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Abstract

Electric Power Generation Expansion Planning (GEP) is the problem of determining an optimal construc-
tion and generation plan of both new and existing electric power plants to meet future electricity demand.
We consider a stochastic optimization approach for this capacity expansion problem under demand and
fuel price uncertainty. In a two-stage stochastic optimization model for GEP, the capacity expansion plan for
the entire planning horizon is decided prior to the uncertainty realized and hence allows no adaptivity to
uncertainty evolution over time. On the other hand a multi-stage stochastic optimization model allows full
adaptivity to the uncertainty evolution, but is extremely difficult to solve. To reconcile the trade-off between
adaptivity and tractability, we propose a partially adaptive stochastic mixed integer optimization model
in which the capacity expansion plan is fully adaptive to the uncertainty evolution up to a certain period
and follows the two-stage approach thereafter. Any solution to the partially adaptive model is feasible to
the multi-stage model, and we provide analytical bounds on the quality of such a solution. We propose
an algorithm that solves a sequence of partially adaptive models, to recursively construct an approximate
solution to the multi-stage problem. We identify sufficient conditions under which this algorithm recovers
an optimal solution to the multi-stage problem. Finally, we test our algorithm of a realistic scale GEP
problem. Experiments show that, given a reasonable computation time limit, the proposed algorithm
produces a significantly better solution than solving the multi-stage model directly.

Keywords: generation expansion planning, multi-stage stochastic optimization, approximation algorithm

1 Introduction

Generation expansion planning (GEP) is the problem of determining an optimal construction and generation
plan over a finite planning horizon of both existing and new generation power plants to meet future
electricity demand, while satisfying operational, economic and regulatory constraints. The objective of
GEP is to minimize the total investment cost and generation cost. Investment cost depends on the number
of newly built generators over the planning horizon, and generation cost reflects the cost incurred at the
operation level. GEP is considered a major part of power system planning problems. It is challenging due to
its large scale, long-term horizon, and nonlinear and discrete nature. A major challenge in GEP, as well as in
more general capacity expansion problems, is to deal with uncertainty in future demand, as well as various
other uncertainties such as technological breakthroughs, cost structures, etc. The first stochastic capacity
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expansion planning model with demand uncertainty dates back to Manne (1961), and has been followed by
extensive work in the area (see e.g., Erlenkotter 1967; Giglio 1970; Freidenfelds 1980; Davis et al. 1987; Bean
et al. 1992). These early works assume simplified underlying stochastic processes for the uncertainties to
obtain analytical solutions and are typically restricted to capacity expansion with single resource.

Stochastic optimization approaches for capacity expansion problems utilize scenario trees to model
uncertainty. Both two-stage and multi-stage stochastic optimization models have been proposed. In a
typical two-stage stochastic GEP model, the first-stage decisions are the capacity expansion decisions over
the entire planning horizon, which are made before any uncertainty is realized; then the operational level
decisions for generation production are made as the second stage decision, which are fully adaptive to
uncertainty realizations. For example, Jin et al. (2011) propose such a two-stage stochastic GEP model and
further consider both risk-neutral and risk-averse objectives, and apply a random sampling based method to
approximately solve the problem. Bienstock and Shapiro (1988) propose another type of two-stage stochastic
GEP model which decompose the entire planning horizon into two stages. The authors consider demand
and fuel price uncertainty, and solve the problem using a Benders decomposition type algorithm.

Multi-stage stochastic optimization models allow the capacity expansion decisions to be fully adaptive to
uncertainty realizations. For instance, Berman et al. (1994) consider a scenario-based multi-stage stochastic
optimization model for capacity expansion of a single technology. Chen et al. (2002) extend this model
to multiple technologies. In both models, the capacity expansion decisions are assumed to be continuous
variables. Ahmed and Sahinidis (2003) consider a multi-stage stochastic formulation, where the capacity
expansion decisions are binary variables. The authors propose an LP-relaxation-based approximation
algorithm for this problem and prove its asymptotic optimality as the planning horizon goes to infinity.
Ahmed et al. (2003) further exploit the special structure of the stochastic lot-sizing problem and develop
a branch-and-bound algorithm to obtain global optimal solutions. Singh et al. (2009) propose a column-
generation approach for solving such problems. Huang and Ahmed (2009) show that multi-stage capacity
expansion models can have significant advantages in terms of total expected costs over two-stage models.
Ryan et al. (2011) and Wallace and Fleten (2003) present comprehensive surveys on stochastic modeling in
planning and operation of electric power systems. It is fair to say that, despite the intense research efforts,
multi-stage stochastic expansion models remain extremely challenging to solve for large-scale cases within a
reasonable amount of computation time.

In this paper, we develop a unifying framework for the stochastic capacity expansion problem, which
combines the computational tractability of the two-stage model and the flexibility of the multi-stage model.
In particular, we propose the so-called partially adaptive (PA) stochastic model for the generation expansion
problem, which allows the capacity expansion decision to be fully adaptive to uncertainty up to a certain
prescribed planning period, and then restricts the expansion decisions to a two-stage structure thereafter.
Solving a PA model always yields a feasible solution for the multi-stage model. We investigate the per-
formance of the PA model and provide analytical bounds to quantify the performance gap between the
PA and multi-stage models. We further propose an approximation algorithm that solves a sequence of PA
models and recursively generates a solution to the multi-stage stochastic optimization model. We identify
conditions on the problem parameters under which the proposed algorithm obtains an optimal multi-stage
solution. Extensive computational experiments are carried out on a realistic scale GEP problem. The results
demonstrate that the approximation algorithm can be solved within a reasonable computation time limit
and yields a significantly better solution than directly solving the multi-stage model.

The remainder of the paper is organized as follows. Section 2 presents the PA model development. In
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Section 3, we analyze the performance of the PA model. We present the approximation algorithm in Section
4 and computational results in Section 5. Finally, we provide concluding remarks in Section 6.

