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Abstract

This paper presents a novel algorithmic study and complexity analysis of distribu-
tionally robust multistage convex optimization (DR-MCO). We propose a new class
of algorithms for solving DR-MCO, namely a sequential dual dynamic programming
(Seq-DDP) algorithm and its nonsequential version (NDDP). The new algorithms gen-
eralize and strengthen existing DDP-type algorithms by introducing the technique of
regularization that enables the algorithms to handle 1) fast growth of Lipschitz con-
stants, which is a common phenomenon in multistage optimization, and 2) problems
without relatively complete recourse. We then provide a thorough complexity analysis
of the new algorithms, proving both upper complexity bounds and a matching lower
bound. To the best of our knowledge, this is the first complexity analysis of DDP-type
algorithms for DR-MCO problems, quantifying the dependence of the oracle complexity
of DDP-type algorithms on the number of stages, the dimension of the decision space,
and various regularity characteristics of DR-MCO. Numerical examples are also given
to show the effectiveness of the proposed regularization technique on reducing computa-
tion time or the number of oracle evaluations and on solving problems without relatively
complete recourse.
Keywords: distributionally robust optimization; multistage convex optimization; dual
dynamic programming algorithm; complexity analysis; cutting plane algorithm

1 Introduction

Distributionally robust multistage convex optimization (DR-MCO) is a sequential decision
making problem with convex objective functions and constraints, where the exact proba-
bility distribution of the uncertain parameters is unknown and decisions need to be made
considering a family of distributions. DR-MCO provides a unified framework for studying
decision-making under uncertainty. It includes as special cases both multistage stochastic
convex optimization (MSCO), where the distribution of uncertainty is known and an av-
erage solution is sought, and multistage robust convex optimization (MRCO), where the
uncertainty is described by a set and a worst-case solution is sought. DR-MCO as a gen-
eral decision framework finds ubiquitous applications in energy system planning, supply

1



chain and inventory control, portfolio optimization, finance, and many other areas (see e.g.
[31, 5]).

DR-MCO is in general challenging to solve, due to the fast growth of the number of
decisions with respect to the number of decision stages [29, 13, 15]. Meanwhile, real-world
problems are often endowed with special structures in the uncertainty distribution. In par-
ticular, the uncertainty may exhibit stagewise independence (SI), i.e. the joint probability
distribution equals the product of its marginal distributions in each stage. Many uncertainty
structures, such as autoregressive models, can be reformulated into SI. This versatile mod-
eling capability of SI has great implications on computation. It allows recursive formulation
of a cost-to-go function in each stage of a DR-MCO to be independent of the outcomes in
its parent stages, thus making efficient approximations of the cost-to-go functions possible.
Indeed, SI has been successfully exploited by various dual dynamic programming algorithms
in solving MSCO and MRCO [30, 28, 15, 26, 3, 4, 1, 35, 32].

Dual dynamic programming (DDP) is a class of recursive cutting plane algorithms
that originate from nested Benders decomposition for multistage stochastic linear opti-
mization [7, 24]. The earliest form of DDP for MSCO using stochastic sampling method
was proposed in [25], where in each iteration the scenarios are sampled randomly and solved
sequentially before updating the cost-to-go functions recursively. The algorithm has since
been widely adopted in areas such as energy systems scheduling [14, 9, 33]. The deter-
ministic sampling version of DDP was later proposed, which uses both over- and under-
approximations for sampling and termination [3, 4]. DDP has also been extended to mul-
tistage stochastic nonconvex problems [35, 36, 1, 34]. Robust dual dynamic programming
(RDDP) is proposed for multistage robust linear optimization [15]. Due to its intrinsic dif-
ficulty, the uncertainty sets are assumed to be polytopes such that the subproblem in each
stage can be solved via a vertex enumeration technique over the uncertainty set. Similar to
the deterministic DDP, RDDP constructs both over- and under-approximations to select the
worst-case outcome. Moreover, it has the advantage of being able to terminate the algorithm
with a guaranteed optimal first stage solution, in contrast to the commonly used decision
rules [20, 6, 18]. Recently, DDP has been further extended to DR-MCO with promising
out-of-sample performance [2, 19, 27, 12]. In particular, [27] uses ambiguity set defined by
a χ2-distance neighborhood. In [12], the ambiguity sets are taken to be finitely supported
Wasserstein metric balls centered at the empirical distributions, and the algorithm is shown
to converge asymptotically with stochastic sampling methods. We comment that all of the
above variants of DDP algorithms rely on the assumption of relatively complete recourse,
while it is indeed possible to have MSCO without such assumption [23].

The convergence analysis of DDP begins with multistage linear optimization [28, 30, 22,
8], where an almost sure finite convergence is established based on polyhedral structures.
In [16], an asymptotic convergence is proved for MSCO problems. Due to the multistage
structure, a main complexity question concerning DDP is the dependence of its iteration
complexity on the number of decision stages, which is recently answered for MSCO, in-
dependently in [21, 34]. In particular, [16, 21] assume relatively complete recourse and,
moreover, the value functions are all Lipschitz continuous. A weaker regularity assumption
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concerning exact penalization is made instead in [34] that allows the DDP algorithm to
work without relatively complete recourse. However, it is not yet known whether the DDP
algorithm, together with the complexity analysis, works for DR-MCO. The present paper
introduces new algorithmic techniques to DDP and answers this question for the first time.

While the DDP algorithms have achieved great computational success for MSCO prob-
lems, one major issue of their generalization to the DR-MCO problems is the lack of proper
termination criterion. Due to the distributional uncertainty in the model, the commonly
used statistical upper bound for the policy evaluation in the MSCO literature (e.g., [30, 35])
is no longer valid for the DR-MCO problems. As a result, the current computational im-
plementations in [27] and [12] choose to terminate at a fixed number of iterations or cuts,
without a good guarantee of the solution quality. To overcome the lack of statistical upper
bound, we focus on the deterministic DDP algorithms in this paper, which use both under-
and over-approximations to certify the optimality of the solution, similar to the RDDP
algorithm [15]. In particular, our paper makes the following contributions.

1. We provide a unified framework for studying DR-MCO with finitely supported dis-
tributions. Under the framework, we construct a novel example to show that the
traditional cutting plane method can easily cause the Lipschitz constants of the stage
problem to grow with respect to the number of stages. Motivated by this phenomenon,
we introduce an important algorithmic technique of regularization to DDP, which can
effectively control the growth of Lipschitz constraints and can dispense with the rel-
atively complete recourse assumption.

2. A new class of sequential DDP algorithms (Seq-DDP) and its nonsequential version
(NDDP) based on regularization is proposed for solving DR-MCO. Complexity upper
bounds based on single stage subproblem oracles are proved for both Seq-DDP and
NDDP for the first time.

3. We construct a class of multistage robust convex problems to obtain a complexity lower
bound for the new algorithms for the first time, which shows the complexity upper
bounds are essentially tight, in terms of the number of stages. The complexity bounds
may be applied to more general DR-MCO problems with continuous distributions.

4. Numerical results on a multi-commodity inventory problem and a hydro-thermal
power planning problem are given to illustrate the two effects of regularization: ca-
pability to solve problems without relatively complete recourse and reduction in the
computation time and number of subproblem oracle evaluations.

The rest of the paper is organized as follows. Section 2 contains the formulations of the
problems and the discussion on the regularization. In Section 3, we introduce the single
stage subproblem oracles and present the algorithms with complexity analyses (both upper
bounds and a lower bound). In Section 4, we present two classes of numerical examples
that demonstrate the effectiveness of the algorithms using the regularization technique. We
provide some concluding remarks in Section 5.
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2 Formulations and Recursive Approximation

In this section, we introduce formulations of distributionally robust multistage convex opti-
mization (DR-MCO) with finite supports. We build approximations of the value functions
using recursions. We then discuss the regularization technique and its exactness for com-
plexity analysis in Section 3.

2.1 Problem Formulations

We first describe the standard formulation for DR-MCO and then show that a general
class of multistage robust convex optimization (MRCO) problems can be rewritten in the
standard formulation.

2.1.1 Distributionally Robust Multistage Stochastic Convex Optimization

We begin with the definition of distributionally robust multistage convex optimization (DR-
MCO) problems that are stagewise independent (SI) and have finite supports. Let T :=
{1, 2, . . . , T} denote the set of stage indices and N = ∪Tt=1N (t) denote the set of subproblem
indices, which is partitioned by the stages. In particular, the first stage is assumed to be
deterministic, i.e., N (1) = {1} is a singleton. The pair (T ,N ) indeed defines a recombining
scenario tree for stagewise independent stochastic programs [34, 35]. For each subproblem
n ∈ N , let Fn denote the compact feasibility set of decision variables (xn, yn) in some
Euclidean spaces, where xn is called the state variable and yn the internal variable. The
state space Xt ⊂ Rdt of stage t ∈ T is a compact subset that contains all the projections of
feasibility sets Fn onto the state variable for n ∈ N (t). We make the convention x0 ∈ X0 =
{0} and N (T + 1) = ∅ for notational convenience. The cost function of the subproblem
n ∈ N (t) is a nonnegative lower semicontinuous function fn(xt−1, yn, xn), which is allowed
to take +∞ as an indicator function, for all t ∈ T . The DR-MCO is defined as follows.

min
(x1,y1)∈F1,

f1(x0, y1, x1) + sup
p1∈P1

∑
n2∈N (2)

p1,n2 · min
(xn2 ,yn2 )∈Fn2

[
fn2(x1, yn2 , xn2)+ (1)

+ sup
pn2∈P2

∑
n3∈N (3)

pn2,n3 · min
(xn3 ,yn3 )∈Fn3

[
fn3(xn2 , yn3 , xn3) + · · ·

+ sup
pnT
∈PT

∑
nT∈N (T )

pnT−1,nT · min
(xnT

,ynT
)∈FnT

fnT (xnT−1 , ynT , xnT )

]]
.

In this definition (1), each transition probability vector pn = (pn,m)m∈N (t+1) belongs to a
family of discrete distributions Pt for n ∈ N (t). Note that the set Pt depends only on
its stage, regardless of uncertainties and realizations in its previous stages. This is known
as the stagewise independence for multistage stochastic and robust programs [30, 15]. We
assume that the problem (1) has a finite optimal objective value such that it is well-defined.
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By the introduction of (worst-case) expected cost-to-go function, we are able to rewrite
the problem (1) as a recursion:

Qt(xt) := sup
pt∈Pt

∑
n∈N (t+1)

pt,n

(
min

(xn,yn)∈Fn

fn(xt, yn, xn) +Qt+1(xn)

)
. (2)

By convention, QT (x) ≡ 0. To simply the notation, we also define the value functions as

Qn(xt) := min
(xn,yn)∈Fn

fn(xt, yn, xn) +Qt+1(xn), n ∈ N (t+ 1). (3)

We have the obvious relation Qt(xt) = suppt∈Pt

∑
n∈N (t+1) pt,nQn(xt) for all t < T . Since

the size of the problem (1) may grow exponentially with the number of stages T , it is often
impractical to seek subproblem solutions (xn, yn) for all n ∈ N . Our goal is to solve instead
for an optimal first stage solution (x1, y1) to the problem (1), which can be equivalently
written as

(x∗1, y
∗
1) ∈ arg min

(x1,y1)∈F1

{
f1(x0, y1, x1) +Q1(x1)

}
. (4)

One important observation from the recursive formulation (2) is that the supremum is
defined over a linear function in the probability vector pt. Therefore, we assume that

Pt ⊆ ∆|N (t+1)| := {pt ∈ R|N (t+1)|
≥0 :

∑
n∈N (t+1) pt,n = 1} is a closed convex subset without

loss of generality. Thus we replace the supremum in definition (2) with maximum in the
rest of the paper. The following proposition characterizes the convexity of the recursion
functions (2) and (3).

