firm Ownership

Outcome Variable: Avg. Wages Manage. Exp New Product New Product
per Worker Output % of Output

(1) (2) (3) (4)

Panel A: State-Owned Firms
TCZ * Post-Policy 0.027 0.070 0.129 -0.001

(0.036) (0.047) (0.127) (0.005)

TCZ * Post-Policy * Polluter -0.003 -0.052 -0.216 -0.005
(0.040) (0.055) (0.142) (0.006)

Observations 33,863 33,712 27,933 27,933

Panel B: Private Firms
TCZ * Post-Policy 0.143*** 0.096* 0.048 -0.002

(0.035) (0.049) (0.125) (0.007)

TCZ * Post-Policy * Polluter -0.070** -0.107* 0.053 0.003
(0.034) (0.060) (0.119) (0.006)

Observations 108,310 107,593 96,980 96,980

Notes: Table reports effects on average wages (Column 1), management expenditures (Column 2), new product output

per employee (Column 3), and the percentage of output that is from new products (Column 4) by firm ownership. All

baseline FEs are included and standard errors are clustered at the prefecture level. Asterisks denote *p <0.10, **p <0.05,

***p <0.01.
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MAIN TEXT FIGURES

Figure 1: Geographic Location of TCZ vs. Non-TCZ Prefectures
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Figure 2: Event Study for Effects of TCZ Regulation on Firm Productivity
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(c) TCZ Regulation Effect on Firms in More
Pollution-Intensive Firms Relative to Firms in
Less Pollution-Intensive Industries

Note: Figure plots the coefficients from an event study regression version of Equation 1

(absorbing industry-prefecture fixed effects) estimating the effect of the TCZ regulation on

(log) TFP along with their 95% confidence intervals. Panel A presents the findings for less

pollution-intensive firms and Panel B presents the findings for more pollution-intensive firms

relative to firms in the unregulated areas. Panel C presents the effects on more pollution-

intensive firms relative to less pollution-intensive firms in regulated prefectures. The findings

in Panel A demonstrate that productivity increases for less pollution-intensive firms immedi-

ately following policy implementation. For more pollution-intensive firms, there is no effect

on productivity relative to unregulated firms (Panel B), however their productivity decreases

relative to less pollution-intensive firms (Panel C).
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A Appendix: Data Preparation – For Online Publica-

tion Only

A.1 Firm-level data

We obtain annual firm-level data for the period 1996-2006 from the China Industrial Enter-

prise Database (CIED). The database provides three types of variables: basic information

(firm ID, location, total employment etc.), production information (main product, industrial

output etc.) and financial information (capital stock, revenue, profit, wage etc.). In our

treatment of the data, we follow others in the literature and draw heavily from Brandt et

al. (2012). We link firms over time using firms’ numerical ID, and where possible, other

information including firms’ names, legal person, phone number, city code, founding year,

industry code etc. We match the sample of two consecutive years first and then expand it

to three consecutive years. For more details, please refer to Brandt et al. (2012)’s appendix.

One extension that we implement beyond their approach is that we also include the pilot

year data from 1996-1997. Although there were some changes in the format of firm ID codes,

we are able to match a large portion of the data (approximately 70%) based on the other

information, and including these data are helpful for the methods we use in this paper since

they expand our pre-policy period.

The CIED contains two variables concerning employment—the number of employees at

the end of the year and the average number throughout the year. We use the former to

represent employment for all years except 2003, where we use the latter as the former is

missing for the year 2003. We conduct a robustness check that drops 2003 in the paper to

ensure that this does not affect our results.

We drop observations that appear to contain errors in the key variables that we use.

That is, we drop observations for which employment, wages, capital, added value, or gross

industrial output are negative (2.5% of the observations). We also drop observations for

which we are missing labor or fixed assets data and cases that violate standard accounting

principles: observations for which the sum of liquid assets and fixed assets are higher than

total assets, current assets are higher than total assets, or fixed assets are greater than total

assets (0.08%). At this point, we have an unbalanced panel of 1,874,627 observations for

506,414 unique firms from 1996-2006.

