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1 Introduction

In many over-the-counter markets, some participants trade much more frequently and with

many more partners than others do (see, e.g., Bech and Atalay, 2010; Craig and Von Peter,

2014; Fricke and Lux, 2015; Hollifield, Neklyudov and Spatt, 2017). We are interested in

understanding why such a market structure exists and in assessing its normative properties.

We do this by examining an over-the-counter market for assets where market participants

periodically meet in pairs with the opportunity to trade (Rubinstein and Wolinsky, 1987).

We assume that ex-ante identical market participants make a costly investment which gov-

erns how often they are in bilateral contact with others. Whenever two participants are in

contact, they may trade an asset for an outside good, as in Duffie, Gârleanu and Pedersen

(2005) and a large ensuing literature. We find that a market structure with rich heterogene-

ity emerges naturally in this environment, creating specialized intermediaries who mitigate

trading frictions while economizing on aggregate investment costs.

We verify that if market participants have heterogeneous contact rates, intermediation

arises naturally and participants who are more often in contact with others act as interme-

diaries (Üslü, 2019). By intermediation, we mean that fast market participants buy assets

with the sole intent to quickly resell them and sell assets with the sole intent to quickly re-

purchase them. While there are no static efficiency gains from intermediation, these trades

move assets towards fast traders, which improves the economy’s future trading opportunities.

Our novel contribution is that we treat participants’ contact rates as an investment

choice and characterize the resulting market structure in a decentralized equilibrium and a

Pareto optimal allocation. In equilibrium, market participants choose their contact rate to

maximize future profits net of the investment cost. In an optimal allocation, the contact

rate distribution maximizes the social value of trade net of the investment cost. Although

the two allocations are qualitatively similar, we find that equilibrium is inefficient due to

congestion and thick-market externalities.

We highlight several key results on market structure in both the equilibrium and optimal

allocations which connect our theory to stylized facts about real world trading networks.

First, we prove that heterogeneity in contact rates arises endogenously, with ex-ante ho-

mogeneous participants making heterogeneous investments. Specifically, we show that any

distribution of contact rates can be rationalized through an appropriate investment cost

function (Propositions 1 for equilibrium and 1-P for Pareto optimum). Conversely, we show

that traders make dispersed investment decisions such that the contact rate distribution is

continuous without interior mass when the investment cost function is differentiable (Propo-

sitions 2 and 2-P).
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The force pushing towards heterogeneity is the gains from intermediation. If everyone

else chooses the same contact rate, a trader who sets a slightly higher contact rate acts

as an intermediary for everyone else. The (private or social) value of each intermediation

trade is proportional to the difference in contact rates, and hence linearly increasing in the

deviating trader’s contact rate. Conversely, when choosing a slightly lower contact rate, all

other traders intermediate for the slower trader. Again, the (private or social) value from

each intermediation trade is proportional to the difference in contact rates, hence linearly

decreasing in the slower trader’s contact rate. The gains from intermediation thus generates

a convex kink in the value function at the mass point, which creates an incentive to choose a

different contact rate from everyone else. Consequently, our theory aligns with the observed

heterogeneity in trading activity we mentioned in the first sentence.

Second, we characterize the equilibrium and optimal contact rate distribution when there

is an exogenous upper bound on contacts, up to which the cost of each contact is constant.

If the cost of a contact is neither too high nor too low, we prove that the contact rate

distribution is continuous on a convex support extending from a strictly positive endogenous

lower bound to the exogenous upper bound (Propositions 3 and 3-P).

We then take the limit of equilibrium and optimal allocations as the exogenous upper

bound on contacts goes to infinity. We prove that the limiting distribution of contact rates

is Pareto with a tail index of 2 (Propositions 4 and 4-P). Additionally, we call someone

a middleman if their contact rate is infinite. Although almost no one is a middleman in

either an equilibrium or optimal allocation, we prove that middlemen account for a positive

fraction of meetings and trades. More precisely, there is a strictly positive probability that a

counterparty in any meeting or trade has a contact rate exceeding any finite threshold (still

Propositions 4 and 4-P and Corollaries 1 and 1-P).1

We argue that both the Pareto tail and middlemen connect with evidence. A host of

empirical work documents a multi-tiered network structure with a small core and many

layers of intermediaries, as well as a power law, namely a Pareto tail in the distribution

of the number of trading partners. See, for example, Craig and Von Peter (2014) for the

German interbank market and Bech and Atalay (2010) for the federal funds market.

Third, we show that when the cost of each contact is constant but arbitrarily small,

the average contact rate is arbitrarily large. Despite this, heterogeneity and intermediation

1Duffie, Gârleanu and Pedersen (2005) and the ensuing literature frequently assume the existence of
marketmakers with access to a frictionless interdealer market. The middlemen who emerge endogenously in
our environment share many features with these marketmakers: other traders stochastically meet middlemen
and bargain over the terms of trade, while there is continuous trade among middlemen. One difference is
that our middlemen have the same preferences as other traders and in particular care about their asset
position. In contrast, the literature following Rubinstein and Wolinsky (1987) and Duffie, Gârleanu and
Pedersen (2005) assumes that marketmakers only value their trading profits.
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survive in this limit. Each shock to a market participant’s idiosyncratic valuation for an asset

leads to more than four trades on average as the asset gets reallocated through intermediation

chains that typically involve a middleman (Propositions 5 and 5-P). This is consistent with

the observation that, despite recent advances in information technology which have reduced

search frictions, intermediation remains a hallmark of many decentralized marketplaces (see,

for example, Kuprianov, 1993; Philippon, 2015; Biais and Green, 2019).

Finally, we stress that heterogeneity and intermediation are intimately connected. Prior

research, e.g. Üslü (2019) and Nekludyov (2019), established that heterogeneity in market

access creates a role for intermediation. We show that if intermediation is prohibited, all

market participants choose the same contact rate, both in equilibrium and in the optimum

(Proposition 6). That is, without heterogeneity there is no intermediation, and without

intermediation there is no heterogeneity.

Our main contribution is to endogenize a market structure with rich heterogeneity. After

establishing the relevant propositions, we relate the results to an empirical literature which

identifies a core of a few highly connected traders, a larger number of peripheral traders that

still frequently intermediate, and heterogeneity in market access that is well-described by a

Pareto distribution.

Second, our approach offers a natural way to predict the endogenous response of market

structure to technological change, such as a reduction in the cost of contacts. We capture

this most clearly in our limiting economy where the cost of each contact is arbitrarily small.

This allows us to speak to the increasing prominence of financial intermediation, including

in decentralized asset markets, despite improving information technologies.

Our approach also offers a direct assessment of the efficiency of endogenous market struc-

ture and how those vary with technological parameters. For instance, we show formally that

the equilibrium market structure is inefficient. Using Pigouvian taxes, we show that optimal

policy taxes frequent traders more per trade than peripheral ones. Numerically, we show

that trading volume is excessive in equilibrium and connect these observations with the dis-

cussion on financial transaction taxes and regulatory intervention (Tobin, 1978; Burman,

Gale, Gault, Kim, Nunns and Rosenthal, 2016).

The rest of the paper is organized as follows. Section 2 reviews the related literature. Sec-

tion 3 describes our model. Section 4 defines equilibrium while Sections 5 and 6 characterize

it. Section 7 analyzes the Pareto optimal allocation and the nature of search externalities.

Section 8 establishes that contact rate dispersion disappears if intermediation is prohibited.

Section 9 concludes.
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2 Related Work

Our paper is a particular development of stochastic network formation models in a frictional

trading context. As such, it is related to both the large literature on trade and intermediation

in frictional asset markets and to stochastic network formation models in other settings such

as disease transmission or social networks. We will review each in turn.

Rubinstein and Wolinsky (1987) were the first to model intermediation in a frictional

goods market. We share with them the notion that intermediaries have access to a superior

search technology. In two important papers, Duffie, Gârleanu and Pedersen (2005, 2007)

study an over-the-counter asset market where time-varying taste leads to trade. This is also

the fundamental force giving rise to gains from trade in our setup.

Much of the more recent theoretical work extends the Duffie et al. framework to accom-

modate newly-available evidence on trade and intermediation in over-the-counter markets;

see Weill (2020) for a recent survey. Üslü (2019) allows for rich heterogeneity in contact rates,

pricing, and inventory holdings in a market where traders have continuously distributed flow

payoffs.2 As in our framework, fast dealers are more willing to take on misaligned asset posi-

tions, thus emerging as intermediaries. The marketplace features intermediation chains and

a core-periphery trading network. Our contribution to this literature is to show that hetero-

geneous contact rates arise endogenously to leverage the gains from intermediation even with

ex-ante homogeneous traders. We further show how the endogenous choice of contact rates

given a cost function disciplines key features of the contact rate distribution. Additionally,

our normative analysis shows that both technological heterogeneity and intermediation by

those with a high contact rate are socially desirable.

Hugonnier, Lester and Weill (2020) model a market with separate dealer and costumer

sectors, where dispersion in flow payoffs gives rise to intermediation chains among dealers.

Afonso and Lagos (2015) similarly have endogenous intermediation because banks with het-

erogeneous asset positions buy and sell depending on their counterparties’ reserve holdings.

In contrast to these setups, we offer a theory of endogenous heterogeneity which is rooted in

the gains from intermediation.

Farboodi, Jarosch, Menzio and Wiriadinata (2019) model an environment where some

traders have superior bargaining power and emerge as middlemen due to dynamic rent ex-

traction motives which are, at best, neutral for welfare. In contrast, intermediation in our

setup improves the allocation since misaligned asset positions are traded toward those who

are more efficient at offsetting them. They also study an initial investment stage which de-

2A related literature studies the positive and normative consequences of high-frequency trading in cen-
tralized financial markets; see, for instance, Pagnotta and Philippon (2018). The decentralized interdealer
market in Nekludyov (2019) also features dealers with exogenously given heterogeneous contact rates.
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termines the distribution of bargaining power in the population, but restrict the distribution

to two points. We allow for a continuous distribution of contact rates and prove that this is

consistent with both equilibrium and optimum.

Furthermore, some of the theoretical work on intermediation in over-the-counter markets

assumes the existence of middlemen who facilitate trade through their continuous access to an

interdealer market (Duffie, Gârleanu and Pedersen, 2005; Weill, 2008; Lagos and Rocheteau,

2009). We show that middlemen are a natural outcome when homogeneous traders invest in

contact rates and the marginal cost of contacts is constant.

Three recent papers endogenize market structure using a search framework. Hendershott,

Li, Livdan and Schürhoff (2020) model a client-dealer network in which clients cannot act

as intermediaries themselves, but choose the number of dealers they contact. They find that

clients choose homogeneous contact rates. In Chang and Zhang (2019) there are gains from

concentrating misallocated positions, which in turn gives rise to endogenous intermediation

and market structure. Dugast, Üslü and Weill (2019) ask which agents prefer to trade in a

centralized and multilateral versus in a decentralized and bilateral fashion. We assume all

trade takes place in decentralized markets, but endogenize contact rates, which are exogenous

in Dugast, Üslü and Weill (2019).

Second, the paper relates to a literature on stochastic network formation models where

agents need to make an upfront investment decision. These models share with ours the

notion that agents make a costly contact intensity choice in a frictional, bilateral setting.

Currarini, Jackson and Pin (2009) develop a frictional model of friendship formation, applied

to homophily and segregation. Indviduals decide on how long to partake in a costly stochastic

matching process which is similar to our assumption of a costly contact rate. A key difference,

however, is that agents of the same type in that model make symmetric choices and ex-post

heterogeneity is driven solely by the presence of different types and shocks.

Cabrales, Calvó-Armengol and Zenou (2011) consider a framework where agents choose

random social interactions and investment simultaneously. The payoff is quadratic, de-

pending on both partners’ investments, differing from our linear meeting technology. More

importantly, while individuals differ in their private returns to investment and hence make

different choices the paper considers only symmetric equilibria where identical agents make

identical choices. This also applies to the remaining papers discussed in this section.

Kremer (1996) is an early contribution to the literature on disease transmission that

integrates behavior into an epidemiological model. Agents choose a rate of partner change

that gives utility yet comes with a higher risk of HIV infection. Our paper Farboodi, Jarosch

and Shimer (2021) similarly models the choice of social activity in the context of the Covid-

19 pandemic. These papers have in common that they model endogenous contact intensity
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that leads to bilateral transmission (see also Quercioli and Smith, 2006).

Similarly, Duffie, Malamud and Manso (2009) study a search setting where agents make

costly effort choices in their search for information which percolates via bilateral meetings.

Cross-sectional heterogeneity in search effort arises due to heterogeneity in current informa-

tion.

In Galeotti and Merlino (2014), workers choose how much information to obtain about

job opprtunities. They do so by making a costly investement decision into connections with

others along the lines of Cabrales, Calvó-Armengol and Zenou (2011).

Finally, our results on endogenous heterogeneity in contact rates superficially resemble

a literature showing the absence of a pure strategy equilibrium in search models (Butters,

1977; Burdett and Judd, 1983; Burdett and Mortensen, 1998; Duffie, Dworczak and Zhu,

2017). These papers have in common that if all firms charge the same price (or offer the

same wage), firms that offer a slightly lower price (higher wage) earn discontinuously higher

profits. Our results concern a different object, the contact rate distribution, and we find

that the profit function is continuous but not differentiable. More fundamentally, all of the

papers referenced in this paragraph show that equilibria are asymmetric. We demonstrate

that both the equilibrium and the socially optimal allocation are asymmetric. Thus our

results do not reflect a particular assumption about price formation, but rather demonstrate

how the possibility of providing or using intermediation services creates a reason for ex ante

identical traders to make heterogeneous investments.

3 Model

We study an economy where time is continuous and extends forever. We focus throughout on

an aggregate steady state. There is a unit measure of market participants, hereafter traders,

who each have preferences defined over their holdings of an indivisible asset in fixed supply

and their consumption or production of an outside good. Traders exit the market when hit

by an idiosyncratic shock with arrival rate r > 0. When a trader exits, she is replaced with

a newborn trader so as to keep the population fixed at 1.3

3.1 Asset Holdings and Preferences

Traders’ asset holdings and preferences follow Duffie, Gârleanu and Pedersen (2005). An

individual trader’s asset holding is restricted to be b ∈ {0, 1}. Traders have time-varying

taste i ∈ {h, l} for the asset and receive flow utility δi,b when they are in state (i, b). We

3Vayanos and Wang (2007) is an early example of an asset market with stochastic exit and entry.
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assume that ∆ ≡ 1
2

(
δh,1 + δl,0 − δh,0 − δl,1) is strictly positive, which implies that traders in

the high state are the natural asset owners.

Half of all traders are born in state (h, 1) and half in state (l, 0).4 Thereafter, a trader’s

taste switches from l to h when hit by an idiosyncratic shock with arrival rate γ > 0 and

back again at the same rate. Since this shock is idiosyncratic, half the traders are in state

h and half are in state l in the stationary distribution. We similarly fix the supply of the

asset at 1
2
, so at any point in time half the traders hold the asset and half do not. Thus, in a

frictionless environment, the supply of assets is exactly enough to satiate the demand from

traders with taste h.

Preferences over net consumption of the outside good are linear, so the outside good

effectively serves as transferable utility when trading the asset. We assume that whether

trade occurs and what the terms of trade are is determined according to the symmetric

Nash bargaining solution. Traders discount the future only because of the exit probability

r. When a trader exits holding the asset, it is transferred to a newborn trader with taste h,

and the dying trader is not compensated.

3.2 Contact Technology

Asset trades occur pairwise in a frictional asset market. Newborn traders choose a time-

invariant rate λ ∈ X ≡ [0, λ̄] at which they make contact with another trader, where λ̄ is

an exogenous upper bound. A high contact rate is costly: a trader who chooses a contact

rate λ pays an ex-ante cost C(λ), where C : X → R is nondecreasing.5 We allow different

traders to choose different contact rates.6

A trader who chooses a contact rate λ meets a counterparty at rate λ. Search is random,

so whom a trader meets is independent of her contact rate, taste, and asset holding. Let B be

the Borel σ-algebra generated by X and µF be a probability measure on the measurable space

(B,X ) which gives the probability that, conditional on a meeting, the counterparty’s contact

rate is some λ′ ∈ S ⊂ B, with µF (X ) = 1. This probability measure is a key equilibrium

4We can relax the assumption that all newborn traders are born in one of these two states, but it is
convenient to assume that they do not know their state when they choose λ. We view this as reasonable
because we do not think that the short-run desire to trade is an important determinant of the irreversible
investment in λ. Preference shifts occur at a much higher frequency than exit, while trading opportunities
in many markets occur at a higher frequency still. This implies that the initial state of new entrants will
have little impact on the steady state distribution of asset holdings and tastes.

5In Section 6, we focus on the linear cost case, C(λ) = cλ. There we take a limit with λ̄→∞.
6One possible interpretation of this assumption is that participants may increase their contact rate by

investing in their communication capacity, either through improved information technology or by simply
hiring more or more able individuals to staff their trading desk. An alternative interpretation is that market
participants may invest into relationships with more counterparties. That is, they may invest time and
resources to increase the length of their contact list.
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object in our environment. For notational convenience, let F with F (λ) ≡ µF ([0, λ]) denote

the cumulative distribution function associated with the measure µF . Conditional on meeting

a counterparty with a given contact rate, the counterparty’s taste and asset holding are drawn

from the population distribution with that contact rate, independent of the trader’s contact

rate, taste, and asset holding.

One can think of this contact technology as the continuous-time, continuous-type limit

of the following physical environment with n traders and discrete time periods of length

dt < 1/λ̄: Each period, each type λ trader accesses a market with i.i.d. probability λdt.

If this process results in an odd number of traders accessing the market, one additional

trader, chosen uniformly at random, is selected to also access the market. The traders who

thus access the market are then randomly matched in pairs (see, e.g., Shimer and Smith,

2001). In a large economy, the chance of any trader matching because an odd number of

traders accessed the market becomes negligible, and so a trader matches each period with

probability λdt. Moreover, for the same reason, traders meet counterparties in proportion

to the counterparties’ contact rate.7 We return to this at the end of Section 4 and then offer

additional detail in Appendix A.2.

We will show that individual behavior depends only on the counterparty measure µF .

Nevertheless, to connect the model to data, we also characterize the distribution of contact

rates in the population. Let µG(S) denote the measure of traders whose contact rate is some

λ′ ∈ S ⊂ B, with µG(X ) = 1. Again, let G with G(λ) ≡ µG([0, λ]) denote the associated

cumulative distribution function. The measures µF and µG are related through the following

transformation,8

µF (S) ≡
∫
S
λdµG(λ)∫

X λdµG(λ)
. (1)

This captures our assumption that traders meet counterparties in proportion to their contact

rate. In words, the conditional probability of drawing a counterparty from a particular group

of traders is given by the fraction of meetings that accrues to that group. Finally, we let the

average contact rate in the population be denoted by Λ ≡
∫
X λdµG(λ).

7This is the natural counterpart to a frictional labor market where an employer meets job seekers in
proportion to the job seekers’ search intensity (see Petrongolo and Pissarides, 2001). An alternative is a
“telephone-line” matching function where traders initiate contacts at some chosen rate λ and can also be
contacted otherwise. The distribution of λ′ among the counterparties then depends on who initiated the
contact. Such a technology is inconsistent with our assumption that the distribution of whom a trader meets
is independent of her contact rate.

8Appendix A.1 discusses technical details on how we move between the two probability measures, in
particular how we deal with cases where equation (1) is not invertible. Here and throughout the paper,∫
S

Ω(λ)dµG(λ) =
∫
S

ΩdµG is the integral of Ω on S ⊂ B with respect to the measure µG. We use
∫ λ2

λ1
Ω(λ)dλ

to denote the integral on [λ1, λ2] with respect to the Lebesgue measure.
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3.3 Individual Trader Behavior

We next turn to the behavior of individual traders. To do so, we first need some notation. Let

pλ
′,i′,b′

λ,i,b = pλ,i,bλ′,i′,b′ denote the endogenous probability that a trader with contact rate λ ∈ [0, λ̄],

taste i ∈ {h, l}, and asset holdings b ∈ {0, 1} trades when she contacts a trader with contact

rate λ′ ∈ [0, λ̄], taste i′ ∈ {l, h}, and asset holdings b′ ∈ {0, 1}. Let tλ
′,i′,b′

λ,i,b = −tλ,i,bλ′,i′,b′ denote

the endogenous transfer of the outside good from (λ, i, b) to (λ′, i′, b′) when such a trade

takes place. The trading probability and price are determined by Nash bargaining, as we

discuss further in Section 3.4. Finally, let σλ,i,b denote the endogenous fraction of traders

with contact rate λ who have taste i and asset holding b. This is determined from a steady

state condition which we discuss in Section 3.5.

Now let vλ,i,b denote the present value of a trader (λ, i, b). Given µF , p, t, and σ, the

value function satisfies

rvλ,i,b = δi,b + γ
(
vλ,∼i,b − vλ,i,b

)
+ λ

∫
X

∑
i′∈{h,l}

∑
b′∈{0,1}

σλ′,i′,b′p
λ′,i′,b′

λ,i,b

(
vλ,i,b′ − vλ,i,b − tλ

′,i′,b′

λ,i,b

)
dµF (λ′). (2)

The left hand side of equation (2) is the flow value of the trader, where discounting reflects

the exit rate. The value comes from three sources, listed in order on the right hand side.

First, she receives a flow payoff δi,b which depends on her tastes and asset holdings. Second,

her tastes shift from i to ∼i at rate γ. Third, she meets another trader at rate λ with type

λ′ drawn from the counterparty measure µF , in which case they may swap asset holdings in

return for a payment. Conditional on λ′, the counterparty’s state is (i′, b′) with probability

σλ′,i′,b′ . If there is trade, the trader has a capital gain from swapping assets and transferring

the outside good, vλ,i,b′ − vλ,i,b − tλ
′,i′,b′

λ,i,b .

Armed with the value function, we can formally describe the restriction which the model

imposes on the contact rate distribution. Recall that traders choose their contact rate when

they enter the market in order to maximize their expected value. This implies that any

contact rate chosen in equilibrium must maximize

πλ ≡ 1
2
(vλ,l,0 + vλ,h,1)− C(λ). (3)

This formulation reflects the fact that traders are equally likely to enter in the low taste

state without the asset or the high taste state with the asset, and they choose λ accordingly

subject to the investment cost C.
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3.4 Terms of Trade

The terms of trade are set in accordance with a symmetric Nash bargaining solution. This

means that trade occurs whenever doing so can make both parties better off, and that

transfers equate the gains from trade without throwing away any resources. That is, if there

is a transfer tλ
′,i′,b′

λ,i,b = −tλ,i,bλ′,i′,b′ satisfying vλ,i,b′−vλ,i,b− tλ
′,i′,b′

λ,i,b and vλ′,i′,b−vλ′,i′,b′− tλ,i,bλ′,i′,b′ both

positive, then trade occurs with a transfer such that vλ,i,b′ − vλ,i,b− tλ
′,i′,b′

λ,i,b = vλ′,i′,b− vλ′,i′,b′ −
tλ,i,bλ′,i′,b′ . If any feasible transfer implies a strict loss from trade, there is no trade.

With a little bit of algebra, this means that the trading probability is given by

pλ
′,i′,b′

λ,i,b =

1

0
if vλ,i,b′ + vλ′,i′,b ≷ vλ,i,b + vλ′,i′,b′ ; (4)

and that when there is trade, the transfer satisfies

tλ
′,i′,b′

λ,i,b =
1

2
(vλ,i,b′ + vλ′,i′,b′ − vλ,i,b − vλ′,i′,b) . (5)

When vλ,i,b′ + vλ′,i′,b = vλ,i,b + vλ′,i′,b′ , trade may be probabilistic. If trade does occur, the

transfer is still given by equation (5).

3.5 Stationary Distribution

The steady state fraction of type λ traders in different states, σλ,i,b, depends on the trading

probabilities through the balance of inflows and outflows:r + γ + λ

∫
X

∑
i′∈{h,l}

σλ′,i′,1−bp
λ′,i′,1−b
λ,i,b dµF (λ′)

σλ,i,b

= γσλ,∼i,b + λ

∫
X

∑
i′∈{h,l}

σλ′,i′,bp
λ′,i′,b
λ,i,1−bdµF (λ′)

σλ,i,1−b +
r

2
I(i,b)∈{(h,1),(l,0)}. (6)

The left hand side of equation (6) measures the outflows from state (i, b) for traders with

contact rate λ. A trader leaves the state either when she exits, when she has a taste shock,

or when she trades with another trader with the opposite asset holding. The right hand

side measures the inflows. A trader with contact rate λ enters state (i, b) when she has the

opposite taste and has a taste shock, when she has the opposite asset holding and trades,

or, if (i, b) is equal to either (h, 1) or (l, 0), half the time when she is newborn. Here the

indicator function I is equal to 1 if the condition in the subscript holds and is zero otherwise.
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3.6 Summary

The natural notion of equilibrium at this stage is given by the following primitive objects:

a counterparty measure, value function, trading probability function, price function, and

share function which jointly satisfy equations (2)–(6). However, we henceforth focus on a

particular type of equilibrium, imposing an additional symmetry restriction that we spell out

at the start of the next section. Such an equilibrium is far easier to characterize and depends

only on three objects: the counterparty measure and two additional reduced-form functions.

We verify below, however, that it is possible to recover the primitive objects which we have

described thus far from these reduced-form objects.

4 Equilibrium

This section focuses on defining a symmetric equilibrium. To that end, we impose a re-

striction on the trading pattern which we keep in place for the remainder of the paper. We

relegate formal derivations and details to Online Appendix C.

To begin with, we call traders’ asset holding positions misaligned either when they hold

the asset and have taste l, or when they do not hold the asset and have taste h. We call

traders’ asset holding positions well-aligned in the other two states. Let mλ ≡ σλ,l,1 + σλ,h,0

denote the fraction of traders with contact rate λ who are misaligned.

Symmetry means we restrict attention to equilibria in which the two misaligned states and

the two well-aligned states are treated symmetrically. That is, we impose pλ
′,i′,1
λ,i,0 = pλ

′,∼i′,0
λ,∼i,1

for all λ, i 6=∼ i, and i′ 6=∼ i′. This means that if a type λ trader with taste i would buy

the asset from a type λ′ trader with taste i′, then a type λ trader with the opposite taste

∼ i would sell the asset to a type λ′ trader with the opposite taste ∼ i′.

In Online Appendix C.1 we prove that when trading probabilities are symmetric in this

sense, misalignment rates are also symmetric, σλ,l,b = σλ,h,1−b for all λ and b. Moreover, we

prove the existence of a surplus function s(λ) = vλ,h,1 − vλ,h,0 − q = vλ,l,0 − vλ,l,1 + q where

q ≡ δh,1 + δl,1 − δh,0 − δl,0
2r

, (7)

independent of λ. The surplus function tells us the value of being well-aligned, up to the

additive constant q, which equals the price of the asset in the frictionless limit. Manipulating

the value function (2) as well as the Nash bargaining solution (4) and (5), we derive in Online
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Appendix C.1 a Bellman equation for s:

(r + 2γ)s(λ) = ∆ +
λ

4

∫
X

((
(s(λ′)− s(λ))+ − (s(λ) + s(λ′))+

)
mλ′

+
(
(−s(λ)− s(λ′))+ − (s(λ)− s(λ′))+

)
(1−mλ′)

)
dµF (λ′) (8)

where z+ ≡ max{z, 0} and reflects that meetings result in trade if and only if trade is bilat-

erally efficient. The r + 2γ on the left hand side reflects discounting due to exit and taste

shocks. ∆ is the average difference in flow payoffs between the well-aligned and misaligned

states. The remaining terms capture how the option value of trade changes through align-

ment. At rate λ
2

traders meet others with opposite asset holdings. When trade occurs, the

gains are split equally, giving us λ
4
. The trader meets both misaligned (fraction mλ′) and

well-aligned (fraction 1−mλ′) counterparties of type λ′. Whenever a trade makes this trader

well-aligned (misaligned), there is a gain (loss) s(λ). Similarly, whenever a trade makes the

partner λ′ well-aligned (misaligned), there is a gain (loss) s(λ′). Trade occurs only if the

sum of the two gains is positive.

We also use the steady state equation (6) and the Nash bargaining solution (4) to de-

rive in Online Appendix C.1 the symmetric flow balance equation governing the stationary

distribution of misalignment:(
r + γ +

λ

2

∫
X

(
Is(λ)+s(λ′)>0mλ′ + Is(λ)>s(λ′)(1−mλ′)

)
dµF (λ′)

)
mλ

=

(
γ +

λ

2

∫
X

(
Is(λ)<s(λ′)mλ′ + Is(λ)+s(λ′)<0(1−mλ′)

)
dµF (λ′)

)
(1−mλ). (9)

The indicator function I is equal to 1 if the inequality in the subscript holds and is zero

otherwise. Misaligned traders become well-aligned if they exit and are replaced, if they

have a taste shock, or if they trade. The latter event can occur with both well-aligned and

misaligned traders, so long as the joint surplus of the transaction is positive. The right hand

side captures the inflow into misalignment from well-aligned traders who experience a taste

shock or who trade.