Proposition 1. If the feasibility sets Fn are compact convex, and local cost functions fn
are closed convex for all n ∈ N , then the functions Qn and Qt are closed convex for all
n ∈ N and t ∈ T .

Proof. We prove by recursion from t = T to t = 1. By definition, QT ≡ 0 is closed convex.
Now assume Qt is closed convex for some t ∈ T . For each n ∈ N (t), by assumption
fn(xt−1, yn, xn) + Qt(xn) is a closed convex function on Fn. Therefore, the epigraph of
Qn(xt−1) on Xt−1 is closed convex and so is Qn by definition (3). For any probability vector
pt−1 ∈ Pt−1, the epigraph of the weighted sum

∑
n∈N (t) pt−1Qn(xt−1) is a closed convex

set. The epigraph of Qt−1 is the intersection of these epigraphs, which shows that Qt−1 is
a closed convex function.

2.1.2 Multistage Robust Convex Optimization

Another important source of our formulation is the multistage robust convex optimization
(MRCO) problems, where the uncertainty sets are polytopes. In this section, we describe
these robust programs and show that they can be equivalently formulated as the problem (2).

Let T denote the set of stage indices. For each stage t ∈ T , let ξt denote the uncertainty
vector taking values from an uncertainty set Ξt. The first stage is assumed to be certain,
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i.e., Ξ1 is a singleton and, without loss of generality, we write ξ1 ≡ 0. Let (xt, yt) denote
the decision variables such that the tuple (xt, yt; ξt) is restricted in the feasibility set F rob

t ,
and f rob

t (xt−1, yt, xt; ξt) the local cost function for each stage t ∈ T , with the convention
x0 ≡ 0. The MRCO can be written as

min
(x1,y1;ξ1)∈Frob

1

f rob
1 (x0, y1, x1; ξ1) + sup

ξ2∈Ξ2

min
(x2,y2;ξ2)∈Frob

2

f rob
2 (x1, y2, x2; ξ2) (5)

+ sup
ξ3∈Ξ3

min
(x3,y3;ξ3)∈Frob

3

f rob
3 (x2, y3, x3; ξ3) + · · ·

+ sup
ξT∈ΞT

min
(xT ,yT ;ξT )∈Frob

T

f rob
T (xT−1, yT , xT ; ξT ).

We similarly define the (worst-case) cost-to-go functions in a recursive fashion.

Qt−1(xt−1) := sup
ξt∈Ξt

min
xt,yt

{
f rob
t (xt−1, yt, xt; ξt) +Qt(xt) : (xt, yt; ξt) ∈ F rob

t

}
, (6)

where QT ≡ 0. The goal of the MRCO is to find a first stage optimal solution

(x∗1, y
∗
1) ∈ arg min

(x1,y1;ξ1)∈Frob
1

{
f rob

1 (x0, y1, x1; ξ1) +Q1(x1)
}
. (7)

The recursion (6) is in general very challenging to solve because it involves finding the
supremum over a usually nonconcave function in the uncertainty vectors ξt. However,
in an important class of problem described below, the recursion (6) can be equivalently
reformulated as equation (2).

Proposition 2. If the feasibility sets F rob
t are convex, the uncertainty sets Ξt are polytopes,

and the local cost functions f rob
t are jointly convex in (xt, yt; ξt) for all t ∈ T , then

Qt(xt) = max
pt∈∆N

∑
n∈N (t+1)

pt,n

(
min

(xn,yn)∈Fn

fn(xt, yn, xn) +Qt+1(xn)

)
,

where ext Ξt+1 =: {ξn}n∈N (t+1) is the finite set of extreme points of Ξt+1, N := |N (t+ 1)|,
∆N the N -dimensional simplex, and

fn(xt, yn, xn) := f rob
t+1(xt, yn, xn; ξn), Fn := {(xn, yn) : (xn, yn; ξn) ∈ F rob

t+1}.

Proof. By definition (6) and the same argument in Proposition 1, each cost-to-go function
Qt is convex if the local cost functions f rob

t and feasibility sets F rob
t are convex for all

t ∈ T . Then the function Qrob
t−1(xt−1; ξt) := minxt,yt{f rob

t (xt−1, yt, xt; ξt) +Qt(x+ t)} is also
convex. Note that Qt−1(xt−1) = supξt∈Ξt

Qrob
t (xt−1; ξt). By convexity, we conclude that

Qt−1(xt−1) = supξt∈ext Ξt
Qrob
t (xt−1; ξt) = maxpt−1∈∆N

∑
n∈N (t) pt−1,nQ

rob
t (xt−1; ξn), where

N := |N (t)|, and the last equality follows from the existence of extreme point solutions of
a linear program.
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The condition in Proposition 2 is quite commonly satisfied by many application prob-
lems. For example, when all the feasibility sets F rob

t and local cost functions f rob
t are defined

by convex functions, and the uncertainty vectors ξt only appear in the right-hand-sides of
the constraints (e.g., [15]), then we can reformulate the MRCO into a DR-MCO in the
form (1). Therefore, we use (2) as the standard formulation in the rest of the paper.

2.2 Approximation of Recursions

We now discuss the approximation of functions Qt and Qn in the recursions (2) and (3).
Recall the relation Qt(xt) = maxpt∈Pt

∑
n∈N (t+1) pt,nQn(xt). The following lemma relates

the Lipschitz continuity of the value functions Qn and the cost-to-go function Qt.

Lemma 1. For each stage t < T , if Qn is ln-Lipschitz continuous on Xt for each n ∈
N (t+ 1), then Qt is Lt-Lipschitz continuous on Xt where Lt = maxn∈N (t+1) ln.

Proof. Take any two points xit ∈ Xt, i = 1, 2. Let pit ∈ arg maxpt∈Pt

∑
n∈N (t+1) pt,nQn(xi)

denote corresponding maximizers for i = 1, 2. We have Qt(xit) =
∑

n∈N (t+1) p
i
t,nQn(xit),

where pit,n ≥ 0 and
∑

n∈N (t+1) p
i
t,n = 1 for each i = 1, 2. Therefore,

Qt(x1
t )−Qt(x2

t ) =
∑

n∈N (t+1)

p1
t,nQn(x1

t )−
∑

n∈N (t+1)

p2
t,nQn(x2

t )

≤
∑

n∈N (t+1)

p1
n,t

(
Qn(x1

t )−Qn(x2
t )
)
≤

∑
n∈N (t+1)

p1
n,t · ln

∥∥∥x1
t − x2

t

∥∥∥ ≤ Lt ∥∥∥x1
t − x2

t

∥∥∥ ,
where Lt = maxn∈N (t+1) ln. By exchanging the indices i = 1, 2, we similarly derive Qt(x2

t )−
Qt(x1

t ) ≤
∑

n∈N (t+1) p
2
n,t · ln

∥∥x1
t − x2

t

∥∥ ≤ Lt ∥∥x1
t − x2

t

∥∥, which completes the proof.

Combining Lemma 1 and Proposition 1, we know that if the value functions are convex
and Lipschitz continuous, then so are the cost-to-go functions. In such a case, we can
use cutting plane method to build an under-approximation of the cost-to-go functions.
To be precise, for each node n ∈ N (t + 1), let Vn(xt) denote an affine function such that
Qn(xt) ≥ Vn(xt) for all xt ∈ Xt. Such affine function is referred to as a linear valid inequality
or a linear cut for the value function, which is generated in the following way. Let Qt+1
denote an under-approximation of the cost-to-go function Qt+1 and x̂t ∈ Xt a feasible state.
For each n ∈ N (t+ 1), the Lagrangian dual problem

sup
λn

min
xn,yn,zn

fn(zn, yn, xn) +Qt+1(xn) + 〈λn, x̂t − zn〉 (8)

s.t. (xn, yn) ∈ Fn

gives an affine function Vn(xt) := vn + 〈λ̂n, xt − x̂t〉, where λ̂n is a dual solution of (8) and
vn := min{fn(zn, yn, xn) +Qt+1(xn) + 〈λ̂n, x̂t − zn〉 : (xn, yn) ∈ Fn} is the associated value
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to the problem (8). Then, by definition (3) and weak duality, we have for every xt ∈ Xt,

Qn(xt) ≥ sup
λn

min
xn,yn,zn

{
fn(zn, yn, xn) +Qt+1(xn) + 〈λn, xt − zn〉 : (xn, yn) ∈ Fn

}
≥ sup

λn

min
xn,yn,zn

{
fn(zn, yn, xn) +Qt+1(xn) + 〈λn, x̂t − zn〉 : (xn, yn) ∈ Fn

}
+ 〈λn, xt − x̂t〉

(9)

≥ min
xn,yn,zn

{
fn(zn, yn, xn) +Qt+1(xn) + 〈λ̂n, xt − zn〉 : (xn, yn) ∈ Fn

}
+ 〈λ̂n, xt − x̂t〉

≥ vn + 〈λ̂n, xt − x̂t〉.

Therefore, Vn(xt) is a valid inequality for the value function Qn(xt). The next proposition
shows that we can combine linear cuts for value functions into a valid inequality for the
cost-to-go function.

Proposition 3. Fix a point x0
t ∈ Xt and a probability vector p0

t ∈ Pt. If for each n ∈
N (t + 1), Vn(xt) = vn + 〈λ̂n, xt − x̂t〉 is an l′n-Lipschitz continuous valid inequality, i.e.
‖λ̂n‖ ≤ l′n, then Qt(xt) ≥ Vt(xt) :=

∑
n∈N (t+1) p

0
t,nVn(xt) for all xt ∈ Xt. Moreover,

the valid inequality Vt is L′t := (
∑

n∈N (t+1) p
0
t,nl
′
n)-Lipschitz continuous such that for any

δ > γ := Qt(x0
t ) − Vt(x0

t ), we have Qt(xt) ≤ Vt(xt) + δ, for any point xt ∈ Xt with∥∥xt − x0
t

∥∥ ≤ (δ − γ)/(Lt + L′t).

Proof. The first claim follows from the definition

Qt(xt) = max
pt∈Pt

∑
n∈N (t+1)

pt,nQn(xt) ≥
∑

n∈N (t+1)

p0
t,nQn(xt) ≥

∑
n∈N (t+1)

p0
t,nVn(xt) = Vt(xt).

The second claim follows from the Lipschitz continuity of the valid inequality and the cost-
to-go function, i.e., for any point xt ∈ Xt with

∥∥xt − x0
t

∥∥ ≤ (δ − γ)/(Lt + L′t),

Qt(xt) ≤ Qt(x0
t ) + Lt‖xt − x0

t ‖ ≤ Vt(xt) + (Lt + L′t)‖xt − x0
t ‖+ γ ≤ Vt(xt) + δ,

where the first inequality is due to Qt being Lt-Lipschitz continuous by Lemma 1.

The proposition suggests that the combined linear cut is close to the cost-to-go function
in a neighborhood, given that the gap Qt(x0

t ) − Vt(x0
t ) is small. However, the radius of

such neighborhood depends on the Lipschitz constants of the linear cuts Vn, which are not
necessarily bounded by the Lipschitz constants ln of value functions Qn, as is shown by the
following example.