Firm Ownership

We categorize firms as being either “state-owned” or “private” according to their paid-up

capital sources. If a firm receives more than 50% paid-up capital from state sources in that
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year, we consider it to be a state-owned enterprise (SOE). We define all other firms as being

private, including foreign firms, which are those that receive less than 50% paid-up capital

from the state and more than 25% from foreign sources and Hong Kong, Taiwan and Macao

sources.

Firm Industry

The database covers 40 two-digit Chinese Industrial Classification (CIC) industries, including

those in mining, manufacturing, and public utilities. Given that the industry-level SO2

emission data is only available at the 2-digit industry level (see below), we categorize firms

at two-digit industry level. In 2003, the industrial code classification system was revised

and several changes were made. To make industry codes comparable, we adjust 1996-2002

observations’ industry codes according to the post-2003 version. The industry code used

changes for firms sometimes, so we use the mode of industry codes for each firm as the

assigned industry for that firm for all years so that we can assign it as being more or less

pollution-intensive in our heterogeneous difference-in-differences framework.27

Firm Age

We assume all firms are founded after the year 1800 and consider founding year missing if

firms reported an earlier founding year. If firms have indicated different founding years in

each survey, we use the mode of founding years within-firm for calculating the firm’s age.

A.2 Prefecture-level data

We collect sociodemographic prefecture data from China City Statistical Yearbook. This

yearbook contains variables both at prefecture and district level. As we assign TCZ status at

prefecture level, we use all variables at prefecture level to be consistent. The data is primarily

used to examine the pre-policy period prefecture-level characteristics, such as GDP per

capita and population. We also collect prefecture-level SO2 data from China Environmental

Yearbook and NASA MERRA-2 to test the effectiveness of the policy in reducing SO2

pollution.

27These inconsistencies are largely due to ambiguous definitions. For example, manufacturing of fire van
can be assigned to Industry 36 (manufacturing of transport equipment) or Industry 37 (manufacturing of
dedicated devices).
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A.3 Industry-level data

We use industry-level SO2 emission and coal consumption data to assign industries as be-

ing more or less pollution-intensive, which is required for our heterogeneous difference-in-

differences research design. In China, SO2 emissions are highly correlated with coal con-

sumption, and some of the TCZ regulation’s more explicit measures for reducing SO2 emis-

sions specifically targeted the life cycle of coal. Therefore, we consider SO2 emission and

coal consumption as relevant indicators for deciding whether an industry is more or less

pollution-intensive.

Our approach entails computing industry-level pollution intensity and then following

Greenstone (2002) to define pollution-intensive. We gather data on SO2 emissions from

the China Statistical Yearbook 2002, which contains data for the year 2001. Unlike city-

level emission data, which are subject to potential misreporting by local government officials

(Karplus et al. 2018), industry-level emission data are less likely to be manipulated as emis-

sion levels of different industries are inherently heterogeneous, depending on the industry’s

characteristics i.e. raw materials used, manufacturing process, residues produced. The rea-

son we use 2001 data is that it contains 40 industries (compared to 20 industries in 1997)

and also includes the number of firms in each industry, which allows us to compute average

SO2 emissions per firm in each industry. To relieve the concern that the 2001 data may be

affected by the implementation TCZ policy, we find high correlations between data in 1997

and 2001, i.e., 0.98 for SO2 emission variable and 0.99 for coal consumption variable. This

confirms that the 2001 data is a fairly good proxy of industry polluting levels, as suggested

by Cai et al. (2016).