2 Model development

In this section, we develop a partially adaptive stochastic mixed integer optimization model for the GEP
problem. We first introduce the scenario tree representation of uncertainty in Section 2.1. Then, in Section
2.2, we propose a detailed PA model for the GEP problem. In Sections 2.3, we present a PA model for the
general capacity expansion problem, and discuss its connections to two-stage and multi-stage models.

2.1 Scenario tree representation of uncertainty

We consider two main sources of uncertainty in the GEP model, namely, the uncertainty of future demand
and fuel prices, mainly natural gas prices, which are historically very volatile (Jin et al. (2011)). A scenario tree
approach is adopted to model the evolution of these uncertainties over a multi-year finite planning horizon.
In the following, we introduce some standard notations for the scenario tree model (see e.g. Ruszczynski
and Shapiro (2003)).

Figure 1: An example of a scenario tree
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Let T be a scenario tree with T levels. Each level corresponds to a year in the planning horizon of the
GEP model. A node n ∈ T represents a specific joint realization of uncertain parameters ξn = (dn, gn),
where dn is the demand and gn is the fuel price. The nodes are indexed in the order of positive integers,
with the root node indexed as node 1. Let tn denote the level of node n, and let St be the set of all nodes
in level t for each t = 1, . . . , T. Each node n ∈ T \ {1} has a unique parent a(n). The subtree with root n
and ending at period τ (tn ≤ τ ≤ T) is denoted as T (n, τ). Denote T (n, T) as T (n) for simplicity. The set
of children nodes of n is denoted as C(n). There is a (unconditional) probability pn associated with each
node n, corresponding to the realization of uncertain parameters at this node. The sum of probabilities of
all nodes in each level equals to 1; that is, ∑n∈St pn = 1 for all t. The sum of probabilities of the nodes with
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the same parent equals to the probability of their parent node; that is, ∑m∈C(n) pm = pn for all n ∈ T . The
unique path from the root to a node n is denoted by P(n). A path from the root node to a leaf node is called
a scenario. We say two scenarios s and s′ are indistinguishable at period t if the paths corresponding to s and
s′ pass through the same set of nodes up to period t. Let Ω = {P(n) : n ∈ ST} be the set of all possible
scenarios. Figure 1 shows an illustration of a general scenario tree.

2.2 A PA model for GEP problem

Now we can introduce the PA model for the GEP problem. The basic structure of the model is adaptive
from the two-stage model of Jin et al. (2011). As discussed in the introduction, the PA-GEP model imposes a
multi-stage structure for the capacity expansion decision from period 1 up to period µ, i.e. the expansion
decisions in these periods need to satisfy non-anticipativity constraints, and then from period µ + 1 to T, the
expansion decision follows a two-stage structure, i.e. they are made without the knowledge of uncertainty
realization after period µ. Note that the operational level decisions of generation production have a multi-
stage structure throughout the planning horizon. In the following, we present a detailed PA-GEP model
with critical time µ.

Parameters
T Number of time periods in planning horizon.
I Set of available technologies to expand capacity.
Kt Set of sub-periods in each planning period t.
cit Unit cost of a type i generator at period t. ($/MW)
mmax

i Maximum capacity of a type i generator. (MW)
nmax

i Maximum rating of output of a type i generator. (MW)
umax

i Maximum number of type i generators that can be built over the planning horizon.
u0

i Number of pre-existing type i generators.
bink Unit generation cost for a type i generator in sub-period k at node n. ($/MWh)
dnk Hourly demand in sub-period k at node n. (MW)
hnk Number of hours in sub-period k at node n.
q Unit penalty cost for unmet demand. ($/MW)
r Annual interest rate.
µ Critical time of the model.

Variables
xin Number of type i generators built at node n.
vink Hourly generation of a type i generator in sub-period k at node n. (MW)
wnk Unmet hourly demand in sub-period k at node n. (MW)

Formulation

min ∑
n∈T

∑
i∈I

pncitn mmax
i

(1 + r)tn−1 xin + ∑
i∈I

∑
k∈Ktn

pnhnkbink
(1 + r)tn−1 vink + ∑

k∈Ktn

pnhnkq
(1 + r)tn−1 wnk

 (2.1a)

s.t. ∑
m∈P(n)

xim + u0
i ≥

1
nmax

i
vink, ∀ i ∈ I , k ∈ Ktn , n ∈ T (2.1b)

∑
m∈P(n)

xim ≤ umax
i , ∀ i ∈ I , n ∈ ST (2.1c)
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∑
i∈I

vink + wnk = dnk, ∀ k ∈ Ktn , n ∈ T (2.1d)

xin1 = xin2 , ∀ i ∈ I , n1, n2 ∈ T (m) ∩ St, m ∈ Sµ, t > µ (2.1e)

xin ∈ Z+, vink, wnk ∈ R+, ∀ i ∈ I , k ∈ Ktn , n ∈ T . (2.1f)

In the PA-GEP model (2.1), the objective function consists of investment, generation, and penalty costs, all
of which are discounted to the beginning of the planning horizon. Constraints (2.1b) indicate that the output
by each type of generators during any sub-period cannot exceed the aggregate output rating of all available
(both pre-existing and newly built) generators of that type. Constraints (2.1c) require the total number of
each type of generators built in all possible scenarios to be within the quantity limitation. Furthermore,
in constraints (2.1d), we enforce the equality between the demand and the sum of generation output and
unmet demand. Constraints (2.1f) enforce integrality and non-negativity of variables, respectively.