Finally, building on equation (3), we prove in Online Appendix C.1 that symmetry and

Nash bargaining imply that the choice of contact rate maximizes

rπλ = δ1−γs(λ)+
λ

4

∫
X

(
(s(λ′)−s(λ))+mλ′+(−s(λ)−s(λ′))+(1−mλ′)

)
dµF (λ′)−rC(λ), (10)

where δ1 ≡ 1
2
(δh,1 + δl,0) is the average flow payoff in the well-aligned state. The structure of

this equation is similar to equation (8). Flow profits is equal to the average flow payoff δ1,
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minus the loss of surplus following a preference shock, plus terms involving the gains from

trade, minus the flow cost of contacts rC(λ).9

Equation (10) reflects each trader’s cost-benefit analysis when she chooses her contact

rate. The first term is the flow payoff from being well aligned. The second term is the cost

of losing her well-aligned status following a taste shock. This cost turns out to be decreasing

in the trader’s contact rate, reflecting the fact that a higher contact rate enables a trader to

more quickly realign her asset position with her tastes. The third term captures the profit

that a trader earns from her contacts when she is in the well-aligned state. We show below

that this comes from providing intermediation services. Finally, the last term captures the

exogenous cost associated with choosing a contact rate, parallel to the cost of forming a link

in Jackson and Wolinsky (1996) and the subsequent literature on network formation.

We are now able to define a (symmetric) equilibrium.

Definition 1 An equilibrium is a counterparty measure µF , a misalignment rate function

m : X → [0, 1], and a surplus function s : X → R, satisfying:

1. the surplus equation (8);

2. the flow balance equation (9); and

3. optimal investment: µF (Y) = 1, where Y = arg maxλ∈X πλ and πλ is defined given µF ,

m, and s in equation (10).

We have already explained all three conditions.

Given an equilibrium tuple of reduced-form objects (µF ,m, s), we can recover the primi-

tive objects described in Section 3; see Appendix C.2 for more details. First, we use all three

objects, most notably the surplus function, to recover the value function vλ,i,b. From that we

get the trading probability pλ
′,i′,b′

λ,i,b and the transfer tλ
′,i′,b′

λ,i,b via equations (4) and (5). Next,

using symmetry, the misalignment rate encodes the fraction of type λ traders in different

states, σλ,i,b. Putting this together, we obtain a value function satisfying equation (2) and

steady state shares satisfying equation (6). Finally, the choice of contact rates is equivalent

to what is in equation (3).

To understand the definition of equilibrium, it may help to comment briefly on the

possibility of an autarky equilibrium, where the average contact rate is Λ = 0, or equivalently

µG({0}) = 1. We emphasize that such an equilibrium does not necessarily exist in this

environment. This is because our contact technology allows each trader to choose any contact

9The assumption that C(λ) is paid upfront is isomorphic to one where traders pay rC(λ) per unit of
time, or one where traders pay rC(λ)/λ per meeting.
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rate λ ∈ X , regardless of what others are doing.10 In particular, a trader who chooses a

contact rate λ will meet some other trader drawn from the counterparty measure µF at

rate λ. In Section 3.2, we already discussed a physical matching process which justifies

this assumption, as we show in more detail in Appendix A.2. There, we explain how a

single trader can contact others at an arbitrary strictly positive rate, even in the case where

everyone else chooses a zero contact rate. We also show that this matching process is

consistent with autarky, µG({0}) = 1, and simultaneously with µF ({0}) taking an arbitrary

value between 0 and 1, depending on details.

The flexibility of the counterparty distribution in an autarky equilibrium reflects the fact

that we cannot use equation (1), i.e. Bayes rule, to recover µF from µG when µG({0}) = 1.

But we stress that our definition of equilibrium insists that µF puts all its weight on value-

maximizing contact rates, including possibly a zero contact rate. If 0 is the unique profit-

maximizing contact rate, this implies µF ({0}) = 1, but we find that an autarky equilibrium

sometimes requires a more complicated counterparty measure; see the proof of Proposition 3

for an example.

5 Characterization with General Cost Functions

This section develops two main results characterizing equilibrium. As a stepping stone,

Lemma 1 establishes which trades occur for an arbitrary counterparty distribution. Proposi-

tion 1 then shows that any counterparty distribution is an equilibrium for some cost function

and shows how to construct such a cost function; and Proposition 2 shows that rich disper-

sion in contact rates arises under general conditions. See Online Appendix C.3 for technical

details, including all formal proofs in this section.

5.1 Equilibrium Trading Patterns

We start by characterizing equilibrium trading patterns given any counterparty measure µF .

Lemma 1 In any equilibrium, the surplus function s(λ) is positive-valued and strictly de-

creasing. When two traders with opposite asset positions meet they

1. always trade the asset if both are misaligned;

2. never trade the asset if both are well-aligned;

10One could instead impose that when the contact rate distribution is degenerate at zero, µG({0}) = 1, it
is impossible to meet other traders. Such an alternative assumption would imply that an autarky equilibrium
always exists.
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3. trade the asset if one is misaligned and the other is well-aligned and the well-aligned

trader has the higher contact rate.

The Nash bargaining solution (4) and the definition of the surplus function s(λ) = vλ,h,1 −
vλ,h,0 − q = vλ,l,0 − vλ,l,1 + q jointly imply

pλ
′,l,1
λ,h,0 =

1

0
if s(λ) + s(λ′) > 0, pλ

′,h,1
λ,h,0 =

1

0
if s(λ) > s(λ′),

pλ
′,h,1
λ,l,0 =

1

0
if 0 > s(λ) + s(λ′), pλ

′,l,1
λ,l,0 =

1

0
if s(λ′) > s(λ).

The bulk of the proof establishes that the surplus function is positive-valued and strictly

decreasing, from which the trading patterns follow immediately.

Üslü (2019) and Nekludyov (2019) both derive similar results in richer settings with an

exogenous counterparty distribution. Thus, Lemma 1 is a special case of the key findings in

these papers, a stepping stone to our novel result on equilibrium dispersion in contact rates.

The first two parts of Lemma 1 reflect fundamentals. Trade between two misaligned

traders turns both into well-aligned traders, thus creating gains in a direct, static fashion.

Trade between two well-aligned traders turns both misaligned and never happens for the

same static reason.

The third part of the Lemma reflects option value considerations and is the key endoge-

nous trading pattern that arises in this environment. It states that a faster trader buys the

asset from a slower trader if both have taste l; and she sells the asset to the slower trader if

both have taste h. We label trades intermediation when both traders have the same taste for

the asset. Intermediation does not immediately increase the number of well-aligned traders,

but it moves misalignment towards traders who expect more future trading opportunities.

Intermediation yields gains in equilibrium because traders with higher contact rates are faster

at offloading misaligned positions in future trades.

The possibility of intermediation implies that a trader’s buying and selling decisions be-

come increasingly detached from her idiosyncratic tastes as her contact rate increases. In

other words, a high contact rate moderates the impact of the idiosyncratic taste component

on a trader’s valuation of the asset. It follows that those who become intermediaries, posi-

tioned at the center of the trading chain, are traders with a high contact rate. Figure 1 shows

the intermediation chain which follows from Lemma 1. Slow traders are at the periphery of

the trading chain, not trading once their asset position is aligned with their tastes. In turn,

fast traders constitute the endogenous core of the trading network, buying and selling largely
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direction of trade

(λ1, l) (λ2, l) (. . . , l) (λN , l) (λN , h) (. . . , h) (λ2, h) (λ1, h)

Figure 1: Direction of trade across traders with contact rate λ ∈ {λ1, .., λN} with λ1 < λ2 <
.. < λN and current taste i ∈ {l, h}.

irrespective of their tastes. In doing so, they take on misaligned asset positions from types

with lower contact rates simply because they are better at locating other traders. That is,

they intermediate.

5.2 Recovering the Cost Function

We next prove that our model can rationalize any observed counterparty measure µF :

Proposition 1 For any counterparty measure µF , there exists a cost function C such that

µF is an equilibrium. Moreover, C is unique on support of µF , up to an additive constant.

The formal proof proceeds in three steps. First, we show that the counterparty distribution

uniquely determines the misalignment rate. Then, we derive the functional form for the

surplus equation, thereby proving that the counterparty distribution uniquely determines

the surplus function. Finally, we show how to recover the cost function from these three

objects.

Since every contact rate measure µG is associated with some counterparty measure µF ,

a corollary is that our model can rationalize any contact rate measure through the choice of

an appropriate cost function C. As such, our framework offers a novel way of modeling and

rationalizing real-world trading networks, complementing the existing literature on network

formation. In particular, we can rationalize the coexistence of traders with very different

rates of market access despite them being ex-ante identical. In the next subsection as well as

Section 6, we invert the analysis in Proposition 1 to characterize the counterparty distribution

under some natural assumptions on the shape of the cost function.

5.3 Heterogeneity in Contact Rates

We next show our second main result, that the coexistence of traders with different contact

rates arises naturally in equilibrium even when market participants are ex-ante homogeneous.

Proposition 2 Assume C is differentiable and C ′ is Lipschitz continuous. Then any equi-

librium counterparty distribution F and contact rate distribution G are absolutely continuous
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on [0, λ̄). If additionally C is weakly convex, C ′(0) < ∆γ2

2r(r+2γ)3 , and C ′(λ̄) ≥ 4γ∆
rλ̄2 , then a

positive measure of traders choose a contact rate in the interval (0, λ̄) in any equilibrium.

Recall that F (λ) ≡ µF ([0, λ]) is the counterparty distribution and G(λ) ≡ µG([0, λ]) is the

contact rate distribution.

Proposition 2 implies that although all traders are ex-ante identical, there is no symmetric

equilibrium in which all traders choose identical actions, except possibly at the boundaries

of the choice set 0 and λ̄. In particular, under mild restrictions on the cost function, ex-ante

identical traders choose to be continuously heterogeneous, meaning µF ((0, λ̄)) > 0 = µF ({λ})
for all λ ∈ (0, λ̄). That is, a positive measure of traders choose an interior contact rate, but

a zero measure choose the same interior contact rate.

The critical force underlying Proposition 2 is intermediation. To develop an intuition,

we argue that if everyone has a common contact rate λ, there is a convex kink in the profit

function πλ at λ, reflecting the gains from intermediation. To see this, consider the marginal

return to a change in the contact rate at the mass point λ. A trader with contact rate λ only

engages in fundamental trades, but this changes discretely at slightly different contact rates.

A trader who chooses a contact rate λ + ε, ε > 0, intermediates for the entire marketplace,

trading independently of her intrinsic valuation whenever the counterparty is misaligned

and trading is feasible (Lemma 1). The profits from intermediation are proportional to the

difference in surplus functions, s(λ)− s(λ + ε). Since s is strictly decreasing, this is locally

linearly increasing in the trader’s contact rate when it exceeds λ.

Conversely, consider the intermediation returns of a trader who chooses a contact rate

λ + ε, ε < 0. Now the trader benefits from others intermediating for her, with profits still

proportional to the difference in surplus functions, s(λ + ε) − s(λ). We still have s strictly

decreasing, so now as ε increases to zero from below, the trading profits again shrink to zero

from above. That is, intermediation profits are locally linearly decreasing in the trader’s

contact rate when it is smaller than λ.

The intermediation benefits of moving away from the mass points are hence positive in

both directions. On top of that, there are fundamental trading benefits to a higher contact

rate, which are locally linear. This leads to a convex kink, which in turn means that choosing

the mass point cannot be optimal if the cost function is differentiable. This logic carries over

to any interior mass point. As soon as a positive measure of traders has the same contact

rate, there is a discrete jump up in the marginal return to contacts at this mass point,

inconsistent with equilibrium under a differentiable cost function. A similar intuition rules

out counterparty distributions that are not absolutely continuous, but for this we require a

stronger condition, that marginal cost is Lipschitz.

The theoretical finding that intermediation in this frictional setting leads to a market
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structure with rich heterogeneity connects closely with empirical evidence. Fricke and Lux

(2015) estimate a network model that allows for a continuous notion of “coreness” for the

Italian interbank market. Their Figure 9 strongly suggest a vast amount of heterogeneity,

inconsistent with a simple binary classification of market participants. in ’t Veld and van

Lelyveld (2014) find very similar results for the Dutch interbank market (see their Figure

A.13). Di Maggio, Kermani and Song (2017) similarly show that various measures of market

participation in the US corporate bond market are continuously distributed (see their Figure

1).11 These markets thus have a tiered network structure with rich heterogeneity.

Our theory further posits that almost all market participants at least occasionally inter-

mediate. This likewise connects with data. Craig and Von Peter (2014) only classify 2.4

percent of the banks in ther German interbank market as the core, yet find that 92.7 percent

of banks occasionally intermediate in that market. Bech and Atalay (2010) group banks in

the US federal funds market into multiple tiers and show that there are many links within

tiers, so intermediation is frequently done in a decentralized fashion (see their Figure 4). For

similar evidence from the US market for asset-backed securities, see Hollifield, Neklyudov

and Spatt (2017), Figure 5. These authors also show that peripheral dealers are frequently

part of long intermediation chains that involve multiple dealers; see their Table 4.

Jointly, this suggests that frictional asset markets frequently feature traders with vari-

ous degrees of market access, most of whom at least occasionally engage in intermediation

activities. This closely aligns with the endogenous market structure which arises in our

setting.

5.4 Ordinary Differential Equation System

Absolute continuity, as established in Proposition 2, implies that the cumulative distribution

function is described by its derivative, F (λ)−F (0) =
∫ λ

0
F ′(λ′)dλ′ for all λ, and similarly for

G. In Online Appendix C.3, we define M(λ) ≡
∫ λ

0
mλ′dF (λ′) to be the fraction of meetings

that are with a misaligned trader with contact rate below some λ ∈ X . We then characterize

equilibrium using a first order ordinary differential equation system in F , M , and s with

known boundary values. We show the differential equations in Appendix B. The simplicity

of this differential equation system enables us to solve the model numerically for arbitrary

cost functions that satisfy our smoothness requirement. We also use the system throughout

Section 6 to obtain an analytical characterization with a linear cost function.

11Similarly, see Boss, Elsinger, Summer and Thurner (2004) for the Austrian interbank market, Cont,
Moussa and Santos (2010) for the Brazilian interbank network, Martinez-Jaramillo, Alexandrova-Kabadjova,
Bravo-Benitez and Solórzano-Margain (2014) for the Mexican interbank network.
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5.5 Robustness

Proposition 2 is the most general result in this paper, showing that dispersion in contact rates

arises under weak conditions. To underscore its generality, we next offer some conjectures

on the robustness of the result to our modeling assumptions.

Symmetry: We have assumed that the asset endowment is equal to 1/2, exactly equal to

the measure of traders in the high state at any point in time. This makes the restriction to

symmetric equilibrium natural. Without symmetry, we would have to deal with four value

functions and with the share of traders in each of four taste-asset holding states, making

notation more cumbersome. Moreover, it is no longer ex ante obvious which trades take

place. For example, if the asset is scarce, the market may shut out the slowest traders, never

selling the asset to them, even if they are in the high state. Still, there will always be a role

for intermediation among the traders fast enough to hold the asset. Since intermediation is

what drives heterogeneity, as we discussed above, we expect a version of Proposition 2 to be

robust to such an extension.

Restricted asset holdings: We have restricted asset holdings to be either zero or one,

which we view as the limit of an extremely convex inventory cost. Allowing for unrestricted

asset holdings, as for instance in Üslü (2019), would preserve the connection between inter-

mediation and heterogeneous contact rates. In fact, we believe it would amplify the force

creating a kink in the profit function at a mass point, since a slightly faster trader would be

unrestricted in her ability to intermediate for the mass of traders.

Contact technology: We have assumed that a trader’s contact rate does not depend on

the choices others make, but who she meets depends on these choices. We could have made

other choices. For example, in footnote 7, we discuss the telephone matching function, where

a trader chooses how often to call others but also receives calls from others at a rate that is

independent of her choice of contact rate. Thus even a trader who chooses not to contact

anyone will be able to buy and sell assets. We believe that this does not affect the forces

pushing towards dispersion in contact rates. In particular, if everyone else chooses a common

contact rate λ, one trader’s choice of contact rate does not affect whom she meets in either

model. It just leads to gains from acting as an intermediary if the trader chooses a faster

contact rate, or to gains from being intermediated for if the trader chooses a slower contact

rate.
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Time-invariant λ: If they could do so costlessly, traders would want to adjust their contact

rate in response to their time-varying taste and asset holding. They do not do so because

we have assumed that the choice of contact rate is irreversible. If we allow identical traders

to do so at no cost, then a trader’s current contact rate no longer affects future trading

opportunities and so the motive for intermediation disappears. Thus some irreversibility

in contact rates is important for our results. But as long as changing the contact rate

either takes time or incurs an irreversible cost, the current contact rate is relevant for future

trading opportunities and so some trades will involve intermediation. And because there is

intermediation, there is an incentive to choose a different contact rate than others. That

is, each trader’s contact rate may move around over time, but the associated stationary

distribution of contact rates will still not feature any mass points.

6 Characterization with a Linear Cost Function

This section characterizes equilibrium under the assumption that the cost function C is

linear, C(λ) = cλ. After analyzing the baseline model, we extend our analysis to a limiting

economy with no upper bound on contacts, λ̄ → ∞. For this case, we also consider what

happens in the frictionless limit, when the marginal cost of contacts c converges to zero. We

relegate technical details, including all proofs, to Online Appendix C.4.

6.1 Equilibrium Characterization

We start by proving existence of equilibrium and characterizing its properties when the cost

function is linear:

Proposition 3 Assume C(λ) = cλ. Fix r, γ, ∆, and λ̄. There exist thresholds c̄ > c > 0

such that

if


c ≥ c̄

c ∈ (c, c̄)

c ≤ c,

then there is a


autarky equilibrium

intermediated trade equilibrium

degenerate trade equilibrium,

and any equilibrium takes one of these three forms. In an autarky equilibrium, the average

contact rate is Λ = 0. In an intermediated trade equilibrium, the average contact rate

is Λ ∈ (0, λ̄); the support of the counterparty distribution is a convex interval [λ, λ̄] with

λ ∈ (0, λ̄) and dF (λ̄) > 0; and the misalignment rate mλ is increasing on [λ, λ̄]. In a

degenerate trade equilibrium, the average contact rate is Λ = λ̄.
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Recall that Λ ≡
∫
X λdµG(λ). The proof gives explicit expressions for c̄ and c and characterizes

the contact rate and counterparty distributions for any value of c.

We do not claim uniqueness of the equilibrium and indeed can construct examples in

which an autarky equilibrium and an intermediated trade equilibrium coexist for the same

parameter values. However, any equilibrium must lie in one of the three classes described in

the proposition.

Proposition 3 states that for c ≥ c̄, there exists an equilibrium where all trading activity

collapses, while for c ≤ c, there exists an equilibrium without intermediation since all traders

choose the highest contact rate λ̄. More interestingly, for a nonempty interval of costs

(c, c̄), there exists an equilibrium where a non-degenerate contact rate distribution G and

intermediation emerge endogenously. Such an equilibrium has four key properties: First,

no trader has a contact rate below a strictly positive lower bound λ. Second, a strictly

positive fraction of traders choose λ̄. Third, the remaining counterparties have a continuously

distributed contact rate on [λ, λ̄). And finally, traders who choose a faster contact rate are

misaligned more often.

The strictly positive lower bound λ in the intermediated trade equilibrium reflects the

fact that the profits of a trader are a continuous function, converging to the autarky value

as λ converges to 0. With c < c̄, traders in the non-degenerate equilibrium do strictly better

than autarky and so it must be the case that no one chooses a contact rate too close to zero.

We postpone the discussion of the second feature, mass at λ̄, to the next subsection.

To understand the third finding, suppose there was a “hole” in the support, with no trader

choosing contacts inside a strictly positive interval on [0, λ̄]. In this case, the proof shows

that the profits must be unequal at the two endpoints. Why? Because trading profits over

that range would be linear in λ since trading opportunities would not be changing, while

improvements in a trader’s asset position show diminishing returns to scale. This implies

the profit function must be concave on the interval, which is inconsistent with both extreme

points yielding a higher value than any intermediate point.

The finding that faster contact rates are associated with higher misalignment rates might

be counterintuitive. A higher contact rate has two opposing effects on a trader’s misalignment

rate. On the one hand, a trader is more frequently able to offset a misaligned position. On

the other hand, a trader with a higher contact rate intermediates more frequently, taking

on misalignment from slower traders. The proposition states that the latter force dominates

everywhere on the support of F . That is, traders do not invest in a faster contact rate to

reduce their misalignment, but rather to trade more frequently.

Intuitively, doubling a trader’s contact rate from λ to 2λ more than doubles his op-

portunities for intermediation, since he can also intermediate for traders with contact rate
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λ′ ∈ [λ, 2λ). An increase in the misalignment rate is then needed to offset this increase

in intermediation profits, leaving the trader’s profits unchanged. We stress that this result

holds in equilibrium, not for an arbitrary distribution of contact rates. Still, we find that

this result is more general than the linear cost case. For example, in Farboodi, Jarosch and

Shimer (2017) we show that misalignment rate is increasing in the contact rate when the

marginal cost of contacts is increasing and convex.

6.2 Limiting Equilibrium: λ̄→∞

Proposition 3 implies that whenever there is trade, a positive fraction of contacts are with

traders who choose the maximum permissible contact rate, dF (λ̄) > 0, and so the choice

of λ̄ affects equilibrium. We next examine what happens when λ̄ is large. To do this, we

define a limiting equilibrium as the limit of equilibria of a sequence of economies n which are

identical except for their upper bounds λ̄n, with λ̄n →∞:

Definition 2 Assume C(λ) = cλ. Fix r, γ, ∆, and c. For any λ̄, let (µF,λ̄,mλ̄, sλ̄) be an

equilibrium when the maximum contact rate is λ̄ and as usual let Fλ̄(λ) = µF,λ̄([0, λ]) for all

λ ≤ λ̄. Also extend the definition of (Fλ̄,mλ̄, sλ̄) to the positive reals in an arbitrary way.

(F,m, s) with domain [0,∞)3 is a limiting equilibrium if there exists an increasing unbounded

sequence {λ̄n} with associated (Fλ̄n ,mλ̄n , sλ̄n) which converges pointwise to (F,m, s).

Intuitively, a limiting equilibrium is the limit of a sequence of equilibria as we increase λ̄.

The only subtle point is that we need to extend the range of the functions (Fn,mn, sn) above

the upper bound λ̄n. A natural, but not necessary, way to do this is to impose that Fλ̄(λ) = 1

(reflecting that Fλ̄ is a cumulative distribution function), mλ̄(λ) = 2γ+λM(λ̄)

2(r+2γ+λM(λ̄))
(reflecting

equation 9), and sλ̄(λ) = 2∆
2(r+2γ)+λM(λ̄)

(reflecting equation 8) when λ > λ̄.

To get some intuition for how the limit of equilibria behaves, it is useful for us to briefly

discuss the mathematical structure we use to characterize equilibrium. To begin, recall that

if the marginal cost function is Lipschitz continuous, we can represent any equilibrium as

the solution to a system of three ordinary differential equations in F , M , and s. In the

linear cost case, we prove that we can reduce this to a pair of ordinary differential equations,

(F ′,M ′) = X1(λ, F,M) on [λ, λ̄), with boundary condition F (λ) = M(λ) = 0. The function

X1 depends on the parameters r and γ but not on c, ∆, or λ̄. We show that there is a

discontinuous increase in F and M at λ̄, the dF (λ̄) > 0 result in Proposition 3. In a limiting

equilibrium, we simply solve the same differential equations on [λ,∞).

If we knew the lower bound on contact rates λ, we would be done, but λ is endogenous.

To find it, we use a second equation, expressed succinctly as c = X2(λ), telling us the cost

c which makes λ the lower bound on contact rates. The function X2 depends on r, γ, and
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∆ both directly and indirectly through the solution to the ordinary differential equation

system (F ′,M ′) = X1(λ, F,M), and on λ̄ indirectly through the discontinuity in F and M

at λ̄. Moreover, if c is not too big, we can always find a value of λ > 0 that makes this

equation hold. As we approach a limiting equilibrium, the indirect effect of λ̄ on λ vanishes,

which ensures that λ has a well-behaved limit when we take the upper bound on contacts to

infinity. This value of λ, combined with the solution to the differential equation system on

the unbounded interval [λ,∞), yields our characterization of limiting equilibrium.

Using this approach, we obtain the following characterization of limiting equilibrium:

Proposition 4 Assume C(λ) = cλ with c < γ∆
8r(r+γ)(r+2γ)

. Then in a limiting equilibrium,

there are middlemen, meaning limλ→∞ F (λ) < 1; and the contact rate distribution has a

Pareto tail with tail index 2, meaning limλ→∞ λ
2(1−G(λ)) is positive and finite.

Proposition 3 showed that a strictly positive fraction of meetings are with traders at any

finite upper bound λ̄. The existence of middlemen is a stronger result, because it implies that

this fraction does not vanish as λ̄ goes to infinity. In order to show the existence of middle-

men, we show that the counterparty distribution remains bounded away from one as λ→∞.

In the limiting economy, almost every trader has a finite contact rate (limλ→∞G(λ) = 1),

yet a positive fraction of their counterparties has a higher contact rate. We refer to these

counterparties as middlemen.

Why do middlemen emerge? Suppose there were none, so limλ→∞ F (λ) = 1. Then a

trader with a high contact rate has almost all her meetings with slower traders. Such a trader

will therefore trade irrespective of her intrinsic valuation and so will have a misalignment rate

close to 1
2
. In particular, her misalignment rate would be higher than that of a trader living

in autarky, for whom equation (9) implies m0 = γ
r+2γ

. To justify the choice of a large value

of λ, it must then be the case that the fast trader earns strictly positive profits from trading.

But trading profits scale linearly in the tail of the distribution, since trading opportunities

are effectively the same and a trader can choose any multiple of λ. This is inconsistent with

a large finite value of λ being optimal, contradicting the hypothesis that limλ→∞ F (λ) = 1.

In short, what middlemen do is ensure that even very fast traders have a misalignment rate

strictly below 1
2
, obviating the need for them to earn profits from intermediation.12

We next note that the contact rate distribution has support [λ,∞), a natural extension

of the support [λ, λ̄] in Proposition 3. The reason for the unbounded support with a linear

cost function is that a trader’s misalignment rate converges to a constant, while her trading

profits scale linearly with her contact rate, since her trading opportunities no longer change.

12Correspondingly, with a finite λ̄, mass at the upper bound guarantees that traders remain indifferent
across λ as λ→ λ̄.
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In fact, linear scaling of the benefits of contacts tells us that the cost function must be

asymptotically linear for an open tail to emerge. While we have strong intuition for the

open tail, we do not have a clear understanding of why the tail turns out to be a Pareto tail

with a tail index of 2. Nonetheless, this finding connects closely with empirical evidence as

we document below.

Before discussing the evidence, however, we note that what is mapped out empirically

is the distribution of trading rates α ≡ λpλ, the product of the contact rate λ and the

probability of trading in a meeting, pλ. Assuming trades occur only if there are strict gains,

pλ is uniquely defined. In particular, trade only occurs when a misaligned trader meets a

trader with a strictly higher contact rate or a misaligned trader with the same contact rate;

or when a trader, well-aligned or misaligned, meets a misaligned trader with a lower contact

rate. Let Ĝ(α) denote the population distribution of trading rates in a limiting equilibrium.

Then a corollary to Proposition 4 connects the results describing the distribution of contact

rates to the distribution of trading rates:

Corollary 1 Assume C(λ) = cλ with c < γ∆
8r(r+γ)(r+2γ)

. In a limiting equilibrium, the frac-

tion of trades with middlemen is strictly positive; and the trading rate distribution has a

Pareto tail with tail index 2, meaning limα→∞ α
2(1− Ĝ(α)) is positive and finite.

Since a positive fraction of meetings are with middlemen and there is a positive probability

of trade in one of these meetings, the first part of the result is immediate. The trading rate

inherits the tail properties of the contact rate distribution, because the trading probability

conditional on a meeting converges to a positive constant at high contact rates.

We turn now to the empirical content of these results. Our finding that there are middle-

men is an extension of the result in Proposition 3 that there is a mass of traders at the upper

bound λ̄, showing that this is not an artefact of a finite upper bound. We view both results

as indicating the existence of a “core” of the market, traders who are highly connected both

to each other and to the rest of the market, and who intermediate for all other traders.

The empirical literature frequently identifies a core of highly connected entities. Craig and

Von Peter (2014) define the core as the top tier of banks which constitute a complete graph

among themselves. Applying this to the German interbank market, they classify 2.7 percent

of banks as the core. in ’t Veld and van Lelyveld (2014), applying the same methodology to

the Dutch interbank market, group 13 percent of banks in the core. Hollifield, Neklyudov

and Spatt (2017) identify a core of 6 to 10 percent of dealers in the inter-dealer derivatives

market, accounting for 60 to 70 percent of trades (see their Table 4). Di Maggio, Kermani

and Song (2017), for the corporate bond market, think of the core as the top 50 dealers, who

account for 80 percent of transactions.
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We turn next to the Pareto tail in Ĝ. The empirical literature, motivated by network

models, typically measures a trader’s degree, i.e. the number of counterparties during some

interval of time. In our model, a trader’s expected degree in a unit time interval is simply

equal to the number of trading partners α per unit of time, and hence the degree distribution

inherits the Pareto tail of the trading rate distribution.13 Many papers document that the

degree distribution has a Pareto tail in different over-the-counter markets. Examples include

Li and Schürhoff (2019) for the municipal bonds market, Hollifield, Neklyudov and Spatt

(2017) for derivatives, Peltonen, Scheicher and Vuillemey (2014) for the credit default swap

market, Bech and Atalay (2010) for the out-degree of banks in the federal funds market, and

Boss, Elsinger, Summer and Thurner (2004), De Masi, Iori, Precup, Gabbi and Caldarelli

(2008) and De Masi, Iori and Caldarelli (2006) for different European interbank markets. We

also note that, in the numerical illustration in Section 7.2, we show that the entire trading

rate distribution, not just the tail, is well-approximated by a Pareto distribution.