Example 1. Consider a T -stage deterministic problem (i.e.,
∣∣N (t)

∣∣ = 1 for all t ∈ T )
defined as

Qt(xt−1) := min
yt,xt

yt +Qt+1(xt)

s.t. yt ≥ max{0, 1− 2xt−1}, xt ≤ xt−1 +
1

2
, 0 ≤ xt ≤ 1.
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Here, the convention QT+1(xt) ≡ 0 is used to simplify the definition. Note that for each
stage t ∈ T , since xt−1 ∈ [0, 1], we have a feasible solution xt = 1/2, which implies that
Qt(xt−1) ≤ min{yt : yt ≥ max{0, 1 − 2xt−1}. By taking yt = max{0, 1 − 2xt−1} and
using the fact that Qt+1(xt) ≥ 0 recursively, we conclude that the cost-to-go functions are
Qt+1(xt) = max{0, 1 − 2xt} for all t ∈ T . However, if we start our approximation with
points x0

t = 0 for all stages t ∈ T , then the linear cut Vt(xt) := vt +
〈
λt, xt − x0

t

〉
can be

generated from the following dual problem at stage t:

vt := max
λt

min
zt,yt,xt

yt + λt(0− zt) +Q0
t+1

(xt)

s.t. yt ≥ max{0, 1− 2zt}, xt ≤ zt +
1

2
, 0 ≤ xt ≤ 1.

Thus the under-approximation of the value functions of stage T will be Q0
T

(xT−1) = 1 −
2xT−1. Plugging in the under-approximation and the dual problem becomes

vt = max
λt

min
zt,yt,xt

yt + λt(0− zt) + 1− ctxt

s.t. yt ≥ max{0, 1− 2zt}, xt ≤ zt +
1

2
, 0 ≤ xt ≤ 1,

where cT = 2. By solving the dual problem recursively, we conclude that ct = ct+1 + 2 and
hence ct = 2(T − t + 1). In other words, the under-approximation obtained after the first
iteration has a Lipschitz constant greater than the actual one.

The example shows that, the Lipschitz constant of the generated linear cuts is not
completely determined by the problem data - it also depends on how we approximate the
value function during the algorithm by picking the state at which we generate the linear cut.
This phenomenon of growing Lipschitz constant is undesirable for our complexity analysis
in this paper, because naturally the complexity of an algorithm should be determined by
the problem data, without the arbitrariness on how we solve the subproblem (or the output
of a subproblem oracle). To overcome this problem, we consider a surrogate for the true
problem (1) with the nice property of the bounded Lipschitz constant for value function
approximations, which is referred to as the regularization of the original problem (1).

2.3 Regularization and Its Exactness

The potential gap between the actual Lipschitz constants of the value functions Qn and the
generated linear cuts Vn (Example 1) not only affects the complexity analysis, but may also
negatively impact algorithmic performance. For this reason, we consider the regularization
of value functions, in which an infimal convolution is conducted to bound the generated
linear cuts. We begin with the recursive definition of regularized value functions and cost-
to-go functions. Let Mt > 0 denote a regularization factor for each t ∈ T \ {T}. The
regularized cost-to-go function is defined as

QR
t (xt) := max

pt∈Pt

∑
n∈N (t+1)

pt,nQ
R
n (xt), (10)
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where the regularized value function QR
n for each subproblem n ∈ N (t+ 1) is defined as

QR
n (xt) := min

xn,yn,zn
fn(zn, yn, xn) +QR

t+1(xn) +Mt ‖xt − zn‖ (11)

s.t. (xn, yn) ∈ Fn.

We set the same convention that QR
T (xT ) ≡ 0. Note that for nodes in the last stage n ∈

N (T ) and any xT−1 ∈ XT−1, since QR
n (xT−1) = minzn

{
Qn(zn) +MT−1 ‖xT−1 − zn‖

}
≤

Qn(xT−1) is an infimal convolution of Qn and the norm function MT−1 ‖ · ‖, hence it is
Mt-Lipschitz continuous. The next proposition shows that the functions QR

n and QR
t are

Lipschitz continuous envelopes of Qn and Qt, respectively, for all n ∈ N (t) and t ∈ T .

Proposition 4. For every node n ∈ N (t+ 1), t ∈ T \ {T}, the regularized value function
QR
n is Mt-Lipschitz continuous, and QR

n (xt) ≤ Qn(xt), ∀xt ∈ Xt. Moreover, if Qn is M ′t-
Lipschitz continuous with M ′t < Mt for all n ∈ N (t+ 1) and t < T , then Qn(xt) = QR

n (xt),
∀xt ∈ Xt.

Proof. For any node n ∈ N (t + 1) for some t ∈ T , pick any x1
t , x

2
t ∈ Xt. Let xin, y

i
n, z

i
n

denote the solutions in the definition (10) associated with xit for i = 1 and 2, respectively.
Then,

QR
n (x1

t )−QR
n (x2

t ) = fn(z1
n, y

1
n, x

1
n) +QR

t+1(x1
n) +Mt‖x1

t − z1
n‖ − fn(z2

n, y
2
n, x

2
n)−QR

t+1(x2
n)−Mt‖x2

t − z2
n‖

≤ fn(z2
n, y

2
n, x

2
n) +QR

t+1(x2
n) +Mt‖x1

t − z2
n‖ − fn(z2

n, y
2
n, x

2
n)−QR

t+1(x2
n)−Mt‖x2

t − z2
n‖

= Mt

(
‖x1

t − z2
n‖ − ‖x2

t − z2
n‖
)
≤Mt‖x1

t − x2
t ‖.

Similarly by exchanging the indices i = 1, 2, we derive thatQR
n (x2

t )−QR
n (x1

t ) ≤Mt

∥∥x1
t − x2

t

∥∥,
which shows that QR

n is Mt-Lipschitz continuous.
We next prove the inequalities QR

n (xt) ≤ Qn(xt), xt ∈ Xt recursively. For nodes in the
last stage n ∈ N (T ), we already show that QR

n (xT−1) ≤ Qn(xT−1) for any xT−1 ∈ XT−1.
By definition (2), we have QR

T−1(xT−1) ≤ QT−1(xT−1). Now suppose QR
t (xt) ≤ Qt(xt) for

some t ∈ T \ {T}. Then,

QR
n (xt) = min

xn,yn,zn

{
fn(zn, yn, xn) +QR

t+1(xn) +Mt ‖xt − zn‖ : (xn, yn) ∈ Fn
}

≤ min
xn,yn,zn

{
fn(zn, yn, xn) +Qt+1(xn) +Mt ‖xt − zn‖ : (xn, yn) ∈ Fn

}
≤ min

xn,yn

{
fn(xt, yn, xn) +Qt+1(xn) : (xn, yn) ∈ Fn

}
= Qn(xt), (12)

where the last inequality is due to the fact that zn = xt is a feasible solution to the
minimization problem. Now by definitions (2) and (10), we have QR

t (xt) ≤ Qt(xt) as well.
We have thus shown recursively that QR

n (xt) ≤ Qn(xt) for any xt ∈ Xt.
For the last statement, we claim that if Qt+1(xt+1) = QR

t+1(xt+1) for any xt+1 ∈ Xt+1

and Qn(xt) is M ′t-Lipschitz continuous, then QR
n (xt) = Qn(xt) for any xt ∈ Xt. To see this

claim, note that both inequalities in the above argument (12) become equalities: the first

10



one follows from the assumption, and the second one is due to that zn = xt is the unique
solution to the minimization problem. Therefore, we can apply the claim recursively as well
to see that QR

n (xt) = Qn(xt) for all xt ∈ Xt, n ∈ N (t+ 1), and all t ∈ T \ {T}.

The proposition implies that if we already have an estimate of the Lipschitz constants
of value functions for the original problem (3), then the regularization problem (10) is
equivalent in the sense that all the regularized value functions are equal to the original
ones. Thus solving the regularization (10) does not compromise any feasibility or optimality
in this case. An important difference that regularization brings is that all the linear cuts
generated for the regularized value functions are all Mt-Lipschitz continuous, as shown by
the following proposition.

Proposition 5. Let Qt+1 denote any under-approximation of the cost-to-go function QR
t+1

and x̂t ∈ Xt a feasible state. The linear cut Vn(xt) := vn +
〈
λ̂n, xt − x̂t

〉
is Mt-Lipschitz

continuous, where λ̂n is a dual solution and vn is its associated value to the Lagrangian dual
problem

sup
λn

min
xn,yn,zn,wn

fn(zn, yn, xn) +QR
t+1(xn) +Mt ‖x̂t − wn‖+ 〈λn, wn − zn〉 (13)

s.t. (xn, yn) ∈ Fn.

Proof. Let λ̂n denote a feasible solution, i.e., the associated value vn > −∞. Then using
the optimality condition for the variable wn, we have −λ̂n ∈ ∂wn(Mt ‖x̂t − wn‖), where all
the norms of elements in the subdifferential set are bounded by Mt > 0. Therefore we must
have ‖λ̂n‖∗ ≤Mt and Vn(xt) is Mt-Lipschitz continuous.

We remark that after regularization, the Lipschitz constant of the linear cut can always
be bounded by the regularization factor Mt. Together with Proposition 4, this implies that
even for those problems with Lipschitz continuous value functions, regularization may help
with the approximation by avoiding linear cuts that have larger Lipschitz constant than
that of the value function (cf. Example 1).

2.3.1 Non-Lipschitz-Continuous Value Function Cases

We spend the rest of this section showing that the regularization can be exact for a broader
class of problems than those that already have Lipschitz continuous value functions, which
extends our analysis to some problems even without relatively complete recourse assump-
tions. It is known that Pn can be assumed to be convex without affecting the value functions.

Without loss of generality, we write Pt = Kt ∩∆|N (t+1)| where Kt is a closed convex cone
contained in the nonnegative orthant. Then the value function for node n ∈ N (t) can be

11



written as

Qn(xt−1) = min
xn,yn,cn

fn(xt, yn, xn) + cn, (14)

s.t.
(
cn −Qm(xn)

)
m∈N (t)

∈ K∗t ,

(xn, yn) ∈ Fn,

by taking the dual of the maximization over transition probability vectors pt ∈ Pt in the def-
inition (2). To get an extensive formulation, we define Ñ (t) :=

∏t
t′=1N (t′) as an extended

set of nodes, such that each node n ∈ Ñ (t) is determined by a vector (n1, . . . , nt) where
nt′ ∈ N (t′) for each t′ ≤ t. The extended set Ñ := ∪Tt=1Ñ (t) naturally has a tree structure,
so we use a(n), C(n), and D(n) to denote the parent node, the set of child nodes, and the set
of all descendent nodes of a node n ∈ Ñ , respectively. For notational convenience, we still
use n = 1 to denote the root node, corresponding to the deterministic first stage, and t(n)
to denote the associated stage to a node n ∈ Ñ . Now by substituting the formulation (14)
into the recursion (2) recursively, we obtain an extensive formulation of the problem (1).

vext := min f1(x0, y1, x1) + c1 (15)

s.t. (xn, yn) ∈ Fn, ∀n ∈ Ñ ,
(cn − qnm)m∈C(n) ∈ K∗t(n), ∀n ∈ Ñ ,

qnm ≥ fm(xn, ym, xm) + cm, ∀n = a(m), m ∈ Ñ .

We can develop exact penalization on the extensive formulation now. Let σ > 0 denote a
penalty factor for non-root nodes m 6= 1. Then the penalization value is defined by

vpen := min f1(x0, y1, x1) + c1 +
∑
m6=1

σ
∥∥∥xa(m) − zm

∥∥∥ (16)

s.t. (xn, yn) ∈ Fn, ∀n ∈ Ñ ,
(cn − qnm)m∈C(n) ∈ K∗t(n), ∀n ∈ Ñ ,

qnm ≥ fm(zm, ym, xm) + cm, ∀n = a(m), m ∈ Ñ .

The penalization objective value vpen depends on the choice of the penalty factor σ. We
make the following assumption on the exactness of this penalization.

Assumption 1. There exists a penalty factor σ > 0 such that vpen = vext. Moreover, any
optimal solution to the penalization (16) satisfies zm = xa(m) for all m 6= 1 ∈ Ñ .