We calculate each industry’s share of total SO2 emission and coal consumption. If the

share is more than 1 percent for both indicators, we define this industry as being “more

pollution-intensive” (see Appendix Table C.1). One special case is that we break up the

electricity, steam and hot water supply industry (CIC “44” ) based on major differences in

pollution intensity. The electricity, steam and hot water supply industry accounts for more

than 50% of total coal consumption and SO2 emission, and this is mostly contributed by the

thermal power generation (CIC code “4411” ). Therefore, include thermal power in the more

pollution-intensive group whereas we define other power generation industries contained in

CIC “44” (hydro, wind, solar, nuclear, etc.) as less pollution-intensive.

This results in a set of ten industries as being in the more pollution-intensive category, and

the industries align closely with those that are defined as being SO2 regulated in Greenstone

(2002). Greenstone (2002) define the following industries as being SO2 regulated: Pulp and

paper(corresponding to CIC code “22”), Inorganic chemicals(CIC code “26”), Petroleum

refining(CIC code “25”), Stone, clay, glass, and concrete (CIC code “31”), Iron and steel
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(CIC code “32”) and Nonferrous metals (CIC code “33”). These six industries are all covered

in our defined pollution-intensive industries, and we include four more that qualify given the

definition that we apply: coal mining and dressing (CIC code “06” ), agricultural food

processing (CIC code “13”), textiles (CIC code “17”), and electricity, steam and hot water

supply (CIC code “4411”).

Finally, we compare the industries that we define as being more pollution-intensive with

those highlighted in the TCZ policy document and targeted by the regulation. We cover

three out of four industries mentioned in the policy document: chemical industry (26),

metallurgical industry (32), and nonferrous metal industry (33). The only one that we do

not cover is the building material industry, which is not included in our data.

A.4 Final Preparation and the TFP Ratio

All nominal values (except industrial intermediate input) in CIED dataset and China City

Statistical Yearbook are converted to real values in 1998 by using output deflators. The

output deflators are constructed following Yang (2015) by using price indexes extracted from

the “Urban Price Yearbook 2011” published by the National Bureau of Statistics (NBS). We

convert the 2-digit industry level “total output price index (chain)” in the years 1985-2010 to

fixed-base index using 1998 as the base year. The input deflators, which are used to deflate

nominal industrial intermediate input, are constructed by using National Input-Output (IO)

tables in 1997, 2002, and 2007. Precisely, We use the industry-level intermediate input

indicated in IO tables as weights to convert output deflators the input deflators. The years

before 2000 were using the 1997 IO tables, the years 2001-2005 and post-2006 were using

IO tables in 2002 and 2007 respectively. As noted by Yang (2015), this approach takes into

account the dynamics of input price in different sectors. We use these deflators to deflate

nominal values to real values in 1998.

Once we match all of the aforementioned data and keep observations for which we have the

information needed to determine treatment status, we keep only firms for which we observe at

least once before and once after the policy was implemented, since we conduct a within-firm

analysis. This is the step that leads to the greatest number of observations dropped, leaving

us with a little over 800,000 observations. When we go through the matching process, we

also check for additional cases for which there appears to be data entry or reporting errors

or when we are missing values for the key variables we need to estimate TFP and other key

variables we use throughout the analysis. We also drop cases for which employment is less

than eight employees, since firms that are below this threshold lack reliable audit systems.

The final unbalanced panel that we use as the baseline data set includes 763,240 observations
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from 1996 to 2006 for 127,757 unique firms.

Descriptive statistics for our baseline data set are provided in Appendix Table 1, which

are discussed in Section 3 of the main text along with our approaches to measuring TFP

and the other productivity measures. The mean estimated (log) TFP is about 5.47 with a

standard deviation of 1.59 (for firms in TCZ and non-TCZ prefectures together). To illustrate

its dispersion, we construct the “TFP Ratio” following Hsieh and Klenow (2009) and He et

al. (2020)—measured as the ratio between the firm’s (log) TFP and the firm’s industry’s

average (log) TFP—and plot its distribution in Appendix Figure B.2. The ratio appears

to follow a normal distribution and exhibits about the amount of dispersion expected for a

developing country.
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B Appendix: Additional Figures - Online Only