Overall, we thus argue that the key features of the endogenous market structure which

arises in our setting connects tightly with a set of stylized facts on over-the-counter markets.

It features traders with vastly different amounts of activity, many of whom at least occa-

sionally intermediate for others. It also features a core of a few, highly connected traders

who account for a substantial amount of overall activity. And it features a Pareto tail in the

degree distribution.

6.3 Frictionless Limit: c→ 0

In many real world markets, trading frictions are small and so one might question the value

of modeling frictions in such markets. Furthermore, advances in information technologies are

likely to reduce frictions over time so one might wonder whether this leads to a diminished

role of intermediation and heterogeneity as emphasized here.

This section uses our model to show that intermediation retains its prominent role in

the frictionless limit, which we capture through an assumption that the marginal cost of

contacts becomes negligible, c → 0. In this case, everyone chooses a fast contact rate and

so the aggregate misalignment rate converges to zero. Still, we demonstrate a clear sense in

which heterogeneity and intermediation are preserved in the limit.14 In particular, we obtain

13For a trader with trading rate α, the realized degree during a unit time interval is a Poisson random
variable with mean α. Since the standard deviation of a Poisson distribution is equal to the square root of
the mean, uncertainty about the realized degree becomes irrelevant when α is large. As a result, a Pareto
mixture of Poisson distributions inherits the tail properties of the Pareto distribution.

14We first take a limiting equilibrium, where λ̄ grows without bound, and then take the limit as c converges
to zero. The order of limits is important. With the opposite order of limits, there is no intermediation when
c is small. We find this order of limits to be more interesting since in our view the upper bound λ̄ is present
only for technical reasons.
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a sharp characterization of trading volume, measured as the amount of asset purchases per

unit of time.15

The following proposition characterizes the overall trading volume along with its decom-

position in the frictionless limit.

Proposition 5 Assume C(λ) = cλ. Consider a sequence of limiting equilibria as c con-

verges to zero. The aggregate trading volume V converges to approximately 2.46γ and can be

decomposed as follows: middlemen’s purchases from other middlemen account for a volume

Vmm = 1
2
γ; middlemen’s purchases from non-middlemen account for a volume of Vmn = 1

2
γ;

non-middlemen’s purchases from middlemen account for a volume Vnm = 1
2
γ; and non-

middlemen’s purchases from non-middlemen account for a volume Vnn ≈ 0.96γ.

To prove this proposition, we first compute trading probabilities in an economy with finite λ̄,

then construct a limiting equilibrium, and then take the limit of trade volume as c converges

to zero. See the proof of Proposition 5 for details. The proof also provides the exact

expression for volume and the fraction of meetings with middlemen.

We contrast Proposition 5 with a näıve view of a market without frictions: all traders can

trade instantaneously upon receiving a taste shock and only trade with other traders who

receive the opposite taste shock at the same instant. That means that volume equals the

share of traders with taste l times the rate at which they are hit by taste shocks, 1
2
γ. Note

that this view leaves no role for intermediation or middlemen. In contrast, we obtain nearly

five times as much trading volume in the frictionless limit. Furthermore, the proposition

highlights that a meaningful role for heterogeneity in contact rates and intermediation is

preserved in the limiting economy.

To understand this result, note that we are looking at a frictionless limit so almost no

one is misaligned. Whenever a trader (who is almost surely not a middleman) suffers a taste

shock, she is very likely to become misaligned and very unlikely to contact another misaligned

trader. As a consequence, “fundamental” trades between two misaligned traders become

exceedingly rare. Instead, the market passes the asset towards faster traders whenever

possible. Since the faster trader is still very unlikely to be misaligned, this trade does not

reduce misalignment, but simply moves it towards the core. The volume decomposition

shows that, in the frictionless limit, the reallocation of the asset in response to taste shocks

runs through an intermediation chain that always involves middlemen. That is, middlemen

purchase the asset from (sell the asset to) non-middlemen at exactly the same rate at which

asset owners (non-owners) get moved into misalignment by a taste shock.

15We maintain that agents with identical λ and different misalignment status do not trade since the
transaction has zero value. With minimum curvature in the utility function they might well do so and
volume would be higher then. In this sense these results can be viewed as a lower bound on volume.
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When a middleman purchases the asset from a slower trader, they too move into mis-

alignment. Afterwards, they find another misaligned middleman with the opposite asset

position, both becoming well-aligned. As a consequence trade between middlemen accounts

for a volume of 1
2
γ. The reason that reallocation always involves middlemen when c is small

is that the average misalignment rate of traders with a finite contact rate is proportional

to the square of the misalignment rate of middlemen. Thus, as misalignment converges to

zero, a misaligned counterparty is almost surely a misaligned middleman, although even

misaligned middlemen are scarce.

Taken together, whenever a trader experiences a taste shock, the market rapidly reallo-

cates her asset position. But instead of doing so directly, the position gets traded through an

intermediation chain. This chain runs through increasingly faster types towards middlemen,

who then first reallocate the position internally before passing it back to slower misaligned

traders who actually desire the asset position.

Taken together, intermediaries retain their prominent role in an almost frictionless set-

ting. This finding connects naturally with the ever-increasing prominence of financial inter-

mediation services despite the massive advances in information technologies in recent decades

(Kuprianov, 1993; Philippon, 2015; Biais and Green, 2019).

7 Optimal Allocation

This section examines which trading patterns and contact rate distributions are Pareto

optimal. We imagine a hypothetical social planner who can instruct traders both on their

choice of λ at birth and on whether to trade in each future meeting, but who cannot directly

alleviate the search frictions in the economy.

The section first sets up the planner problem and establishes several formal result that

mimic the equilibrium characterization. We then contrast equilibrium and optimum numer-

ically and then close with two exercises that document that equilibrium displays excessive

trade.
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7.1 Planner Problem

The hypothetical social planner chooses a contact rate measure µG as well as symmetric

trading patterns in order to maximize steady state utility net of the future cost of meetings:16

δ1 −∆

∫
X
mλdµG(λ)− r

∫
X
C(λ)dµG(λ). (11)

The first two terms gives the flow payoffs from alignment. The average well-aligned trader

has a flow payoff of δ1 ≡ 1
2
(δh,1 + δl,0), the average flow payoff in the well-aligned state. The

average misaligned trader has a flow payoff of δ1 − ∆. In addition, the planner must pay

the search costs when a trader exits and is replaced by a newborn one. These are integrated

using the contact rate measure µG. The planner also recognizes the misalignment mλ is

endogenous and depends both on the contact rate measure and on the choice of who trades

with whom, both of which are under the planner’s control.

In Online Appendix D.1, we use calculus of variations to derive necessary conditions

characterizing optimality. First, we show that there is a social surplus function S(λ), which

tells us the gain the planner enjoys by moving a trader from the misaligned state to the

well-aligned state. We prove that this satisfies

(r + 2γ)S(λ) = ∆ +
λ

2

∫
X

((
(S(λ′)− S(λ))+ − (S(λ) + S(λ′))+

)
mλ′

+
(
(−S(λ)− S(λ′))+ − (S(λ)− S(λ′))+

)
(1−mλ′)

)
dµF (λ′). (12)

This is the direct counterpart to equation (8). The only difference is that the planner

internalizes the full gains from trade in each transaction, whereas an individual trader only

internalizes her own half.

Second, we prove that trade occurs if and only if it results in an increase in total social

surplus. This gives us the flow balance equation governing the stationary distribution of

misalignment:(
r + γ +

λ

2

∫
X

(
IS(λ)+S(λ′)>0mλ′ + IS(λ)>S(λ′)(1−mλ′)

)
dµF (λ′)

)
mλ

=

(
γ +

λ

2

∫
X

(
IS(λ)<S(λ′)mλ′ + IS(λ)+S(λ′)<0(1−mλ′)

)
dµF (λ′)

)
(1−mλ). (13)

16With transferable utility, any Pareto optimal allocation also solves the problem of a utilitarian planner
who weights all traders’ welfare equally. Since traders do not discount the future (except through exit, in
which case they get replaced by another trader), this is equivalent to maximizing undiscounted, i.e. steady
state, utility. Thus the problem we solve here characterizes any symmetric Pareto optimal allocation.
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This is exactly analogous to equation (9), with social surplus playing the role of private

surplus.

Third, we define the social value function

rΠλ = −γS(λ)

+
λ

2

∫
X

(
(S(λ′)− S(λ))+mλ′ + (−S(λ)− S(λ′))+(1−mλ′)

)
dµF (λ′)− θ̄λ− rC(λ), (14)

where

θ̄ =

∫
X

γ − (r + 2γ)mλ

λ
S(λ)dµF (λ). (15)

We prove that µF (YP ) = 1 where YP = arg maxλ∈X Πλ is the set of contact rates that max-

imize the social value function. Thus the planner only utilizes contact rates that maximize

this measure of social value.

There are two differences between equations (10) and (14). First, the planner values

the whole surplus from a trade, while in equilibrium each party only gets half the surplus.

This is similar to the difference between equations (8) and (12). And second, the planner

internalizes that there is a cost θ̄ from each meeting, approximately equal to the annuitized

marginal cost of meetings for an average counterparty, θ̄ ≈ r
∫
X C

′(λ)dµF (λ).17 This reflects

the fact that an increase in one trader’s contact rate diverts meetings from other traders,

something individuals do not internalize in equilibrium. We return to these differences when

discussing efficiency in Section 7.3.

Putting this together, the set of necessary conditions for the planning problem has an

almost-identical mathematical structure to the definition of equilibrium. In the remainder of

Online Appendix D, we leverage this to show through a series of propositions, structured to

mimic the equilibrium propositions 1–5, that the equilibrium and optimum allocations are

qualitatively similar. We summarize those results here.

We first show in Lemma 1-P that the equilibrium trading pattern is optimal. Trade

occurs whenever two misaligned traders with the opposite asset holdings meet. It also occurs

whenever a slower misaligned trader meets a faster well-aligned trader with the opposite asset

holding. The intuition is straightforward. The planner’s objective function boils down to

minimizing the average rate of misalignment for a given distribution of contact rates. The

planner therefore demands trade if it reduces static misalignment and rejects it if it raises

static misalignment. In the case where only one trader is misaligned, the planner moves the

misalignment towards the trader with more future trading opportunities, since this does not

affect the current misalignment rate, but improves future trading possibilities. That is, the

17See Online Appendix D.2 for details on this approximation.
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planner uses faster traders as intermediaries.

Next, in Proposition 1-P we show that any counterparty distribution satisfies the

necessary conditions for optimality for some cost function C. This means that we cannot

make any inference about the efficiency of the observed contact rate distribution unless we

have independent knowledge of the cost function.

In Proposition 2-P, we prove that when marginal cost is continuous, the optimal contact

rate distribution is continuous on [0, λ̄). The atomless feature of the optimal contact rate

distribution allows the planner to leverage the gains from meetings through intermediation.

Any meeting between two traders with identical contact rates λ is beneficial solely when both

are misaligned. In contrast, when two traders with different contact rates meet each other,

the meeting is socially beneficial even if only the slower trader is misaligned, since there are

gains from intermediation. An atomless distribution maximizes the fraction of meetings in

which there are gains from trade. Similarly, if marginal cost is Lipschitz, the planner does

not want to place too much mass in a neighborhood of any interior contact rate, ensuring

that the counterparty distribution is absolutely continuous on [0, λ̄).

Proposition 3-P shows that with a linear cost function, it is optimal to have one of

three configurations, depending on the level of marginal cost. Autarky is optimal when

marginal cost is high. A degenerate trade allocation, with everyone at λ̄, is optimal when

marginal cost is low. And an intermediated trade allocation is optimal for intermediate

values. In this allocation, the support of the contact rate distribution is an interval [λ, λ̄]

and the misalignment rate is increasing on this support.

We then extend this to the limiting case with λ̄ → ∞. In Proposition 4-P, we prove

that with a linear cost function, the optimal distribution has a Pareto tail with parameter

2 and features middlemen. The planner introduces middlemen for reasons that mimic the

equilibrium case. If there were no middlemen, then the misalignment rate of the fastest

traders would be 1
2
, higher than the misalignment rate in autarky. To compensate, it would

have to be the case that fast traders’ meetings generate social value in excess of their cost rc.

But that would imply that the planner would want to increase their contact rate, thereby

creating middlemen.

Finally, we consider the frictionless limit, where the marginal cost of contacts converges

to zero. In Proposition 5-P, we calculate trading volume. While the volume of trades

involving middlemen is unchanged from equilibrium, we prove that there are optimally fewer

trades between pairs of non-middlemen than occur in equilibrium. This reflects the fact

that the planner relies to a greater extent on middlemen, making them account for a larger

fraction of meetings than would occur in equilibrium.
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7.2 Equilibrium vs. Optimum: Numerical Illustration

We next contrast limiting equilibria with the optimal allocation in the linear cost case. The

resulting model only has four parameters, the exit rate r, the arrival rate of preference shocks

γ, the cost of contacts c, and the average benefit from alignment ∆. It is straightforward to

prove that both equilibrium and optimal allocations are homogeneous in c and ∆. Doubling

both doubles the surplus s and S but affects neither the counterparty distribution nor the

misalignment rate. Effectively these determine the size of a unit of payoff. Similarly, the

equilibrium and optimal allocations are homogeneous in r, γ, ∆, and 1/c. Doubling the

first three parameters and cutting c in half leads to new equilibrium and optimal allocations

in which everyone chooses twice as high a contact rate without changing their surplus or

misalignment. Effectively this scaling determines the length of a unit of time. Putting these

two obsevations together, we conclude that only two of the four parameters can qualitatively

affect equilibrium or optimal allocations.

With this in mind, we impose r = 0.05 and γ = 2.75, consistent with Duffie, Gârleanu

and Pedersen (2007). To start, we fix c = 0.001∆, but later consider the robustness of our

results to other values of the cost. We take the limit of equilibria as λ̄→∞.18

The red lines in Figure 2 summarize the optimal allocation, while the blue lines show

the equilibrium. The top left panel shows that the equilibrium contact rate distribution first

order stochastically dominates the optimal one. That is, the equilibrium displays excessive

investment in contacts across the board. We revisit this observation in the next subsection

where we complement it with two theoretical exercises that relate overinvestment to the

model’s externalities. We also note that equilibrium and optimal contact rate distributions

are both well-approximated by a Pareto distribution with tail parameter 2, a line with slope

-2 in the figure.

The bottom left panel shows that these features carry over to the distribution of trading

rates. In particular, although equilibrium trading rates are too high, both the equilibrium

and optimal trading rate distributions have a Pareto tail with parameter 2. This implies that

the empirically-documented scale-free nature of many financial networks is also a feature of a

market that optimally leverages the gains from intermediation when the cost per meeting is

18As mentioned previously, we do not have a uniqueness proof. Nevertheless, our numerical calculations
are consistent with the depicted allocations, both in equilibrium and optimum, being unique. In particular,
recall that with a linear cost function, the equilibrium and optimal allocations are both described by a lower
bound λ and a pair of well-behaved ordinary differential equations in F and M . To verify that this is an
equilibrium or optimal allocation, we then compute the implied marginal cost of contacts c. That is, we have
a mapping from λ to c. Numerically, this relationship appears to be monotonically decreasing, so higher
cost is associated with a smaller lower bound on contacts; see the top left panel of Figure 3. This would
imply that the equilibrium and optimal allocations are unique for arbitrary c. We therefore refer to the
equilibrium/optimum in this section.
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Figure 2: Equilibrium and optimal counterparty distribution, contact rate distribution, trad-
ing rate distribution, and misalignment rates. We set c/∆ = 0.001, r = 0.05, and γ = 2.75.
The dotted line in the last panel indicates the value of γ, the maximum trading rate needed
for fundamental trades.
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constant. We also note in the bottom left panel that 97 percent of traders in the equilibrium

allocation and 93 percent in the optimal allocation have a trading rate that exceeds γ, a

natural upper bound for an economy without intermediation. The explanation for these

additional trades is intermediation.

If the socially optimal contact rate distribution were just a proportionately shifted version

of the equilibrium contact rate distribution (e.g. everyone had half as many contacts), the

counterparty distributions would be shifted by the same proportion. The top right panel

in Figure 2 shows that this is not the case. The equilibrium counterparty distribution does

not first order stochastically dominate the optimal one. Instead, we find that in the socially

optimal allocation, a larger fraction of meetings are with middlemen and other fast traders

compared with the equilibrium. This ensures that fast traders more often encounter other

fast traders. Since faster traders are more frequently misaligned, this facilitates fundamental

trades, reducing their misalignment rate.

Finally, the bottom right panel in Figure 2 plots the misalignment rate as a function of the

contact rate in both equilibrium and the optimal allocation. As expected from Propositions 3

and 3-P, traders with a higher contact rate have a higher misalignment rate. Moreover, we

can see that the equilibrium misalignment rate of fast traders is too high. This reflects

the relative scarcity of meetings with middlemen and other fast traders in the decentralized

equilibrium.

Figure 3 shows the robustness of these results to the level of cost c/∆. The top left panel

shows that the lower bound on the optimal contact rate distribution is lower than under the

equilibrium contact rate distribution. The top right panel shows that the average contact

rate is higher relative to the lower bound in the optimum than the equilibrium. The bottom

left panel shows that middlemen play a more prominent role in the optimum, as we found

in the example with c/∆ = 0.001. And the bottom right panel shows that both total and

intermediation volume is inefficiently high in equilibrium. These last three results are all

consistent with our analytical results with vanishing costs. We show here that they hold

more generally. We find qualitatively similar results with other values of r and γ

7.3 Equilibrium vs. Optimum: Excessive Trade

Although the qualitative features of the equilibrium and optimal allocations are nearly iden-

tical, the equilibrium allocation is still inefficient. This section discusses the externalities

and subsequently shows, using two separate formal arguments, that the planner discourages

investment in contacts, consistent with our numerical results.

The inefficiency is rooted in externalities in the decentralized contact technology. When
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34



a trader invests in more contacts, she diverts contacts towards herself and away from other

traders. This reflects the fact that investing more in meetings does not affect the contact

rate of the other traders, but it changes the distribution of whom they meet.

The externalities can be seen by comparing equation (8) with (12) and equation (10)

with (14). The external cost of one trader increasing her contact rate is that doing so

reduces the rate that other traders meet each other. We capture this congestion externality

in our characterization of the social optimum by imposing a constant cost θ̄ on meetings in

equation (14). The external benefit of the trader increasing her contact rate is that other

traders value meeting her and she only captures half of this through Nash bargaining. We

capture this thick-market externality in our characterization by doubling the value of trade

in equations (12) and (14). Hence, the social surplus captures the full joint value of these

exchanges. This is in contrast to the private surplus, which disregards the half that accrues

to the counterparty.

The surplus in a typical trade, and hence the thick-market externality, is generally higher

for slower traders, reflecting the fact that the social surplus function is globally decreasing

(Lemma 1-P). Conversely, the congestion externality is constant for all traders. We can

directly correct for each of these externalities. In Online Appendix E.1, we show that a

simple tax and subsidy scheme, where traders get type-specific payments which depend

on their alignment status, decentralizes the planning allocation. We show that the scheme

subsidizes the misaligned state relative to the well-aligned state. Interestingly, when the cost

function C is linear, the marginal subsidy, averaging across the misaligned and well-aligned

states, is zero, so Pigouvian taxes do not distort investment choices by transferring resources

directly between traders. Instead, the tax and subsidy scheme works by manipulating the

threat points in bargaining through subsidies to misaligned traders and taxes on well-aligned

ones. This shifts the terms of trade in favor of slower traders, which in turn discourages

investment.

We offer a complementary perspective on overinvestment in Online Appendix E.2. We

again study the linear cost case and consider a situation where the counterparty distribution

F is exogenously given at its socially optimal level, but prices are set through decentralized

bargaining without taxes or subsidies. In other words, we drop the third part of the definition

of equilibrium. We then examine the incentives of a single trader who enters such a market-

place and can choose her contact rate to maximize her expected revenue net of investment

costs, πλ in equation (10). While the social planner is indifferent across all values λ ≥ λ, we

show that private payoffs are not constant. Instead, an individual trader confronted with the

optimal distribution F has a strictly increasing and unbounded profit function π. Aligning

with the intuition above, this shows that private incentives lead to excessive investment in
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equilibrium. Put differently, optimal policy must discourage private incentives to overinvest.

In closing, we connect the difference between the equilibrium and optimal allocation with

ongoing debates about financial or securities transaction taxes (FTT or STT) (Tobin, 1978;

Burman, Gale, Gault, Kim, Nunns and Rosenthal, 2016; Hemmelgarn, Nicodème, Tasnadi

and Vermote, 2016). The Unites States currently implements an FTT, set at roughly 2 cents

per $1,000 traded (SEC, 2019; Klein, 2020). Many European countries impose FTTs at

varying levels covering stocks, bonds, and derivatives.

Our results show that there is overinvestment and excessive trade in equilibrium, which

broadly makes the case for policies that discourage trade. More specifically, our model im-

plies that low-value transactions, e.g. intermediated trades between two fast traders, should

be taxed more heavily than high-value transactions, e.g. fundamental trades between two

slow misaligned traders. Trades between a slow trader and a middleman should face an

intermediate tax. Thus our model offers a novel and natural rationale for policies that selec-

tively tax traders in the core of the financial network while going easy on infrequent market

participants with low volume. We stress, however, that the goal of the tax should not be the

elimination of intermediation. On the contrary, we have seen that an optimal policy reduces

the number of meetings across the board but, in relative terms, redirects meetings towards

middlemen and other fast traders.

8 Constrained Economy: The Role of Intermediation

Without intermediation, our model would not generate dispersed contact rates. To prove

this, we consider an economy in which meetings between two traders with the same tastes do

not occur, ending the scope for intermediation. It follows that whenever a misaligned trader

meets a well-aligned trader, they have opposite tastes and hence the same asset holdings,

and so there is no scope for trade. We show in this section that without intermediation,

the equilibrium and optimal distributions of contact rates are degenerate as long as the cost

function C(λ) is weakly convex.

In Online Appendix F, we first offer the adjusted definition of equilibrium along with

the adjusted planner problem that correspond to this setting. We then prove the following

result:

Proposition 6 Consider an economy with no intermediation and a weakly convex cost func-

tion C : X → R. In equilibrium, all traders choose a common value λ. The same holds in

the solution to the planner’s problem.

The proposition highlights that the heterogeneity that arises in the full economy is an im-
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mediate, and socially desirable, consequence of intermediation. When traders are restricted

to trades driven by static fundamentals, there is no gain from heterogeneity in the contact

rate. This result reflects that, without intermediation, there is effectively decreasing returns

to contacts at the individual level. The misalignment rate is strictly decreasing in meetings;

as a trader becomes increasingly well-aligned, fewer meetings lead to gainful trading oppor-

tunities. As a consequence, an unequal distribution of meetings comes with first-order losses

and the optimal distribution is degenerate. The same is true in equilibrium; with a weakly

convex cost function but decreasing returns on the individual level, all individuals choose

the same contact rate.

In summary, intermediation and heterogeneity are interconnected in a market with search

frictions. Without heterogeneity there is no intermediation, and without intermediation

there is no heterogeneity. Heterogeneity is useful because in meetings where both sides have

identical tastes, misalignment can be transmitted towards the faster trader to facilitate the

transfer of the asset to those who desire it.

9 Conclusions

We study a model of over-the-counter trading in which ex-ante identical traders invest in a

contact technology and participate in bilateral trade. We show that when traders have het-

erogeneous search efficiencies, fast traders intermediate for slow traders: they trade against

their desired position and take on misalignment from slower traders. Moreover, we charac-

terize how, starting with ex-ante homogeneous traders, the distribution of contact rates is

determined endogenously in equilibrium, and how it compares with the corresponding Pareto

optimal distribution. We argue that an economy with homogeneous contact rates is neither

an equilibrium nor socially desirable when the cost of meetings is differentiable. Under a

linear cost function, the equilibrium and optimal distributions of trading rates are governed

by a power law, an empirical feature of various financial markets. Moreover, middlemen

with the highest possible contact rate account for a positive fraction of meetings. We also

characterize the transfer scheme which decentralizes the optimal allocation, offsetting the

forces that lead to overinvestment in the undistorted equilibrium. Finally, we argue that

when intermediation is prohibited, dispersion in contact rates disappears both in equilib-

rium and in the optimal allocation, which illustrates the interplay between heterogeneity

and intermediation in a frictional marketplace.

We close by highlighting areas for future research. An important one is a general existence

result, beyond the linear cost case. Furthermore, we have kept our model as simple as possible

in order to show how intermediation and middlemen naturally arise in over-the-counter
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markets. It would be interesting to extend our model to a more complex environment, for

example one in which traders differ ex-ante in how much they care about having a well-

aligned asset position. This might “purify” the mixed strategy equilibrium we study here.

Recall that under natural restrictions on the cost function, slow traders’ asset positions are

well-aligned with their taste more often than the faster traders who intermediate for them.

We therefore conjecture that traders who care the least about their alignment status are

the natural intermediaries and have the highest incentives to invest in a high contact rate.

Likewise, we believe that the random matching model with endogenous contact rates may

be useful for understanding other issues in financial markets, such as the percolation of

information (Duffie and Manso, 2007). We hypothesize that middlemen may serve a useful

role in this process as well.
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Dugast, Jérôme, Semih Üslü, and Pierre-Olivier Weill, “A theory of participation in

OTC and centralized markets,” Technical Report, National Bureau of Economic Research

2019.

Farboodi, Maryam, Gregor Jarosch, and Robert Shimer, “The Emergence of Market

Structure,” NBER WP 23234 March 2017.

, , and , “Internal and External Effects of Social Distancing in a Pandemic,” 2021.

, , Guido Menzio, and Ursula Wiriadinata, “Intermediation as Rent Extraction,”

2019.

39



Fricke, Daniel and Thomas Lux, “Core–periphery structure in the overnight money

market: evidence from the e-mid trading platform,” Computational Economics, 2015, 45

(3), 359–395.

Galeotti, Andrea and Luca Paolo Merlino, “Endogenous job contact networks,” Inter-

national Economic Review, 2014, 55 (4), 1201–1226.
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Appendix

A Contact Rate Distribution

A.1 Additional Details

We would like to invert equation (1) to recover µG from µF , but unfortunately this is impos-

sible without further restrictions. To see why, fix a measure µG and a number α ∈ (0, 1) and

then define a new measure µ̃G ≡ αµG(S) + (1− α)I0∈S, where the indicator function is 1 if

0 ∈ S and 0 otherwise. Since
∫
S
λdµ̃G(λ) = α

∫
S
λdµG(λ) for all S ⊂ B, equation (1) implies

the two contact rate distributions have the same counterparty distribution. Intuitively, they

differ only in the fraction of the population with a zero contact rate. Since these traders

never meet anyone, the fraction does not affect the counterparty distribution.

We mitigate this issue by imposing a natural restriction, beyond equation (1), on the share

of traders with a zero contact rate, µG({0}). Recall that Y is the set of utility maximizing

contact rates. If 0 /∈ Y , we impose µG({0}) = 0. When this is the case, we have Λ ≡∫
X λdµG(λ) > 0. Then we can use the Radon-Nikodym theorem and equation (1) to move

between the probability measures µG(λ) and µF (λ):

dµF (λ)

dµG(λ)
=
λ

Λ
. (16)

Multiply both sides by 1
λ

and integrate both sides under the measure µG to get∫
X

1

λ

dµF (λ)

dµG(λ)
dµG(λ) =

∫
X

1

Λ
dµG(λ) =

1

Λ

or

Λ =
1∫

X
1
λ
dµF (λ)

. (17)

Together equations (16) and (17) define Λ and µG given µF whenever 1
λ

is Lebesgue integrable

under the measure µF and 0 /∈ Y .

If 1
λ

is Lebesgue integrable under the measure µF but 0 ∈ Y , then the right hand side of

equation (17) is an upper bound on Λ. For any value of Λ ≤ 1/
∫
X

1
λ
dµF (λ) and any set S with

0 /∈ S, we can then find µG(S) using equation (16). We then set µG({0}) = 1 − µG((0, λ̄]).

This is a valid contact rate measure associated with the counterparty measure µF .

Finally, if 1
λ

is not Lebesgue integrable under the measure µF , then Λ = 0 and µG({0}) =

1. This is the case whenever µF ({0}) > 0.
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A.2 Physical Matching Process

Consider an economy with a (large) finite number of traders n ≥ 2 and (short) finite periods

of length dt. Each trader has a type λ satisfying 0 ≤ λ ≤ λ̄, with dt < 1/λ̄. The type

determines the probability of matching during each period. Matching proceeds in two stages.

First, a trader with type λ draws a binary outcome, 0 or 1, with probability 1−λdt and λdt,

respectively. Let k ≤ n denote the number of traders who draw 1. If k is even, all traders

who drew 1 match in pairs, with all such pairings equally likely. If k is odd, uniformly

randomly select one trader who drew 0 and switch that outcome to 1. Then match all 1’s

in pairs, with all such pairings equally likely.

We are interested in the limit where n → ∞. In such an economy, the per-period

matching probability for a type λ trader converges to λdt. This is because λ̄dt < 1 ensures

that many traders draw 0. Since at most one trader draws 0 and gets switched to 1, the

likelihood of this happening to any particular trader is infinitesimal.