We remark that this assumption is satisfied given some constraint qualification, e.g.,
Slater condition for (15) assuming convexity, or if all the local cost functions fn, the feasi-
bility sets Fn, and the cones Kt are polyhedral. By the introduction of cost-to-go functions

12



Qt, we can define the recursive formulation as follows.

vpen = min
(x1,y1)∈F1

f1(xa(1), y1, x1) +Qpen
1 (x1), (17)

Qpen
1 (x1) := min c1 +

∑
m6=1

σ
∥∥∥xa(m) − zm

∥∥∥ (18)

s.t. (xm, ym) ∈ Fm, ∀m 6= 1 ∈ Ñ ,
(cm − qml)l∈C(m) ∈ K∗t(m), ∀m ∈ Ñ ,

qml ≥ fl(zl, yl, xl) + cl, ∀m = a(l), l ∈ Ñ ,

= min
zm

∑
m 6=1

σ
∥∥∥xa(m) − zm

∥∥∥+ min
c1,q1m

min
cm,qml,
xm,ym

c1 (19)

s.t. (xm, ym) ∈ Fm, ∀m 6= 1 ∈ Ñ ,
(cm − qml)l∈C(m) ∈ K∗t(m), ∀m ∈ Ñ ,

qml ≥ fl(zl, yl, xl) + cl, ∀m = a(l), l ∈ Ñ .

Note that by the definition of the dual cone K∗1, the cost-to-go function can be rewritten as

Qpen
r (xr) = min

zm

∑
m6=r

σ
∥∥∥xa(m) − zm

∥∥∥+ max
pr∈Pr

min
xm,ym

∑
m∈C(r)

prm(fm(zm, ym, xm) + cm)

(20)

s.t. (xm, ym) ∈ Fm, ∀m 6= 1 ∈ Ñ ,
(cm − qml)l∈C(m) ∈ K∗t(m), ∀m 6= 1 ∈ Ñ ,

qml ≥ fl(zl, yl, xl) + cl, ∀m = a(l) 6= 1, l ∈ Ñ .

= max
pr∈Pr

min
∑

m∈C(r)

prm(fm(zm, ym, xm) + cm) +
∑
m6=r

σ
∥∥∥xa(m) − zm

∥∥∥ (21)

s.t. (xm, ym) ∈ Fm, ∀m 6= 1 ∈ Ñ ,
(cm − qml)l∈C(m) ∈ K∗t(m), ∀m 6= 1 ∈ Ñ ,

qml ≥ fl(zl, yl, xl) + cl, ∀m = a(l) 6= 1, l ∈ Ñ .

The last step of exchanging min and max is due to the convexity of the problem and the
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compactness of the uncertainty set P1. Now, we define the cost-to-go functions for m ∈ C(1):

Qpen
1 (x1) = max

p1∈P1

min
xm,ym,zm

∑
m∈C(1)

[
p1m(fm(zm, ym, xm)+Qpen

m (xm)) + σ ‖x1 − zm‖
]
, (22)

Qpen
m (xm) := min cm +

∑
l∈D(m)

σ
∥∥∥xa(l) − zl

∥∥∥ (23)

s.t. (xl, yl) ∈ Fl, ∀ l ∈ D(m),

(cl − qlk)k∈C(l) ∈ K∗l , ∀ l ∈ D(m),

qlk ≥ fk(zk, yk, xk) + ck, ∀ l = a(k) ∈ D(m).

By repeating the above definition of cost-to-go functions, we can have the recursive formu-
lation of the penalization

vpen = min
(x1,y1)∈F1

f1(x0, y1, x1) +Qpen
1 (x1), (24)

Qpen
n (xn) = max

pn∈Pn

min
∑

m∈C(n)

[
pnm(fm(zm, ym, xm) +Qpen

m (xm)) + σ ‖xn − zm‖
]
, (25)

s.t. (xm, ym) ∈ Fm, ∀m ∈ C(n).

Note by this definition, Qn ≡ 0 for all leaf nodes n ∈ Ñ with C(n) = ∅.
While the penalization is known to be exact under Assumption 1, the evaluation of the

cost-to-go function at a given point may be challenging. In the sequel, we show that we can
replace the penalization formulation with regularization under the following assumption:

Assumption 2. There exists a constant 0 < c ≤ 1 such that for any n ∈ Ñ and xn ∈ Xn,
there exists a maximizer p̂t ∈ Pt(n) in (25) with each component satisfying either p̂nm = 0
or p̂nm ≥ c, m ∈ C(n).

Let τ > 0 denote a regularization factor for all non-root nodes. We now define the
regularization cost-to-go functions recursively as

vreg = min
(x1,y1)∈F1

f1(x0, y1, x1) +Qreg
1 (x1), (26)

Qreg
n (xn) = max

pn∈Pn

min
∑

m∈C(n)

pnm
[
fm(zm, ym, xm) +Qreg

m (xm) + τ ‖xn − zm‖
]
, (27)

s.t. (xm, ym) ∈ Fm, n ∈ Ñ ,m ∈ C(n).

Proposition 6. Given the constant c > 0 stated in Assumption 2, if τ ≥ σ/c, then the
regularization is exact, i.e., vreg = vpen = vext and the corresponding set of first stage
minimizers are the same.

Proof. For ease of notation, we denote

F̂1 := arg min
(x1,y1)∈F1

{f1(x0, y1, x1) +Q1(x1)},
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F̂pen
1 := arg min

(x1,y1)∈F1

{f1(x0, y1, x1) +Qpen
1 (x1)},

and
F̂ reg

1 := arg min
(x1,y1)∈F1

{f1(x0, y1, x1) +Qreg
1 (x1)},

respectively. By definition, we have Qreg
n (xn) ≤ Qn(xn) for all n ∈ Ñ and xn ∈ Xn,

which implies vreg ≤ vext. Assumption 1 of exact penalization implies that vpen = vext and
F̂pen

1 = F̂1. We claim that Qreg
n (xn) ≥ Qpen

n (xn) for all nodes n ∈ Ñ and states xn ∈ Xn.
Given this claim, it follows that vreg ≥ vpen and hence vreg = vpen = vext. We thus conclude
F̂1 ⊆ F̂ reg

1 ⊆ F̂pen
1 , implying the equality of these three sets.

We prove the claim recursively. For any leaf node n, Qreg
n (xn) = Qpen

n (xn) = 0 since
C(n) = ∅. Now assume that the claim Qreg

m (xm) ≥ Qpen
m (xm) holds for all descendent nodes

m ∈ D(n). Let pn ∈ Pt(n) denote a maximizer associated with the state xn ∈ Xn in the
definition (25). Thus

Qpen
n (xn) =

∑
m∈C(n):
pnm 6=0

min
∑

m∈C(n)

pnm
(
fm(zm, ym, xm) +Qpen

m (xm)
)

+ σ ‖xn − zm‖ ,

s.t. (xm, ym) ∈ Fm, ∀m ∈ C(n).

By Assumption 2, pnm ≥ c. This implies that

Qpen
n (xn) ≤

∑
m∈C(n):
pnm 6=0

pnm ·min
{
fm(zm, ym, xm) +Qpen

m (xm) + τ ‖xn − zm‖ : (xm, ym) ∈ Fm,m ∈ C(n)
}

≤
∑

m∈C(n):
pnm 6=0

pnm ·min
{
fm(zm, ym, xm) +Qreg

m (xm) + τ ‖xn − zm‖ : (xm, ym) ∈ Fm,m ∈ C(n)
}

≤ max
pn∈Pn

min

 ∑
m∈C(n)

pnm
[
fm(zm, ym, xm) +Qreg

m (xm) + τ ‖xn − zm‖
]

: (xm, ym) ∈ Fm,m ∈ C(n)


= Qreg

n (xn).

The first inequality is due to pnmτ ≥ cτ ≥ σ; the second inequality is due to the recursion
hypothesis; the third inequality is due to the definition of maximum in the worst-case
probability distribution. Thus we have shown Qreg

n (xn) ≥ Qpen
n (xn), which finishes the

proof through recursion.

We remark that although in general Assumption 2 is not easy to verify, it holds in some
common cases where the uncertainty set does not contain any point with zero component,
or the case where all the uncertainty sets and the subproblems are polyhedral (e.g., RDDP
in [15]).
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3 Algorithms and Complexity Analysis

In this section, we first define single stage subproblem oracles, based on which we define
the notion of complexity of the algorithms. We describe two versions of our proposed
dual dynamic programming algorithm with sequential and nonsequential stage selection
strategies, respectively. The complexity upper bound for each algorithm is then presented,
and finally we provide a complexity lower bound for both algorithms, which shows the upper
complexity bounds are essentially tight.

3.1 Single Stage Subproblem Oracles

A subproblem oracle is an oracle that gives a solution to the subproblem given its own
information as well as the data generated by the algorithm. The single stage subproblem
oracles (SSSO) used in this paper solve an approximation of the problem given by (10) and
(11) (or given by (2) and (3) if Mt = +∞, i.e., no regularization is conducted) for some
stage t ∈ T .

Definition 1 (Initial stage subproblem oracle). Let Q1,Q1 : X1 → R̄ denote two closed
convex functions, representing an under-approximation and an over-approximation of the
expected cost-to-go function QR

1 in (10), respectively. Consider the following subproblem for
the first stage t = 1,

min
(x1,y1)∈F1

f1(x0, y1, x1) +Q1(x1), (I)

where x0 is a given parameter. The initial stage subproblem oracle provides an optimal
solution (x1, y1) to (I) and calculates the approximation gap γ1 := Q1(x1) − Q1(x1) at
the solution. We thus define the subproblem oracle formally as the map O1 : (Q1,Q1) 7→
(x1, y1; γ1).

Definition 2 (Noninitial stage subproblem oracle). Let Qt,Qt : Xt → R̄ denote two closed
convex functions, representing an under-approximation and an over-approximation of the
expected cost-to-go function QR

t in (10), respectively, for some stage t > 1. Then given a
feasible state xt−1 ∈ Xt−1, consider the following subproblems associated with the stage t
with Θt = Qt or Θt = Qt:

max
pt−1∈Pt−1

∑
n∈N (t)

pt−1,n

 min
(xn,yn)∈Fn,

zn∈Rdt−1

fn(zn, yn, xn) + Θt(xn) +Mt−1 ‖xt−1 − zn‖

 . (N)

The noninitial stage subproblem oracle provides a feasible state xt ∈ Xt, an Mt−1-Lipschitz
continuous linear cut Vt−1( · ), and an over-estimate value vt−1 such that
• they are valid, i.e., Vt−1(x) ≤ QR

t−1(x) for any x ∈ Xt−1 and vt−1 ≥ QR
t−1(xt−1);

• the gap is controlled, i.e., vt−1 − Vt−1(xt−1) ≤ γt := Qt(xt)−Qt(xt).
We thus define the subproblem oracle formally as the map Ot : (xt−1,Qt,Qt) 7→ (Vt−1, vt−1, xt; γt).
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The initial stage subproblem oracle in Definition 1 represents the solution procedure of
the first stage problem (I). In contrast, Definition 2 may be less intuitive. For this reason,
we propose a possible realization of the noninitial stage subproblem oracle following the
discussion in Section 2.2.