Figure B.1: SO2 Emissions and Concentration Over Time
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(b) SO2 Concentration (NASA Data)

Note: SO2 emissions reported in the China Environmental Yearbook at the prefecture-year level (Panel A)

and SO2 concentration data from NASA reported at the prefecture-year-month level (Panel B). Both plots

use prefecture-year averages and show declines in TCZ prefectures after the regulation was implemented. In

Panel A, there is a steeper drop in TCZ emissions relative to the decline in concentration levels in Panel

B, which may be indicative of false reporting. In Panel B, concentration levels in both TCZ and non-TCZ

prefectures appear to drop, but by more so in TCZ prefectures. Both measures increase for TCZ and non-

TCZ prefectures upon accession into the WTO. We formally test the regulation’s effectiveness using the

NASA data as described in the paper and provide the results in Appendix Table C.2.
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Figure B.2: Dispersion of Log(TFP)
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Note: This figure plots the “TFP Ratio” for the full sample period as mea-

sured by the ratio between the firm’s (log) TFP and the industry-year av-

erage (log) TFP.

Figure B.3: Pre-Regulation Dispersion of Log(TFP) by Ownership
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Note: This figure plots the “TFP Ratio” in 1998 for firms in responsive

industries as measured by the ratio between the firm’s (log) TFP and the

industry-year average (log) TFP.
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C Appendix: Additional Tables - Online Only

Table C.1: Industry List, Emissions Data, and Pollution-intensive
Industry Assignments

2-Digit Industry name SO2 per SO2 Coal Defined as
CIC code emissions share consumption pollution

(2001 data) (2001 data) (2001 data) intensive?
(t SO2/firm/year)

06 Coal Mining and Dressing 79.78 1.37% 6.05% Yes
07 Petroleum and Natural Gas Extraction 184.08 0.24% 0.70%
08 Ferrous Metals Mining and Dressing 51.59 0.21% 0.06%
09 Nonferrous Metals Mining 56.98 0.43% 0.08%
10 Nonmetal Minerals Mining 122.99 0.49% 0.42%
11 Other Mining 18.75 0.01% 0.00%
13 Agricultural Food Processing 53.36 1.28% 1.24% Yes
14 Food Manufacturing 38.01 0.65% 0.54%
15 Beverage Manufacturing 57.06 0.94% 0.54%
16 Tobacco Manufacturing 61.32 0.10% 0.11%
17 Textile 38.29 1.70% 1.17% Yes
18 Garments and Fiber Products 15.02 0.07% 0.11%
19 Leather, Fur, and Feather Products 18.32 0.12% 0.06%
20 Timber Processing and Related Products 58.60 0.24% 0.18%
21 Furniture Manufacturing 13.45 0.02% 0.04%
22 Papermaking and Paper Products 79.76 2.58% 1.49% Yes
23 Printing and Related Products 4.78 0.02% 0.04%
24 Cultural, Educational and Sports Products 43.95 0.07% 0.02%
25 Petroleum Processing and Coking 394.67 2.75% 7.43% Yes
26 Raw Chemical Materials and Products 112.95 5.43% 6.30% Yes
27 Medical and Pharmaceutical Products 32.81 0.46% 0.44%
28 Chemical Fiber Manufacturing 434.76 0.84% 0.70%
29 Rubber Products 67.44 0.30% 0.23%
30 Plastic Products 14.18 0.09% 0.12%
31 Nonmetal Mineral Products 118.50 11.44% 8.01% Yes
32 Smelting and Pressing of Ferrous Metals 414.21 6.01% 9.47% Yes
33 Smelting and Pressing of Nonferrous Metals 490.11 4.96% 1.12% Yes
34 Metal Product Manufacturing 6.29 0.21% 0.20%
35 General Machinery Manufacturing 13.73 0.26% 0.31%
36 Special Machinery Manufacturing 28.59 0.29% 0.27%
37 Traffic Equipment Manufacturing 29.23 0.38% 0.59%
39 Electric Apparatus Manufacturing 23.65 0.22% 0.15%
40 Electronic Apparatus Manufacturing 13.88 0.10% 0.05%
41 Instrument, Meter and Office Equipment 6.16 0.02% 0.02%
42 Handicrafts and other Manufacturing 13.86 0.06% 0.19%
44 Electricity, Steam and Hot Water Supply 4521.33 55.36% 50.59% Yes*
45 Production and Supply of Gas 227.71 0.18% 0.83%
46 Production and Supply of Tap Water 22.77 0.02% 0.04%