Now consider an economy in autarky, where everyone sets λ = 0. A single trader can

deviate and set a strictly positive value for λ, in which case he matches with a counterparty

with contact rate 0 with probability λdt in each period. In this case, µF ({0}) = µG({0}) = 1.

More generally, this environment can accommodate a limit where µG({0}) = 1 but

µF ({0}) < 1. To see how, fix a number p > 0 and consider an economy with n > p

traders. Assume each trader has contact rate λ > 0 with probability p/n and 0 otherwise.

The traders then draw 0 or 1 as described above. For finite n, the number of traders who

draw a 1 each period is a Binomial random variable with parameters (n, pλdt/n). As n

grows without bound, this converges to a Poisson random variable with mean pλdt and

hence density e−pλdt(pλdt)k/k! for k = 0, 1, 2, . . . .

Using this, one can compute the counterparty distribution for those who have chosen

a contact rate λ > 0. (For those who chose a zero contact rate, all counterparties have a

contact rate λ, but those matches almost never occur.) For example, if in a given period

k = 1, then that trader matches with a zero-contact-rate trader. If k = 2, the two traders

match with each other, i.e. with a λ-contact-rate trader. If k = 3, it is a mix of the previous

cases, so the counterparty distribution for a λ-contact-rate trader puts weight 1/3 on a

zero-contact-rate counterparty. Summing across k and weighting implies that the fraction

of traders who match with a zero contact rate partner is∑
k odd

e−pλdt(pλdt)k

k(k!)

pλdt
,

where e−pλdt(pλdt)k/k! is the density of the Poisson distribution, 1/k is the odds of matching
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with a zero partner when k is odd, and pλdt is the expected number of traders who choose

λ > 0 and match. Through an appropriate choice of p, this sum can take any value between

0 and 1.

This example describes a physical matching process where as n → ∞, µG({0}) = 1 >

µF ({0}). The key is that in a large economy, almost everyone has a zero contact rate, but

counterparties are very different than the typical trader.

B Differential Equation System

In Online Appendix C.3, we prove that on the interior of its support, (F,m, s) solves the

following differential equation system:

F ′(λ) =

(
2r + 4γ + λ(1− F (λ) + 2M(λ))

)
(8γ(1− F (λ))− 8rM(λ) + ζ(λ))

2λ
(
γ(8r + 8γ + 3λ(1− F (λ))) + λM(λ)(3r + 6γ + λ(1− F (λ) +M(λ)))

) , (18)

M ′(λ) =

(
2γ + λM(λ)

)
(8γ(1− F (λ))− 8rM(λ) + ζ(λ))

2λ
(
γ(8r + 8γ + 3λ(1− F (λ))) + λM(λ)(3r + 6γ + λ(1− F (λ) +M(λ)))

) , (19)

s′(λ) =
4 ((r + 2γ)s(λ)−∆)

λ
(
4(r + 2γ) + λ(1− F (λ) + 2M(λ))

) , (20)

where

ζ(λ) ≡
rλ
(
4(r + 2γ) + λ(1− F (λ) + 2M(λ))

)2
C ′′(λ)

∆− (r + 2γ)s(λ)
; (21)

see equations (34) and (50)–(52). Moreover, we have terminal conditions F (λ) = M(λ) = 0

and s(λ̄) = 2∆
2r+4γ+λ̄M(λ̄)

, as well as the requirement that F and M are nondecreasing.

If the cost function is linear, C ′′(λ) = ζ(λ) = 0 and so we can solve the differential

equations (18) and (19) for F and M alone.
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Online Appendix

C Equilibrium — Details and Proofs

C.1 Symmetry

We now restrict attention to equilibria in which the two misaligned states and the two

well-aligned states are treated symmetrically. That is, we look only at equilibria where

pλ
′,i′,b′

λ,i,b = pλ
′,∼i′,1−b′
λ,∼i,1−b , so if a type λ trader sells the asset to a type λ′ trader when both are

in state h, then a type λ trader must buy the asset from a type λ′ trader when both are in

state l.

We proceed in two steps. First, we show that symmetry of the trading probabilities,

pλ
′,i′,b′

λ,i,b = pλ
′,∼i′,1−b′
λ,∼i,1−b , implies symmetry of the steady state shares, σλ,i,b = σλ,∼i,1−b. Second,

we show that this implies we can use a surplus function to characterize who matches with

whom and use the surplus function to derive equations (8)–(10) in the body of the paper.

Step 1: Trading Probabilities When pλ
′,i′,b′

λ,i,b = pλ
′,∼i′,1−b′
λ,∼i,1−b , equation (6) implies σλ,i,b =

σλ,∼i,1−b for all (λ, i, b). That is, the fraction of traders with contact rate λ in the high

state, i = h, who hold the asset, b = 1, is equal to the fraction of traders with the same

contact rate who are in the low state, i = l, and do not hold the asset, b = 0. Equivalently,

the fractions of type-λ traders in either well-aligned state are equal. The remaining traders

are misaligned, and again there are equal shares of the two misaligned states for each λ.

Thus we define the misalignment rate mλ ≡ σλ,l,1 + σλ,h,0 = 2σλ,l,1 = 2σλ,h,0 and 1 −mλ =

σλ,l,0 + σλ,h,1 = 2σλ,l,0 = 2σλ,h,1.

In a symmetric equilibrium, it is convenient to refer to traders only by their alignment

status a, where a = 0 indicates misaligned and a = 1 indicates well-aligned. Let pλ
′,a′

λ,a

indicate the trading probability between traders (λ, a) and (λ′, a′) conditional on them having

the opposite asset holdings; there cannot be trade if they have the same asset holdings.

Equation (6) reduces to(
r + γ +

λ

2

∫
X

(
pλ
′,0
λ,0 mλ′ + pλ

′,1
λ,0 (1−mλ′)

)
dµF (λ′)

)
mλ

=

(
γ +

λ

2

∫
X

(
pλ
′,0
λ,1 mλ′ + pλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′)

)
(1−mλ). (22)

Step 2: Surplus Function Next, we prove that when pλ
′,i′,b′

λ,i,b = pλ
′,∼i′,1−b′
λ,∼i,1−b , there is a

surplus function s : [0, λ̄] → R which tells us whether trade occurs. First, condition (5)
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implies

vλ,h,1 − vλ,h,0 − tλ
′,h,1
λ,h,0 = vλ′,h,0 − vλ′,h,1 + tλ

′,h,1
λ,h,0 =

vλ,h,1 + vλ′,h,0 − vλ,h,0 − vλ′,h,1
2

, (23a)

vλ,h,1 − vλ,h,0 − tλ
′,l,1
λ,h,0 = vλ′,l,0 − vλ′,l,1 + tλ

′,l,1
λ,h,0 =

vλ,h,1 + vλ′,l,0 − vλ,h,0 − vλ′,l,1
2

, (23b)

vλ,l,1 − vλ,l,0 − tλ
′,h,1
λ,l,0 = vλ′,h,0 − vλ′,h,1 + tλ

′,h,1
λ,l,0 =

vλ,l,1 + vλ′,h,0 − vλ,l,0 − vλ′,h,1
2

, (23c)

vλ,l,1 − vλ,l,0 − tλ
′,l,1
λ,l,0 = vλ′,l,0 − vλ′,l,1 + tλ

′,l,1
λ,l,0 =

vλ,l,1 + vλ′,l,0 − vλ,l,0 − vλ′,l,1
2

(23d)

whenever the last term on each line is positive. Next, rewrite equation (2) explicitly as

rvλ,h,1 = δh,1 + γ
(
vλ,l,1 − vλ,h,1

)
+ λ

∫
X

∑
i′∈{h,l}

σλ′,i′,0p
λ′,i′,0
λ,h,1

(
vλ,h,0 − vλ,h,1 − tλ

′,i′,0
λ,h,1

)
dµF (λ′),

rvλ,h,0 = δh,0 + γ
(
vλ,l,0 − vλ,h,0

)
+ λ

∫
X

∑
i′∈{h,l}

σλ′,i′,1p
λ′,i′,1
λ,h,0

(
vλ,h,1 − vλ,h,0 − tλ

′,i′,1
λ,h,0

)
dµF (λ′),

rvλ,l,1 = δl,1 + γ
(
vλ,h,1 − vλ,l,1

)
+ λ

∫
X

∑
i′∈{l,h}

σλ′,i′,0p
λ′,i′,0
λ,l,1

(
vλ,l,0 − vλ,l,1 − tλ

′,i′,0
λ,l,1

)
dµF (λ′),

rvλ,l,0 = δl,0 + γ
(
vλ,h,0 − vλ,l,0

)
+ λ

∫
X

∑
i′∈{l,h}

σλ′,i′,1p
λ′,i′,1
λ,l,0

(
vλ,l,1 − vλ,l,0 − tλ

′,i′,1
λ,l,0

)
dµF (λ′).

Using symmetry and the Nash bargaining solution as summarized in equation (23), rewrite

these as

rvλ,h,1 = δh,1 + γ
(
vλ,l,1 − vλ,h,1

)
+
λ

4

∫
X
mλ′
(
vλ′,h,1 + vλ,h,0 − vλ′,h,0 − vλ,h,1

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
vλ′,l,1 + vλ,h,0 − vλ′,l,0 − vλ,h,1

)+
dµF (λ′), (24a)

rvλ,h,0 = δh,0 + γ
(
vλ,l,0 − vλ,h,0

)
+
λ

4

∫
X
mλ′
(
vλ,h,1 + vλ′,l,0 − vλ,h,0 − vλ′,l,1

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
vλ,h,1 + vλ′,h,0 − vλ,h,0 − vλ′,h,1

)+
dµF (λ′), (24b)

rvλ,l,1 = δl,1 + γ
(
vλ,h,1 − vλ,l,1

)
+
λ

4

∫
X
mλ′
(
vλ′,h,1 + vλ,l,0 − vλ′,h,0 − vλ,l,1

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
vλ′,l,1 + vλ,l,0 − vλ′,l,0 − vλ,l,1

)+
dµF (λ′), (24c)

rvλ,l,0 = δl,0 + γ
(
vλ,h,0 − vλ,l,0

)
+
λ

4

∫
X
mλ′
(
vλ,l,1 + vλ′,l,0 − vλ,l,0 − vλ′,l,1

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
vλ,l,1 + vλ′,h,0 − vλ,l,0 − vλ′,h,1

)+
dµF (λ′), (24d)
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where again z+ ≡ max{z, 0}. Now, conjecture that vλ,h,1−vλ,h,0 = s(λ)+q and vλ,l,0−vλ,l,1 =

s(λ)−q for some function s(λ) and number q. Subtracting equation (24b) from equation (24a)

gives

r(s(λ) + q) = δh,1 − δh,0 − 2γs(λ)

+
λ

4

∫
X

(
mλ′
(
− s(λ) + s(λ′)

)+
+ (1−mλ′)

(
− s(λ)− s(λ′)

)+
)
dµF (λ′)

− λ

4

∫
X

(
mλ′
(
s(λ) + s(λ′)

)+
+ (1−mλ′)

(
s(λ)− s(λ′)

)+
)
dµF (λ′). (25a)

Subtracting equation (24c) from equation (24d) gives

r(s(λ)− q) = δl,0 − δl,1 − 2γs(λ)

+
λ

4

∫
X

(
mλ′
(
− s(λ) + s(λ′)

)+
+ (1−mλ′)

(
− s(λ)− s(λ′)

)+
)
dµF (λ′)

− λ

4

∫
X

(
mλ′
(
s(λ) + s(λ′)

)+
+ (1−mλ′)

(
s(λ)− s(λ′)

)+
)
dµF (λ′). (25b)

The sum of equations (25a) and (25b) gives

2rs(λ) = 2∆− 4γs(λ)

+
λ

2

∫
X

(
mλ′
(
− s(λ) + s(λ′)

)+
+ (1−mλ′)

(
− s(λ)− s(λ′)

)+
)
dµF (λ′)

− λ

2

∫
X

(
mλ′
(
s(λ) + s(λ′)

)+
+ (1−mλ′)

(
s(λ)− s(λ′)

)+
)
dµF (λ′),

from which equations (7) and (8) in the text follows immediately. Conversely, the difference

between equations (25a) and (25b) gives us the value of q, consistent with its definition in

equation (7). This validates our conjecture that vλ,h,1 − vλ,h,0 = s(λ) + q and vλ,l,0 − vλ,l,1 =

s(λ)− q.
Next, we simplify the flow balanced equation (22). Using vλ,h,1 − vλ,h,0 = s(λ) + q and

vλ,l,0 − vλ,l,1 = s(λ)− q, we get

vλ,h,1 − vλ,h,0 + vλ′,l,0 − vλ′,l,1 = s(λ) + s(λ′) (26a)

vλ,l,1 − vλ,l,0 + vλ′,l,0 − vλ′,l,1 = −s(λ) + s(λ′) (26b)

vλ,h,1 − vλ,h,0 + vλ′,h,0 − vλ′,h,1 = s(λ)− s(λ′) (26c)

vλ,l,1 − vλ,l,0 + vλ′,h,0 − vλ′,h,1 = −s(λ)− s(λ′). (26d)
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Then equation (4) implies that we can use the surplus function to tell when trade occurs.

In particular, applying this to equation (22) gives us equation (9).19

In the last step, we obtain equation (10) by defining πλ =
vλ,h,1+vλ,l,0

2
− C(λ), replacing

vλ,h,1 and vλ,l,0 using equations (24a) and (24d), respectively, and then simplifying with

vλ,h,1 − vλ,h,0 = s(λ) + q and vλ,l,0 − vλ,l,1 = s(λ)− q.

C.2 Recovering Primitive Objects

Given µF , m, and s, we can recover the primitive value function v, trading probability p,

transfer t, and shares σ. To do this, we start with equation (24), using s(λ) = vλ,h,1−vλ,h,0−
q = vλ,l,0 − vλ,l,1 + q to write this as

rvλ,h,1 = δh,1 + γ
(
vλ,l,1 − vλ,h,1

)
+
λ

4

∫
X
mλ′
(
s(λ′)− s(λ)

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
− s(λ′)− s(λ)

)+
dµF (λ′),

rvλ,h,0 = δh,0 + γ
(
vλ,l,0 − vλ,h,0

)
+
λ

4

∫
X
mλ′
(
s(λ) + s(λ′)

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
s(λ)− s(λ′)

)+
dµF (λ′),

rvλ,l,1 = δl,1 + γ
(
vλ,h,1 − vλ,l,1

)
+
λ

4

∫
X
mλ′
(
s(λ) + s(λ′)

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
s(λ)− s(λ′)

)+
dµF (λ′),

rvλ,l,0 = δl,0 + γ
(
vλ,h,0 − vλ,l,0

)
+
λ

4

∫
X
mλ′
(
s(λ′)− s(λ)

)+
dµF (λ′)

+
λ

4

∫
X

(1−mλ′)
(
− s(λ′)− s(λ)

)+
dµF (λ′),

Since r > 0, we can solve the first and third equations for vλ,h,1 and vλ,l,1 given µF , m, and

s, and similarly solve the second and fourth equations for vλ,h,0 and vλ,l,0.

Having recovered the value function, we then get the trading probabilities from equa-

tion (4) and the transfers from equation (5). We then set σλ,l,1 = σλ,h,0 = mλ/2 and

σλ,l,0 = σλ,h,1 = (1 −mλ)/2, consistent with a symmetric equilibrium. Finally, using these,

we can reverse the steps in Online Appendix C.1 to verify that the value functions solve equa-

tion (2). We can also verify the steady state equation (6) as well as equation (3) governing

the choice of contact rate. Thus, armed with a symmetric equilibrium satisfying Definition 1,

19We assume that trade does not occur when the gains from trade is exactly zero. Alternative assumptions
would not affect our characterization of equilibrium, although it could lead to a higher trading volume.
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we can find primitive objects satisfying equations (2)–(6).

C.3 Characterization with General Cost Functions

Proof of Lemma 1. We prove that s(λ) is strictly positive and strictly decreasing for

all λ > 0. The remainder of the lemma then immediately follows from the Nash bargaining

assumption.

To prove s is strictly positive, suppose to the contrary that s(λ) ≤ 0 for some λ. Then

(−s(λ) + s(λ′))+ ≥ (s(λ) + s(λ′))+ and (−s(λ)− s(λ′))+ ≥ (s(λ)− s(λ′))+ for all λ′. Equa-

tion (8) then implies ∆ ≤ (r + 2γ)s(λ) ≤ 0. Since ∆ > 0, this is a contradiction, which

proves s is strictly positive.

Next, write equation (9) as

mλ =
γ + λp1,λ

r + 2γ + λ(p0,λ + p1,λ)
(27)

where

p0,λ ≡
1

2

∫
X

(
Is(λ)+s(λ′)>0mλ′ + Is(λ)>s(λ′)(1−mλ′)

)
dµF (λ′),

p1,λ ≡
1

2

∫
X

(
Is(λ)<s(λ′)mλ′ + Is(λ)+s(λ′)<0(1−mλ′)

)
dµF (λ′)

define the probability that a trader’s meetings result in trade as a function of her alignment

status. Since s is positive and mλ ∈ [0, 1], Is(λ)+s(λ′)>0mλ′ ≥ Is(λ)<s(λ′)mλ′ and Is(λ)>s(λ′)(1−
mλ′) ≥ Is(λ)+s(λ′)<0(1−mλ′). This implies 1/2 ≥ p0,λ ≥ p1,λ ≥ 0.

Now minimize the expression for mλ in equation (27) subject to 1/2 ≥ p0,λ ≥ p1,λ ≥ 0.

The minimum is 2γ
2r+4γ+λ

, achieved when p0,λ = 1/2 and p1,λ = 0. Similarly, the maximum

value of mλ subject to 1/2 ≥ p0,λ ≥ p1,λ ≥ 0 is 2γ+λ
2r+4γ+2λ

, achieved with p0,λ = p1,λ = 1/2.

Since λ ≤ λ̄, 2γ
2r+4γ+λ

is decreasing in λ, and 2γ+λ
2r+4γ+2λ

is increasing in λ, this proves that in

any equilibrium,

m ≡ 2γ

2r + 4γ + λ̄
≤ mλ ≤

2γ + λ̄

2r + 4γ + 2λ̄
≡ m̄. (28)

We stress that 0 < m < m̄ < 1/2.

Next, since s is strictly positive, we have (s(λ) + s(λ′))+ = s(λ) + s(λ′) and (−s(λ) −
s(λ′))+ = 0. Moreover, (s(λ′) − s(λ))+ = s(λ′) − min{s(λ), s(λ′)} and (s(λ) − s(λ′))+ =

s(λ)−min{s(λ), s(λ′)} regardless of the behavior of s. This allows us to rewrite equation (8)
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as

(r + 2γ)s(λ) = ∆ +

λ

4

∫
X

((
−min{s(λ), s(λ′)} − s(λ)

)
mλ′ −

(
s(λ)−min{s(λ), s(λ′)}

)
(1−mλ′)

)
dµF (λ′).

Grouping terms, this gives

s(λ) =
4∆ + λ

∫
X

(
min{s(λ), s(λ′)}(1− 2mλ′)

)
dµF (λ′)

4r + 8γ + λ
≡ T (s(λ)), (29)

where T maps surplus functions into surplus functions.

We claim that for any measure µF and misalignment function m with range [m, m̄],

T is a contraction, mapping continuous functions on [0,∆/(r + 2γ)] into the same set of

functions. Continuity is immediate. Similarly, if s is nonnegative, T (s) is nonnegative. If

s ≤ ∆/(r + 2γ),

T (s(λ)) ≤
(

4r + 8γ + λ
∫
X (1− 2mλ′)dµF (λ′)

4r + 8γ + λ

)(
∆

r + 2γ

)
.

Since the misalignment rate lies between m > 0 and m̄ < 1/2 (inequality (28)), the result

follows.

Finally, we prove T is a contraction. Consider two functions s1(λ) and s2(λ). If |s1(λ)−
s2(λ)| ≤ ε for all λ,

|T (s1(λ))− T (s2(λ))| ≤
λε
∫
X (1− 2mλ′)dµF (λ′)

4r + 8γ + λ
≤ λ̄ε

4r + 8γ + λ̄
.

The second inequality uses
∫
X (1 − 2mλ′)dµF (λ′) ≤ 1 and λ

4r+8γ+λ
≤ λ̄

4r+8γ+λ̄
. This proves

that T is a contraction in the sup-norm, with modulus λ̄
4r+8γ+λ̄

< 1. It follows that the

equilibrium surplus function is uniquely determined by µF .

Next we prove that the mapping T takes nonincreasing functions s and maps them into

strictly decreasing functions. Take λ1 < λ2 and for notational convenience let

E(λ) ≡
∫
X

min{s(λ), s(λ′)}(1− 2mλ′)dµF (λ′).

Note that m ≥ m > 0 and s(λ) ≤ ∆
r+2γ

implies E(λ) < ∆/(r+2γ). Similarly, s nonincreasing
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implies E is nonincreasing as well. Then for any λ1 < λ2,

T (s(λ1))− T (s(λ2)) =
4∆ + λ1E(λ1)

4r + 8γ + λ1

− 4∆ + λ2E(λ2)

4r + 8γ + λ2

≥ 4∆ + λ1E(λ1)

4r + 8γ + λ1

− 4∆ + λ2E(λ1)

4r + 8γ + λ2

=
4(λ2 − λ1)

(
∆− (r + 2γ)E(λ1)

)
(4r + 8γ + λ1)(4r + 8γ + λ2)

> 0,

The first equality is the definition of T . The first inequality uses E(λ2) ≤ E(λ1). The second

equality groups the two fractions over a common denominator. And the second inequality

uses E(λ) < ∆/(r + 2γ). This proves the result. It follows that the equilibrium surplus

function is decreasing.

Proof of Proposition 1. The proof proceeds in three steps. First, we show that the

counterparty distribution uniquely determines the misalignment rate. Then, we derive the

functional form for the surplus equation, thereby proving that the counterparty distribution

uniquely determines the surplus function. Finally, we show how to recover the cost function

from these three objects.

Step 1: Recovering misalignment For any set S ⊆ X , let µM(S) ≡
∫
S
mλdµF (λ)

denote the fraction of meetings that are with a misaligned trader whose contact rate is

some λ ∈ S. It follows that the misalignment rate m is the equal to the Radon-Nikodym

derivative dµM/dµF . Also let M(λ) ≡ µM([0, λ]) denote the fraction of meetings that are

with a misaligned trader whose contact rate is less than or equal to λ.

Using the fact that the surplus function is decreasing in λ, and again appealing to the

Radon-Nikodym theorem, the inflow-outflow equation (9) reduces to(
r + γ +

λ

2

(
µF ((λ, λ̄]) + µM([0, λ])

)) dµM(λ)

dµF (λ)
=

(
γ +

λ

2
µM([0, λ))

)(
1− dµM(λ)

dµF (λ)

)
(30)

If µF ({λ}) > 0, equation (30) is a quadratic equation for dµM(λ)/dµF (λ) = µM({λ})/µF ({λ}).
The smaller solution has dµM(λ) < 0, which is inconsistent with the fact that this is

equal to the misalignment rate mλ, and hence must be positive. The larger solution, with

dµM(λ)/dµF (λ) ∈ [m, m̄] ⊂ (0, 1/2), determines µM({λ}). Alternatively, if µF ({λ}) = 0,

the solution is unique and still implies dµM(λ)/dµF (λ) ∈ [m, m̄].

7



If F is differentiable at λ, equation (30) simplifies further:(
r + γ +

λ

2
(1− F (λ) +M(λ))

)
M ′(λ) =

(
γ +

λ

2
M(λ)

)
(F ′(λ)−M ′(λ)), (31)

an ordinary differential equation for M given F .

Step 2: Explicit solution for the surplus function Once we have recovered the mis-

alignment measure µM and associated function M , we compute the surplus function. Recall

that the surplus function solves equation (29), a contraction, which implies that it is the

unique such solution. We look for a differentiable solution. Towards that end, rewrite equa-

tion (29) as

(4r + 8γ + λ)s(λ)− 4∆

λ
=

∫
X

min{s(λ′), s(λ)}(1− 2mλ′)dµF (λ′).

Since s is decreasing, we can rewrite this as

(4r + 8γ + λ)s(λ)− 4∆

λ
= s(λ)(F (λ)− 2M(λ)) +

∫
(λ,λ̄]

s(λ′)(1− 2mλ′)dµF (λ′). (32)

Evaluating at λ = λ̄ and solving for s(λ̄) gives

s(λ̄) =
2∆

2r + 4γ + λ̄M(λ̄)
. (33)

Moreover, assuming s is differentiable, we can differentiate equation (32) to get

s′(λ) =
4 ((r + 2γ)s(λ)−∆)

λ
(
4(r + 2γ) + λ(1− F (λ) + 2M(λ))

) (34)

Integrate equation (34) using equation (33) as a boundary condition. By extending the

definition of F and M to the positive real line through the convenient normalizations F (λ) =

1 and M(λ) = M(λ̄) for all λ > λ̄, we find that the unique solution is

s(λ) =
∆

r + 2γ

(
1− e−

∫∞
λ φλ′dλ

′
)

(35)

where

φλ ≡
4(r + 2γ)

λ
(

4(r + 2γ) + λ(1− F (λ) + 2M(λ))
) . (36)

Thus the surplus function is uniquely determined by the counterparty distribution F .
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Step 3: Recovering the cost function Again taking advantage of the fact that the

surplus function is non-negative and decreasing, we can rewrite equation (10) as

πλ =
δ1 − γs(λ) + λ

4

∫
[0,λ]

(s(λ′)− s(λ))dµM(λ′)

r
− C(λ). (37)

Part 3 of the definition of equilibrium imposes can then be viewed as a providing a lower

bound on the cost function. Fix any π̄. Then we must have

C(λ) ≥
δ1 − γs(λ) + λ

4

∫
[0,λ]

(s(λ′)− s(λ))dµM(λ′)

r
− π̄,

for all λ ∈ X with equality for all λ ∈ Y , where µF (Y) = 1. Since for any µF , equations (30)

and (35) uniquely determine µM and s, the lower bound is unique up to the additive constant

π̄.

Proof of Proposition 2. We proceed in three stages. First we show that F (λ) is

continuous on [0, λ), then we show that it is absolutely continuous, and finally we show that

a positive measure of traders choose λ ∈ (0, λ̄).

Step 1: No Discontinuities in F Suppose there is a discontinuity in F at some point

λ0 ∈ (0, λ̄), i.e. µF ({λ0}) > 0. We will find a contradiction. Start with the denominator of φλ

in equation (36). From the definition of M and the bound mλ ≤ m̄ < 1/2 (inequality (28)),

it follows that 1− F (λ) + 2M(λ) is nonincreasing, and that it decreases discontinuously at

λ0. Thus, φ increases discontinuously at λ0.

Differentiating equation (35), we have

s′(λ) = −∆φλe
−

∫∞
λ φλ′dλ

′

r + 2γ
. (38)

Because φλ increases discontinuously at λ0 we have that s′(λ) decreases discontinuously

(becomes more negative) at this point.

Next, differentiating equation (37) gives

π′λ =
−
(
γ + λ

4
M(λ)

)
s′(λ) + 1

4

∫
[0,λ]

(
s(λ′)− s(λ)

)
dµM(λ′)

r
− C ′(λ).

Because s′(λ) decreases discontinuously at λ0 and C is differentiable, π′λ increases discon-

tinuously at this point. That is, the profit function is locally convex and so λ0 is not profit

maximizing. But then part 3 of the definition of equilibrium implies that since λ0 does not
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maximize πλ, µF ({λ0}) = 0, a contradiction. This proves µF ({λ}) = 0 at any λ ∈ (0, λ̄).

Since F is right-continuous by definition, it is continuous on [0, λ̄).

Step 2: Absolute continuity of F We again break this part into two stages. We first

prove that λF (λ) is Lipschitz continuous. We then establish absolute continuity of F .

Step 2.1: λF (λ) Lipschitz continuous We proceed by contradiction. We will use

part 1 here, i.e. we specifically assume F is continuous on [0, λ̄), but λF (λ) is not Lipschitz

continuous. It follows that for all K ≥ 0, there exists λ1, λ2 ∈ [0, λ̄) with λ2 > λ1 subject to

λ2F (λ2)− λ1F (λ1)

λ2 − λ1

> K.

Part 3 of the definition of equilibrium implies F is constant at points that do not maximize

πλ. It follows that for all K ≥ 0, there are profit maximizing λ1, λ2 ∈ [0, λ̄) with λ2 > λ1

subject to
λ2F (λ2)− λ1F (λ1)

λ2 − λ1

> K. (39)

Next, since mλ < m̄ < 1
2

(inequality (28)), F (λ) ≥ 2M(λ). Let Z(λ) ≡ −λ(1 − F (λ) +

2M(λ)). Then,

Z(λ2)− Z(λ1)

λ2 − λ1

=
λ2F (λ2)− λ1F (λ1)− 2λ1(M(λ2)−M(λ1))

λ2 − λ1

−
(
1 + 2M(λ2)

)
>
F (λ2) (λ2 − 2λ1m̄)− λ1F (λ1)(1− 2m̄)

λ2 − λ1

− 2

≥ λ2F (λ2)− λ1F (λ1)

λ2 − λ1

(1− 2m̄)− 2.

The first line is algebra. The second line uses inequality (28), which implies both that

M(λ2) < 1
2

and for all λ2 > λ1,

M(λ2)−M(λ1) =

∫
[λ1,λ2]

mλdµF (λ′) ≤ m̄(F (λ2)− F (λ1)).