We first consider the under-approximation in the subproblem oracle Θt = Qt. Recall
that the Lagrangian dual for each inner minimization problem in (N) gives a primal-dual
solution pair (x̂n, ŷn, ẑn; λ̂n) and its associated value vn, as in (13). The linear cut Vn(x) =

vn +
〈
λ̂n, x− xt−1

〉
is valid for the value function QR

n and by Proposition 5, it is Mt−1-

Lipschitz continuous. Now we define a linear cut Vt−1(x) :=
∑

n∈N (t) p̂t−1,nVn(x) where
p̂t−1 ∈ arg maxpt−1∈Pt−1

∑
n∈N (t) pt−1,nVn(xt−1) is a probability vector maximizer at the

current state xt−1. Then by Proposition 3, Vt−1 is a valid linear cut for QR
t−1 with a

Lipschitz constant Mt−1.
For the over-estimate value vt−1, we consider the over-approximation in the subproblem

oracle Θt = Qt. Since by assumption Qt(x) ≥ QR
t (x) for all x ∈ Xt, the optimal value vt−1

of (N) satisfies vt−1 ≥ QR
t−1(xt−1) by definition. Moreover, suppose the gap at each primal

solution x̂n is γn := Qt(xn) − Qt(xn). We pick the node index n∗ such that the state x̂n∗

has the largest approximation gap γn∗ , and set xt = x̂n∗ , γt = γn∗ . Consequently, we have

vt−1 = max
pt−1∈Pt−1

∑
n∈N (t)

pt−1,n

 min
(xn,yn)∈Fn,

zn∈Rdt−1

fn(zn, yn, xn) +Qt(xn) +Mt−1 ‖xt−1 − zn‖


≤ max

pt−1∈Pt−1

∑
n∈N (t)

pt−1,n

(
fn(ẑn, ŷn, x̂n) +Qt(x̂n) +Mt−1 ‖xt−1 − ẑn‖

)
= max

pt−1∈Pt−1

∑
n∈N (t)

pt−1,n

(
fn(ẑn, ŷn, x̂n) +Qt(x̂n) + γn +Mt−1 ‖xt−1 − ẑn‖

)
≤ γt + max

pt−1∈Pt−1

∑
n∈N (t)

pt−1,n

(
fn(ẑn, ŷn, x̂n) +Qt(x̂n) +Mt−1 ‖xt−1 − ẑn‖

)
= γt + Vt−1(xt−1).

Therefore, the condition vt−1 − Vt−1(xt−1) ≤ γt is satisfied. We summarize the above
realization of the noninitial stage subproblem oracles in Algorithm 1.

We remark that Algorithm 1 is not the only way to realize SSSO. For example, it is
discussed in [15] that the single stage subproblem of MRCO (5) can sometimes be refor-
mulated as mixed-integer linear program, which may then be solved by branch-and-bound
type algorithms. Therefore, the above definition of SSSO avoids restriction of the method
used to solve (N). Besides, with SSSO, the complexity analysis will better reflect the com-
putation time as the for-loop in Algorithm 1 can be easily parallelized. We also show in the
next section that SSSO enables us to introduce a nonsequential dual dynamic programming
algorithm.
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Algorithm 1 A Realization of Noninitial Stage Subproblem Oracle

Require: State xt−1 ∈ Xt−1, approximations Qt,Qt : Qt(x) ≤ QR
t (x) ≤ Qt(x), ∀x ∈ Xt,

t > 1
Ensure: A linear cut Vt−1, an over-estimate vt−1, a state xt, and a gap value γt as in

Definition 2
1: for n ∈ N (t) do
2: Solve Lagrangian dual of min

{
fn(zn, yn, xn) +Qt(xn) +Mt−1 ‖xt−1 − zn‖ : (xn, yn) ∈ Fn

}
3: Collect the primal-dual solution pair (x̂n, ŷn, ẑn; λ̂n) and the value vn
4: Define Vn(x) := vn + 〈λ̂n, x− xt−1〉
5: Calculate γn := Qt(xn)−Qt(xn)

6: Solve for the primal value v̄n of min
{
fn(zn, yn, xn) +Qt(xn) +Mt−1 ‖xt−1 − zn‖ : (xn, yn) ∈ Fn

}
7: end for
8: Construct Vt−1(x) :=

∑
n∈N (t) p̂t−1,nVn(x) where p̂t−1 ∈

arg maxpt−1∈Pt−1

∑
n∈N pt−1,nvn

9: Calculate vt−1 := maxpt−1∈Pt−1 pt−1,nv̄n
10: Find n∗ ∈ N (t) such that γn∗ ≥ γn for all n ∈ N (t) and set xt := xn∗ , γt := γn∗

3.2 Dual Dynamic Programming Algorithms

With the subproblem oracles, we first introduce a sequential dual dynamic programming
(Seq-DDP) algorithm. To ease the notation, we use g = conv{h1, h2} to denote the function
corresponding to the closed convex hull of the epigraphs of functions h1 and h2. More
precisely, using convex bi-conjugacy, we define

g(x) :=
(
min{h1(x), h2(x)}

)∗∗
= sup

λ
inf
z

{
min{h1(z), h2(z)}+ 〈λ, x− z〉

}
.

Note that if h1, h2 are both polyhedral (hence closed and convex), then by linear program
strong duality, the function g can be represented as

g(x) = min
{
v ∈ R : (z, v) = µ1(z1, v1)+µ2(z2, v2), vi ≥ hi(zi), µi ≥ 0, i = 1, 2, µ1 +µ2 = 1

}
,

assuming g(x) is proper.
For each iteration i ∈ N, the main loop of Algorithm 2 consists of three parts. The

forward step uses the state xit−1 in the previous stage and the approximations Qi−1
t and

Qi−1
t to produce a new state xit. Then the backward step at stage t uses the cut V it−1(x)

and the value vit−1 to update the approximations Qit−1,Q
i
t−1 in its precedent stage t − 1.

Finally, the initial stage step produces a new first stage solution (xi+1
1 , yi+1

1 ) and updates
the lower and upper bounds.

We next show the correctness of Algorithm 2, i.e., the returned solution (x∗1, y
∗
1) is ε-

optimal, while leaving the finiteness proof to Section 3.3. From the termination of the

while-loop, it suffices to show that the approximations are valid Qit(x) ≤ QR
t (x) ≤ Qit(x)
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Algorithm 2 Sequential Dual Dynamic Programming Algorithm

Require: Subproblem oracles Ot for t ∈ T , optimality gap ε > 0
Ensure: An ε-optimal first stage solution (x∗1, y

∗
1) to the regularization (10)

1: Initialize: Q0
t ← 0,Q0

t ← +∞, t ∈ T \{T}; QjT ,Q
j
T ← 0, j ∈ N; i← 1

2: Evaluate (x1
1, y

1
1; γ1

1) = O1(Q0
1,Q

0
1)

3: Set LowerBound← f1(x0, y
1
1, x

1
1), UpperBound← +∞

4: while UpperBound− LowerBound > ε do
5: for t = 2, . . . , T do

6: Evaluate (V it−1, v
i
t−1, x

i
t; γ

i
t) = Ot(x

i
t−1,Qi−1

t ,Qi−1
t ) . Forward step

7: end for
8: for t = T, . . . , 2 do
9: Update Qit−1(x)← max{Qi−1

t−1(x),V it−1(x)} . Backward step

10: Update Qit−1(x)← conv{Qi−1
t−1(x), vit−1 +Mt−1

∥∥x− xit−1

∥∥}
11: end for
12: Evaluate (xi+1

1 , yi+1
1 ; γi1) = O1(Qi1,Q

i
1) . Initial stage step

13: Update LowerBound← f1(x0, y
i+1
1 , xi+1

1 ) +Qi1(xi+1
1 )

14: Update UpperBound′ ← f1(x0, y
i+1
1 , xi+1

1 ) +Qi1(xi+1
1 )

15: if UpperBound′ < UpperBound then
16: Set (x∗1, y

∗
1)← (xi+1

1 , yi+1
1 ), UpperBound← UpperBound′

17: end if
18: Update i← i+ 1
19: end while

for each t ∈ T and i ∈ N. The first inequality follows from the validness of linear cuts
V i
t (x) (cf. Proposition 3). The second inequality is due to the Mt-Lipschitz continuity of

the regularized cost-to-go functions QR
t . In particular, by Definition 2, whenever the input

Qit(x) ≥ QR
t (x) for x ∈ Xt, the value vit−1 ≥ QR

t−1(xit−1). Then vit−1 + Mt

∥∥x− xit−1

∥∥ ≥
QR
t (x) for all x ∈ Xt−1. Given that Qi−1

t−1(x) ≥ QR
t−1(x) for x ∈ Xt−1, which is obviously

true for i = 1, we conclude that

min{Qi−1
t−1(x), vit−1 +Mt−1‖x− xit−1‖} ≥ QR

t−1(x), ∀x ∈ Xt−1. (28)

By taking the closed convex hull of the epigraphs on both sides, we have shown that

Qit−1(x) ≥ QR
t−1(x) for all x ∈ Xt−1. The above argument shows inductively that for

all i ∈ N, the approximations are valid, which then implies the correctness of the algorithm.
We comment that the linear cut V it−1 and the over-estimate value vit−1 are generated

using only the information in the previous iteration i − 1. In fact, the subproblem oracles
can be re-evaluated in the backward steps to produce tighter approximations. We simply
keep the Seq-DDP algorithm in its current form because it is already sufficient for us to
provide its complexity bound. At the same time, we propose an alternative nonsequential
version of the dual dynamic programming (NDDP) algorithm that could possibly conduct

19



more efficient approximation updates.

Algorithm 3 Nonsequential Dual Dynamic Programming Algorithm

Require: Subproblem oracles Ot for t ∈ T , opt. and approx. gaps ε = δ1 > · · · > δT = 0
Ensure: An ε-optimal first stage solution (x∗1, y

∗
1) to the regularization (10)

1: Initialize: Q0
t ← 0,Q0

t ← +∞, t ∈ T \{T}; QjT ,Q
j
T ← 0, j ∈ N; it ← 0, t ∈ T

2: Set LowerBound← 0, UpperBound← +∞, t← 1
3: while true do
4: Update it ← it + 1
5: if t = 1 then
6: Evaluate (xi11 , y

i1
1 ; γi11 ) = O1(Qi11 ,Q

i1
1 ) . Initial stage step

7: Update LowerBound← f1(x0, y
i1
1 , x

i1
1 ) +Qi11 (xi11 )

8: Update UpperBound′ ← f1(x0, y
i1
1 , x

i1
1 ) +Qi11 (xi11 )

9: if UpperBound′ < UpperBound then
10: Set (x∗1, y

∗
1)← (xi11 , y

i1
1 ), UpperBound← UpperBound′

11: end if
12: if UpperBound− LowerBound ≤ ε then
13: break
14: end if
15: Maintain Qi2+1

2 (x)← Qi22 (x), Qi2+1
2 (x)← Qi22 (x)

16: Set t← t+ 1
17: else
18: Evaluate (V itt−1, v

it
t−1, x

it
t ; γitt ) = Ot(x

it−1

t−1 ,Qitt ,Q
it
t ) . Noninitial stage step

19: if t < T and γitt > δt then

20: Maintain Qit+1+1
t+1 (x)← Qit+1

t+1 (x), Qit+1+1
t+1 (x)← Qit+1

t+1 (x)
21: Set t← t+ 1
22: else
23: Update Qit−1+1

t−1 (x)← max{Qit−1

t−1 (x),V itt−1(x)}
24: Update Qit−1+1

t−1 (x)← conv{Qit−1

t−1 (x), vitt−1 +Mt−1‖x− xit−1

t−1 ‖}
25: Set t← t− 1
26: end if
27: end if
28: end while

Algorithm 3 describes the NDDP algorithm. To start the algorithm, it requires an
additionally chosen vector of approximation gaps δ := (δt)

T
t=1 such that ε = δ1 > δ2 > · · · >

δT = 0, compared with the Seq-DDP algorithm. These predetermined approximation gaps
serve as criteria at stage t for deciding the next stage to be solved: the precedent stage
t − 1 or the subsequent one t + 1. If the algorithm decides to proceed to the subsequent
stage t + 1, then the current state xt is used; otherwise the generated linear cut Vt−1 and
over-estimate value vt−1 are used for updating the approximations. The above argument of

validness of approximations imply that Qitt (x) ≤ QR
t (x) ≤ Qitt (x) for all x ∈ Xt holds for
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any stage t ∈ T and any index it ∈ N. Therefore, when NDDP terminates, the returned
solution (x∗1, y

∗
1) is indeed ε-optimal.