*Only coal-fired electric power supply and production firms are classified as pollution-intensive (CIC code
4411).

53



Table C.2: Effect of the TCZ Regulation on SO2 Concentration Levels

Sample Period: 1988-2008 1996-2006 1988-2008 1996-2006
Outcome Variable: SO2 SO2 SO2 SO2

(1) (2) (3) (4)

TCZ * Post-Policy -0.037*** -0.040*** -0.041*** -0.046***
(0.011) (0.013) (0.012) (0.015)

Observations 87,444 45,804 7,287 3,817

Month-year-prefecture data x x
Year-prefecture data x x
Month FEs x x
Prefecture FEs x x x x
Year FEs x x x x
Prefecture x Year Trends x x x x

Notes: Table provides the effects of the TCZ regulation on SO2 concentration levels (ug/m3) at the prefecture-

year-month level (Columns 1-2) and the prefecture-year level (Columns 3-4) using data from NASA. All data that

are available are used in Columns 1 and 3, and we limit the sample to the period we study (1996-2006) in Columns

2 and 4. Standard errors are clustered at the prefecture level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C.3: Addressing SUTVA Concerns

Outcome Variable: TFP (log) TFPv2 (log) % Firms % Labor
High-Tech High-Tech

(1) (2) (3) (4)

TCZ * Post-Policy 0.043* 0.045** -0.005 -0.010
(0.023) (0.023) (0.007) (0.007)

TCZ * Post-Policy * Polluter -0.054*** -0.057***
(0.019) (0.019)

TCZ * Post-Policy * High-Tech 0.001 -0.004
(0.023) (0.023)

TCZ * Post-Policy * Polluter * High-Tech 0.037 0.040
(0.040) (0.040)

Observations 762,957 763,237 3,566 3,566

Firm-Year Data x x
Prefecture-Year Data x x
Firm FEs x x
Industry x Prefecture FEs x x
Industry x Year FEs x x
Prefecture x Year Trends x x x x
Prefecture FEs x x
Year FEs x x

Notes: Table reports from two sets of results addressing SUTVA concerns related to movement of firms and people in high-tech

industries (see Section 4.2.1). In Columns 1 and 2, we use the baseline firm-year data with the two versions of (log) TFP as

outcome variables. In Columns 3 and 4, we use prefecture-year data, and the outcome variable is the percent of firms that are

in high-tech industries in Column 3 and the percent of workers that are in high-tech industries in Column 4. In Columns 1-2,

the two-way interactions are included as well as the “polluter” indicator. The other two main effects are absorbed by the fixed

effects. Standard errors are clustered at the prefecture level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C.4: Testing Sensitivity of Results to TFP Measure Choice

Outcome Variable (log): LP TFP TFP TFP TFP TFP
(1) (2) (3) (4) (5)

TCZpost1998 0.043** 0.077*** 0.051* 0.057* 0.052*
(0.022) (0.027) (0.028) (0.029) (0.027)

TCZpost1998dirty -0.049*** -0.041 -0.060** -0.072*** -0.061***
(0.017) (0.032) (0.024) (0.023) (0.023)