The third line uses F (λ2)m̄ ≥ 0. Since m̄ < 1/2, if λF is not Lipschitz, Z is also not

Lipschitz.

Next, let % ≡ 4r + 8γ. Since Z(λ) ≥ −λ, we have

φλ =
%

λ(%− Z(λ))
≥ %

λ(%+ λ)
.
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Integrating and exponentiating gives

e
∫ λ2
λ1

φλdλ ≥ λ2(%+ λ1)

λ1(%+ λ2)
. (40)

This implies

φλ1 − φλ2e
∫ λ2
λ1

φλdλ ≤ %

λ1(%− Z(λ1))
− %

λ2(%− Z(λ2))

λ2(%+ λ1)

λ1(%+ λ2)

=
%(λ2 − λ1)

λ1(%− Z(λ1))(%− Z(λ2))

(
%− Z(λ1)

%+ λ2

− Z(λ2)− Z(λ1)

λ2 − λ1

)
. (41)

The inequality uses φλ = %
λ(%−Z(λ))

and inequality (40). The equality is algebra. Note that

Z is increasing. If it is not Lipschitz, then we can find values of λ2 > λ1 such that this

expression is negative.

Now, let ϑ ≡ %
infλ∈[0,λ̄](−Z(λ)/λ)

> 0. Then

φλ =
%

λ(%− Z(λ))
≤ ϑ

λ(ϑ+ λ)
.

Again, we can integrate and exponentiate this to get

e
−

∫∞
λ1
φλdλ ≥ λ1

ϑ+ λ1

. (42)

Now take any values of λ1 < λ2 such that %−Z(λ1)
%+λ2

< Z(λ2)−Z(λ1)
λ2−λ1

. Then

s′(λ2)− s′(λ1)

λ2 − λ1

=
4∆

%(λ2 − λ1)
e
−

∫∞
λ1
φλdλ

(
φλ1 − φλ2e

∫ λ2
λ1

φλdλ
)

≤ 4∆

(ϑ+ λ1)(%− Z(λ1))(%− Z(λ2))

(
%− Z(λ1)

%+ λ2

− Z(λ2)− Z(λ1)

λ2 − λ1

)
.

The inequality uses (41) and (42). Since all the other terms are positive and bounded away

from both zero and infinity, it follows that if Z is not Lipschitz, s′ is also not Lipschitz, and

in particular s′(λ2)−s′(λ1)
λ2−λ1

is unbounded below.

Now consider part 3 of the definition of equilibrium. The choice of λ must maximize πλ

in (37) and so for both λ1 and λ2 to be optimal, we must have that π′λ1
= π′λ2

= 0, which

11



implies

r
(
C ′(λ2)− C ′(λ1)

)
= −γ

(
s′(λ2)− s′(λ1)

)
− 1

4

(
λ2M(λ2)s′(λ2)− λ1M(λ1)s′(λ1)

)
+

1

4

∫
[0,λ2]

(s(λ′)− s(λ2))dµM(λ′)− 1

4

∫
[0,λ1]

(s(λ′)− s(λ1))dµM(λ′).

Since λ2 > λ1 and s(λ) is decreasing, both

−1

4
(λ2M(λ2)− λ1M(λ1))s′(λ2) ≥ 0

and
1

4

∫
[0,λ2]

(s(λ′)− s(λ2))dµM(λ′)− 1

4

∫
[0,λ1]

(s(λ′)− s(λ1))dµM(λ′) ≥ 0.

Combining with the previous equation, this implies

4r

4γ + λ1M(λ1)

(
C ′(λ2)− C ′(λ1)

)
≥ −

(
s′(λ2)− s′(λ1)

)
.

Since s′(λ2)−s′(λ1)
λ2−λ1

is unbounded below, this requires that C′(λ2)−C′(λ1)
λ2−λ1

is unbounded above, i.e.

marginal cost is not Lipschitz, a contradiction.

Step 2.2: F (λ) absolutely continuous We have thus far established that F is non-

negative, continuous, and nondecreasing on [0, λ̄) and λF (λ) is Lipschitz on [0, λ̄). The final

part of the proof shows that it follows that F is absolutely continuous on [0, λ̄).

To proceed, take any ε > 0. Since F is continuous, there exists a δ ∈ (0, λ̄) such that

F (δ) − F (0) ≤ ε/2. Moreover, since F is nondecreasing, for any constant K1 and finite

sequence of pairwise disjoint subintervals (λ1,k, λ2,k) ⊂ [0, δ], k ∈ {1, . . . , K1},

K1∑
k=1

|F (λ2,k)− F (λ1,k)| =
K1∑
k=1

(F (λ2,k)− F (λ1,k)) ≤ F (δ)− F (0) ≤ ε

2
.

Next, let L denote the Lipschitz constant for λF (λ). We have that for any λ2 > λ1 ≥ δ,

(λ2 − λ1)L ≥ λ2F (λ2)− λ1F (λ1) ≥ λ1

(
F (λ2)− F (λ1)

)
≥ δ
(
F (λ2)− F (λ1)

)
.

The first inequality is the definition of Lipschitz continuity for a nondecreasing function.

The second uses λ2F (λ2) ≥ λ1F (λ2), which holds since F is nonnegative. The third uses

λ1 ≥ δ. Since F is nondecreasing, this proves that F (λ) is Lipschitz with constant L/δ on

[δ, λ̄).

12



Next, F (λ) Lipschitz with constant L/δ implies that for any constant K and finite se-

quence of pairwise disjoint subintervals (λ1,k, λ2,k) ⊂ [δ, λ̄], k ∈ {K1 + 1, . . . , K}, if

K∑
k=K1+1

(λ2,k − λ1,k) ≤
εδ

2L
,

then
K∑

k=K1+1

|F (λ2,k)− F (λ1,k)| =
K∑

k=K1+1

(F (λ2,k)− F (λ1,k)) ≤
ε

2
.

Now we put these pieces together. Take any finite sequence of pairwise disjoint subinter-

vals (λ1,k, λ2,k) ⊂ [0, λ̄] with

∑
k

(λ2,k − λ1,k) ≤ min
{
δ,
εδ

2L

}
.

Without loss of generality, order the intervals so λ2,k ≤ λ1,k+1. If δ ∈ (λ1,k, λ2,k) for

some k, break this into two separate intervals at this threshold. Let K denote the re-

sulting number of subintervals and let K1 ∈ {0, 1, . . . , K} satisfy λ2,K1 ≤ δ ≤ λ1,K1+1,

with λ2,0 = 0 and λ1,K+1 = λ̄. By construction, we have that
⋃K1

k=1(λ1,k, λ2,k) ⊂ [0, δ] and∑K
k=K1+1(λ2,k − λ1,k) ≤ εδ

2L
. Then the arguments above ensure

∑K1

k=1 |F (λ2,k)− F (λ1,k)| ≤ ε
2

and
∑K

k=K1+1 |F (λ2,k)− F (λ1,k)| ≤ ε
2
. Adding these together gives∑

k

|F (λ2,k)− F (λ1,k)| ≤ ε,

which proves F is absolutely continuous.

Step 3: Positive measure of traders in the interval (0, λ̄) We again break this

part into two stages. We first use the Lipschitz continuity of F (λ) to derive some useful

preliminaries. Then we establish the claim by contradiction.

Step 3.1: Implication of absolute continuity of F (λ) Absolute continuity of F

implies F is almost everywhere differentiable and F (λ) = F (0) +
∫ λ

0
F ′(λ′)dλ′. From equa-

tion (30), M inherits the same properties and so M(λ) = M(0) +
∫ λ

0
M ′(λ′)dλ′.

Differentiate equation (34) to get an expression for the first and second derivatives of the

surplus function:

s′′(λ) = −2(1− F (λ) + 2M(λ))− λ(F ′(λ)− 2M ′(λ))

4(r + 2γ) + λ(1− F (λ) + 2M(λ))
s′(λ). (43)
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Equation (43) holds at points where F and M are differentiable. Let R(λ) ≡ πλ + C(λ)

denote the revenue of a newborn trader. Use equation (37) and then twice differentiate to

get

R′′(λ) =
−(4γ + λM(λ))s′′(λ)− (2M(λ) + λM ′(λ))s′(λ)

4r
. (44)

Step 3.2: Positive measure of traders with interior contact rates To prove that

a positive measure of trader choose λ ∈ (0, λ̄), we proceed by contradiction. First, suppose

there is an equilibrium in which a fraction ψ ∈ (0, 1) of contacts are with traders with λ = 0,

while the remaining contacts are with traders with λ = λ̄. Such an equilibrium requires

that 0 and λ̄ are both optimal contact rates, π0 = πλ̄ ≥ πλ for all λ ∈ (0, λ). We prove

that convexity of the cost function imposes a lower bound on ψ. In such an equilibrium,

F (λ) = ψ and M(λ) = γψ
r+2γ

for all λ ∈ [0, λ̄); the constant γ
r+2γ

follows from evaluating

equation (30) at λ = 0. Substitute this into equations (34) and (43), and then (44) to get

R′′(λ) =
4γ(r + γ)

(
ψ̄ − ψ

)
s′(λ)

r
(
4(r + 2γ)2 + λ(2γ + r(1− ψ))

) , (45)

where ψ̄ ≡ r+2γ
2(r+γ)

. Since s′(λ) < 0, ψ < ψ̄ implies R′′(λ) < 0. Along with weak convexity

of the cost function, this implies that the profit function is strictly concave, contradicting

π0 = πλ̄ ≥ πλ for all λ ∈ (0, λ). Thus an equilibrium with a two point distribution at 0 and

λ̄ must have F (0) = ψ ≥ ψ̄.

Now assume F (λ) = ψ for all λ < λ̄, where 1 ≥ ψ ≥ ψ̄. This covers both the case of a

two point distribution and also a degenerate distribution at 0. We use equation (30) to find

M(λ̄) when F (λ) = ψ and M(λ) = γψ
r+2γ

for λ ∈ [0, λ̄):

(
r + γ +

λ̄

2
M(λ̄)

)
(M(λ̄)−M(0)) =

(
γ +

λ̄

2
M(0)

)(
1− F (0)−M(λ̄) +M(0)

)
.

This is a quadratic equation where the larger root is valid. We can verify algebraically that

for any 1 ≥ ψ ≥ ψ̄,

M(λ̄) ≥ 4γ(r + 2γ)

4(r + 2γ)2 + rλ̄(1− ψ)

or equivalently

∆γ
(

(r + 2γ)
(
4(r + 2γ) + λ̄

)
− rλ̄ψ

)
M(λ̄)

4r(r + 2γ)3
(
2(r + 2γ) + λ̄M(λ̄)

) ≥ ∆γ2

2r(r + 2γ)3
> C ′(0), (46)

where the second inequality is the assumed upper bound on the marginal cost function at 0.
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We use this inequality in the next step.

Still assume F (λ) = ψ for all λ < λ̄, where 1 ≥ ψ ≥ ψ̄. Using F (λ) = ψ and M(λ) = γψ
r+2γ

for λ ∈ [0, λ̄), as well as F (λ) = 1 and M(λ) = M(λ̄) for λ ≥ λ̄, we can explicitly solve the

integral in equation (35) to get that for λ ∈ [0, λ̄],

s(λ) =
2∆
(

4(r + 2γ)2 + λ
(
2γ + r(1− ψ)

)
− 2(r + 2γ)(λ− λ̄)M(λ̄)

)
(

4(r + 2γ)2 + λ
(
2γ + r(1− ψ)

))(
2(r + 2γ) + λ̄M(λ̄)

) .

Differentiating this and evaluating at λ = 0 gives us

s′(0) =
−∆

(
(r + 2γ)

(
4(r + 2γ) + λ̄

)
− rλ̄ψ

)
M(λ̄)

4(r + 2γ)3
(
2(r + 2γ) + λ̄M(λ̄)

) .

Equation (48) implies π′0 = −γs′(0)/r − C ′(0), so equation (46) implies π′0 > 0. This means

that choosing a slightly positive contact rate yields strictly higher profits, contradicting the

optimality of λ = 0. This proves that there is no equilibrium with ψ > 0.

In the final step, we suppose there is an equilibrium in which all traders set λ = λ̄. Then

equation (30) implies

M(λ̄) =
−(r + 2γ) +

√
(r + 2γ)2 + 2γλ̄

λ̄
. (47)

Moreover, we can again explicitly solve the integral in equation (35) to compute s(λ) for

λ < λ̄. Since equation (37) implies πλ = δ1−γs(λ)
r
−C(λ) for λ < λ̄, we can then compute the

left derivative of π at λ̄:

lim
h↗0

πλ̄ − πλ̄−h
h

=
4γ∆

(√
(r + 2γ)2 + 2γλ̄− (r + 2γ)

)
rλ̄(4(r + 2γ) + λ̄)

(√
(r + 2γ)2 + 2γλ̄+ (r + 2γ)

) − C ′(λ̄).

It is straightforward to prove that

4γ∆
(√

(r + 2γ)2 + 2γλ̄− (r + 2γ)
)

rλ̄(4(r + 2γ) + λ̄)
(√

(r + 2γ)2 + 2γλ̄+ (r + 2γ)
) < 4γ∆

rλ̄2

for any finite λ̄, and thus

lim
h↗0

πλ̄ − πλ̄−h
h

<
4γ∆

rλ̄2
− C ′(λ̄) ≤ 0,
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where the second inequality is the assumed lower bound on the marginal cost function at λ̄.

It follows that the profit from choosing a contact rate slightly below λ̄ exceeds the profit at

λ̄, contradicting the possibility of an equilibrium where everyone sets λ = λ̄.

Representation of Equilibrium as an ODE System We derive a first order differential

equation system in (F,M, s) to characterize equilibrium when the cost function is twice

continuously differentiable.

Absolute continuity of F implies F is almost everywhere differentiable and F (λ) = F (0)+∫ λ
0
F ′(λ′)dλ′. From equation (30), M inherits the same properties and so M(λ) = M(0) +∫ λ

0
M ′(λ′)dλ′. In particular, equation (31) gives one linear relationship between F ′(λ) and

M ′(λ) at points where both exist, based on the balance of flows.

Next, let A ⊆ X denote the support of F , the smallest closed set such that µF (A) = 1.

Unless A ⊆ {0, λ̄}, absolute continuity of F on (0, λ̄) implies that A must have a nonempty

interior, denoted Ao. At λ ∈ Ao, part 3 of the definition of equilibrium states that πλ = π̄

and so in particular the first order condition π′λ = 0 holds if π is differentiable. Using

equation (37) this implies:

π′λ =
−(4γ + λM(λ))s′(λ) +

∫ λ
0

(s(λ′)− s(λ))M ′(λ′)dλ′

4r
− C ′(λ) = 0. (48)

Moreover, since the interior points Ao are not isolated, π′λ′ = 0 at points λ′ in a neighborhood

of λ. This in turn implies π′′λ = 0. Using equation (37) and twice differentiability of C, this

implies that at any λ ∈ Ao where F and M are differentiable,

π′′λ =
−(4γ + λM(λ))s′′(λ)− (2M(λ) + λM ′(λ))s′(λ)

4r
− C ′′(λ) = 0. (49)

Use equations (34) and (43) to eliminate s′(λ) and s′′(λ) from equation (49). This gives us

the second linear relationship between F ′(λ) and M ′(λ). We can solve this and equation (31)

explicitly for F ′(λ) and M ′(λ) as functions of F (λ), M(λ), and s(λ):

F ′(λ) =

(
2r + 4γ + λ(1− F (λ) + 2M(λ))

)
(8γ(1− F (λ))− 8rM(λ) + ζ(λ))

2λ
(
γ(8r + 8γ + 3λ(1− F (λ))) + λM(λ)(3r + 6γ + λ(1− F (λ) +M(λ)))

) , (50)

M ′(λ) =

(
2γ + λM(λ)

)
(8γ(1− F (λ))− 8rM(λ) + ζ(λ))

2λ
(
γ(8r + 8γ + 3λ(1− F (λ))) + λM(λ)(3r + 6γ + λ(1− F (λ) +M(λ)))

) , (51)
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where

ζ(λ) ≡
rλ
(
4(r + 2γ) + λ(1− F (λ) + 2M(λ))

)2
C ′′(λ)

∆− (r + 2γ)s(λ)
. (52)

These two equations, together with equation (34), are an ordinary differential equation

system in (F,M, s) on the set Ao that must hold in any equilibrium.

To solve this ordinary differential equation system, we must find the appropriate bound-

ary condition. For this, we focus on the case where the support of A is a convex set with

F (0) = 0, but the logic can handle more complicated cases. First guess a lower bound of

the support, λ, so F (λ) = 0. By the definition of M , M(λ) = 0 as well. Then equation (48)

implies
−γs′(λ)

r
= C ′(λ). (53)

This gives us a third terminal condition. We then solve this initial value problem for F ,

M , and s. We stop either when we find a λ̂ ≤ λ̄ such that F (λ̂) = 1 or when we hit the

upper bound λ̄. Note that in the former case, the value of λ̄ does not affect F , M , or s for

λ ≤ λ̂. For expositional convenience, we therefore redefine λ̄ = λ̂ in this case. In the latter

case, we impose F (λ̄) = 1, so there is a mass point in F and hence M at λ̄. We then use

equation (30) to find M(λ̄).

We still need to validate the guess of λ. To do so, we compare the surplus at the upper

bound, s(λ̄), which comes from the solution to the initial value problem, with the value

implied directly in equation (33). If the two methods of computing the surplus function give

us the same answer, we have found an equilibrium, while otherwise we need to change the

initial guess λ.

C.4 Characterization with a Linear Cost Function

Proof of Proposition 3. We divide the proof into three pieces, depending on whether

c ≥ c̄ (high cost), c̄ > c > c (intermediate cost), or c ≤ c (low cost). We characterize

equilibrium in each region of the parameter space, starting with high cost, then low cost,

and finally intermediate cost, since that case builds on the other two.

High Cost. We start by proving that there is a threshold c̄ such that if c ≥ c̄, there is an

equilibrium with Λ = 0. This proof is constructive.

First we look for an equilibrium in which the support of the counterparty distribution is

0 and λ̄ with weights ψ ∈ (0, 1) and 1 − ψ, respectively. For this to be an equilibrium, we

require π0 = πλ̄ ≥ πλ for all λ ∈ [0, λ̄]. A linear cost implies that the second derivative of

the profit function and revenue function are equal. We can then replicate the derivation of
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equation (45) to get

π′′λ =
4γ(r + γ)

(
ψ̄ − ψ

)
s′(λ)

r
(
4(r + 2γ)2 + λ(2γ + r(1− ψ))

) ,
where ψ̄ ≡ r+2γ

2(r+γ)
. Since s′(λ) < 0, ψ < ψ̄ implies π′′λ < 0, i.e. the profit function is globally

concave. This is inconsistent with π0 = πλ̄ ≥ πλ for all λ ∈ [0, λ̄]. But if ψ ≥ ψ̄, the profit

function is globally convex. We just need to find the value of c that makes π0 = πλ̄.

Equation (37) implies

πλ̄ − π0 =

(
4γ + λ̄M(0)

)(
s(0)− s(λ̄)

)
4r

− cλ̄. (54)

Eliminate s(0)− s(λ̄) using equation (35):

πλ̄ − π0 =

( (
4γ + λ̄M(0)

)
M(λ̄)∆

4r(r + 2γ)
(
2(r + 2γ) + λ̄M(λ̄)

) − c) λ̄. (55)

For a given F (0) = ψ ≥ ψ̄, we have M(0) = γψ
r+2γ

. We then pin down M(λ̄) = M(0) +

µM({λ̄}) by finding the unique solution to equation (30) with µM({λ̄}) ∈ (0, (1 − ψ)/2).

Notably this solution is continuous in ψ. By setting the right hand side of equation (55)

to zero, we then find the cost c that gives us an equilibrium with a given value of ψ. Let

c̄ be the solution to this when ψ = ψ̄. Let ¯̄c be the solution to this when ψ = 1 and so

M(0) = M(λ̄) = γ
r+2γ

; in general we cannot order c̄ and ¯̄c. The intermediate value theorem

implies that for any c ∈
[

min{c̄, ¯̄c},max{c̄, ¯̄c}
]
, there exists an F (0) ∈

[
ψ̄, 1

]
such that

there is an equilibrium in which the support of the counterparty distribution is 0 and λ̄ with

weights F (0) and 1− F (0), respectively.

Now consider c ≥ ¯̄c. The previous paragraph proved that there is an equilibrium with

F (0) = 1 when c = ¯̄c. Raising the cost further does not change the equilibrium, i.e. we still

have F (0) = 1, but now π0 > πλ̄ and π is globally convex.

Finally, given F and M , it is straightforward to find the misalignment rate and surplus

function from equations (30) and (35). Thus regardless of whether c̄ ≷ ¯̄c, we have constructed

an equilibrium for any c ≥ c̄.

Low Cost. We next prove that there is a threshold c such that if c ≤ c, there is an

equilibrium with F (λ) = 0 for λ ∈ [0, λ̄) and µF ({λ̄}) = 1. This proof is again constructive.

In such an equilibrium, equation (17) implies Λ = λ̄. F (λ) = 0 implies M(λ) = 0 for all

λ ∈ [0, λ̄). We uniquely recover M(λ̄) from equation (30). Then equation (37) implies that
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for any λ < λ̄,

πλ̄ − πλ =
γ(s(λ)− s(λ̄))

r
− c(λ̄− λ).

Using equation (35), we can solve explicitly for s(λ)− s(λ̄). This gives

πλ̄ − πλ =

(
4γ∆M(λ̄)

r(4r + 8γ + λ)(2r + 4γ + λ̄M(λ̄))
− c
)

(λ̄− λ).

Thus πλ̄ > πλ for all λ < λ̄ if and only if

c ≤ 4γ∆M(λ̄)

r(4r + 8γ + λ̄)(2r + 4γ + λ̄M(λ̄))
≡ c, (56)

since this implies c < 4γ∆M(λ̄)

r(4r+8γ+λ)(2r+4γ+λ̄M(λ̄))
for all λ < λ̄. We can again find the misalign-

ment rate and surplus function from equations (30) and (35). Thus we have constructed an

equilibrium for any c ≤ c.

Intermediate Cost. Finally, we turn to the case where c ∈ (c, c̄). We first show how to

construct an equilibrium as the solution to an initial value problem. In the second step, we

prove that the initial value problem determines F (λ) and M(λ) and hence the right hand

side of equation (58) as continuous functions of λ. The third and fourth steps characterize

the limiting behavior of F and M , and hence the right hand side of equation (58), when

λ → 0 and when λ → λ̄. Finally, we use the intermediate value theorem to prove that for

any c ∈ (c, c̄), there is a λ ∈ (0, λ̄) such that equilibrium is described by the F and M that

solve the initial value problem (57).

Step 1: The Initial Value Problem Since C ′′(λ) = 0 and s(λ) < ∆/(r + 2γ),

equation (52) implies ζ(λ) = 0. Then equations (50) and (51) reduce to a two variable initial

value problem:

F ′(λ) = xF (λ, F (λ),M(λ)), M ′(λ) = xM(λ, F (λ),M(λ)), and F (λ) = M(λ) = 0, (57)

where

xF (λ, F,M) ≡
4
(
2r + 4γ + λ(1− F + 2M)

)
(γ(1− F )− rM)

λ
(
γ(8r + 8γ + 3λ(1− F )) + λM(3r + 6γ + λ(1− F +M))

) ,
xM(λ, F,M) ≡

4
(
2γ + λM

)
(γ(1− F )− rM)

λ
(
γ(8r + 8γ + 3λ(1− F )) + λM(3r + 6γ + λ(1− F +M))

) .
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This is the differential equation system (F ′, X ′) = X1(λ, F,M) discussed in the text. If we

knew λ, we could easily solve this initial value problem. Moreover, we could verify that it is

an equilibrium by checking whether π′λ = 0. Using equation (48) along with the expressions

for s(λ) in equation (35) and φλ in equation (36) implies that in equilibrium

c

∆
=

4γ

λr (4(r + 2γ) + λ)
exp

−∫ ∞
λ

4(r + 2γ)

λ
(

4(r + 2γ) + λ(1− F (λ) + 2M(λ))
)dλ

 . (58)

This is the equation c = X2(λ) discussed in the text. Note that X2 depends on the path of

F and M , but since those are functions λ̄, r, and γ through equation (57), we suppress that

dependence. Thus, for any lower bound λ ∈ (0, λ̄), we can use this algorithm to find the

marginal cost such that this is an equilibrium.

We are interested in using this characterization in the other direction: For a given cost,

we look for an equilibrium. To do this, fix a small, positive value of ε and let Ω ≡ (0, λ̄) ×
(−ε, 1) × (−ε, 1

2
). Our initial value problem (57) maps (λ, F,M) ∈ Ω into (F ′,M ′). If ε is

sufficiently small, xF and xM are positive for all (λ, F,M) ∈ Ω.

It is straightforward to verify that the functions xF and xM are continuous on Ω, and

hence they are locally Lipschitz continuous in F and M (Lemma 3.1 in Sideris, 2013). This

implies that for any λ ∈ (0, λ̄), there exists a δ > 0 such that our initial value problem has

a unique solution when λ < λ < λ+ δ (Theorems 3.2 and 3.3 in Sideris, 2013).

Next, note that for (λ, F,M) ∈ Ω, xF and xM have the same sign as γ(1−F (λ))−rM(λ).

Because of the initial condition F (λ) = M(λ) = 0, γ(1−F (λ)) > rM(λ). Moreover, we claim

that γ(1− F (λ)) > rM(λ) and hence xF (λ) and xM(λ) are both positive for all λ ∈ (λ, λ̄).

To prove this, suppose to the contrary that there were a λ > λ with γ(1− F (λ)) = rM(λ).

We could write an initial value problem with this boundary condition instead of the one

at λ. For the reasons in the previous paragraph, local Lipschitz continuity of xM and

xF implies a unique solution to this problem, the constant solution. But this contradicts

γ(1− F (λ)) > rM(λ).

Now xM(λ) > 0 for all λ ∈ (λ, λ̄) implies M(λ) > 0 for all λ ∈ (λ, λ̄). Hence γ(1−F (λ)) >

rM(λ) implies F (λ) < 1 for all λ ∈ (λ, λ̄) as well.

Also note that for (λ, F,M) ∈ Ω, xF > 2xM > 0 and hence in the solution to the initial

value problem, F (λ) ≥ 2M(λ) for all λ ≥ λ. Then F (λ) < 1 implies 0 ≤M(λ) < 1
2

at all λ ≥
λ. It follows that the maximal existence interval for the initial value problem includes [λ, λ̄).

We splice this solution together with two conditions: For λ < λ, F (λ) = M(λ) = 0; and for

λ ≥ λ̄, F (λ) = 1 and M(λ) = µM([0, λ̄)) + µM({λ̄}), where the first term is determined by

the initial value problem and the second terms satisfies equation (30). This is a quadratic
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equation for µM({λ̄}). Only the larger root, which satisfies µM({λ̄}) ∈ (0, µF ({λ̄})/2), is

valid.

Once we have computed F and M , we have mλ = dµM(λ)/dµF (λ) at λ ≥ λ. At smaller

values of λ, equation (30) implies mλ = 2γ
2r+4γ+λ

. Equation (35) gives us the surplus function.

Thus we have determined the three functions in the definition of equilibrium. We now verify

that this is an equilibrium.

The initial value problem captures two requirements of an equilibrium: the misalignment

rate is in steady state for each λ ∈ [λ, λ̄); and the profit function is linear on [λ, λ̄), π′′λ = 0.

Equilibrium imposes two other restrictions: the level of the cost must ensure that the profit

function is not only linear in λ but constant; and profits must be weakly lower at other

values of λ. We turn to those next.

Equation (58) captures the requirement that the profit function is constant for λ ∈ [λ, λ̄).

It states that π′λ = 0 and hence pins down c for a given λ. Since the solution to the initial

value problem has π′′λ = 0 for all λ ∈ [λ, λ̄), it follows that π′λ = 0 as well. Of course, we are

interested in understanding how c determines λ and so still need to invert this requirement,

i.e. to find λ given c. That is the purpose of remaining steps in this proof.

Turn now to profits at values of λ < λ, where F (λ) = M(λ) = 0. Since F and M are

continuous at λ, s′ is continuous as well (equation 34) and hence so is π′λ (equation 48). On

the other hand, F ′ and M ′ jump up discontinuously at λ and so π′′λ can be discontinuous at

that point. In fact, plugging equation (43) into equation (49) and imposing F (λ) = M(λ) =

F ′(λ) = M ′(λ) = 0 for λ < λ gives

π′′λ =
2γ

r(4r + 8γ + λ)
s′(λ) < 0.

Combining with π′λ = 0 gives π′λ > 0 and hence πλ < πλ at all λ < λ. This verifies the third

part of the definition of equilibrium: profits are maximized on the support of F .

Step 2: Continuity of Solution to Initial Value Problem. Let F (λ;λ) and

M(λ;λ) denote the unique solution to the initial value problem for a given λ ∈ (0, λ̄).

Theorem 3.5 in Sideris (2013) implies that F and M are continuous in λ on the interval

(λ, λ̄). It follows immediately that the right hand side of equation (58) is continuous in λ on

the same interval.
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Step 3: Limit as λ→ 0. We characterize the solution to the initial value problem (57)

when λ is small. We prove that for all ε > 0, there exists a δ > 0 such that if λ ∈ (0, δ),

r + 2γ

2(r + γ)
+ ε ≥ F (λ;λ) ≥ r + 2γ

2(r + γ)
− ε, (59)

γ

2(r + γ)
≥M(λ;λ) ≥ γ

2(r + γ)
− ε (60)

for all λ ∈ (ε, λ̄). That is, both F and M converge to step functions, the same step function

as applies in the case of c = c̄.