3.3 Complexity Upper Bounds

In this section, we provide a complexity analysis for the proposed Seq-DDP and NDDP
algorithms, which implies that both algorithms terminate in finite time. Our goal is to
derive an upper bound on the total number of subproblem oracle evaluations before the
termination of the algorithm. To begin with, let Jt, t > 1 denote the set of pair of indices
(it−1, it) such that the noninitial stage subproblem oracle is evaluated at the it-th time at

the state x
it−1

t−1 , i.e., (V itt−1, v
it
t−1, x

it
t ; γitt ) = Ot(x

it−1

t−1 ,Qitt ,Q
it
t ). For the Seq-DDP algorithm,

all stages share the same iteration index it = i, so Jt = {(i, i) : i ∈ N} for all t > 1. We
define the following sets of indices for each t ∈ T \ {T}:

It(δ) :=
{
it ∈ N : γitt > δt and γ

it+1

t+1 ≤ δt+1, (it, it+1) ∈ Jt+1

}
. (29)

Here, for NDDP algorithm, δ is the given approximation gap vector, while for Seq-DDP
algorithm, δ = (δt)

T
t=1 can be any vector satisfying ε = δ1 > δ2 > · · · > δT = 0 for the

purpose of analysis, since it is not required for the Seq-DDP algorithm. We adopt the
convention that the gap for the last stage γiTT ≡ 0 such that iT−1 ∈ IT−1(δ) if and only if

γ
iT−1

T−1 > δT−1 and (iT−1, iT ) ∈ JT . An important observation is that all these index sets
are finite (before algorithm termination) |It| < ∞, which is more precisely stated in the
following lemma.

Lemma 2. For stage t, suppose the state space Xt ⊂ Rdt is contained in a ball with
diameter Dt > 0. Then, ∣∣It(δ)∣∣ ≤ (1 +

2MtDt

δt − δt+1

)dt
. (30)

Proof. We claim that for any j, k ∈ It, j 6= k, it holds that ‖xjt − xkt ‖ > (δt − δt+1)/(2Mt).
Assume for contradiction that ‖xjt−xkt ‖ ≤ (δt−δt+1)/(2Mt) for some j < k, j, k ∈ It(δ). By
definition of It(δ), the t+ 1-th subproblem oracle is evaluated at the state xjt , and in both

the Seq-DDP and the NDDP algorithms, the approximations Qjt and Qjt are updated since

γ
it+1

t+1 ≤ δt+1 for some it+1 ∈ N with (j, it+1) ∈ Jt+1. Then by Definition 2 of the noninitial

stage subproblem oracle, we have Qjt (x
j
t )−Q

j
t (x

j
t ) ≤ δt+1. Following Proposition 3, for any

point x ∈ Xt with ‖x−xjt‖ ≤ (δt− δt+1)/(2Mt), we have Qjt (x)−Qjt (x) ≤ δt because of the
Mt-Lipschitz continuity of the approximations. By setting x = xkt , we see a contradiction
with the assumption that k ∈ It(δ), which proves the claim.

To ease the notation, let rt := (δt− δt+1)/(2Mt) denote the radius of the dt-dimensional
balls Bdt(xjt ; rt) centered at xjt for j ∈ It(δ), and let Bt ⊇ Xt denote a ball with diameter
Dt. From the above claim, we know that xkt /∈ Bdt(x

j
t ; rt) for any j, k ∈ It(δ) with j < k. In

other words, the smaller balls Bdt(xjt ; rt/2) are disjoint. Meanwhile, note that each of these
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smaller balls satisfies Bdt(xjt ; rt/2) ⊂ Bt+Bdt(0; rt/2) (the Minkowski sum in the Euclidean
space Rdt). Therefore, the volumes satisfy the relation

Vol
(⋃

j∈It(δ) B
dt(xjt ; rt/2)

)
=
∣∣It(δ)∣∣ ·VolBdt(0; rt/2) ≤ Vol

(
Bt + Bdt(0; rt/2)

)
,

which implies that∣∣It(δ)∣∣ ≤ Vol(Bt + Bdt(0; rt/2))

VolBdt(0; rt/2)
=

(
Dt/2 + rt/2

rt/2

)dt
=

(
1 +

2MtDt

δt − δt+1

)dt
.

Thus we complete the proof.

We prove the following complexity upper bounds for the Seq-DDP algorithm (Theorem
1) and the NDDP algorithm (Theorem 2).

Theorem 1. Suppose the state spaces Xt ⊂ Rdt are contained in balls, each with diameter
Dt > 0. Then for the Seq-DDP algorithm (Algorithm 2), the total number of subproblem
oracle evaluations #EvalSeq-DDP before termination is bounded by

#EvalSeq-DDP ≤ 1 + T · inf
δ


T−1∑
t=1

(
1 +

2MtDt

δt − δt+1

)dt
: ε = δ1 > δ2 > · · · > δT = 0

 .

Proof. We prove by showing that for any approximation gap vector δ satisfying ε = δ1 >
δ2 > · · · > δT = 0, the largest iteration index i is bounded by

i ≤
T−1∑
t=1

(
1 +

2MtDt

δt − δt+1

)dt
. (31)

We claim that each iteration i ∈ N must lie in either of the following two cases:
1. the initial stage step has γi1 ≤ ε; or
2. the i-th forward step is in the index set i ∈ It(δ) for some stage t < T .

To see the claim, suppose that the iteration i ∈ N is not in the first case. Then we have γi1 > ε
and by convention γiT = 0 ≤ δT . Therefore, there exists a stage t < T such that γit > δt
while γit+1 ≤ δt+1, which is the second case. Note that when the first case happens, we have
UpperBound − LowerBound ≤ γi1 ≤ ε and thus the Seq-DDP algorithm terminates.
By Lemma 2, the second case can only happen at most

∑T−1
t=1

∣∣It(δ)∣∣ times, proving the
bound (31). The theorem then follows from the fact that in each Seq-DDP iteration, the
subproblem oracle is evaluated T times and one additional evaluation of the initial stage
subproblem oracle is needed for checking the termination criterion.

Theorem 2. Suppose the state spaces Xt ⊂ Rdt are contained in balls, each with diameter
Dt > 0. Then, for the NDDP algorithm (Algorithm 3) with the predetermined approximation
gap vector (δt)

T
t=1 satisfying ε = δ1 > δ2 > · · · > δT = 0, the total number of subproblem

oracle evaluations #EvalNDDP before termination is bounded by

#EvalNDDP ≤ 1 + 2 ·
T−1∑
t=1

(
1 +

2MtDt

δt − δt+1

)dt
.
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Proof. For the NDDP algorithm, each time when it decides to go back to the precedent
stage t ← t − 1, we must have γitt ≤ δt while γ

it−1

t−1 > δt−1 for some (it−1, it) ∈ Jt. In this
case, we have by definition that it ∈ It(δ). By Lemma 2, such “going back” step can only
happen at most

∑T−1
t=1

∣∣It(δ)∣∣ times. The theorem then follows from the fact that there are
exactly two times such “going back” cases and one additional evaluation of the single stage
subproblem oracle for checking the termination criterion.

Let us compare the complexity bounds of the two algorithms. If we fix the approximation
gap vector δ in Theorem 1 to be the same in the NDDP algorithm, then the complexity
bound of Seq-DDP is worse than that of NDDP as T ≥ 2. However, since an optimal choice
of the gap vector δ is usually not known, Seq-DDP has the advantage of not requiring an
a-priori estimate of these factors for the complexity bound to be valid. We provide below
an important simplification of the above complexity bounds that applies to many practical
problems.

Corollary 1. Suppose that all the state spaces have the same dimension dt = d and
bounded by a common diameter Dt ≤ D, and let M := max{Mt : t = 1, . . . , T − 1}. If
for each stage t ∈ T , the local cost functions are strictly positive for all feasible solutions
fn(xt−1, yn, xn) ≥ C, n ∈ N (t) for some C > 0, then the total number of subproblem oracle
evaluations before achieving an α-relative optimal solution (x∗1, y

∗
1) for Seq-DDP and NDDP

are upper bounded respectively by

#EvalSeq-DDP ≤ 1 + T (T − 1)

(
1 +

2MD

αC

)d
, #EvalNDDP ≤ 1 + 2(T − 1)

(
1 +

2MD

αC

)d
.

Proof. Note that if an solution (x∗1, y
∗
1) is ε-optimal with ε = αC(T − 1) < αCT , then

it is also α-relative optimal. The result then follows from Theorems 1 and 2 by setting
δt = (T − t)αC.

Corollary 1 shows that for problems that have strictly positive cost in each stage, the
proposed complexity bounds for an α-relative optimal solution grow at most quadratically
for Seq-DDP and linearly for NDDP with respect to the number of stages T . This provides
an answer to the open question about the iteration complexity of DDP-type algorithms. In
the next subsection, we will show this complexity bound is essentially tight by providing a
matching lower bound.

3.4 Complexity Lower Bound

Note that if we take δt = ε(T − t)/(T − 1) for t ∈ T , then the complexity upper bounds
in Theorems 1 and 2 depend on the terms (T − 1)dt where dt is the state space dimension
of stage t < T . It is natural to ask whether it is possible for either algorithm to achieve
an ε-optimal solution with complexity that is linear or quadratic in T , independent of the
state space dimensions (cp. Corollary 1). We present a class of convex problems to show
that this is indeed impossible.
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Given a d-sphere Sd(r) = {x ∈ Rd+1 : ‖x‖2 = r} with radius r > 0, a spherical cap with
depth θ > 0 centered at a point x ∈ Sd(r) is the set Sdθ (r, x) := {y ∈ Sd(r) : 〈y − x, x〉 ≥
−θr}. The next lemma shows that we can put many spherical caps on a sphere such that
the center of each is not contained in any other spherical cap. This is a key technical result
needed for proving lower complexity bound. Let Γ(·) denote the gamma function.

Lemma 3. Given a d-sphere Sd(r), d ≥ 2 and depth θ < (1 −
√

2
2 )r, there exists a finite

set of points W with

|W| ≥ (d2 − 1)
√
π

d

Γ(d/2 + 1)

Γ(d/2 + 3/2)

(
r

2θ

)(d−1)/2

,

such that for any w ∈ W, Sdθ (r, w) ∩W = {w}.

Proof. Let vd denote the d-volume for a d-dimensional unit ball. Recall that the d-volume

for Sd(r) is given by Vold(Sd(r)) = (d + 1)vd+1r
d =

(d+ 1)π(d+1)/2

Γ(d+1
2 + 1)

rd. We next estimate

the d-volume for the spherical cap Sdθ (r, x). Let α ∈ (0, π/2) denote the central angle for

the spherical cap, i.e., cosα = 1− θ/r. Since θ < (1−
√

2
2 )r, we know that α < π/4. Then

for any x ∈ Sd(r), the d-volume of the spherical cap can be calculated through

Vold(Sdθ (r, x)) =

∫ α

0
Vold−1(Sd−1(r sinϕ))r dϕ = dvdr

d

∫ α

0
(sinϕ)d−1 dϕ.