The key constraint of the PA-GEP model is (2.1e), which imposes a two-stage model after period µ at each
possible outcome in that period. As a result, for any possible realization at period µ, there is only one capacity
expansion decision in each period subsequently. In other words, future capacity expansion decisions are
made at period µ without knowing further uncertainty realizations. Note that non-anticipativity constraints,
which impose the requirement that period t decision for two scenarios that are indistinguishable at stage t
must be identical, are implicitly embedded in the nodal formulation due to the scenario tree structure.

2.3 Partially adaptive model for general capacity expansion planning

The model (2.1) can be written in a more abstract and general way to obtain a PA model for a general
stochastic capacity expansion planning problem. All the analysis of the performance of the PA model in
Section 3 is done for the following generic model.

[ΠPA(µ)] min ∑
n∈T

pn

(
a>n xn + ∑

k∈Ktn

b>nkynk

)
(2.2a)

s.t. ∑
m∈P(n)

xm ≥ Ankynk, ∀ k ∈ Ktn , n ∈ T (2.2b)

∑
m∈P(n)

xm ≤ u, ∀ n ∈ ST (2.2c)

Bnkynk = dnk, ∀ k ∈ Ktn , n ∈ T (2.2d)

xn1 = xn2 , ∀ n1, n2 ∈ T (m) ∩ St, m ∈ Sµ, t > µ (2.2e)

xn ∈ ZI
+, ynk ∈ R

J
+, ∀ k ∈ Ktn , n ∈ T . (2.2f)

Here, the vector xn corresponds to the investment decisions (xin) in all types of generators at node n, thus
I = |I|; ynk corresponds to the operation level decisions in sub-period k at node n, i.e., the generation output
(vink) and the amount of unmet demand (wnk), thus J = I + 1. The parameters an and bnk correspond to the
objective coefficients of xn and ynk, respectively. The matrices Ank and Bnk correspond to the coefficient matrix
on the right-hand-side in constraints (2.1b) and coefficient matrix on the left-hand-side in constraints (2.1d),
respectively. Constraints (2.2e) correspond to (2.1e). Finally, the parameter vectors u and dnk correspond to
the right-hand-side vectors in constraints (2.1c) and (2.1d), respectively. Note that dnk has dimension of 1 in
model (2.1), since electricity is the only type of output.

As a unifying framework, the proposed PA model ΠPA(µ) generalizes the existing two-stage and multi-
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stage models in the capacity planning literature (see e.g., Ahmed and Sahinidis 2003; Singh et al. 2009; Jin
et al. 2011). Figure 2 illustrates the decision structures of the PA, multi-stage, and two-stage models. In
particular, the left network in Figure 2 represents the decision structure of the multi-stage model, where
the decision maker has a specific expansion plan for each node in the scenario tree. The middle network
corresponds to a PA model, where each node n has an expansion plan xn up to time period µ. After that, the
subtree T (n) is “compressed” into a chain, where the decision maker only has one expansion plan for all the
nodes in each following time period. The two-stage model ΠTS on the right has the most simple expansion
plan, where each planning period has only one decision throughout the planning horizon.

Figure 2: Capacity expansion decisions in ΠMS (a), ΠPA(µ) (b) and ΠTS (c)

xn

(a)

xn xn,µ+1 xn,T

(b)

x1 x2 xµ xµ+1 xT

(c)

In a multi-stage model (a), µ = T; in a PA model (b), µ = tn; in a two-stage model (c), µ = 1.

For later use, we also provide explicit formulations for the two-stage and multi-stage capacity expansion
models below.

[ΠTS] min
T

∑
t=1

ātxt + ∑
n∈T

pn

(
∑

k∈Ktn

b>nkynk

)
(2.3a)

s.t.
tn

∑
s=1

xs ≥ Ankynk, ∀ k ∈ Ktn , n ∈ T (2.3b)

T

∑
s=1

xs ≤ u (2.3c)

Bnkynk = dnk, ∀ k ∈ Ktn , n ∈ T (2.3d)

xt ∈ ZI
+, ynk ∈ R

J
+, ∀ t = 1, . . . , T, k ∈ Ktn , n ∈ T . (2.3e)

[ΠMS] min

 ∑
n∈T

pn

(
a>n xn + ∑

k∈Ktn

b>nkynk

)
: (2.2b), (2.2c), (2.2d), (2.2f).

 (2.4)

In ΠTS, āt is the average cost across the period t, i.e., āt = ∑n∈St pnan.
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3 Performance of ΠPA(µ)

In this section, we investigate the performance of the PA model ΠPA(µ). Namely, how good and how bad the
PA model could be as an approximation to the multi-stage model ΠMS. Let vPA(µ) and vMS be the optimal
value of ΠPA(µ) and ΠMS, respectively. Note that an optimal solution to ΠPA(µ) is a feasible solution to the
multi-stage model ΠMS with value vPA(µ). Thus, we define Gap(µ) := vPA(µ)− vMS as the performance
gap between the two models. It is clear that Gap(µ) ≥ 0, for all 1 ≤ µ ≤ T, and Gap(T) = 0, since the
optimal solution to the PA model is a feasible solution to the multi-stage model. Also, Gap(1) is the gap
between two-stage and multi-stage models, which is studied in Huang and Ahmed (2009). Therefore, the
following analysis generalizes the bounds therein.

Notice that both ΠPA(µ) and ΠMS are integer programs, thus they both become difficult to solve when
the planning horizon is long. Moreover, as long as µ < T, ΠMS will have significantly more integer variables
than ΠPA(µ) since the number of nodes in a scenario tree grows exponentially in the number of planing
periods. Thus the multi-stage model becomes much more difficult to solve. If Gap(µ) is small for modest µ,
then ΠPA(µ) can provide a good, easier-to-compute approximation to ΠMS with guaranteed performance.
For this reason, we provide analytical lower and upper bounds for Gap(µ), using instance data and the
optimal LP-relaxation solutions of these two models.