First, let Y (λ) ≡ log
(
γ(1−F (λ))−rM(λ)

)
, suppressing dependence on λ in the remain-

der of this step for notational convenience. Differentiating this and using the initial value

problem (57) to eliminate F ′ and M ′, we have

Y ′(λ) ≡
−4
(
γ(4r + 4γ + λ(1− F (λ))) + (r + 2γ)λM(λ)

)
λ
(
γ(8r + 8γ + 3λ(1− F (λ))) + λM(λ)(3r + 6γ + λ(1− F (λ) +M(λ)))

) . (61)

Since λ ≥ 0, M(λ) ≥ 0, and F (λ) ≤ 1,

γ(4r + 4γ + λ(1− F (λ))) + (r + 2γ)λM(λ) ≥ γ(4r + 4γ).

And since λ ≤ λ̄, F (λ) ≥ 0, and M(λ) ≤ 1
2
,

γ(8r + 8γ + 3λ(1− F (λ))) + λM(λ)(3r + 6γ + λ(1− F (λ) +M(λ)))

≤ γ(8r + 8γ + 3λ̄) +
λ̄

2

(
3r + 6γ +

3λ̄

2

)
.

Putting this together gives us

Y ′(λ) ≤ −4γ(4r + 4γ)

λ
(
γ(8r + 8γ + 3λ̄) + λ̄

2

(
3r + 6γ + 3λ̄

2

)) ≡ −κ
λ
,

where κ is a positive constant. In addition, we have the terminal condition Y (λ) = log γ.

This implies that if λ > λ, Y (λ) is smaller than the value of a curve with slope −κ/λ through

the point Y (λ) = log γ. That is, Y (λ) ≤ log γ + κ log(λ/λ) for all λ ∈ [λ, λ̄). Equivalently,

using the definition of Y ,

F (λ) +
r

γ
M(λ) ≥ 1− (λ/λ)κ (62)

for all λ ∈ [λ, λ̄). This implies that when λ/λ is sufficiently close to zero, F (λ) + r
γ
M(λ)

must be close to 1.
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We now use this to get a lower bound on F alone. Autarky gives an upper bound on the

misalignment rate,

M(λ) ≤ m0F (λ) =
γ

r + 2γ
F (λ). (63)

Combining inequalities (62) and (63) gives us

F (λ) ≥ r + 2γ

2(r + γ)
(1− (λ/λ)κ) (64)

This is a lower bound on the contact rate distribution, close to r+2γ
2(r+γ)

whenever λ/λ is

close to zero. Using this, it is straightforward to use this to establish the lower bound in

inequality (59) through an appropriate choice of δ for each ε.

To find a lower bound on M , use equation (31) to get

M ′(λ′) =
2γ + λ′M(λ′)

2r + 4γ + λ′(1− F (λ′) + 2M(λ′))
F ′(λ′)

≥ γ

r + 2γ + λ′/2
F ′(λ′) ≥ γ

r + 2γ + λ/2
F ′(λ′)

for all λ′ ≤ λ. The first inequality follows because the fraction in the first line is increasing

in F and M . The second follows because λ′ ≤ λ. Integrating up gives

M(λ) ≥ γ

r + 2γ + λ/2
F (λ).

Then using equation (64), we get

M(λ) ≥ γ(r + 2γ)

2(r + γ)(r + 2γ + λ/2)
(1− (λ/λ)κ) (65)

This implies that for all ε > 0, there exists a δ > 0 such that if λ < δ and λ > ε,

M(λ) >
γ(r + 2γ)

2(r + γ)(r + 2γ + λ/2)
− 1

2
ε

=
γ

2(r + γ)
− γλ/2

(2(r + γ))(r + 2γ + λ/2)
− 1

2
ε.

The second equality uses simple algebra. Now take any λ′ ∈ (0, λ) with γλ′/2
(2(r+γ))(r+2γ+λ′/2)

<
1
2
ε. Then the preceding logic implies that there exists a δ′ such that if λ < δ′, M(λ′) >
γ

2(r+γ)
− ε. Since M is monotonically increasing, this implies M(λ) > γ

2(r+γ)
− ε as well. This

establishes the lower bound in inequality (60).

We now turn to upper bounds. First, combine γ(1 − F (λ)) − rM(λ) ≥ 0 with inequal-
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ity (63) to get γ ≥ (2(r + γ))M(λ). This is the upper bound in inequality (60).

Lastly, combine γ(1−F (λ))− rM(λ) ≥ 0 with the lower bound in inequality (60) to get

F (λ) ≤ r+2γ
2(r+γ)

+ rε
γ

. The upper bound in inequality (59) then follows from an appropriate

rescaling of ε.

In summary, in the limit as λ converges to 0, F converges to a step function F (λ) = r+2γ
2(r+γ)

for λ < λ̄ and the associated misalignment rate. This is exactly the counterparty distribution

associated with the cost c̄, as defined earlier in the proof and as can be verified directly from

equation (58).

Step 4: Limit as λ → λ̄. It is easier to characterize the solution to the initial value

problem (57) when λ is large. The key observation is that limλ→λ̄ xF (λ) and limλ→λ̄ xM(λ)

are both finite since F (λ) ∈ [0, 1] and M(λ) ∈ [0, 1/2]. This implies that for all ε > 0, there

exists a δ > 0 such that if λ ∈ (λ̄ − δ, λ̄), 0 ≤ 2M(λ) ≤ F (λ) < ε for all λ < λ̄. Of course,

we always have F (λ̄) = 1 and we can construct M(λ̄) using equation (30). This implies that

F and M converge exactly to the counterparty distribution associated with the cost c, as

defined earlier in the proof.

Step 5: Intermediate Value Theorem. We have shown that the right hand side

of equation (58) is a continuous function of λ, converging to c̄ when λ → 0 and to c when

λ → λ̄. The intermediate value theorem therefore implies that for any c ∈ (c, c̄), there is a

λ ∈ (0, λ̄) such that the solution to the initial value problem (57) satisfies equation (58) and

hence F is associated with an equilibrium.

Necessity of Full Support. We now prove that in any equilibrium with µF ((0, λ̄)) =

1− µF ({λ̄}) ∈ (0, 1], the support of F is an interval [λ, λ̄].

First, to find a contradiction, suppose that there is a hole in the support. That is, there

are contact rates λ1, λ2 in the support with 0 ≤ λ1 < λ2 ≤ λ̄ and for all λ ∈ (λ1, λ2),

F (λ) = F (λ1) > 0. Since by assumption µF ((0, λ̄]) = 1, it must be the case that λ1 > 0.

Eliminate s′′(λ) from equation (49) using equation (43). Then simplify with C ′′(λ) =

F ′(λ) = M ′(λ) = 0, where the first restriction uses linearity of the cost function and the

others use the assumption that there is a hole in the support of the distribution. This implies

that for all λ ∈ (λ1, λ2),

π′′λ =
8∆e−

∫∞
λ φλ′dλ

′(
rM(λ1)− γ(1− F (λ1))

)
rλ
(
4(r + 2γ) + λ(1− F (λ1) + 2M(λ1))

)2 .

Now if rM(λ1) < γ(1− F (λ1), the profit function would be strictly concave on the interval
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(λ1, λ2). This is inconsistent with λ1 and λ2 both being profit maximizing.

Thus it must be the case that rM(λ1) ≥ γ(1 − F (λ1)). But then equation (57) implies

xF (λ1) ≤ 0 and xM(λ1) ≤ 0. Then the initial value problem (57) implies that there is no

interval (λ0, λ1) with F (λ) strictly increasing for λ ∈ (λ0, λ1), contradicting the hypothesis

that λ1 was in the support of F .

With no holes in the support and µF ((0, λ̄)) ∈ (0, 1], the only other possibility is that the

upper bound of the support is less than λ̄. However, γ(1− F (λ)) > rM(λ) > 0, established

in Step 1, implies F (λ) < 1 for all λ, precluding this possibility.

Support at the Upper Bound. In the intermediate range, we have already proved in

Step 1 above that F and M are continuous and strictly increasing on [λ, λ̄). G inherits

the same support. To prove that µF ({λ̄}) > 0, we use γ(1 − F (λ)) > rM(λ) > 0 for all

λ ∈ [λ, λ̄); again we established this in step 1 above. This puts an upper bound on F (λ) and

hence a lower bound on µF ({λ̄}). Finally, since the support of F is an interval [λ, λ̄] with

λ > 0 and µF ({λ̄}) < 1, equation (17) implies µF ({λ̄}) = 1− µF ((0, λ̄)) ∈ (0, 1).

Increasing misalignment rate. Since F is absolutely continuous, we can differentiate

equation (31) to get an expression for m′λ.

m′λ =
2(rM(λ)− γ(1− F (λ))) + λ

(
M ′(λ)(2r + λ(1− F (λ))) + F ′(λ)(2γ + λM(λ))

)(
2r + 4γ + λ(1− F (λ) + 2M(λ))

)2 (66)

We have shown that the support of F is a convex set. Thus we need to prove that m′λ is

positive on [λ, λ̄]. We claim that

m′λ =
2λ
(
γ(8r + 8γ + 5λ(1− F (λ) +M(λ))) + λM(λ)(5r + 5γ + 3λ(1− F (λ) +M(λ)))

)
M ′(λ)

4(2γ + λM(λ))(2r + 4γ + λ(1− F (λ) +M(λ)))2
,

(67)

which is clearly positive. The proof is brute force: eliminate F ′(λ) and M ′(λ) from equa-

tions (66) and (67) using equation (57) and show that the two expressions are equivalent.

We next turn to a limiting equilibrium. Before proving Proposition 4, we prove the

following Lemma, which characterizes limiting equilibrium in a manner similar to Proposi-

tion 3:

Lemma 2 Assume C(λ) = cλ. If c ≥ c̄∗ ≡ γ∆
8r(r+γ)(r+2γ)

, a limiting (autarky) equilibrium

with F (λ) = F (0) > 0 for all λ exists. If c < c̄∗, a limiting (intermediated trade) equilibrium
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with F (λ) = 0 and F strictly increasing on [λ,∞) for some λ > 0 exists. Moreover, any

limiting equilibrium takes one of these forms.

Proof of Lemma 2. We construct the limiting equilibrium (F,m, s), as well as the

corresponding convergent sequence, (Fn,mn, sn), for different ranges of the constant marginal

cost, c, separately.

Degenerate Autarky Equilibrium. Suppose c ≥ ¯̄c∗ ≡ γ∆
4r(r+2γ)2 . We prove that for any

finite λ̄n, there is an equilibrium with Fn(λ) = 1 for all λ ≥ 0 and hence this is true in the

limiting equilibrium as well. To prove this, note that if Fn(0) = 1, Mn(0) = Mn(λ̄) = γ
r+2γ

.

Then equation (55) and the argument around it implies that there is an equilibrium with

Fn(0) = 1 if and only if

c ≥ ¯̄cn ≡
γ∆
(
4γ(r + 2γ) + γλ̄n

)
4r(r + 2γ)2

(
2(r + 2γ)2 + γλ̄n

) =

(
4γ(r + 2γ) + γλ̄n
2(r + 2γ)2 + γλ̄n

)
¯̄c∗

Simple algebra implies ¯̄cn < ¯̄c∗, and hence such an equilibrium exists whenever c ≥ ¯̄c∗. In

such an equilibrium, we can also construct mn from steady state equation (9), which gives a

version of equation (30):(
r + γ +

λ

2
(1− Fn(λ) +Mn(λ))

)
mn,λ =

(
γ +

λ

2
(Mn(λ)− µn({λ}))

)
(1−mn,λ), (68)

where mn,λ is the misalignment rate of traders with contact rate λ when the upper bound

on contact rates is λ̄n. Similarly we can construct sn from equation (35). Since Fn and

Mn do not depend on n, mn and sn are also independent of n and hence their limits are

trivial. Note also from this equation that for large λ̄n, ¯̄cn converges to ¯̄c∗ and so a limiting

equilibrium of this type does not exist when c < ¯̄c∗.

Two-Point Autarky Equilibrium. Suppose ¯̄c∗ > c ≥ c̄∗ ≡ γ∆
8r(r+γ)(r+2γ)

, where we can

confirm algebraically that ¯̄c∗ > c̄∗. In this case, we claim that for sufficiently large λ̄n, the

contact rate distribution has two points in its support, 0 and λ̄n. The proof of Proposition 3

defines the threshold for such an equilibrium to exist, c̄n, as the value that makes the right

hand side of equation (55) equal to zero when F (0) = r+2γ
2(r+γ)

and M(0) = γ
2(r+γ)

:

c̄n =
γ∆
(
8(r + γ) + λ̄n

)
M(λ̄n)

8r(r + γ)(r + 2γ)
(
2(r + 2γ) + λ̄nM(λ̄n)

) =

((
8(r + γ) + λ̄n

)
M(λ̄n)

2(r + 2γ) + λ̄nM(λ̄n)

)
c̄∗ (69)
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Note that M(λ̄n) = M(0) + mλ̄n(1 − F (0)) < M(0) + 1
2
(1 − F (0)) = r+2γ

4(r+γ)
, since the

misalignment rate is always less than 1
2
. This implies (8(r+γ)+λ̄n)M(λ̄n)

2(r+2γ)+λ̄nM(λ̄n)
< 1 and hence c̄n < c̄∗.

On the other hand, as λ̄n converges to infinity, we know ¯̄cn converges to ¯̄c∗ and so it follows

that if ¯̄c∗ > c ≥ c̄∗, an equilibrium with this two point contact distribution exists for

sufficiently large λ̄n.

To find equilibrium with finite λ̄n, set the right hand side of (55) to zero and use Mn(0) =
γ

r+2γ
Fn(0) and Mn(λ̄n) = Mn(0)+mn,λ̄n(1−Fn(0)), with the misalignment rate at the upper

bound, mn,λ̄n , defined by equation (68). This gives us an equation that implicitly defines

Fn(0):

c =

(
4γ + λ̄n

γ
r+2γ

Fn(0)
)(

γ
r+2γ

Fn(0) +mn,λ̄n(1− Fn(0))
)
∆

4r(r + 2γ)
(
2(r + 2γ) + λ̄n

(
γ

r+2γ
Fn(0) +mn,λ̄n(1− Fn(0))

))
Although we cannot solve this explicitly for Fn(0), this equation implies it is continuous in

λ̄n and so for sufficiently large λ̄n, the right hand side converges to γ∆Fn(0)
4r(r+2γ)2 . Inverting this

implies that Fn converges pointwise to F satisfying

F (λ) =
4r(r + 2γ)2c

γ∆

for all λ ≥ 0. Again, we can recover mn and sn from equations (68) and (35). Since each

depends continuously on the functions F and M , they converge as well.

Trading Equilibrium. Finally suppose c < c̄∗. We first prove that for fixed c and suf-

ficiently large λ̄n, the equilibrium counterparty distribution is not degenerate. We have

already shown that it must have trade, F (0) = 0.

Since F (λ) ≥ 2M(λ) for all λ,

4(r + 2γ)

λ
(
4(r + 2γ) + λ(1− F (λ) + 2M(λ))

) ≥ 4(r + 2γ)

λ
(
4(r + 2γ) + λ

) .
Applying this inequality to the integrand in equation (58) and solving the integral explicitly

gives

c ≤ 4γ∆

r (4(r + 2γ) + λn)2 ,

where λn is the lower bound for a given λ̄n. This equation gives us an upper bound on λn

for a given value of c. Equivalently, if

λ̄n > 2

√
γ∆

rc
− 4(r + 2γ),
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λ̄n > λn. This proves that when λ̄n is an intermediated trade equilibrium. From Propo-

sition 3, any such equilibrium is completely characterized by a positive lower bound λn.

Moreover, the preceding argument implies λn < 2
√

γ∆
rc
− 4(r + 2γ).

Now take any increasing and unbounded sequence {λ̄n}. The preceding argument implies

that for sufficiently large λ̄n, equilibrium is characterized by a bounded sequence λn ∈[
0, 2
√
γ∆/rc− 4(r+ 2γ)

]
, with associated functions Fn(λ) and Mn(λ) that solve the initial

value problem (57). By the Bolzano-Weierstrass Theorem, the sequence of lower bounds

has a convergent subsequence, λn → λ∗. For notational convenience, we assume that the

sequence λ̄n is chosen such that λn itself converges to λ∗.

Fn(λ) and Mn(λ) solve the initial value problem (57) with lower bound λn. Since λn

converges to λ∗ and the solution to (57) is continuous in λ (Theorem 3.5 in Sideris, 2013),

(Fn,Mn) converges pointwise to (F,M). Once more, we can recover mn and sn from equa-

tions (68) and (35). Since each depends continuously on the functions F and M , they

converge as well. Thus we have found a limiting equilibrium with F (0) = 0.

That any limiting equilibrium takes one of these two forms then follows from the argu-

ments made in the proof of proposition 3.

Proof of Proposition 4. We first show there are middlemen and then establish the Pareto

tail of the contact rate distribution.

Middlemen. Fix r and γ. From Lemma 2, for any c < c̄∗, a limiting equilibrium with

F (0) = 0 exists. We prove that there exists a F ∗ > 0, independent of c, ∆, and λ̄n, such

that in any equilibrium with Fn(0) = 0, µFn({λ̄n}) ≥ F ∗. It then follows that in any limiting

equilibrium there are middlemen, F (λ) ≤ 1− F ∗ for all λ.

We now prove that there exists a F ∗ > 0, independent of c, ∆, and λ̄n, such that in any

equilibrium with Fn(0) = 0, µFn({λ̄n}) ≥ F ∗. For expositional convenience, we suppress n

in what follows. We work with the initial value problem (57). If µF ({λ̄}) = 1 ≥ F ∗ then the

claim is true. We thus consider intermediated trade equilibria.

We make two preliminary observations. First, the initial value problem (57) indicates

that c and ∆ only affect equilibrium through the value of λ. We will therefore prove that

there is a number F ∗ > 0, independent of λ and λ̄, such that in any equilibrium with

F (0) = 0, µF ({λ̄}) ≥ F ∗, or equivalently F (λ) < 1 − F ∗ for λ < λ̄. This implies that the

same F ∗ works for all c and ∆ such that µF ({λ̄}) = 1 − µF ((0, λ̄)) ∈ (0, 1). Second, the

initial value problem (57) also indicates that λ̄ only affects equilibrium through the value of

λ and through the values of F and M at λ̄. Since F is nondecreasing, it suffices to prove

that there is a number F ∗, independent of λ, such that in the solution to the initial value
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problem (57), limλ→∞ F (λ) < 1− F ∗.
As in the proof of Proposition 3, let Y (λ) ≡ log

(
γ(1−F (λ))−rM(λ)

)
. We already proved

that in the solution to the initial value problem, this is finite for any finite λ. Here we prove

that it is bounded below for fixed λ. Evaluating equation (61) at λ using F (λ) = M(λ) = 0

gives

Y ′(λ) =
−4(4r + 4γ + λ))

λ(8r + 8γ + 3λ)
.

Moreover, simple algebra takes us from equation (61) to

Y ′(λ) ≥ −4(r + 2γ)

λ2M(λ)
.

Now fix λ̃ > λ and note that M(λ̃) > 0. For all λ > λ̃, M(λ) ≥M(λ̃) and hence

Y ′(λ) ≥ −4(r + 2γ)

λ2M(λ̃)
.

Integrating up this lower bound on the slope gives us that for λ > λ̃,

Y (λ) ≥ Y (λ̃)− 4(r + 2γ)

M(λ̃)

(
1

λ̃
− 1

λ

)
≥ Y (λ̃)− 4(r + 2γ)

λ̃M(λ̃)
,

where the second inequality is algebra. This proves that Y (λ) is bounded below and

hence limλ→∞ γ(1 − F (λ)) − rM(λ) > 0 for any fixed λ. In particular, since M(λ) ≥ 0,

limλ→∞ F (λ) < 1.

As we vary λ, limλ→∞ F (λ) changes continuously (Theorem 3.5 in Sideris, 2013), but is

always strictly less than 1. To prove the existence of the uniform upper bound 1 − F ∗, we

still need to prove that limλ→∞ F (λ) does not converge to 1 for some value of λ. Continuity

implies that this cannot happen at an interior value of λ: in the interior, the supremum of

limλ→∞ F (λ) is equal to the maximum, which we already proved is strictly less than 1. We

next show that the supremum is less than 1 even if it occurs at either the limit as λ→ 0 or

λ→∞.

First recall the solution to the initial value problem in the limit as λ→ 0. We showed in

the proof of Proposition 3 that for all λ ∈ (0, λ̄), F (λ)→ r+2γ
2(r+γ)

< 1.

Next turn to the solution to the initial value problem in the limit as λ → ∞. In this

case, M(λ) → 0 for all λ, and so the argument above breaks down. Instead, let ρ ≡ λ/λ,
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H(ρ) ≡ F (ρλ), and L(ρ) ≡ ρλM(ρλ). Rewrite the initial value problem as

H ′(ρ) =
4
(
2r + 4γ + ρλ(1−H(ρ)) + 2L(ρ)

)(
γρλ(1−H(ρ))− rL(ρ)

)
ρ2λ
(
γ(8r + 8γ + 3ρλ(1−H(ρ))) + L(ρ)(3r + 6γ + ρλ(1−H(ρ)) + L(ρ))

) ,
L′(ρ) =

4
(
2γ + L(ρ)

)(
γρλ(1−H(ρ))− rL(ρ)

)
ρ
(
γ(8r + 8γ + 3ρλ(1−H(ρ))) + L(ρ)(3r + 6γ + ρλ(1−H(ρ)) + L(ρ))

) +
L(ρ)

ρ
,

with H(1) = L(1) = 0. Although we cannot solve these equations explicitly for arbitrary λ,

we know the solution is continuous in λ (Theorem 6.2 in Sideris, 2013) and we can therefore

take the limit of the differential equations as λ → ∞ and then solve the equations to find

the limits of the H and L. The initial value problem becomes

H ′(ρ) =
4γ(1−H(ρ))

ρ(3γ + L(ρ))
, (70)

L′(ρ) =
4γ
(
2γ + L(ρ)

)
ρ(3γ + L(ρ))

+
L(ρ)

ρ
, (71)

still with H(1) = L(1) = 0. The solution to these equations is ρ = q(L(ρ)) and H(ρ) =

1− η(L(ρ)) where

η(L) ≡

(
16γ + (7−

√
17)L

16γ + (7 +
√

17)L

) 4√
17

, (72)

q(L) ≡ η(L)
1
8

√
1 +

7L

8γ
+

L2

8γ2
. (73)

This implies limL→∞ η(L) =
(

7−
√

17
7+
√

17

) 4√
17

and limL→∞ q(L) = ∞. Using these, we find that

the unique limit as ρ converges to infinity of L(ρ) is infinite; and the unique limit of H(ρ) is

1−
(

7−
√

17
7+
√

17

) 4√
17 ≈ 0.731 < 1. This establishes the bound in this limit.

Pareto Tail. For a limiting equilibrium (F,m, s), fix the sequence of functions (Fn,mn, sn)

that converge to (F,m, s) and the increasing and unbounded sequence {λ̄n} such that for

each n, (Fn,mn, sn) restricted to the domain [0, λ̄n] is an equilibrium when the maximum

contact rate is λ̄n.

Use the initial value problem (57) to get that for fixed n,

lim
λ→λ̄n

λ2F ′n(λ) =
4λ̄n
(
2r + 4γ + λ̄n(1− F̄n + 2M̄n)

)
(γ(1− F̄n)− rM̄n)(

γ(8r + 8γ + 3λ̄n(1− F̄n)) + λ̄nM̄n(3r + 6γ + λ̄n(1− F̄n + M̄n))
) ,
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where F̄n ≡ limλ→λ̄n Fn(λ) and M̄n ≡ limλ→λ̄nMn(λ). Then we take the limit as n gets large:

lim
n→∞

lim
λ→λ̄n

λ2F ′n(λ) = 4 lim
n→∞

(1− F̄n + 2M̄n)(γ(1− F̄n)− rM̄n)

M̄n(1− F̄n + M̄n)
. (74)

Since λn converges to λ∗ and F and M are continuous in λ for fixed λ̄n (again, Theorem 3.5

in Sideris, 2013), F̄n and M̄n have well-behaved limits. Recalling that γ(1−Fn(λ))−rMn(λ)

is bounded above zero, it follows that the right hand side is a positive number. That is, the

density F ′ is asymptotically proportional to λ−2.

We are interested in characterizing the contact rate distribution G rather than the coun-

terparty density F ′. To do this, first use L’Hopital’s rule to get

lim
n→∞

lim
λ→λ̄n

λ2(1−Gn(λ)) =
1

2
lim
n→∞

lim
λ→λ̄n

λ3G′n(λ).

Since F is absolutely continuous, it follows from equation (16) that G′n(λ) = ΛnF
′
n(λ)/λ,

where Λn is the average contact rate when the upper bound is λ̄n. This implies

lim
n→∞

lim
λ→λ̄n

λ2(1−Gn(λ)) = lim
n→∞

lim
λ→λ̄n

Λn

2
λ2F ′n(λ)

= 2 lim
n→∞

(1− F̄n + 2M̄n)(γ(1− F̄n)− rM̄n)

M̄n(1− F̄n + M̄n)
∫ λ̄n

0
1
λ
dFn(λ)

The second equation pulls Λn out of the inner limit, since it does not depend on λ. It then

rewrites Λn using equation (17) and replaces the inner limit using equation (74). The result

follows because as λ̄n grows, the limit of each term exists and is a positive number.

Proof of Corollary 1. Proposition 4 proved that a strictly positive fraction of meetings

is with middlemen. To show that a strictly positive fraction of trades are with middlemen,

it is thus sufficient to show that a positive fraction of meetings with middlemen result in

trade. This immediately follows from the fact that the misalignment rate of non-middlemen,

limλ→∞M(λ), is strictly positive.

Next pλ = 1
2

(mλ(1− F (λ)) +M(λ)) is the fraction of meetings that result in trade for

a trader with contact rate λ. Differentiate this to prove that pλ is strictly increasing. This

uses the fact that m′λ > 0 (proposition 3) and mλF
′(λ) = M ′(λ) by absolute continuity

of F . This in turn implies that λpλ is increasing and so the trading rate and contact rate

distributions in the limiting economy are related by Ĝ(λpλ) = G(pλ). Since pλ converges to
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a positive constant as λ→∞, G and Ĝ share a common tail parameter.

Measuring Volume We measure volume as the rate at which some trader buys the asset

or, equivalently, the rate at which an asset gets bought. We do this first in an economy with

finite λ̄ but later take limits.

It is useful to decompose volume into four terms, V = Vmm + Vmn + Vnm + Vnn. For

expositional convenience, we call traders with λ = λ̄ “middlemen” and traders with slower

contact rates “non-middlemen”. The four volumes are defined as follows: First, the rate

that middlemen buy from other middlemen is

Vmm =
λ̄

4
µG({λ̄})µF ({λ̄})m2

λ̄ =
Λ

4
µF ({λ̄})2m2

λ̄. (75a)

This is equal to product of several terms: the measure of middlemen µG({λ̄}), the fraction of

those middlemen who wish to buy the asset
mλ̄
2

, the rate that they meet another middleman

λ̄µF ({λ̄}), and the fraction of those potential trading partners who wish to sell the asset
mλ̄
2

. The second equation uses the relationship between the counterparty and contact rate

measures in Appendix A.1 to obtain ΛµF ({λ̄}) = λ̄µG({λ̄}).
Second, the rate that middlemen buy from non-middlemen, is

Vmn =
λ̄

4
µG({λ̄})

(
M(λ̄)− µM({λ̄})

)
=

Λ

4
µF ({λ̄})

(
M(λ̄)− µM({λ̄})

)
. (75b)

This is again the product of several terms: the measure of middlemen µG({λ̄}), the fraction

of those middlemen who are able to buy the asset 1
2

(whether or not they want to buy), and

the rate that they meet a non-middleman who wants to sell the asset M(λ̄)−µM ({λ̄})
2

. We again

simplify this using ΛµF ({λ̄}) = λ̄µG({λ̄}).
Third, non-middlemen buy from middlemen at the same rate. This follows from the

symmetry of the model, since it is equal to the rate that middlemen sell to non-middlemen

Vnm =
Λ

4
µF ({λ̄})

(
M(λ̄)− µM({λ̄})

)
. (75c)

Finally, a trader with contact rate λ < λ̄ purchases the asset when he does not own it and

meets a slower misaligned trader who wants to sell it, at rate λM(λ)
4

, or when he wants to buy

it and meets a faster trader who owns it, at rate λmλ(1−F (λ)
4

. The latter event includes the

possibility of buying from a middleman. Thus integrating over the contact rate distribution
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gives

Vnn + Vnm =
1

4

∫ λ̄

λ

λ
(
M(λ) +mλ(1− F (λ))

)
dG(λ) (75d)

=
Λ

4

∫ λ̄

λ

(
M(λ)F ′(λ) + (1− F (λ))M ′(λ)

)
dλ. (75e)

We can subtract Vnm from this to get Vnn.

Proof of Proposition 5. We proceed in steps. We first describe the limit of limiting

equilibria as costs become small before computing volume in this double limit.