Note that when ϕ ∈ (0, α), sinϕ > 0 and cosϕ/ sinϕ > 1. Therefore, since d ≥ 2,

Vold(Sdθ (r, x)) ≤ dvdrd
∫ α

0
(sinϕ)d−1 cosϕ

sinϕ
dϕ = dvdr

d · (sinα)d−1

d− 1
.

By substituting sinα =
√

1− (1− θ/r)2, we have

Vold(Sdθ (r, x))

Vold(Sd(r))
≤ d

d2 − 1

vd
vd+1

(sinα)d−1 =
d

d2 − 1

vd
vd+1

(
1−

(
1− θ

r

)2)(d−1)/2 ≤ d

d2 − 1

vd
vd+1

(
2θ

r

)(d−1)/2

.

Now suppose W = {wi}Kk=1 is a maximal set satisfying the assumption, that is, for any w ∈
Sd(r), w /∈ W, there exists wk ∈ W such that w ∈ Sdθ (r, wk). Then, ∪Kk=1Sdθ (r, wk) ⊇ Sd(r),
and thus Vold(Sd(r)) ≤

∑K
k=1 Vold(Sdθ (r, wk)) = |W|Vold(Sdθ (r, w1)). Therefore we have

|W| ≥ Vold(Sd(r))
Vold(Sdθ (r, w1))

≥

[
d

d2 − 1

vd
vd+1

(
2θ

r

)(d−1)/2
]−1

=
(d2 − 1)

√
π

d

Γ(d/2 + 1)

Γ(d/2 + 3/2)

(
r

2θ

)(d−1)/2

.

This completes the proof.
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We denote the set of points associated to the sphere Sd(r) as Wd
θ (r) = {wk}Kk=1 in

Lemma 3. For any constants ε > 0 and l > 0, and values vk ∈ (ε/2, ε), k = 1, . . . ,K,
we define a function associated with the pair (W = Wd

θ (r), v = (vk)
K
k=1) as FW,v(x) :=

maxk{0, vk + l
r 〈wk, x− wk〉}, x ∈ B

d+1(r), which is obviously convex and l-Lipschitz con-
tinuous. Moreover, if the depth θ and the constants ε, l satisfy lθ ≥ ε, then we have
vk + l

r 〈wk, wk′ − wk〉 < vk − l
rθr ≤ vk − ε < 0 for any wk′ 6= wk ∈ Wd

θ (r). This implies that

FW,v(wk) = vk and the subdifferential ∂FW,v(wk) = { lrwk} for all k = 1, . . . ,K. Another

important observation is that the convex function F
6=k

(x) := convk′ 6=k{vk′ + l ‖x− wk′‖}
has the property that F

6=k
(wk) > ε/2 + l · dist(wk, convk′ 6=k{wk′}) ≥ ε/2 + lθ ≥ 3ε/2.

We next construct a class of MRCO’s using such convex functions, with the following
parameters: T ≥ 3 as the number of stages, L > 0 as a prescribed Lipschitz constant,
d ≥ 3 as the state space dimension, D = 2r > 0 as the state space diameter, and ε > 0 as
the optimality gap. Choose any l1, . . . , lT−1 such that L/2 = lT < lT−1 < · · · < l1 = L,
and set εt = 2ε/(T − 2). Construct sets of points Wt := Wd−1

θt
(r) = {wt,k}Kt

k=1, where

θt = εt/lt for t = 1, . . . , T −1. Let Ft(x) = FWt,vt(x) be constructed as above for any values
vt = (vt,k)

Kt
k=1, vt,k ∈ (εt/2, εt), and the Lipschitz constant lt, k = 1, . . . ,Kt, for t > 1 and

F1(x) ≡ 0. The problem is then constructed as

Qt(xt) = max
ξt∈conv(Wt+1)

min
xt+1∈Bd(r)

{
Ft(xt) + lt ‖xt+1 − ξt‖+Qt+1(xt+1)

}
, 1 < t < T, (32)

where QT (x) ≡ 0, and the deterministic first stage problem is defined as minx1=0Q1(x1) =
Q1(0). In other words, this class of problems seeks the optimal value corresponding to
x1 = 0. We are now at the point to give the lower bound of the complexity of Seq-DDP and
NDDP algorithms, assuming the regularization factors Mt ≥ L, t ∈ T for the exactness by
Proposition 4.

Theorem 3. For the problem (32), the number of subproblem oracle evaluations #Eval

for either of Algorithms 2 and 3 before termination has the following lower bound

#Eval ≥ d(d− 2)
√
π

d− 1

Γ(d/2 + 1/2)

Γ(d/2 + 1)

(
DL(T − 2)

16ε

)(d−2)/2

= O(T d/2−1) as T →∞.

Proof. By reformulation of the problem (32), we assume that the algorithms only consider
the worst-case uncertainty vector ξt ∈ Wt. Note that for 1 < t < T ,

Qt(xt) = Ft(xt) + max
ξt∈Wt+1

min
xt+1∈Bd(r)

{lt ‖xt+1 − ξt‖+Qt+1(xt+1)} =: Ft(xt) + ct+1.

Therefore, the cost-to-go function Qt and any under-approximation Qt is lt-Lipschitz con-
tinuous, which means QR

t = Qt by Proposition 4. We further assume that the return of the
SSSO satisfies xt = ξt−1 ∈ Wt−1, which is true for the case of Algorithm 1 since lt−1 > lt
implies xt = ξt−1 is the unique minimizer to the recursion (32).

Now let Qitt ,Q
it
t denote the under- and over-approximations of Qt at stage index it,

and c̄itt , c
it
t denote the corresponding under- and over-estimations of the value ct. Let
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F itt (x) := max{0,max{vt,k + lt
r

〈
wt,k, x− wt,k

〉
: wt,k = xitt , (it, it+1) ∈ Jt+1}} and F

it
t (x) :=

conv{vt,k + Mt

∥∥x− wt,k∥∥ : wt,k = xitt , (it, it+1) ∈ Jt+1} denote the under- and over-

approximations of the function Ft. Note that Qitt (x) ≤ F itt (x) + c
it+1

t+1 and Qitt (x) ≥
F
it
t (x)+c̄

it+1

t+1 , for all t ∈ T . For all it < Kt, there exists wt,k ∈ Wt such that F
it
t (wt,k) > 3εt/2

from the discussion following the definition. Therefore, if it < Kt for all t > 1, then we have

c̄itt − c
it
t = max

ξt−1∈Wt

min
xt∈Bd(r)

{lt−1 ‖xt − ξt−1‖+Qitt (xt)} − max
ξt−1∈Wt

min
xt∈Bd(r)

{lt−1 ‖xt − ξt−1‖+Qitt (xt)}

≥ F itt (wt,k)− max
ξt−1∈Wt

Ft(ξt−1) + c̄
it+1

t+1 − c
it+1

t+1 >
εt
2

+ c̄
it+1

t+1 − c
it+1

t+1 .

Therefore, UpperBound−LowerBound = c̄i11 − c
i1
1 >

∑
t εt/2 ≥ (T −2) ·2ε/(T −2) = ε.

Equivalently, when the algorithms terminate, we must have it ≥ Kt for some t > 1, which
implies

#Eval ≥ Kt ≥
((d− 1)2 − 1)

√
π

d− 1

Γ((d− 1)/2 + 1)

Γ((d− 1)/2 + 3/2)

(
rLt(T − 2)

2εt

)(d−2)/2

≥ d(d− 2)
√
π

d− 1

Γ(d/2 + 1/2)

Γ(d/2 + 1)

(
DL(T − 2)

16ε

)(d−2)/2

,

by Lemma 3 since Lt ≥ L/2. This completes the proof.

4 Numerical Tests

In this section, we numerically test the proposed Seq-DDP and NDDP algorithms. The
first test problem is a robust multi-commodity inventory problem with customer demand
uncertainty. The second test problem is a distributionally robust hydro-thermal power
planning problem with stochastic energy inflows. The computation budget consists of 40
2.1-GHz CPU cores and a total of 80 GBytes of RAM. The algorithms are implemented
using JuMP package ([11], v0.21) in Julia language (v1.4) with Gurobi 9.0 as its underlying
LP solver.

4.1 Multi-Commodity Inventory Problem

We consider a multi-commodity inventory problem with uncertain customer demands and
deterministic holding and backlogging costs, following the description in [15]. Due to the
stagewise independence of the bounded uncertainties and convexity of the problem, we
formulate the problem below as an MRCO recursion (6). Let K := {1, 2, . . . ,K} denote the
set of product indices. We first describe the variables in each stage t ∈ T . We use lt,k to
denote the inventory level, at,k (resp. bt,k) to denote the amount of express (resp. standard)
order fulfilled in the current (resp. subsequent) stage, of some product k ∈ K. Let ξt ∈ Ξt
denote the uncertainty vector controlling the customer demands in stage t. The first stage
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is assumed to be deterministic, i.e., Ξ1 = {0} without loss of generality. Then, the stage t
subproblem can be written as

Qt−1(xt−1) := max
ξt∈Ξt

min
∑
k∈K

(
cF + cakat,k + cbkbt,k + cHk [lt,k]+ + cBk [lt,k]−

)
+Qt(xt) (33)

s.t.
∑
k∈K

at,k ≤ Bc,

lt,k − at,k − bt−1,k = lt,k − dt,k(ξt), ∀ k ∈ K,
at,k ∈ [0, Ba

k ], ∀ k ∈ K,
bt,k ∈ [0, Bb

k], ∀ k ∈ K,
lt,k ∈ [−Bl

k, B
l
k], ∀ k ∈ K.

Here in the formulation, cak (resp. cb) denotes the express (resp. standard) order unit cost, cHk
(resp. cBk ) the inventory holding (resp. backlogging) unit cost, Ba

k (resp. Bb
k) the productwise

bound for the express (resp. standard) order, and Bl
k the inventory level bound, for the

product k, respectively. The first constraint in (33) is a cumulative bound Bc on the
express orders, the second constraint characterizes the change in the inventory level, and
the rest are bounds on the decision variables with respect to each product. We also put
cF > 0 as a fixed cost to ensure the cost function is strictly positive (cf. Corollary 1).
We use [l]+ := max{l, 0} and [l]− := −min{0, l} to denote the positive and negative part
of a real number l. The state variables xt consist of the inventory levels (lt,k)k∈K and
the standard order amounts (bt,k)k∈K, while the internal variables are the express order
amounts yt = (at,k)k∈K. The initial state x0 is given by l0,k = b0,k = 0 for all k ∈ K. The
uncertainty set Ξt is a E-dimensional box [−1, 1]E , and the customer demand is predicted
by the following factor model:

dt,k(ξt) =


2 + sin

(
(t− 1)π

5

)
+ Φt,kξt, k ≤ K/2,

2 + cos

(
(t− 1)π

5

)
+ Φt,kξt, k > K/2,

(34)

where Φt, is a E-dimensional vector where each entry is chosen uniformly at random from
[−1/E, 1/E]. Thus the value Φt,kξt ∈ [−1, 1] and dt,k(ξt) ≥ 0 for all t ∈ T and k ∈ K.

For the following numerical test, we set the number of products K = 5, the number
of uncertainty factors E = 4, Ba

k = Bb
k = Bl

k = 10, cbk = 1 for all k ∈ K, cF = 1,
and Bc = 0.3K = 1.5. The costs are generated uniformly at random within cak ∈ [1, 3],
cHk , c

B
k ∈ [0, 2] for all k ∈ K. Due to lack of relatively complete recourse of the problem (33),

we use the nonsequential dual dynamic programming algorithm (Algorithm 3) with the
the optimality gap set to be relative α = 1% and approximation gaps set dynamically by
δitt = LowerBound ·α(T − t)/(T − 1) for t ∈ T . As a comparison, we implement the same
algorithm without regularization which generates linear feasibility cuts for approximation
of the feasible sets (see definition of feasibility cuts in, e.g., [17]). For 5 independently
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generated test cases, we have obtained the following results (Table 1) within a time limit
of 5 hours and regularization factor of Mt = 1.0× 102 for all t ∈ T .