A brief outline of our approach is summarized as follows. Motivated by an important substructure of
these models, we decompose the original problem into subproblems, each of which corresponds to a single
type of expansion technology. We solve the LP relaxations of the original PA and multi-stage models with
multiple types of technologies. Then we use their optimal solutions and input data to bound the gap for
single-technology subproblems. Finally we aggregate these bounds for subproblems to obtain both upper
and lower bounds on Gap(µ).

In the following, we derive an upper bound in detail, a lower bound can be derived in a similar fashion
as explained in subsection 3.4. Main results are summarized in Theorems 3 and 4 in Section 3.4.

3.1 Decomposition reformulation

We first describe a decomposition reformulation of the generic capacity expansion planning model. This
reformulation separates capacity expansion decisions from operation decisions. For simplicity, we let x and
y denote vectors {xn}n∈T and {{ynk}k∈Ktn

}n∈T . The multi-stage model ΠMS can be decomposed as follows.

vMS = min

 ∑
n∈T

∑
k∈Ktn

pnb>nkynk + ∑
i∈I

Vi(y) : Bnkynk = dnk, ynk ∈ R
J
+, ∀k ∈ Ktn , n ∈ T

 , (3.1)

where for each i ∈ I ,

Vi(y) = min

 ∑
n∈T

pnainxin : [Ankynk]i ≤ ∑
m∈P(n)

xim ≤ ui, xin ∈ Z+, ∀k ∈ Ktn , n ∈ T

 . (3.2)

The above reformulation allows problem (3.2) to be solved for each type of technology individually,
if operation decision y is given. Let {xMLP, yMLP} be an optimal solution to the linear relaxation of the
multi-stage model ΠMS, and let δin = maxk∈Ktn

{[AnkyMLP
nk ]i} for all i ∈ I and n ∈ T . Since yMLP is optimal
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in the LP relaxation of ΠMS but not necessarily in ΠPA(µ), and ΠPA(µ) is an integer program, we have

vPA(µ) ≤ ∑
n∈T

∑
k∈Ktn

pnb>nkyMLP
nk + ∑

i∈I
oP

i (µ), vMS ≥ ∑
n∈T

∑
k∈Ktn

pnb>nkyMLP
nk + ∑

i∈I
vM

i ,

where

oP
i (µ) = min ∑

n∈T
pnainxin (3.3a)

s.t. ∑
m∈P(n)

xim ≥ δin, ∀ n ∈ T (3.3b)

∑
m∈P(n)

xim ≤ ui, ∀ n ∈ ST (3.3c)

xin1 = xin2 , ∀ n1, n2 ∈ T (m) ∩ St, m ∈ Sµ, t > µ (3.3d)

xin ∈ Z+, ∀ n ∈ T , (3.3e)

and

vM
i = min

{
∑

n∈T
pnainxin : s.t. (3.3b)− (3.3c), xin ∈ R+, ∀ n ∈ T .

}
(3.4)

Note that oP
i (µ) is the optimal investment cost of a partially adaptive, single-technology capacity ex-

pansion planning problem with fixed operation decisions yMLP. Let vP
i (µ) denote the optimal value of its

LP relaxation. vM
i is the optimal investment cost of the LP relaxation of a multi-stage, single-technology

problem with fixed operation decisions yMLP. Moreover, u is an integral vector, thus δin ≤ dδine ≤ ui for all
i ∈ I and n ∈ T . Since xin takes nonnegative integer values in (3.3), the problem remains the same if the
right-hand-side of constraints (3.3b) is rounded up to dδine.

Because of the decomposition reformulation, we can focus on single-technology problems, and bound
the gap between the PA model and the multi-stage model by

Gap(µ) = vPA(µ)− vMS ≤ ∑
i∈I

(oP
i (µ)− vM

i ). (3.5)

3.2 Some useful results for single-technology problems

Reformulation of (3.3):

In problem (3.3), constraints (3.3d) enforce two-stage approach after period µ at each possible outcome in that
period. This is equivalent to combining some nodes into a single node after period µ, but still maintaining a
tree structure in the capacity expansion decisions, as illustrated in Figure 2. Therefore, we can formulate a
equivalent multi-stage model on the “compressed” tree as follows.

oP
i (µ) = min ∑

n∈T̂
p̂n âinxin (3.6a)

s.t. ∑
m∈P(n)

xim ≥ dδ̂ine, ∀ n ∈ T̂ (3.6b)

∑
m∈P(n)

xim ≤ ui, ∀ n ∈ ST (3.6c)
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xin ∈ Z+, ∀ n ∈ T̂ , (3.6d)

where T̂ is the compressed tree, for any node n ∈ T̂ such that tn ≤ µ, we have p̂n = pn, âin = ain, δ̂in = δin.
For any node n ∈ T̂ such that tn > µ, let Un ⊂ T consist the nodes that are “compressed” to node n by
constraints (3.3d), and p̂n = ∑m∈Un pm, âin = ∑m∈Un pmaim, δ̂in = max{δim : m ∈ Un}.

Totally unimodularity of (3.6):

The following result shows that the feasible region of problem (3.6) is an integral polytope as long as the
right-hand-side vector is integral. The boundedness follows directly from upper bound constraints (3.6c)
and nonnegativity of xin. As a result, the LP relaxation of problem (3.6) admits integer optimal solutions.

Proposition 1. In problem (3.6), the left-hand-side coefficient matrix is totally unimodular.

Proof. Let us denote the left-hand-side coefficient matrix corresponding to constraints (3.6b) by D. The
left-hand-side coefficient matrix corresponding to constraints (3.6c) are the same as some rows in −D. In
fact, they correspond to each scenario (path) in the tree T̂ . Therefore, it is sufficient to show that D is totally
unimodular. We know that every entry of D is either 0 or 1. For each column j, there are exactly |T̂ (j)| 1’s,
in particular, Dij = 1 if i ∈ T̂ (j). We can traverse the tree by depth-first-search, and rearrange the rows
according to the sequence. After rearrangement, D is an interval matrix hence is totally unimodular (cf.
Schrijver 1998).