Limiting Equilibrium with Small Costs We first prove that in a limiting equilibrium,

the lower bound on the support of the contact rate distribution converges to infinity when

the cost of a meeting goes to zero. Recall from the proof of Proposition 4 that in any limiting

equilibrium, F (λ) < 1− F ∗ for all λ, where F ∗ is strictly positive. We also have M(λ) ≥ 0.

This implies

4(r + 2γ)

λ
(

4(r + 2γ) + λ(1− F (λ) + 2M(λ))
) ≤ 4(r + 2γ)

λ
(

4(r + 2γ) + λF ∗
) .

Integrating this implies

exp

−∫ ∞
λ

4(r + 2γ)

λ
(

4(r + 2γ) + λ(1− F (λ) + 2M(λ))
)dλ

 ≥ λF ∗

4(r + 2γ) + λF ∗
.

Using equation (58), this implies that if λ > 0,

c

∆
≥ 4γF ∗

r
(
4(r + 2γ) + λ

)(
4(r + 2γ) + λF ∗

) .
or

λ ≥ 2

√γ∆

rc
+

(
(1− F ∗)(r + 2γ)

F ∗

)2

− (1 + F ∗)(r + 2γ)

F ∗

 .

As c converges to zero, the lower bound on λ goes to infinity, and hence λ must as well.
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Volume in Limiting Equilibrium. Next, recalling that mλ = M ′(λ)/F ′(λ), we can take

limits of the expressions in equations (75) to express volume in a limiting equilibrium as

V =
Λ

4

(∫ ∞
λ

(
M(λ)F ′(λ)+(1−F (λ))M ′(λ)

)
dλ+ lim

λ→∞

(
(1−F (λ))M(λ)+(1−F (λ))2m2

∞

))
,

(76)

where m∞ is the misalignment rate of middlemen, solving a version of equation (30) with

λ→∞:

lim
λ→∞

(
M(λ) +m∞(1− F (λ))

)
m∞ = lim

λ→∞
M(λ)(1−m∞).

Misaligned middlemen become well-aligned when they meet any other misaligned trader.

Well-aligned middlemen trade only when they meet slower misaligned traders.

Since the limiting equilibrium with small costs has λ going to infinity, we use the same

change in variables as in the proof of Proposition 4 to have well-behaved objects in this limit:

ρ ≡ λ/λ, H(ρ) ≡ F (ρλ) = F (λ), and L(ρ) ≡ ρλM(ρλ). Written in terms of these variables,

volume is

V =
Λ

4λ

(∫ ∞
1

(1−H(ρ))(L′(ρ)− L(ρ)/ρ) + L(ρ)H ′(ρ)

ρ
dρ

+ lim
ρ→∞

(
(1−H(ρ))L(ρ)

ρ
+ λ(1−H(ρ))2m2

∞

))
, (77)

where

lim
ρ→∞

(
L(ρ)

ρλ
+m∞(1−H(ρ))

)
m∞ = lim

ρ→∞

L(ρ)

ρλ
(1−m∞). (78)

The terms in (77) have the same interpretation as in equation (76).

Mean Contact Rate Relative to Lower Bound. We next calculate the mean contact

rate relative to the lower bound, Λ/λ. Using equation (17) for the limiting equilibrium, this

is
Λ

λ
=

1

λ
∫
X

1
λ
dµF (λ)

=
1∫∞

1
1
ρ
H ′(ρ)dρ

=
1∫∞

0
−η′(L)
q(L)

dL
.

The last equality rewrites the previous one using the inverse functions q(L(ρ)) = ρ and

η(L) ≡ 1−H(q(L)). This holds for arbitrary λ. In the limit as c→ 0, we have λ→∞. We

can therefore apply equations (72) and (73) to the previous equation and solve the integral

explicitly. This gives us an exact solution for the mean-min contact ratio in the limiting
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economy:

lim
c→0

Λ

λ
=

1√
2

(
7 +
√

17

7−
√

17

) 7
2
√

17

≈ 2.23. (79)

Probability Distribution over L. Let Γ(L) be the population distribution of L. Since

L is an increasing function of ρ, which in turn is increasing in λ, this is a transformation of

the contact rate distribution, Γ(L) = G(q(L)λ). Differentiating this gives us

Γ′(L) = q′(L)G′(q(L)λ)λ =
Λq′(L)F ′(q(L)λ)

q(L)
=

Λq′(L)H ′(q(L))

λq(L)
= −Λη′(L)

λq(L)
. (80)

The first equation differentiates Γ(L) = G(q(L)λ), the second uses equation (16) to rewrite

this in terms of F , the third differentiates F (ρλ) = H(ρ), and the fourth differentiates the

definition η(L) ≡ 1−H(q(L)).

In the limit as c→ 0, we again apply equations (72) and (73) and integrate Γ explicitly

using the initial condition Γ(0) = 0. We simplify this further using the limiting behavior of

Λ/λ from equation (79):

lim
c→0

Γ(L) =
L√

8γ2 + 7γL+ L2

(
2L+ γ(7 +

√
17)

2L+ γ(7−
√

17)

) 7
2
√

17

(81)

The fraction of traders with a relative contact rate less than ρ is then Γ(L(ρ)).

Volume of Purchases by Non-Middlemen. Next consider the first term in the trading

rate (77), the rate at which a non-middleman buys the asset from another trader, either a

middleman or a non-middleman.

Vnn + Vnm ≡
Λ

4λ

∫ ∞
1

(1−H(ρ))(L′(ρ)− L(ρ)/ρ) + L(ρ)H ′(ρ)

ρ
dρ

=
Λ

2λ

∫ ∞
1

(γ + L(ρ))H ′(ρ)

ρ
dρ

=
1

2

∫ ∞
1

(γ + L(ρ))Γ′(L(ρ))L′(ρ)dρ =
1

2

(
γ +

∫ ∞
0

LΓ′(L)dL

)
.

The first equation eliminates L′(ρ) using equation (71) and then simplifies with equation (70).

The second eliminates H ′(ρ) = H ′(q(L(ρ)) using equation (80) and then uses q′(L(ρ)) =

1/L′(ρ), since tho functions are inverses. The last equation is a change of the variable of

integration from ρ to L(ρ). Once again, we now take the limit as c → 0 and so apply the
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functional form in equation (80) to get

lim
c→0

(Vnn + Vnm) =

√2

(
7 +
√

17

7−
√

17

) 7
2
√

17

− 3

 γ ≈ 1.46γ. (82)

Volume of Purchases by Middlemen from Non-Middlemen. Next consider the sec-

ond term in the trading rate (77), the rate at which a middleman buys the asset from a

non-middleman:

Vmn ≡
Λ

4λ
lim
ρ→∞

(1−H(ρ))L(ρ)

ρ
=

Λ

4λ
lim
ρ→∞

(1−H(ρ))L′(ρ) =
Λ

4λ
lim
L→∞

η(L)

q′(L)
(83)

The first equation uses L’Hôpital’s rule, since H(ρ) converges to a number less than 1, while

L(ρ) and ρ both grow without bound. The second equation uses ρ = q(L), H(q(L)) =

1 − η(L), and q′(L) = 1/L′(q(L)). Again, we take the limit as c → 0 and so apply the

functional forms in equations (72) and (73) as well as equation (79). This gives

lim
c→0
Vmn =

γ

2
.

The same argument implies middlemen sell to traders with finite contact rate at rate 1
2
γ and

an immediate corollary is that the reverse trade occurs at the same rate, limc→0 Vnm = γ
2
.

Subtracting this from equation (82), we get that non-middlemen buy from non-middlemen

at rate

lim
c→0
Vnn =

√2

(
7 +
√

17

7−
√

17

) 7
2
√

17

− 7

2

 γ ≈ 0.96γ.

Volume of Purchases by Middlemen from Middlemen. Finally consider the third

term in equation (77), the rate that middlemen buy from middlemen:

Vmm =
Λ

4
lim
ρ→∞

(1−H(ρ))2m2
∞,

where m∞ solves equation (78). Multiply both sides of equation (78) by Λ
4

(
1− limρ→∞H(ρ)

)
to get

Vmm =
Λ

4
lim
ρ→∞

(1−H(ρ))2m2
∞ =

Λ(1− 2m∞)

4
lim
ρ→∞

(1−H(ρ))L(ρ)

ρλ
= (1− 2m∞)Vmn,

where Vmn is defined in equation (83). When c → 0, λ → ∞, m∞ → 0, and the results in
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the previous paragraph imply limc→0 Vmm = limc→0 Vmn = γ
2
.

D Optimum – Details and Proofs

D.1 Planning Problem and General Characterization

Using equations (16) and (17), we can rewrite the planner’s objective in (11) as

δ1 −
1∫

X
1
λ
dµF (λ)

∫
X

∆mλ + rC(λ)

λ
dµF (λ), (84)

now expressed in terms of the counterparty measure µF . The planner has two instruments.

First, she chooses the set of permissible trades: In particular, when a trader with contact

rate λ and alignment status a ∈ {0, 1} meets a trader with contact rate λ′, alignment status

a′ ∈ {0, 1}, and the opposite asset position, they trade with time-invariant probability

Iλ
′,a′

λ,a = Iλ,aλ′,a′ ∈ [0, 1], chosen by the planner. This implies that the steady state misalignment

rate mλ ∈ [0, 1] satisfies equation (22). Second, the planner chooses µF (S), the time-invariant

probability that conditional on a meeting, the counterparty’s contact rate is some λ ∈ S with

µF (X ) = 1.

The Lagrangian The solution to the planner’s problem is a probability measure µF (λ),

misalignment rate mλ, and trading probabilities Iλ
′,a′

λ,a ∈ [0, 1] that maximize (84) subject to

(22). Denote by S(λ)dµG(λ) the respective multiplier. We express this as a Lagrangian:

L = δ1 +
1∫

X
1
λ
dµF (λ)

(
−
∫
X

∆mλ + rC(λ)

λ
dµF (λ)

+

∫
X
S(λ)

((
r + γ

λ
+

1

2

∫
X

(
Iλ
′,0
λ,0 mλ′ + Iλ

′,1
λ,0 (1−mλ′)

)
dµF (λ′)

)
mλ

−
(
γ

λ
+

1

2

∫
X

(
Iλ
′,0
λ,1 mλ′ + Iλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′)

)
(1−mλ)

)
dµF (λ)

)
. (85)

The trading probabilities, counterparty measures, and misalignment rates must all be ei-

ther extreme points that maximize the Lagrangian or interior stationary points of the La-

grangian.20

20The planner may want to choose autarky, µG({0}) = 1. In this case, any µF with 1
λ not Lebesgue

integrable under µF yields the same value of the objective function. For expositional simplicity, we write the
planner’s first order necessary conditions for optimality when autarky is not optimal and impose the same
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Now consider the following variational functions:

• the trading probabilities are Iλ
′,a′

λ,a + εIν
λ′,a′

I,λ,a for some nonnegative number εI and some

function νλ
′,a′

I,λ,a satisfying νλ
′,a′

I,λ,a = νλ,aI,λ′,a′ and Iλ
′,a′

λ,a + νλ
′,a′

I,λ,a ∈ [0, 1] for all λ, a, λ′, a′;

• the counterparty measure on any set S ⊂ X is (1 − εF )µF (S) + εFνF (S) for some

nonnegative number εF and some measure νF on X; and

• the misalignment rate is mλ + εmνm,λ for arbitrary εm and functions νm,λ.

A necessary condition for optimality is that for any such deviation functions (νλ
′,a′

I,λ,a , νF , νm,λ),

the first derivative of the Lagrangian with respect to εI and εF should be non-positive when

evaluated at (εI, εF , εm) = 0, while the first derivative with respect to εm should be zero.

To see the implications of these optimality conditions, set νλ
′,1

I,λ,0 = νλ
′,0

I,λ,1 = νλ
′,1

I,λ,1 = 0 and

consider the derivative of the Lagrangian with respect to εI evaluated at 0. This gives

∂L

∂εI

∣∣∣∣
εI=0

=
1

2
∫
X

1
λ
dµF (λ)

∫
X 2

S(λ)νλ
′,0

I,λ,0mλmλ′d(µF (λ)× µF (λ′)). (86)

Now consider the following deviation function

νλ
′,0

I,λ,0 =


1− Iλ

′,0
λ,0

0

−Iλ
′,0
λ,0

if S(λ) + S(λ′) R 0

This deviation is feasible since it respects the symmetry of the trading probability function

and keeps it a probability. Then the right hand side of equation (86) is strictly positive if

Λ is positive and there is a µF × µF positive measure of (λ, λ′) with S(λ) + S(λ′) > 0 and

Iλ
′,0
λ,0 < 1 or with S(λ) + S(λ′) < 0 and Iλ

′,0
λ,0 > 0 (or both). This implies such a configuration

is not optimal. This gives us the first of the following necessary conditions:

S(λ) + S(λ′) ≷ 0⇒ Iλ
′,0
λ,0 =

1

0
, S(λ) ≷ S(λ′)⇒ Iλ

′,1
λ,0 =

1

0
,

S(λ) + S(λ′) ≶ 0⇒ Iλ
′,1
λ,1 =

1

0
, S(λ′) ≷ S(λ)⇒ Iλ

′,0
λ,1 =

1

0
. (87)

almost everywhere under the measure µF × µF . The remaining necessary conditions in

condition (87) follow from similar deviations. Substituting this into the constraint (22) gives

conditions when autarky is optimal.
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equation (13) in the text.

Next, turn to the misalignment rate. When Λ > 0, the first derivative of the Lagrangian

with respect to εm is

∂L

∂εm

∣∣∣∣
εm=0

=

∫
X

(
− ∆

λ
+
r + 2γ

λ
S(λ)

+
1

2

(∫
X

(
Iλ
′,0
λ,0 (S(λ) + S(λ′))mλ′ + Iλ

′,1
λ,0 (S(λ)− S(λ′))(1−mλ′)

+ Iλ
′,0
λ,1 (S(λ)− S(λ′))mλ′ + Iλ

′,1
λ,1 (S(λ) + S(λ′))(1−mλ′)

)
dµF (λ′)

))
νm,λdµF (λ).

Let νm,λ = 1 whenever the integrand is positive and −1 whenever it is negative. Unless

the integrand is zero almost everywhere under the measure µF , this gives ∂L
∂εm

∣∣∣
εm=0

> 0, a

contradiction with optimality. It follows that whenever Λ > 0, a necessary condition for

optimality is that almost everywhere under the measure µF ,

∆ = (r + 2γ)S(λ)

+
λ

2

(∫
X

(
Iλ
′,0
λ,0 (S(λ) + S(λ′))mλ′ + Iλ

′,1
λ,0 (S(λ)− S(λ′))(1−mλ′)

+ Iλ
′,0
λ,1 (S(λ)− S(λ′))mλ′ + Iλ

′,1
λ,1 (S(λ) + S(λ′))(1−mλ′)

)
dµF (λ′)

)
. (88)

Using (87), rewrite the first order condition (88) as equation (12) in the text. This leads to

our first result:

Lemma 1-P In an optimum, the social surplus function S(λ) is positive-valued and strictly

decreasing. When two traders with opposite asset positions meet they

1. always trade the asset if both are misaligned;

2. never trade the asset if both are well-aligned;

3. trade the asset if one is misaligned and the other is well-aligned and the well-aligned

trader has the higher contact rate.

The proof of this result mimics the proof of Lemma 1, showing that the social surplus

function is uniquely defined by equation (12) and moreover is decreasing and nonnegative.

The optimal trading pattern follows immediately. Given the similarity of the mathematical

structure of these lemmas, we omit the proof.
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We next find the cost function for which a particular counterparty measure is optimal.

Proposition 1-P For any counterparty measure µF , there exists a cost function C such

that µF satisfies the necessary conditions for optimality. Moreover, C is unique on support

of µF , up to an additive constant.

Proof. The first two steps of the proof proceed as in the equilibrium proof, skipping details

where the two proofs are identical. We proceed more slowly through the last step, where we

recover the cost function, because it is a bit different than in equilibrium.

Step 1: Recovering misalignment Since both the social surplus function and equilib-

rium surplus function are positive and decreasing, equation (87) implies that the inflow-

outflow equation (22) reduces to equations (30) and (31). Using these, we can recover µM

from the counterparty measure µF .

Step 2: Explicit Solution for the Surplus Function Use monotonicity of S to rewrite

equation (12) as

(2r + 4γ + λ)S(λ)− 2∆

λ
= S(λ)(F (λ)− 2M(λ)) +

∫
(λ,λ̄]

S(λ′)(1− 2mλ′)dµF (λ′). (89)

This is identical to equation (32), except for the numerical value of the coefficients. We can

then replicate this step in the proof of Proposition 1 to prove that the unique solution to

equation (89) is

S(λ) =
∆

r + 2γ

(
1− e−

∫∞
λ Φλ′dλ

′
)
, (90)

where

Φλ ≡
2(r + 2γ)

λ (2(r + 2γ) + λ(1− F (λ) + 2M(λ)))
. (91)

Step 3: Recovering the Cost Function This step differs from the equilibrium. To

describe the optimal choice of contact rates, again return to the Lagrangian (85). The

derivative with respect to εF is

∂L
∂εF

∣∣∣∣
εF=0

= Λ

(∫
X
θλdνF (λ)−

∫
X
θλdµF (λ)

)
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where

θλ ≡ −
∆mλ + rC(λ)

λ
+

Λ

λ

∫
X

∆mλ′ + rC(λ′)

λ′
dµF (λ′)

+
1

2

∫
X
S(λ′)

((
Iλ,0λ′,0mλ + Iλ,1λ′,0(1−mλ)

)
m′λ

−
(
Iλ,0λ′,1mλ + Iλ,1λ′,1(1−mλ)

)
(1−m′λ)

)
dµF (λ′). (92)

Now assume Λ > 0 and let YP ≡ arg maxλ∈X θλ. If µF (YP ) < 1, there exists a measure νF

with
∫
X θλdνF (λ) >

∫
X θλdµF (λ) and hence ∂L

∂εF
> 0, a contradiction. Thus assuming Λ > 0,

a necessary condition for optimality is µF (YP ) = 1.

Let θ̄ ≡ maxλ∈X θλ. Since YP = arg maxλ∈X θλ and µF (YP ) = 1, it follows that θ̄ =∫
X θλdµF (λ). We compute this by integrating equation (92) and canceling the first two

terms on the right hand side:

θ̄ =
1

2

∫
X
S(λ′)

∫
X

((
Iλ,0λ′,0mλ + Iλ,1λ′,0(1−mλ)

)
mλ′

−
(
Iλ,0λ′,1mλ + Iλ,1λ′,1(1−mλ)

)
(1−mλ′)

)
dµF (λ) dµF (λ′)

=
1

2

∫
X
S(λ)

(∫
X

(
Iλ
′,0
λ,0 mλ′ + Iλ

′,1
λ,0 (1−mλ′)

)
dµF (λ′)mλ

−
∫
X

(
Iλ
′,0
λ,1 mλ′ + Iλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′)(1−mλ)

)
dµF (λ)

The second equation swaps the role of λ and λ′ in the integrals and then regroups terms.

Using the inflow-outflow equation (22), we can then derive equation (15) in the text.

Next, rewrite equation (88) as

∆mλ

λ
=

(r + 2γ)S(λ)mλ

λ

+
1

2

(
S(λ)mλ

∫
X

((
Iλ
′,0
λ,0 + Iλ

′,0
λ,1

)
mλ′ +

(
Iλ
′,1
λ,0 + Iλ

′,1
λ,1

)
(1−mλ′)

)
dµF (λ′)

−
∫
X
S(λ′)

(
Iλ
′,0
λ,1 m

′
λ − Iλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′)

+

∫
X
S(λ′)

((
Iλ
′,0
λ,0 mλ + Iλ

′,0
λ,1 (1−mλ)

)
mλ′ −

(
Iλ
′,1
λ,0 mλ + Iλ

′,1
λ,1 (1−mλ)

)
(1−mλ′)

)
dµF (λ′)

)
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Use this to rewrite equation (92) as

θλ = −
mλ

(
r + 2γ + λ

2

∫
X

((
Iλ
′,0
λ,0 + Iλ

′,0
λ,1

)
mλ′ +

(
Iλ
′,1
λ,0 + Iλ

′,1
λ,1

)
(1−mλ′)

)
dµF (λ′)

)
S(λ)

λ

− rC(λ)

λ
+

Λ

λ

∫
X

∆mλ′ + rC(λ′)

λ′
dµF (λ′)

+
1

2

∫
X
S(λ′)

(
Iλ
′,0
λ,1 m

′
λ − Iλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′).

Simplify the first term using the steady state equation (22) to get

θλ = −

(
γ + λ

2

∫
X

(
Iλ
′,0
λ,1 mλ′ + Iλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′)

)
S(λ)

λ

− rC(λ)

λ
+

Λ

λ

∫
X

∆mλ′ + rC(λ′)

λ′
dµF (λ′)

+
1

2

∫
X
S(λ′)

(
Iλ
′,0
λ,1 m

′
λ − Iλ

′,1
λ,1 (1−mλ′)

)
dµF (λ′).

The optimal trading patterns in equation (87) give us

θλ = −γS(λ)

λ
+

1

2

∫
X

((
S(λ′)− S(λ)

)+
m′λ +

(
− S(λ)− S(λ′)

)+
(1−mλ′)

)
dµF (λ′)

− rC(λ)

λ
+

Λ

λ

∫
X

∆mλ′ + rC(λ′)

λ′
dµF (λ′). (93)

Now define

Π̄ ≡ −Λ

r

∫
X

∆mλ′ + rC(λ′)

λ′
dµF (λ′), (94)

so the value of the planner’s objective function is δ1 + rΠ̄. Then θ̄ ≥ θλ is equivalent to

Π̄ ≥ Πλ where Πλ is defined in equation (14). Moreover, Π̄ = Πλ exactly when θ̄ = θλ. This

means that the set YP ≡ arg maxλ∈X θλ also satisfies YP = arg maxλ∈X Πλ.

Using the fact that the surplus function is positive-valued and decreasing, we can simplify

equations (93) and (14) to get

θλ = −γS(λ)

λ
+

1

2

∫
[0,λ]

(S(λ′)− S(λ))dµM(λ′)− rC(λ)

λ
− rΠ̄

λ
. (95)

and

Πλ =
−γS(λ) + λ

2

∫
[0,λ]

(S(λ′)− S(λ))dµM(λ′)− θ̄λ
r

− C(λ). (96)
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These will be useful later.

Finally, we can invert the requirement that Π̄ ≥ Πλ with equality for λ ∈ YP to find a

lower bound on the cost function:

C(λ) ≥
−γS(λ) + λ

2

∫
[0,λ]

(S(λ′)− S(λ))dµM(λ′)− θ̄λ
r

− Π̄

with equality for λ ∈ YP . We have already expressed all the objects on the right hand side

of this equation, except the additive constant Π̄, as functions of µF . Thus the counterparty

distribution pins down the cost function up to an additive constant on the support of the

counterparty distribution.

Proposition 2-P Assume C is differentiable and C ′ is Lipschitz continuous. Then the op-

timum counterparty distribution F and contact rate distribution G are absolutely continuous

on [0, λ̄). If additionally C ′(0) < ∆γ2

2r(r+2γ)3 , and C ′(λ̄) ≥ ∆
2γ2
(

4(r+2γ)2+8γλ̄−λ̄2
)

rψ(λ̄+2ψ)(r+2γ+ψ)2(2r+4γ+λ̄)
where

ψ ≡
√

(r + 2γ)2 + 2γλ̄, then there is a positive measure of traders with contact rate in the

interval (0, λ̄) in the optimal counterparty distribution.

Proof. Analogous to Proposition 2, we proceed in three steps. First we show that F (λ) is

continuous on [0, λ), then we show that it is absolutely continuous, and finally characterize

conditions that ensure that a positive measure of traders choose λ ∈ (0, λ̄).

Step 1: No Discontinuities in F The first step of the proof immediately follows using

the functional form of S and Φ in equations (90) and (91) and Π in equation (96).

Step 2: Absolute continuity of F This step also follows the same logic using the mod-

ified functional form of the (social) surplus equation with the following minor adjustment:

using (91), we need to define % ≡ 2r+ 4γ. Step 2 of Proposition 2 then follows immediately.

Step 3: Positive measure of traders in the interval (0, λ̄) We use a direct approach to

find conditions which ensure µF ({0}) = 0. Then we follow a similar approach to Proposition

2 to find conditions which ensure µF ({λ̄}) < 1.

First, assume there is an optimal allocation in which µF ({0}) > 0. In any such allocation

µG({0}) = 1. So generally consider an allocation with µG({λ}) = 1 for some λ ∈ X .

Equation (9) implies

mλ =

√
(r + 2γ)2 + 2γλ− (r + 2γ)

λ
(97)
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Then using equation (11), the value of a marginal increase in everyone’s contact rate from

µG({0}) = 1 to µG({ε}) = 1 is

lim
ε→0

∆(m0 −mε) + r(C(0)− C(ε))

ε
=

∆γ2

2(r + 2γ)2
− rC ′(0).

Thus, as in equilibrium, C ′(0) < ∆γ2

2r(r+2γ)2 rules out µG({0}) = 1 and hence rules out opti-

mality of any allocation with µF ({0}) > 0.

Now, suppose µF ({λ̄}) = 1. Then equation (89) implies that for λ ∈ X ,

S(λ) =
∆
(
2r + 4γ + λ(1− 2mλ̄) + 2λ̄mλ̄

)
(2r + 4γ + λ)(r + 2γ + λ̄mλ̄)

(98)

where mλ̄ satisfies equation (97). Moreover, equation (15) implies

θ̄ =
∆(γ − (r + 2γ)mλ̄)

λ̄(r + 2γ + λ̄mλ̄)
. (99)

Finally, equation (96) implies that for λ ∈ X ,

Πλ ≡
−γS(λ)− θ̄λ

r
− C(λ).

Using the previous expressions, we have that the left derivative of the profit function at λ̄

satisfies

Π′λ̄ =
−γS ′(λ̄)− θ̄

r
− C ′(λ̄) = ∆

2γ2
(
4(r + 2γ)2 + 8γλ̄− λ̄2

)
rψ(λ̄+ 2ψ)(r + 2γ + ψ)2(2r + 4γ + λ̄)

− C ′(λ̄)

where ψ ≡
√

(r + 2γ)2 + 2γλ̄. Thus if

C ′(λ̄) > ∆
2γ2
(
4(r + 2γ)2 + 8γλ̄− λ̄2

)
rψ(λ̄+ 2ψ)(r + 2γ + ψ)2(2r + 4γ + λ̄)

, (100)

Π′
λ̄
< 0. But this means that λ̄ does not maximize Πλ, hence that it is not optimal to set

µF ({λ̄}) = 1.

Note that when λ̄ > 4γ + 2
√
r2 + 4rγ + 8γ2, the right hand side of condition (100) is

negative. This means that if the upper bound on contact rates is sufficiently large, it is not

optimal for everyone to set their contact rate at the upper bound even if doing so is free.

This is a (perhaps unexpected) feature of our search technology. By reducing the contact

rate for a few traders, the remaining traders may still efficiently intermediate for the slower
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traders while concentrating their meetings among themselves. Nevertheless, we show below

that in a limiting allocation with λ̄→ 0 and a constant marginal cost of contacts, all contact

rates exceed a lower bound; and when the marginal cost vanishes, the lower bound grows

without bound.

Representation of Optimum as ODE System We again derive a first order ordinary

differential equation system in (F,M, S) to characterize any optimal allocation when the

cost function is twice continuously differentiable. We omit details when the logic is similar

to the corresponding equilibrium system.

As a preliminary step, differentiate equation (90) and use equation (91) to get

S ′(λ) =
2 ((r + 2γ)S(λ)−∆)

λ
(

2(r + 2γ) + λ(1− F (λ) + 2M(λ))
) , (101)

S ′′(λ) = −2(1− F (λ) + 2M(λ))− λ(F ′(λ)− 2M ′(λ))

2(r + 2γ) + λ(1− F (λ) + 2M(λ))
S ′(λ). (102)

Next, since Π′′λ = 0 on the support of the contact rate distribution, twice differentiating the

definition of Π in equation (96) gives us

Π′′λ =
−
(
2γ + λM(λ)

)
S ′′(λ)−

(
2M(λ) + λM ′(λ)

)
S ′(λ)

2r
− C ′′(λ) = 0 (103)

on the support if F . Substitute S ′(λ) and S ′′(λ) from equations (101) and (102) into equa-

tion (103) to get one linear relationship between F ′(λ) and M ′(λ) in the optimal solution.

As in equilibrium, equation (31) gives us a second such relationship. We can solve these to

get

F ′(λ) =

(
2r + 4γ + λ(1− F (λ) + 2M(λ))

)(
4
(
γ(1− F (λ))− rM(λ)

)
+ Z(λ)

)
2λ
(
2r + 2γ + λ(1− F (λ) +M(λ))

)
(2γ + λM(λ))

, (104)

M ′(λ) =
4
(
γ(1− F (λ))− rM(λ)

)
+ Z(λ)

2λ
(
2r + 2γ + λ(1− F (λ) +M(λ))

) (105)

where

Z(λ) ≡
rλ
(
2r + 4γ + λ(1− F (λ) + 2M(λ))

)2
C ′′(λ)

∆− (r + 2γ)S(λ)
(106)

Equations (101), (104), and (105) are an ordinary differential equation system, valid on the

interior of the support of F .

If we know λ, we pin down the level of F , M , and S using the terminal conditions
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F (λ) = M(λ) = 0 as well as

S(λ̄) =
∆

r + 2γ + λ̄M(λ̄)
, (107)

which we obtain by evaluating equation (89) at λ = λ̄.