Observations 763,237 158,696 407,318 362,027 436,624

Sample used for regressions:
Full x
Homogenous Goods Markets x
Q1 of Industry Market Share x
Q1 of Industry HHI x
Q4 Industry No. of Firms x

Notes: Table reports results from tests of whether the results are sensitive to our TFP variable choice. In Column 1,

We use the approach of Levinsohn and Petrin (2003) to construct TFP. In Columns 2-5, we limit the sample to explore

whether the findings are driven by firm-level mark-ups as opposed to actual productivity increases. Only homogenous

goods markets are included in Column 2. In Columns 3 and 4, firms in industries in the bottom quartiles of the pre-

regulation industry-level distribution of market shares and HHI are included, respectively. In Column 5, firms in industries

in the top quartile of the industry-level pre-regulation total number of firms distribution are included. Asterisks denote

*p <0.10, **p <0.05, ***p <0.01.
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Table C.5: Additional Robustness Checks for Main TFP Results

Outcome Variable (log): TFP TFP TFP TFP TFP TFP TFP
(1) (2) (3) (4) (5) (6) (7)

TCZ * Post-Policy 0.035* 0.053** 0.045** 0.040* 0.044** 0.043*** 0.043***
(0.021) (0.023) (0.022) (0.021) (0.022) (0.015) (0.009)

TCZ * Post-Policy * Polluter -0.044*** -0.048*** -0.050*** -0.044** -0.045*** -0.048* -0.048***
(0.017) (0.017) (0.017) (0.018) (0.017) (0.025) (0.012)

Observations 728,305 762,957 750,262 721,790 696,514 762,957 762,957

Drop Pilot Data x
Control for WTO Entry x
Drop if Low Firm Count x
Drop if Industry Changed x
Drop 2003 x
Cluster SEs by Industry x
Cluster SEs by Firm x
Firm FEs x x x x x x x
Industry x Prefecture FEs x x x x x x x
Industry x Year FEs x x x x x x x
Prefecture x Year Trends x x x x x x x

Notes: Table reports results from several robustness checks of the baseline results in Column 3 of Table 2. In Column 1, we

drop observations in the years for which the data gathering was in its pilot stage (1996-97). In Column 2, we include a dummy

variable equal to one after 2001 to control for when China entered the WTO. In Column 3, we drop prefectures that have fewer

than 200 unique firms to ensure the results are not driven by differences in industrialization. In Column 4, we drop firms if

their CIC changed over the sample period. In Column 5, we drop 2003 because of our labor variable being from a different

source this year. In Columns 6 and 7, we cluster standard errors by industry and firm, respectively. The two-way interactions

are included as well as the “polluter” indicator. The other two main effects are absorbed by the fixed effects. Standard errors

are clustered at the prefecture level in all cases except Column 6-7. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C.6: Robustness Checks for Alternative TFP Measure Results

Outcome Variable (log): TFP TFP TFP TFP TFP TFP TFP TFP
(1) (2) (3) (4) (5) (6) (7) (8)

TCZ * Post-Policy 0.043** 0.035* 0.053** 0.045** 0.041* 0.044** 0.043*** 0.043***
(0.022) (0.021) (0.023) (0.022) (0.021) (0.022) (0.016) (0.009)

TCZ * Post-Policy * Polluter -0.049*** -0.045*** -0.049*** -0.051*** -0.046** -0.046*** -0.049* -0.049***
(0.017) (0.017) (0.017) (0.017) (0.018) (0.017) (0.025) (0.012)

Observations 763,237 728,578 763,237 750,262 722,059 696,774 763,237 763,237

Baseline Model x
Drop Pilot Data x
Control for WTO Entry x
Drop if Low Firm Count x
Drop if Industry Changed x
Drop 2003 x
Cluster SEs by Industry x
Cluster SEs by Firm x
Firm FEs x x x x x x x x
Industry x Prefecture FEs x x x x x x x x
Industry x Year FEs x x x x x x x x
Prefecture x Year Trends x x x x x x x x