Redundancy of constraints (3.6c):

Since {δin, i ∈ I , n ∈ T } are defined by an optimal solution {xMLP, yMLP} to the LP relaxation of multi-stage
model, we can further simplify problem (3.6) by removing the redundant constraints (3.6c).

Proposition 2. If p̂n âin > 0 for all n ∈ T̂ and i ∈ I , then in the LP relaxation of problem (3.6), constraints (3.6c)
are redundant.

Proof. It is sufficient to show that any optimal solution to the problem

min

 ∑
n∈T̂

p̂n âinxin s.t. ∑
m∈P(n)

xim ≥ dδ̂ine, xin ≥ 0, ∀n ∈ T̂

 (3.7)

satisfies constraints (3.6c). Let x̃i be an optimal solution to (3.7). Suppose there exists n0 ∈ T̂ such that

∑m∈P(n0)
x̃im = w > ui. Recall that ui ≥ dδ̂ine for all n ∈ T̂ , it follows that ∑m∈P(n0)

x̃im > dδ̂ine for all
n ∈ T̂ (n0). If x̃in0 > 0, since p̂n0 âin0 > 0, by optimality of x̃i, we know there must be some n′0 ∈ T̂ (n0), such
that dδ̂in′0

e = w > ui, which contradicts to the fact that ui ≥ dδ̂ine for all n ∈ T̂ . If x̃in0 = 0, we traverse back
along P(n0) to find the first node n′′0 with x̃in′′0

> 0. Notice such a node must exist since ∑m∈P(n0)
x̃im > 0. It

follows that ∑m∈P(n′′0 ) x̃im = w > ui. We go back to the first case. Therefore, the result holds.

As a remark, the result in Proposition 2 also applies to the LP relaxation of problem (3.3), as well as
problem (3.4).
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3.3 An upper bound on oP
i (µ)− vM

i

There are two main steps in obtaining an upper bound on oP
i (µ)− vM

i .

• Step 1. We show that oP
i (µ) ≤ vP

i (µ) + C, where C is some constant that is dependent on the input data
and {δin}n∈T .

• Step 2. We derive upper and lower bounds for vP
i (µ) and vM

i .

Then an upper bound for oP
i (µ)− vM

i can be expressed as “upper bound of vP
i (µ)− lower bound of vM

i +C”.

Step 1

With previous results for the single-technology problems, we have the following result.

Proposition 3. oP
i (µ) ≤ vP

i (µ) + ai1 · λi, where λi = maxn∈T {dδine − δin}. If {δin}n∈T are all integers, the
inequality is tight.

Proof. In fact, with linear programming duality, Proposition 1 and 2, we have

oP
i (µ) = min

 ∑
n∈T̂

p̂n âinxin s.t. ∑
m∈P(n)

xim ≥ δ̂in, ∑
m∈P(n)

xim ≤ ui, xin ∈ Z+, ∀n ∈ T̂


(i)
= min

 ∑
n∈T̂

p̂n âinxin s.t. ∑
m∈P(n)

xim ≥ dδ̂ine, ∑
m∈P(n)

xim ≤ ui, xin ∈ R+, ∀n ∈ T̂


(ii)
= min

 ∑
n∈T̂

p̂n âinxin s.t. ∑
m∈P(n)

xim ≥ dδ̂ine, xin ∈ R+, ∀n ∈ T̂


(iii)
= max

 ∑
n∈T̂
dδ̂ineπin s.t. ∑

m∈T̂ (n)
πim ≤ p̂n ân, πin ∈ R+, ∀n ∈ T̂


= max

 ∑
n∈T̂

(δ̂in + dδ̂ine − δ̂in)πin s.t. ∑
m∈T̂ (n)

πim ≤ p̂n ân, πin ∈ R+, ∀n ∈ T̂


≤ max

 ∑
n∈T̂

δ̂inπin s.t. ∑
m∈T̂ (n)

πim ≤ p̂n ân, πin ∈ R+, ∀n ∈ T̂


+ max

 ∑
n∈T̂

πin s.t. ∑
m∈T̂ (n)

πim ≤ p̂n ân, πin ∈ R+, ∀n ∈ T̂

 ·max
n∈T
{dδ̂ine − δ̂in}

(iv)
= min

 ∑
n∈T̂

p̂n âinxin s.t. ∑
m∈P(n)

xim ≥ δ̂in, xin ∈ R+, ∀n ∈ T̂


+ min

 ∑
n∈T̂

p̂n âinxin s.t. ∑
m∈P(n)

xim ≥ 1, xin ∈ R+, ∀n ∈ T̂

 ·max
n∈T
{dδ̂ine − δ̂in}

(v)
≤ vP

i (µ) + ai1 · λi. (3.8)

Specifically, (i) follows from Proposition 1; (ii) follows from Proposition 2; (iii) and (iv) follow from linear
programming duality; (v) follows from Proposition 2, the definition of {δ̂in}n∈T̂ , the fact that p1 = 1, and the

10



optimal solution to a single-technology GEP problem with demand 1 at each node is nothing but building one
generator at the beginning of the planning horizon. The tightness of the inequality follows from Proposition
1.

Step 2

Before presenting lower and upper bounds for vP
i (µ) and vM

i , we define some useful parameter and show
their relations. For simplicity, we omit the index i in this step.

Let us define

δ(µ−) := ∑
n∈Sµ−1

pn max
m∈P(n)

{δm}, δ(µ) := ∑
n∈Sµ

pn max
m∈P(n)∪T (n)

{δm};

aµ− := min
n∈T :tn≤µ

{an}, aµ+ := min
n∈T :tn≥µ

{an}, a∗ = min
n∈T
{an};

āµ− := max
n∈T :tn≤µ

{an}, āµ+ := max
n∈T :tn≥µ

{an}, a∗ = max
n∈T
{an}.