Finally, to verify the choice of λ, we use the first order condition Π′λ = 0,

− γS ′(λ) = rC ′(λ) + θ̄, (108)

where Πλ is defined in equation (96) and θ̄ is defined in equation (15). This is the equivalent

of equation (53).

D.2 Simpler expression for θ̄

To further characterize the optimum, we find it useful to relate θ̄ to the cost function. First,

note that θλ = θ̄ for all λ ∈ YP and integrate equation (95) under the absolutely continuous

measure µF , up to but not including λ̄:

(1− dF (λ̄))θ̄ = lim
λ→λ̄

(
−
∫ λ

0

γS(λ′)

λ′
dF (λ′) +

1

2

∫ λ

0

∫ λ′

0

(S(λ′′)− S(λ′))dM(λ′′)dF (λ′)

−
∫ λ

0

rC(λ′)

λ′
dF (λ′)− rΠ̄

∫ λ

0

1

λ′
dF (λ′)

)
.

Note from equation (17) that

lim
λ→λ̄

∫ λ

0

1

λ′
dF (λ′) =

1

Λ
− dF (λ̄)

λ̄
.

Then using equation (94), we have

(1−dF (λ̄))θ̄ = lim
λ→λ̄

(∫ λ

0

∆mλ′ − γS(λ′)

λ′
dF (λ′)+

1

2

∫ λ

0

∫ λ′

0

(S(λ′′)−S(λ′))dM(λ′′)dF (λ′)

)
+
(
∆mλ̄ + rC(λ̄) + rΠ̄

) dF (λ̄)

λ̄
(109)

This is the first key equation.

Second, on the interior of the support of F , we have that Πλ is constant and hence

Π′λ = 0. Differentiating equation (96) gives

θ̄ = −
(
γ +

λM(λ)

2

)
S ′(λ) +

1

2

∫ λ

0

(S(λ′)− S(λ))dM(λ′)− rC ′(λ)
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Equations (101) and (31) imply that on the interior of the support,(
γ +

λ

2
M(λ)

)
S ′(λ) =

((r + 2γ)S(λ)−∆)mλ

λ
,

and so the previous equation becomes

θ̄ = −((r + 2γ)S(λ)−∆)mλ

λ
+

1

2

∫ λ

0

(S(λ′)− S(λ))dM(λ′)− rC ′(λ)

Again integrate this under the measure µF (λ) up to but not including λ̄:

(1− dF (λ̄))θ̄ = lim
λ→λ̄

(
−
∫ λ

0

((r + 2γ)S(λ′)−∆)mλ′

λ′
dF (λ′)

+
1

2

∫ λ

0

∫ λ′

0

(S(λ′′)− S(λ′))dM(λ′′)dF (λ′)− r
∫ λ

0

C ′(λ′)dF (λ′)

)
. (110)

This is the second key equation.

Now equate the right hand sides of (109) and (110) to get

∫ λ̄

0

γ − (r + 2γ)mλ

λ
S(λ)dF (λ) = r

∫ λ̄

0

C ′(λ′)dF (λ′)

+

(
rΠ̄ + ∆mλ̄ + r

(
C(λ̄)− λ̄C ′(λ̄)

)
+
(
γ − (r + 2γ)mλ̄

)
S(λ̄)

)
dF (λ̄)

λ̄

Equation (15) implies that the left hand side is θ̄. We can then regroup terms using equa-

tion (107) to eliminate S(λ̄):

θ̄ = r

∫ λ̄

0

C ′(λ′)dF (λ′) +

(
rΠ̄ + ∆

γ + λ̄M(λ̄)mλ̄

r + 2γ + λ̄M(λ̄)
+ r
(
C(λ̄)− λ̄C ′(λ̄)

))dF (λ̄)

λ̄
. (111)

This is an explicit equation for θ̄. Notably when either λ̄→∞ or dF (λ̄) = 0, the last term

vanishes and θ̄ = r
∫
X C

′(λ)dµF (λ), the average counterparty’s marginal cost of contacts, as

mentioned in the text.

D.3 Characterization with a Linear Cost Function

We now characterize the optimum with a linear cost function C(λ) = cλ for c > 0.

Proposition 3-P Assume C(λ) = cλ. Fix r, γ, ∆, and λ̄. There exists thresholds c̄ > c
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such that

if


c ≥ c̄

c ∈ (c, c̄)

c ≤ c,

then there is a


autarky allocation

intermediated trade allocation

degenerate trade allocation

satisfying the necessary conditions for optimality. Moreover, the optimal allocation takes

one of these three forms. In an autarky allocation, the average contact rate is Λ = 0. In

an intermediated trade allocation, the average contact rate is Λ ∈ (0, λ̄); the support of the

counterparty distribution is a convex interval [λ, λ̄] with λ ∈ (0, λ̄) and dF (λ̄) > 0; and the

misalignment rate mλ is increasing on [λ, λ̄]. In a degenerate trade allocation, the average

contact rate is Λ = λ̄.

If λ̄ ≥ 4γ + 2
√
r2 + 4rγ + 8γ2, c ≤ 0 and hence the optimal allocation must be either

autarky or intermediated trade.

Proof. We follow the structure of the proof of Proposition 3, omitting repetitive details.

High Cost. We first redefine the cost thresholds c̄ and ¯̄c for the planner’s problem. Elim-

inate S ′′(λ) from equation (103) using equation (102). When F (λ) (and hence M(λ) is

constant for all λ ∈ [0, λ̄), this implies that the profit function is globally convex if and only

if F (0) ≥ r+2γ
2(r+γ)

. Smaller values of F (0) are therefore inconsistent with optimality of an

autarky allocation.

Next, in an autarky allocation, we have

r (Πλ̄ − Π0) =

( (
2γ + λ̄M(0)

)
M(λ̄)∆

2(r + 2γ)
(
r + 2γ + λ̄M(λ̄)

) − (rc+ θ̄)

)
λ̄,

analogous to equation (55). We can further simplify by eliminating θ̄ using equation (111).

The planner is willing to put support on both 0 and λ̄ if

2rc =

(
2γ + λ̄M(0)

)
M(λ̄)∆

2(r + 2γ)
(
r + 2γ + λ̄M(λ̄)

) − (m0 +
γ + λ̄M(λ̄)mλ̄

r + 2γ + λ̄M(λ̄)

)
∆

λ̄
dF (λ̄). (112)

Setting F (0) = r+2γ
2r+2γ

, M(0) = m0F (0) = γ
2r+2γ

, dF (λ̄) = 1 − F (0) = r
2r+2γ

, and M(λ̄) =

M(0) +mλ̄µF ({λ̄}), with mλ̄ defined in equation (30), gives us the threshold c̄, above which

Λ = 0 is an optimal allocation. Setting F (0) = 1 and M(0) = M(λ̄) = m0 = γ
r+2γ

gives us

the threshold ¯̄c, above which setting F (λ) = 1 for all λ is an optimal allocation.
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Low Cost. We next characterize an intermediated trade optimum, µF ({λ̄}) = 1. For such

an allocation to be optimal, it must be the case that Πλ ≤ Πλ̄ for all λ ∈ X . Following the

proof of Proposition 2-P, this is equivalent to

c ≤
γ S(λ)−S(λ̄)

λ̄−λ − θ̄
r

for all λ. Eliminate S(λ) using equation (98) and θ̄ using equation (99), both applicable

to the case with µF ({λ̄}) = 1. It is easy to show that the right hand side of the previous

equation is decreasing in λ. This means that the inequality is most strict in the limit as

λ→ λ̄. That is, an intermediated trade allocation is optimal if and only if

c ≤ −γS
′(λ̄)− θ̄
r

= ∆
2γ2
(
4(r + 2γ)2 + 8γλ̄− λ̄2

)
rψ(λ̄+ 2ψ)(r + 2γ + ψ)2(2r + 4γ + λ̄)

= c,

where again ψ ≡
√

(r + 2γ)2 + 2γλ̄. This is the same as condition (100), adapted to an

environment with a linear cost.

Note that if λ̄ ≥ 4γ + 2
√
r2 + 4rγ + 8γ2, c ≤ 0, so this region vanishes when the cost

function is nondecreasing.

Intermediate Cost. Now assume c ∈ (c, c̄). We look for an optimal allocation described

by the solution to an initial value problem. With C ′′(λ) = Z(λ) = 0, equations (104)

and (105) are a pair of ordinary differential equations in F and M . Given a lower bound λ,

we can solve these and verify that the solutions are increasing with limλ→λ̄ F (λ) < 1.

Optimality dictates that the lower bound must satisfy equation (108). Eliminating θ̄

using equation (111) gives

2rc = −γS ′(λ)−
(
rΠ̄ + ∆

γ + λ̄M(λ̄)mλ̄

r + 2γ + λ̄M(λ̄)

)
µF ({λ̄})

λ̄
. (113)

We again use continuity of the right hand side of this expression, as well as the intermedi-

ate value theorem, to prove the existence of an optimal allocation in the same fashion as

equilibrium.

Definition 2-P Assume C(λ) = cλ. Fix r, γ, ∆, and c. For any λ̄, let (µF,λ̄,mλ̄, Sλ̄) satisfy

the necessary conditions for an optimal allocation when the maximum contact rate is λ̄ and

as usual let Fλ̄(λ) = µF,λ̄([0, λ]) for all λ ≤ λ̄. Also extend the definition of (Fλ̄,mλ̄, Sλ̄) to

the positive reals in an arbitrary way. (F,m, S) with domain [0,∞)3 is a limiting optimum
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if there exists an increasing unbounded sequence {λ̄n} with associated (Fλ̄n ,mλ̄n , Sλ̄n) which

converges pointwise to (F,m, S).

Lemma 2-P Assume C(λ) = cλ. If c ≥ c̄∗ ≡ γ∆
8r(r+γ)(r+2γ)

, a limiting (autarky) optimum

with F (λ) = F (0) > 0 for all λ exists. If c < c̄∗, a limiting (intermediated trade) optimum

with F (λ) = 0 and F strictly increasing on [λ,∞) for some λ > 0 exists. Moreover, any

limiting optimum takes one of these forms.

Proof. To prove the planner’s version of Lemma 2, the key step we need to reproduce is that

c̄n converges to c̄∗ from below, where c̄∗ is the cost threshold for the existence of a limiting

optimum with Λ > 0. Expanding equation (112), the threshold c̄n satisfies

c̄n =

(
2 + λ̄

2r+2γ

)
M(λ̄)γ∆

4r(r + 2γ)
(
r + 2γ + λ̄M(λ̄)

) − (m0 +
γ + λ̄M(λ̄)mλ̄

r + 2γ + λ̄M(λ̄)

)
∆

4(r + γ)λ̄
.

The second term is positive and converges to zero when λ̄→∞. Moreover,(
2 + λ̄

2r+2γ

)
M(λ̄)γ∆

4r(r + 2γ)
(
r + 2γ + λ̄M(λ̄)

) ≤ γ∆

8r(r + γ)(r + 2γ)
= c̄∗,

as can be confirmed algebraically. The inequality also binds in the limit as λ̄ → ∞ (since

M(λ̄)→M(0) > 0). This proves that c̄n converges from below to c̄∗, the same cost threshold

as in equilibrium. The remainder of the proof of this Lemma is unchanged.

Proposition 4-P Assume C(λ) = cλ with c < γ∆
8r(r+γ)(r+2γ)

. Then in a limiting optimum

there are middlemen, meaning limλ→∞ F (λ) < 1; and the contact rate distribution has a

Pareto tail with tail index 2, meaning limλ→∞ λ
2(1−G(λ)) is positive and finite.

Proof. In a limiting optimum, condition (113) reduces to 2rc = −γS ′(λ). We can use this

to obtain a lower bound on λ for fixed c, and prove that the lower bound converges to infinity

as c goes to zero, as in the limiting equilibrium.

We first prove the existence of middlemen. Similar to the proof for equilibrium, we prove

that for fixed r and γ, there exists F ∗ > 0, independent of c, ∆, and λ̄, such that in any

allocation that satisfies the necessary first order conditions for optimality, with F (0) = 0,

µF ({λ̄}) ≥ F ∗. It follows that there are middlemen in any limiting optimum.

We focus here on the proof that limλ→∞ F (λ) is bounded below 1 even when λ → ∞.

We work with the initial value problem (104)–(105) with Z(λ) = 0 and apply the same
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transformation of variables as in equilibrium: let ρ ≡ λ/λ, H(ρ) ≡ F (ρλ) and L(ρ) ≡
ρλM(ρλ), with H(1) = L(1) = 0. In the limit as λ→∞, the initial value problem becomes

H ′(ρ) =
2γ(1−H(ρ))

ρ(2γ + L(ρ))
and L′(ρ) =

2γ + L(ρ)

ρ
,

with L(1) = H(1) = 0. These differential equations can be solved in closed form,

L(ρ) = 2γ(ρ− 1) and H(ρ) = 1− eρ−1−1. (114)

Thus limρ→∞H(ρ) = 1 − e−1 ≈ 0.632 < 1 which, similar to equilibrium, establishes the

bound in the limit.

Finally, the argument for the Pareto tail is exactly analogous to equilibrium. We find

that

lim
n→∞

lim
λ→λ̄n

λ2F ′n(λ) = 2 lim
n→∞

(1− F̄n + 2M̄n)(γ(1− F̄n)− rM̄n)

M̄n(1− F̄n + M̄n)
,

where F̄n ≡ limλ→λ̄n Fn(λ) and M̄n ≡ limλ→λ̄nMn(λ), analogous to equation (74). We

can again prove that the right hand side has a well-behaved limit and so the density F ′ is

asymptotically proportional to λ−2.

The argument translating this from the density of counterparties to the cumulative dis-

tribution of contact rates follows the logic in the proof of Proposition 4.

Corollary 1-P Assume C(λ) = cλ with c < γ∆
8r(r+γ)(r+2γ)

. In a limiting optimum, the

fraction of trades with middlemen is strictly positive; and the trading rate distribution has a

Pareto tail with tail index 2, meaning limα→∞ α
2(1− Ĝ(α)) is positive and finite.

We omit the proof, since it is unchanged from Corollary 1.

Proposition 5-P Assume C(λ) = cλ. Consider a sequence of limiting optima as c con-

verges to zero. The aggregate trading volume V converges to approximately 2.22γ and can be

decomposed as follows: middlemen’s purchases from other middlemen account for a volume

Vmm = 1
2
γ; middlemen’s purchases from non-middlemen account for a volume of Vmn = 1

2
γ;

non-middlemen’s purchases from middlemen account for a volume Vnm = 1
2
γ; and non-

middlemen’s purchases from non-middlemen account for a volume Vnn ≈ 0.72γ.

Proof. We focus on the behavior of the functions L and H, corresponding to an allocation

with λ → ∞, defined in equation (114). The ratio of the average contact rate to the lower
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bound converges to:

Λ

λ
=

1

λ
∫
X

1
λ
dµF (λ)

=
1∫∞

1
1
ρ
H ′(ρ)dρ

= e ≈ 2.718,

where we do the usual change in variables and then take advantage of the known functional

form of H.

Next, let Ψ(ρ) ≡ G(ρλ) denote the cumulative distribution of relative contact rates.

Using equation (16) and the known functional form of H, we have

Ψ′(ρ) = ρ−3eρ
−1 ⇒ Ψ(ρ) = (1− ρ−1)eρ

−1

, (115)

where the result follows by integrating the density function. This is an explicit solution for

the distribution of relative contact rates in the limiting economy.

Next, we turn to volume. We start with the volume of purchases by non-middlemen.

Analogous to equation (82) in equilibrium, we get that this is Vnn+Vnm → (e−3/2)γ ≈ 1.22γ.

The logic behind the other trading rates is unchanged. In particular, middlemen buy

from non-middlemen a volume Vmn → γ/2. They sell to them at the same rate, and so

non-middlemen buy from middlemen a volume Vnm → γ/2. This implies Vmm → (e − 2)γ.

Finally, the volume of trades between middlemen is unchanged, Vmm → γ/2.

E Comparison of Equilibrium and Optimum

E.1 Pigouvian Subsidies

Proposed Mechanism We propose that a trader who chooses a contact rate λ receives a

net subsidy

σ1(λ) ≡ λ

4

∫
X

(
mλ′(S(λ′)− S(λ))+ + (1−mλ′)(−S(λ′)− S(λ))+

)
dµF (λ′)− θ̄λ (116)

per unit of time spent in a well-aligned state and a net subsidy

σ0(λ) ≡ λ

4

∫
X

(
mλ′(S(λ′) + S(λ))+ + (1−mλ′)(−S(λ′) + S(λ))+

)
dµF (λ′)− θ̄λ (117)

per unit of time in a misaligned state. If σa(λ) < 0, we interpret −σa(λ) as a state-contingent

net tax. The social surplus function S as well as θ̄ are defined by the solution to the planner’s
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problem.

To see how this affects trading and investments, we extend equation (24) to incorporate

this subsidy:

rvλ,h,1 =δh,1 + γ(vλ,l,1 − vλ,h,1) +
λ

4

∫
X

(
mλ′(vλ,h,0 + vλ′,h,1 − vλ,h,1 − vλ′,h,0)+

+ (1−mλ′)(vλ,h,0 + vλ′,l,1 − vλ,h,1 − vλ′,l,0)+
)
dµF (λ′) + σ1(λ), (118a)

rvλ,h,0 =δh,0 + γ(vλ,l,0 − vλ,h,0) +
λ

4

∫
X

(
mλ′(vλ,h,1 + vλ′,h,0 − vλ,h,0 − vλ′,h,1)+

+ (1−mλ′)(vλ,h,1 + vλ′,l,0 − vλ,h,0 − vλ′,l,1)+
)
dµF (λ′) + σ0(λ), (118b)

rvλ,l,1 =δl,1 + γ(vλ,h,1 − vλ,l,1) +
λ

4

∫
X

(
mλ′(vλ,l,0 + vλ′,h,1 − vλ,l,1 − vλ′,h,0)+

+ (1−mλ′)(vλ,l,0 + vλ′,l,1 − vλ,l,1 − vλ′,l,0)+
)
dµF (λ′) + σ0(λ), (118c)

rvλ,l,0 =δl,0 + γ(vλ,h,0 − vλ,l,0) +
λ

4

∫
X

(
mλ′(vλ,l,1 + vλ′,h,0 − vλ,l,0 − vλ′,h,1)+

+ (1−mλ′)(vλ,l,1 + vλ′,l,0 − vλ,l,0 − vλ′,l,1)+
)
dµF (λ′) + σ1(λ). (118d)

We conjecture that vλ,h,1 − vλ,h,0 = S(λ) + q and vλ,l,0 − vλ,l,1 = S(λ) − q for some number

q. This ensures that trades occur in exactly the same situation as the planner would like.

Moreover, by adding equations (118a) and (118d) and then subtracting equations (118b)

and (118c), we obtain equation (12). Thus the tax ensures that the equilibrium and optimal

surplus functions are identical. Moreover, averaging equations (118a) and (118d) to compute

πλ =
vλ,h,1+vλ,l,0

2
−C(λ), we get that the choice of contact rate maximizes rΠλ−δ1, where Πλ is

defined in equation (14). That is, the optimal distribution of contact rates is an equilibrium

of the model with the proposed subsidy.

In closing, we note that the subsidies in equations (116)–(117) are isomorphic to doubling

the surplus in every meeting but also charging a tax θ̄ for each meeting.

Terms of Trade Consider the difference between the subsidy to a misaligned trader and

the subsidy to a well-aligned trader, σ0(λ)− σ1(λ). Use equations (116) and (117) to write

this out explicitly and then simplify using equation (12):

σ0(λ)− σ1(λ) =
∆− (r + 2γ)S(λ)

2
.

This is non-negative and strictly increasing in λ. That is, for all traders, the Pigouvian

subsidy provides more support to traders in the misaligned compared to the well-aligned
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state. Further, for faster traders, the difference in subsidies across the two states is larger.

The state-contingent subsidies have an impact on the prices due to Nash bargaining. In

particular, many trades involve a fast trader intermediating for a slow trader. The Pigouvian

subsidies pay the fast trader for taking on misalignment. The slower trader then extracts

some of that subsidy during Nash bargaining. Conversely, subsidies fall when the fast trader

becomes well-aligned, so the Pigouvian subsidies shift the terms of trade towards the faster

trader in a fundamental trade involving two misaligned traders. Still, since most traders are

well-aligned, the former effect outweighs the latter, and so Pigouvian subsidies on average

improve the terms of trade enjoyed by the slowest traders. That is, Pigouvian subsidies

manipulate trading prices in manner that discourages traders from investing in their contact

rate.

Average Subsidy We can also compute the average subsidy per unit of time going to a

type λ trader, σ(λ) ≡ mλσ0(λ)+(1−mλ)σ1(λ), where σ1 and σ0 are defined in equations (116)

and (117) and mλ is the type-specific misalignment rate:

σ(λ) =
λ

4

∫
X

(
mλ′(S(λ′)− S(λ))+ + (1−mλ′)(−S(λ′)− S(λ))+

)
dµF (λ′)

λmλ

4

∫
X

(
mλ′
(
(S(λ′) + S(λ))+ − (S(λ′)− S(λ))+

)
+ (1−mλ′)

(
(−S(λ′) + S(λ))+ − (−S(λ′)− S(λ))+

))
dµF (λ′)− θ̄λ.

Use equation (14) to eliminate the first integral and equation (12) to eliminate the second

integral. The optimal subsidy for such contact rates is

σ(λ) =
rΠλ + ∆mλ + rC(λ) +

(
γ − (r + 2γ)mλ

)
S(λ)− θ̄λ

2
. (119)

Now differentiate this at any point λ ∈ Y . At points selected by a measure zero of traders,

we first eliminate mλ = M ′(λ)/F ′(λ) using equation (31). We then differentiate the re-

sulting expression and eliminate F ′ and M ′ using equations (104) and (105) and S ′ using

equation (101). This gives

σ′(λ) =
r(C ′(λ) + λC ′′(λ))− θ̄

2
. (120)

In the linear cost case, C(λ) = cλ, and so equation (120) reduces to σ′(λ) = (rc − θ̄)/2.

Since θ̄ − rc converges to zero when λ̄ → ∞ (equation 111), it follows that the marginal

subsidy σ′(λ) converges to zero in this limit. That is, the Pigouvian subsidy scheme does not
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manipulate investments by transferring resources across traders with different contact rates.

Instead, it does so exclusively by manipulating the terms of trade through the differential

subsidy in the mis- and well-aligned states.

Finally, consider the population average subsidy, σ̄ ≡
∫
X σλdµG(λ) = Λ

∫
X (σ(λ)/λ)dµF (λ).

Recall that
∫
X ΠλdµF (λ) = Π̄ since the planner only uses contact rates that maximize Πλ.

We can then use equation (94) to eliminate Π̄ and equation (15) to eliminate θ̄ from equa-

tion (119), so the Pigouvian subsidy is consistent with a balance budget.

E.2 Distortions to Investment

Assume the cost function is linear, C(λ) = cλ, and consider a limiting optimal counterparty

distribution F . We prove that with this allocation and cost function, the equilibrium profit

function πλ is strictly increasing in λ and unbounded above, so traders prefer an unboundedly

large contact rate. Put differently, the optimal allocation suppresses investment in contacts.

First differentiate equation (96) to get

rΠ′λ = −
(
γ +

λM(λ)

2

)
S ′(λ) +

1

2

∫ ∞
0

(S(λ′)− S(λ))dM(λ′)− θ̄ − rc = 0,

where we use the necessary condition for optimality Π′λ = 0. Equation (111) implies θ̄ = rc

when λ̄ → ∞. Additionally, for sufficiently large λ, equation (90) implies S(λ) → 0 and

equation (101) implies λS ′(λ)→ 0. Thus we get∫ ∞
0

S(λ′)dM(λ′) = 4rc (121)

in a limiting optimal allocation.

Similarly, differentiate equation (37) to get

rπ′λ = −
(
γ +

λM(λ)

4

)
s′(λ) +

1

4

∫ λ

0

(s(λ′)− s(λ))dM(λ′)− rc.

Again, for sufficiently large λ, equation (35) implies s(λ) → 0 and equation (34) implies

λs′(λ)→ 0. Using equation (121) to eliminate c, we obtain

lim
λ→∞

π′λ =
1

4r

∫ ∞
0

(s(λ′)− S(λ′))dM(λ′).

A comparison of equations (36) and (91) implies φλ > Φλ for all λ > 0. Hence equations (35)

and (90) imply s(λ) > S(λ) for all λ > 0. This proves limλ→∞ π
′
λ > 0.
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Next twice differentiate equation (37) at any λ ≥ λ. Eliminate s′′ using equation (43)

and F ′ and M ′ using equation (104) and (105). We obtain

rπ′′λ =
λ
(
γ(1− F (λ)− rM(λ))

)(
γ(1− F (λ)) + (r + 2γ)M(λ) + λM(λ)(1− F (λ) +M(λ))

)
s′(λ)(

2γ + λM(λ)
)(

2r + 2γ + λ(1− F (λ) +M(λ))
)(

4r + 8γ + λ(1− F (λ) + 2M(λ))
) .

Since s is decreasing and the other terms are all positive (recall, in particular, that we have

already shown that γ(1 − F (λ)) > rM(λ)), this implies that the profit function is concave

on [λ,∞).

Finally, consider λ ≤ λ, where F (λ) = M(λ) = 0. Equation (37) implies πλ = −γs(λ)−
rcλ. Additionally, equation (43) implies s′′(λ) = − 2

4(r+2γ)+λ
s′(λ) > 0. Convexity of s implies

concavity of πλ for λ ≤ λ. Thus the profit function is globally concave.

Global concavity of the profit function implies that for all λ ≥ 0, π′λ > limλ′→∞ π
′
λ′ . Since

we have shown that this limit is strictly positive, it follows that the profit function is strictly

increasing with slope bounded above 0.

F Constrained Economy: The Role of Intermediation

We start by defining an equilibrium without intermediation analogously to the definition of

equilibrium with intermediation.

Definition 3 An equilibrium is a measure µF (S) which gives the probability that a counter-

party’s contact rate falls into the set S ⊆ X , a misalignment rate function m : X → [0, 1],

and a surplus function s : X → R, satisfying:

1. the surplus equation adjusted for the no-intermediation case,

∆ = (r+2γ)s(λ)+
λ

4

∫
X

(
(s(λ)+s(λ′))+mλ′−(−s(λ)−s(λ′))+(1−mλ′)

)
dµF (λ′) (122)

2. the balanced inflow-outflow adjusted for the no-intermediation case,(
r + γ +

λ

2

∫
X

(
Is(λ)+s(λ′)>0mλ′

)
dµF (λ′)

)
mλ

=

(
γ +

λ

2

∫
X

(
Is(λ)+s(λ′)<0(1−mλ′)

)
dµF (λ′)

)
(1−mλ). (123)

3. optimality of the ex-ante investment decision: µF (YNI) = 1, where YNI ≡ arg maxλ∈X π
NI
λ
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and

πNIλ =
δ1 − γs(λ) + λ

4

∫
X ((−s(λ)− s(λ′))+(1−mλ′)) dµF (λ′)

r
− C(λ). (124)

Note that there are two relevant types of meetings in this constrained economy, those between

two misaligned traders with opposite asset holdings, and those between two well-aligned

traders with opposite asset holdings. We can extend our earlier results to prove that the

first type of meeting results in trade while the second does not. That is, in equilibrium, two

well-aligned agents never jointly trade into misalignment.

We turn next to the planner’s problem. The planner again chooses µF (S), the time-

invariant probability that conditional on a meeting, the counterparty’s contact rate is some

λ ∈ S, along with the admissible set of trades; as in equilibrium, the planner is subject to

the constraint that intermediation is not allowed. The objective of the planner is unchanged,

given by equation (84). Since we are interested in the case where intermediation is not allowed

the planner is subject to an adjusted constraint on the evolution of the misalignment rate,(
r + γ +

λ

2

∫
X

(
Iλ
′,0
λ,0 mλ′

)
dµF (λ′)

)
mλ =

(
γ +

λ

2

∫
X

(
Iλ
′,1
λ,1 (1−mλ′)

)
dµF (λ′)

)
(1−mλ).

(125)

Proof of Proposition 6.

Equilibrium. We first prove that equation (122) defines the surplus function to be positive

valued, as in the proof of Lemma 1. Then we can solve the equation to get

s(λ) =
4∆− λ

∫
X s(λ

′)dµM(λ′)

4(r + 2γ) + λM(λ̄)
, (126)

a decreasing and convex function. Condition 3 then implies traders choose λ to maximize

−γs(λ)/r − C(λ). If C(λ) is weakly convex, all traders choose the same value of λ = Λ.

Planner. Replicating the argument in Online Appendix D.1, we can write down the La-

grangian and find the social surplus function. It is again positive-valued, hence trade only

occurs between misaligned traders. Moreover, the optimal surplus function satisfies

∆ = (r + 2γ)S(λ) +
λ

2

∫
X

(S(λ) + S(λ′))dµM(λ′)⇒ S(λ) =
2∆− λ

∫
X S(λ′)dµM(λ′)

2(r + 2γ) + λM(λ̄)
,
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decreasing and convex. Using the same variational argument as in Online Appendix D.1, we

also obtain that the planner’s puts weight on λ only if it maximizes

−γS(λ)− λθ̄
r

− C(λ),

analogous to condition (96). Convexity of S implies that if the cost function is convex, the

planner places all weight on a single value of λ = Λ.
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