Notes: Table reports the regulation’s effects on TFP (log) when using the alternative measure of TFP described in Section

3.2. Column 1 is comparable to the baseline main results in Column 3 of Table 2. In Columns 2-8, we conduct the same set of

robustness checks as we do for for the full sample. In Column 2, we drop observations in the years for which the data gathering

was in its pilot stage (1996-97). In Column 3, we include a dummy variable equal to one after 2001 to control for when China

entered the WTO. In Column 4, we drop prefectures that have fewer than 200 unique firms to ensure the results are not driven

by differences in industrialization. In Column 5, we drop firms if their CIC changed over the sample period. In Column 6, we

drop 2003 because of our labor variable being from a different source this year. In Columns 7 and 8, we cluster standard errors

by industry and firm, respectively. The two-way interactions are included as well as the “polluter” indicator. The other two

main effects are absorbed by the fixed effects. Standard errors are clustered at the prefecture level in all cases except Columns

7-8. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C.7: Effects on TFP for Firms in “Responsive” Industries (Separately)

Outcome Variable (log): TFP TFP TFP TFP
(1) (2) (3) (4)

Panel A: Most Pollution-Intensive Industries

Textiles Chemicals Steel

TCZ * Post-Policy 0.084* 0.085** 0.113*
(0.046) (0.037) (0.065)

Observations 56,704 53,116 14,208

Panel B: Less Pollution-Intensive Industries

Petro & Gas Ferrous Metals Beverage Tobacco
Processing Mining & Dress Manufacturing Manufacturing

TCZ * Post-Policy 0.435* 0.306* 0.083* 0.231*
(0.216) (0.166) (0.045) (0.119)

Observations 349 2,644 15,360 2,070

Firm FEs x x x x
Year FEs x x x x
Prefecture FEs x x x x
Prefecture x Year Trends x x x x

Notes: Table reports the regulation’s effects on TFP (log) for “responsive” industries (i.e., industries for

which the regulation enhanced TFP). Panel A includes the most pollution-intensive industries with positive

effects (textiles, chemicals, and steel). Panel B includes the less pollution-intensive industries with positive

effects (petroleum and gasoline processing, ferrous metals mining and dressing, beverage manufacturing, and

tobacco manufacturing). Standard errors are clustered at the prefecture level. Asterisks denote *p <0.10,

**p <0.05, ***p <0.01.
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Table C.8: Effect on Exit for Firms in “Responsive” Industries (Separately)

Outcome Variable: Exit Exit Exit Exit
(1) (2) (3) (4)

Panel A: Most Pollution-Intensive Industries

Textiles Chemicals Steel

TCZ * Post-Policy 0.065*** 0.011 0.072***
(0.016) (0.015) (0.022)

Observations 56,709 53,142 14,229

Panel B: Less Pollution-Intensive Industries

Petro & Gas Ferrous Metals Beverage Tobacco
Processing Mining & Dress Manufacturing Manufacturing

TCZ * Post-Policy 0.111 0.081 0.009 0.002
(0.159) (0.059) (0.018) (0.045)

Observations 349 2,644 15,360 2,079

Firm FEs x x x x
Year FEs x x x x
Prefecture FEs x x x x
Prefecture x Year Trends x x x x

Notes: Table reports the effect of the TCZ regulation on exit for firms in “responsive” industries (i.e., industries

for which the regulation enhanced TFP). Panel A provides the results for the more pollution-intensive indus-

tries, which includes textiles, chemicals, and steel. Panel B provides the results for the less pollution-intensive

industries, which includes petroleum and gasoline processing, ferrous metals mining and dressing, beverage man-

ufacturing, and tobacco manufacturing. Standard errors are clustered at the prefecture level. Asterisks denote

*p <0.10, **p <0.05, ***p <0.01.
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