If µ = 1, we have δ(1−) = 0, δ(1) = maxn∈T {δn}, and a1− = ā1− = a1, a1+ = a∗, ā1+ = a∗; if µ = T, then
δ(T) = ∑n∈ST

pn maxm∈P(n){δm}, and aT− = a∗, āT− = a∗. It is easy to see that as µ increases from 1 to T,
δ(µ−), aµ+ and āµ− are monotone increasing while δ(µ), aµ− and āµ+ are monotone decreasing. One can
treat {δn}n∈T as the “demand” in the single-technology problem, then δ(1) is the largest demand across the
entire scenario tree, and δ(T) is the average of the maximum demand in each scenario (path). The following
proposition reveals the relation between these δ’s.

Proposition 4. For any µ ∈ {1, . . . , T}, the following relation holds, δ(µ−) ≤ δ(T) ≤ δ(µ) ≤ δ(1).

Proof. Recall that in a scenario tree, the probability associated with a node equals the sums of probabilities
of its children nodes. By definition, we have

δ(µ−) = ∑
n∈Sµ−1

pn max
m∈P(n)

{δm}

= ∑
n∈Sµ−1

 ∑
k∈ST∩T (n)

pk max
m∈P(n)

{δm}

 ≤ ∑
n∈Sµ−1

 ∑
k∈ST∩T (n)

pk max
m∈P(k)

{δm}


(δ(T)) = ∑

k∈ST

pk max
m∈P(k)

{δm}

= ∑
n∈Sµ

∑
k∈ST∩T (n)

pk max
m∈P(k)

{δm} ≤ ∑
n∈Sµ

 ∑
k∈ST∩T (n)

pk

 max
m∈P(n)∪T (n)

{δm}

(δ(µ)) = ∑
n∈Sµ

pn max
m∈P(n)∪T (n)

{δm} ≤ ∑
n∈Sµ

pnδ(1) = δ(1).

Now we derive lower and upper bounds for vP(µ), and the bounds for vM can be attained by setting
µ = T. We briefly discuss the idea of finding these bounds:

• Lower bound: starting from an optimal solution to the LP relaxation of (3.3), relax the coefficients in the
objective funtion to reach a lower bound for vP(µ);

• Upper bound: construct a feasible solution to the LP relaxation of (3.3), and the objective function value
given by this solution yields an upper bound for vP(µ).

11



Specifically, we have the following theorem.

Theorem 1. (aµ− − a∗)δ(µ−) + a∗δ(µ) ≤ vP(µ) ≤ (āµ− − āµ+)δ(µ−) + āµ+δ(µ).

Proof. We change the notation of decision variables for capacity expansion decisions starting from period µ

into a different representation. In particular, for any n ∈ Sµ and t > µ, {xm : m ∈ T (n) ∩ St} share the same
value, let xn,t denote the new variable that represents the common value of these variables. Given a feasible
solution x to the LP relaxation of problem (3.3), for any n ∈ Sµ−1, by feasibility we have

∑
m∈P(n)

xm ≥ max
m∈P(n)

{δm} ⇒ ∑
n∈Sµ−1

pn ∑
m∈P(n)

xm ≥ ∑
n∈Sµ−1

pn max
m∈P(n)

{δm}

⇔
µ−1

∑
t=1

∑
k∈St

 ∑
m∈Sµ−1∩T (k)

pm

 xk ≥ δµ−

⇔
µ−1

∑
t=1

∑
k∈St

pkxk ≥ δµ−,

where the first equivalence follows from changing the summation sequence; and the second equivalence
follows from the fact that ∑m∈Sµ∩T (k) pm = pk for all k ∈ T such that tk < µ. In addition, for any n ∈ Sµ, by
feasibility we have

∑
m∈P(a(n))

xm +
T

∑
t=µ

xn,t ≥ max
P(n)∪T (n)

{δm} ⇔
T

∑
t=µ

xn,t ≥ max
P(n)∪T (n)

{δm} − ∑
m∈P(a(n))

xm.

Then if x∗ is an optimal solution to the LP relaxation of problem (3.3), we have

vP(µ) = ∑
n∈T

pnanx∗n =
µ−1

∑
t=1

∑
n∈St

pnanx∗n +
T

∑
t=µ

∑
n∈St

pnanx∗n

≥ aµ−

µ−1

∑
t=1

∑
n∈St

pnx∗n + a∗
T

∑
t=µ

∑
n∈St

pnx∗n

= aµ−

µ−1

∑
t=1

∑
n∈St

pnx∗n + a∗ ∑
n∈Sµ

pn

T

∑
t=µ

x∗n,t

≥ aµ−

µ−1

∑
t=1

∑
n∈St

pnx∗n + a∗ ∑
n∈Sµ

pn

 max
P(n)∪T (n)

{δm} − ∑
m∈P(a(n))

x∗m


= (aµ− − a∗)

µ−1

∑
t=1

∑
n∈St

pnx∗n + a∗ ∑
n∈Sµ

pn max
P(n)∪T (n)