Regularized Problem Unregularized Problem
Stage LB UB Time (s) #Eval LB UB Time (s) #Eval

10

154.66 155.92 203.99 1497 154.70 154.70 96.15 1448
155.94 157.01 175.12 1502 155.95 inf 18000.29 14151
128.31 129.39 230.47 1638 127.56 inf 18002.84 14195
137.01 138.37 168.36 1405 137.06 137.16 82.40 1565
120.13 121.01 365.65 1948 120.13 121.16 160.65 2302

15

232.46 234.35 473.59 3158 232.46 232.59 265.05 3109
233.37 235.40 509.25 3107 233.44 235.18 121.63 2752
202.48 203.84 413.36 3038 201.89 inf 18001.74 15956
208.59 209.78 443.00 2930 208.57 208.95 214.33 2992
195.16 196.97 680.97 4272 187.11 inf 18069.06 26686

20

291.87 294.41 1222.93 6189 291.90 292.76 404.01 5175
292.47 294.87 1248.34 6156 292.84 293.77 437.24 4848
256.28 258.53 1026.97 5190 256.30 257.20 401.07 5519
261.70 264.31 775.68 4770 261.81 261.81 385.10 4765
249.86 251.32 2135.50 8455 248.12 inf 18072.89 26618

25

369.52 370.89 3079.75 11507 369.66 370.31 613.28 7399
370.01 373.55 2473.70 9814 370.47 370.87 529.98 7422
330.01 332.46 1474.33 7674 330.42 332.22 718.88 8291
333.28 336.27 1009.98 6345 333.34 333.40 578.25 7247
324.54 326.43 3283.15 12148 311.97 inf 18106.49 33727

30

428.94 432.04 4319.78 14394 429.11 429.23 1004.61 10102
429.48 430.88 3836.59 13707 407.22 inf 18057.45 29520
384.21 387.11 2445.64 11142 383.76 inf 18001.47 23233
386.44 390.29 2006.87 10319 386.54 387.36 922.64 10277
379.33 382.14 5981.94 16756 379.59 382.24 1615.91 15104

Table 1: Comparison of NDDP with and without regularization

In Table 1, the inf indicates values of infinity or numerically infinity values (i.e., values
greater than 109) within the computation time of 5 hours. As we see from the table, the
NDDP algorithm together with feasibility cuts fails to solve two out of five cases even when
there is only 10 stages, showing the instability of the performance of feasibility cuts. In
contrast, the algorithm with the regularization technique solves all of the cases within a
reasonable computation time and number of subproblem oracle evaluations, without any
optimality gap on those cases that both formulations are able to solve. This demonstrates
the ability of the NDDP handling problems without relatively complete recourses. It is
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worth mentioning that for cases where the NDDP algorithm converges without regular-
ization, the computation time used is usually smaller than it spends on the regularized
problem, which can be explained by better numerical conditions of feasibility cuts and their
effect on reducing the effective volumes of the state space.

4.2 Hydro-Thermal Power Planning Problem

We next consider the Brazilian interconnected power system described in [10]. By assuming
the stagewise independence in the underlying stochastic energy inflow, we formulate the
problem below as a DR-MCO recursion (2). Let K = {1, . . . ,K} denote the indices of
four regions in the system, and L = ∪k∈KLk the indices of thermal power plants, where
each of the disjoint subsets Lk is associated with the a region k ∈ K. We first describe
the decision variables in each stage t ∈ T . Let n ∈ N (t) denote the index of a sampled
outcome in stage t. We use ln,k to denote the stored energy level, hn,k to denote the hydro
power generation, and sn,k to denote the energy spillage, of some region k ∈ K; and gn,l to
denote the thermal power generation for some thermal power plant l ∈ L. For two different
regions k 6= k′ ∈ K, we use en,k,k′ to denote the energy exchange from region k to region k′,
and an,k,k′ to denote the deficit account for region k in region k′. Suppose (wn,k)k∈K is the
energy inflow associated with the sampled outcome n ∈ N (t), then the stage t subproblem
can be written as

Qt−1(xt−1) := (35)

max
pt−1∈Pt−1

∑
n∈N (t)

pt−1,n ·min
∑
k∈K

(
cssn,k +

∑
l∈Lk

cgl gn,l +
∑
k′∈K

(
cek,k′en,k,k′ + cak,k′an,k,k′

))
+Qt(xn)

s.t. ln,k + hn,k + sn,k = lt−1,k + wn,k, ∀ k ∈ K,

hn,k +
∑
l∈Lk

gn,l +
∑
k′∈K

(an,k,k′ − en,k,k′ + en,k′,k) = dt,k, ∀ k ∈ K,

ln,k ∈ [0, Bl
k], ∀ k ∈ K,

hn,k ∈ [0, Bh
k ], ∀ k ∈ K,

gn,l ∈ [Bg,−
l , Bg,+

l ], ∀ l ∈ L,
an,k,k′ ∈ [0, Ba

k,k′ ], ∀ k, k′ ∈ K,
en,k,k′ ∈ [0, Be

k,k′ ], ∀ k, k′ ∈ K.

Here in the formulation, cs denotes the unit penalty on energy spillage, cgl the unit cost of
thermal power generation of plant l, cek,k′ the unit cost of power exchange from region k to
region k′, cak,k′ the unit cost on the energy deficit account for region k in region k′, dt,k the

deterministic power demand in stage t and region k, Bl
k the bound on the storage level in

region k, Bh
k the bound on hydro power generation in region k, Bg,−

l , Bg,+
l the lower and

upper bounds of thermal power generation in plant l, Ba
k,k′ the bound on the deficit account

for region k in region k′, and Be
k,k′ the bound on the energy exchange from region k to
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region k′. The first constraint in (35) characterizes the change of energy storage levels in
each region k, the second constraint imposes the power generation-demand balance for each
region k, and the rest are bounds on the decision variables. The state variables xt (resp. xn)
are the energy storage levels (lt,k)k∈K (resp. (ln,k)k∈K), while the internal variables consist
of all the rest of decision variables. The initial state x0 is given by data.

The energy inflow outcomes are sampled from multivariate lognormal distributions that
are interstage independent. Then the distributional uncertainty set is constructed using
Wasserstein metric to reduce the effect of overtraining with the sampled outcome, according
to [12]. To be precise, suppose p̂t−1 ∈ ∆N is an empirical distribution of outcomes ln :=
(ln,k)k∈K for n ∈ N (t), where N =

∣∣N (t)
∣∣ and often p̂t−1 = (1/N, . . . , 1/N). Then, the

distributional uncertainty set Pt−1 is described by

Pt−1 :=
{
pt−1 ∈ ∆N : ρ(pt−1, p̂t−1) ≤ σ

}
, (36)

for some radius σ ≥ 0, where the Wasserstein metric ρ for finitely supported distributions
is defined by

ρ(pt−1, p̂t−1) := min
um,n≥0

∑
m,n∈N (t)

‖lm − ln‖um,n (37)

s.t.
∑

n∈N (t)

um,n = pt−1,m, ∀m ∈ N (t),

∑
m∈N (t)

um,n = p̂t−1,n, ∀n ∈ N (t).

Note when the radius σ = 0, the distributional uncertainty set Pt−1 becomes a single-
ton. In our numerical tests, we choose the radius to be relative to the total distances, i.e.,
σ = β ·

∑
m,n∈N (t) ‖lm − ln‖ for some β ≥ 0. At the same time, we use uniform regularization

factors for the tests, i.e., Mt = M > 0 for all t ∈ T . When the relative optimality gap α is
smaller than the threshold 5%, we check whether all the active cuts in the recent iterations
are strictly smaller than the regularization factor. If they are, then the algorithm is termi-
nated, and otherwise the regularization factor M is increased by a factor of

√
10 ≈ 3.1623

with all the over-approximations reset to Qit(x)← +∞, t ∈ T . Five scenarios are sampled
independently in each stage for the nominal problem N = 5 before the distributional robust
counterpart is constructed by (36). for the 24-stage problem that we consider, the samples
already give a total 524 ≈ 5.9× 1016 scenario paths, which is practically impossible to solve
via an extensive robust formulation. We have then obtained the following results (Table 2)
using our Seq-DDP algorithm within a time limit of 5 hours.

In Table 2, the lower bound (LB), the upper bound (UB) at termination, the computa-
tion time (Med. Time) and the number of subproblem oracles (Med. #Eval) shown are the
median of the five test cases. The logarithmic regularization factors log10(M) listed in the
table correspond to the initial regularization factors. We see that for different choices of the
relative radii β, the median computation time and number of subproblem oracle evaluations
are usually smaller when log10(M) = 3, without compromising the quality of upper and
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β log10(M) LB (·107) UB (·107) Med. Time (s) Med. #Eval

0.00

2 4.63 4.87 4411.02 35314
3 4.62 4.86 3635.46 15012
4 4.60 4.84 5947.57 18377
5 4.60 4.84 7918.13 17795

0.02

2 4.88 5.14 3676.19 32111
3 4.84 5.09 2642.95 14663
4 4.85 5.10 5086.24 16480
5 4.84 5.10 6333.10 16605

0.04

2 5.11 5.38 2976.62 28469
3 5.11 5.38 4443.41 23952
4 5.08 5.35 4757.78 15897
5 5.09 5.35 5475.20 15465

0.06

2 5.37 5.66 2988.33 29978
3 5.34 5.62 2000.84 12999
4 5.33 5.61 3434.14 14401
5 5.33 5.61 4717.09 14578

0.08

2 5.61 5.90 2642.00 28871
3 5.59 5.88 1889.54 12243
4 5.57 5.86 2645.60 13432
5 5.57 5.86 3338.21 13653

0.10

2 5.85 6.16 2551.69 29052
3 5.82 6.12 1260.03 10404
4 5.81 6.11 1713.84 12433
5 5.81 6.12 2677.05 12660

Table 2: Numerical tests of hydro-thermal power planning problem with different uncer-
tainty radii
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lower bounds. Moreover, for β ≤ 0.08, the median computation times for log10(M) = 2
are still smaller than those of log10(M) = 4 or 5, despite the larger number of subprob-
lem oracle evaluations. This can be explained by the better numerical conditions for the
smaller regularization factors (the cuts have smaller Lipschitz constants), leading to shorter
subproblem oracle evaluations times (cf. Algorithm 1). We thus conclude that the regular-
ization technique could lead to smaller number of subproblem oracle evaluations, as well as
shorter computation time for a given DR-MCO problem.

5 Concluding Remarks

In this work, we proposed a new class of algorithms that generalize and strengthen DDP
algorithms to solve a broad class of DR-MCO problems. The new algorithms use regular-
ization to effectively control the growth of Lipschitz constants in the approximation and to
handle problems without relatively complete recourse. We provide a thorough complexity
analysis of the new algorithms, proving both upper complexity bounds and a matching
lower bound, which reveal, in a precise way, the dependence of the complexity of the DDP-
type algorithms on the number of stages, the dimension of the decision space, and various
regularity characteristics of DR-MCO. This is the first complexity analysis of DDP-type
algorithms in such a general setting, and we believe it provides key insights for further de-
veloping efficient computational tools for the very many applications of sequential decision
making under uncertainty. We also provide numerical examples to show the capability of
the DDP-type algorithms method to solve problems without relatively complete recourse,
and reduction in computation time and number of subproblem oracle evaluations, due to
the regularization technique.
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