{δm}

≥ (aµ− − a∗)δ(µ−) + a∗δ(µ), (3.9)

where the last inequality follows from aµ− ≥ a∗ and the definitions of δ(µ) and δ(µ−).
Next, we consider a feasible solution x̂ to the LP relaxation of problem (3.3). For any n ∈ T such that

tn ≤ µ− 1, let x̂n = max{δm : m ∈ P(n)} −max{δm : m ∈ P(a(n))}, and max{δm : m ∈ P(a(1))} = 0;
for any n ∈ Sµ, t ≥ µ, let x̂n,t = max{δm : m ∈ P(a(n)) ∪ T (n, t)} −max{δm : m ∈ P(a(n)) ∪ T (n, t− 1)}.
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Then we have

vP(µ) ≤ ∑
n∈T

pnan x̂n =
µ−1

∑
t=1

∑
n∈St

pnan x̂n +
T

∑
t=µ

∑
n∈St

pnan x̂n

≤ āµ−
µ−1

∑
t=1

∑
n∈St

pn x̂n + āµ+

T

∑
t=µ

∑
n∈St

pn x̂n

= āµ−
µ−1

∑
t=1

∑
n∈St

pn x̂n + āµ+ ∑
n∈Sµ

pn

T

∑
t=µ

x̂n,t

= āµ−
µ−1

∑
t=1

∑
n∈St

pn

(
max

m∈P(n)
{δm} − max

m∈P(a(n))
{δm}

)

+ āµ+ ∑
n∈Sµ

pn

T

∑
t=µ

(
max

m∈P(a(n))∪T (n,t)
{δm} − max

m∈P(a(n))∪T (n,t−1)
{δm}

)

= āµ− ∑
n∈Sµ−1

pn max
m∈P(n)

{δm}+ āµ+ ∑
n∈Sµ

pn

(
max

m∈P(a(n))∪T (n)
{δm} − max

m∈P(a(n))
{δm}

)
=
(
āµ− − āµ+

)
∑

n∈Sµ−1

pn max
m∈P(n)

{δm}+ āµ+ ∑
n∈Sµ

pn max
m∈P(n)∪T (n)

{δm}

=
(
āµ− − āµ+

)
δ(µ−) + āµ+δ(µ), (3.10)

where the third to last equality follows from the fact that the probability of node n equals to the sum of
probabilities of its children nodes.

Setting µ = T and applying Proposition 4, we immediately have the following corollary.

Corollary 1. a∗δ(T) ≤ vM ≤ a∗δ(T).

Suppose that the cost parameters an are nearly constant, that is, a∗ ≈ a∗ ≈ aµ− ≈ aµ+ ≈ āµ− ≈ āµ+ ≈ a,
then we have vP(µ) ≈ aδ(µ) and vM ≈ aδ(T). As µ increases from 1 to T, this approximate value of vP(µ)− vM

decreases from a
(

δ(1) − δ(T)
)

to 0. Combining results in these two steps, we obtain an upper bound of

oP(µ)− vM, summarized in the following theorem.

Theorem 2. oP(µ)− vM ≤
[
(āµ− − āµ+)δ(µ−) + āµ+δ(µ) − a∗δ(T)

]
+ a1 · λi, where λi = maxn∈T {dδine− δin}.

3.4 Upper and lower bounds for Gap(µ)

Upper bound:

As discussed before, aggregating the bound in Theorem 2 for each type of capacity expansion technology
yields an upper bound for Gap(µ).

Theorem 3. Let yMLP be the operation level decisions in an optimal solution to the linear relaxation of multi-
stage model ΠMS. For each type of expansion technology i ∈ I , let δin = maxk∈Ktn

{[AnkyMLP
nk ]i}, and λi =

maxn∈T {dδine − δin}. We further define

ai,∗ = min
n∈T
{ain}, āi,µ− = max

n∈T :tn≤µ
{ain}, āi,µ+ = max

n∈T :tn≥µ
{ain},
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δ
(µ−)
i = ∑

n∈Sµ−1

pn max
m∈P(n)

{δim}, δ
(τ)
i = ∑

n∈Sτ

pn max
m∈P(n)∪T (n)

{δim},

for τ = µ, T. Then for a capacity expansion planning problem with multiple technologies,

Gap(µ) ≤ ∑
i∈I

[
(āi,µ− − āi,µ+)δ

(µ−)
i + āi,µ+δ

(µ)
i − ai,∗δ

(T)
i

]
+ ∑

i∈I
ai1 · λi. (3.11)

Lower bound:

Now suppose we start the entire analysis with an optimal solution {xPLP, yPLP} to the LP relaxation of PA
model ΠPA(µ), and let γin = maxk∈Ktn

{[AnkyPLP
nk ]i} for all i ∈ I and n ∈ T . Then we have

vPA(µ) ≥ ∑
n∈T

∑
k∈Ktn

pnb>nkyPLP
nk + ∑

i∈I
vP

i (µ), vMS ≤ ∑
n∈T

∑
k∈Ktn

pnb>nkyPLP
nk + ∑

i∈I
oM

i ,

where vP
i (µ) and oM

i are defined similarly as (3.3) and (3.4) with δin substituted by γin. Applying similar
techniques as in Theorem 3, we can obtain

vPA(µ)− vMS ≥ ∑
i∈I

(vP
i (µ)− oM

i ) ≥ ∑
i∈I

[vP
i (µ)− vM

i − ai1 · ηi], (3.12)

where ηi = maxn∈T {dγine − γin}. Putting Theorem 1, Corollary 1, and (3.12) together, the following result
follows immediately.

Theorem 4. Let yPLP be the operation level decisions in an optimal solution to the linear relaxation of PA model
ΠPA(µ). For each type of generator i ∈ I , let γin = maxk∈Ktn

{[AnkyPLP
nk ]i}, and ηi = maxn∈T {dγine − γin}. We

further define

a∗i = max
n∈T
{ain}, ai,∗ = min

n∈T
{ain}, ai,µ− = max

n∈T :tn≤µ
{ain},

γ
(µ−)
i = ∑

n∈Sµ−1

pn max
m∈P(n)

{γim}, γ
(τ)
i = ∑

n∈Sτ

pn max
m∈P(n)∪T (n)

{γim},

for τ = µ, T. Then for a capacity expansion planning problem with multiple technologies,

Gap(µ) ≥ ∑
i∈I

[
(ai,µ− − ai,∗)γ

(µ−)
i + ai,∗γ

(µ)
i − a∗i γ

(T)
i

]
−∑

i∈I
ai1 · ηi. (3.13)

The bounds in Theorem 3 and 4 are dependent on the input data, in particular the investment cost a, and
optimal solutions to the LP relaxation of ΠMS and ΠPA(µ). Note that these bounds could be weak when
investment costs in the first planning period are very large. For general cost structures, however, decision
makers can choose a value of µ within [1, T] and calculate these bounds. If these bounds indicate that the
current PA model with parameter µ is a good enough approximation to the multi-stage model, then we can
just solve the PA model without bearing addition computational effort. If the bounds are still not appealing,
a larger value of µ should be considered.

14



4 An approximation algorithm for solving ΠMS

In this section, we first propose an approximation algorithm based on PA, which recursively traverses the
scenario tree and computes a solution to the multi-stage stochastic optimization model. Then, we identify
sufficient conditions under which the obtained solution is indeed optimal for the multi-stage model.

4.1 Algorithm description

The key idea of the proposed algorithm is to traverse the scenario tree T and at each node n ∈ T solve a PA
model on the subtree T (n), then use the solutions of these PA models to synthesize a multi-stage solution.
To be more precise, let us first introduce some notations. We denote the PA model (2.2) formulated on the
subtree T (n) as ΠPA(µ, n) and ΠPA(µ) always means ΠPA(µ, 1). Also denote the optimal expansion and
generation decision of ΠPA(µ, n) as zµ,n := {xµ,n

m , {yµ,n
mk }k∈Km}m∈T (n). A topological ordering ⊃(T ) on the

nodes of a scenario tree T is a linear ordering such that for every edge (u, v) from parent node u to child
node v, u comes before v in the ordering σ(T ). An important implication is that, when the nodes of the tree
are traversed in a topological ordering, a node n is always visited after all its ancestor nodes on the path P(n)
from the root node to n are visited.

The proposed algorithm visits each node n ∈ T in the order σ(T ) and solves the PA model ΠPA(µ, n)
on the subtree T (n) rooted at node n. In this process, the root node’s optimal solution zµ,n

n of ΠPA(µ, n) is
recorded. Since σ(T ) is a topological ordering, at node n, all its ancestors k on the path P(n) have already
been traversed by the algorithm, we can use the obtained generation capacity solutions {xµ,m

m }m∈P(n) of these
ancestors to compute the initial installed generation capacity for the ΠPA(µ, n) problem (cf. constraints (2.2b)
in model (2.2)). After the entire tree T is traversed in this way, the algorithm outputs a solution {zµ,n

n }N
n=1, in

which the expansion decision has a fully adaptive structure over the entire planning horizon. This procedure
is summarized in Algorithm 1.

Algorithm 1

Input: A topological ordering σ(T ) = {1, 2, . . . , N} of all the nodes in T , a critical time µ, and the initial
installed capacity u0 = 0.

1: Solve the PA model ΠPA(µ, 1) at root node 1. Denote the optimal solution as {xµ,1, yµ,1}.
2: Update x1 ← xµ,1

1 and y1 ← yµ,1
1 .

3: for n = 2, . . . , N do
4: Solve ΠPA(µ, n) on T (n) with initial installed capacity computed from xk for k ∈ P(a(n)). Denote its

optimal solution as {xµ,n, yµ,n}.
5: Update xn ← xµ,n

n and yn ← yµ,n
n .

6: end for
7: return {xn, yn}N

n=1.

We would like to remark that the algorithm can use different critical times µn at different node n. The
algorithm can also be terminated before visiting all the nodes in the scenario tree — the resulting solution is
always a feasible multi-stage solution. Also note that there is flexibility in choosing the topological ordering
σ(T ). We will look into this issue in the computation section.
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4.2 Optimality of Algorithm 1 for a special GEP problem

In this subsection, we present a sufficient condition under which Algorithm 1 recovers an optimal solution
for a multi-stage generation expansion planning problem.

Theorem 5. For a multi-stage generation expansion planning problem (2.4), if the instance satisfies the following
conditions:

i) the unit investment costs of each type of generators are stationary, i.e., in (2.1a), citn = ci for all i ∈ I and
n ∈ T ;

ii) all generators share the same unit generation cost, i.e., in (2.1a), bink = bnk for all k ∈ Ktn and n ∈ T ;
iii) demand must be satisfied by generation, i.e., no penalty is allowed;

then the solution returned by Algorithm 1 is optimal to the multi-stage problem.

To prove Theorem 5, we need the following lemma.

Lemma 1. Suppose condition (i) in Theorem 5 is satisfied. Let {x∗, y∗} be an optimal solution to problem (2.2), then
x∗i1 = max{d[A1ky∗1k]ie : k ∈ K1} for all i ∈ I .

Proof. Suppose there exists i0 ∈ I such that x∗i01 > max{d[A1ky∗1k]i0e : k ∈ K1}. Since x∗i01 ∈ Z+,
x∗i01 ≥ max{d[A1ky∗1k]i0e : k ∈ K1}+ 1. Let x̃i01 = x∗i01 − 1, x̃i0n = x∗i0n + 1 for all n ∈ C(1), x̃i1 = x∗i1 for all
i 6= i0, and x̃n = x∗n for n such that tn ≥ 3, ỹn = y∗n for n ∈ T . It is clear that {x̃, ỹ} is still feasible, but it
changes the total cost by−ci0 +∑n∈C(1)

pnci0
(1+r) = −

r
1+r ci0 < 0, where we use the fact that ∑n∈C(1) pn = p1 = 1.

This contradicts the optimality of {x∗, y∗}.

Lemma 1 indicates that in every optimal solution to model (2.2), one would never build a generator of
any type that is not used for generation at the first planning period.

Proof of Theorem 5. Suppose conditions (i)-(iii) hold, in the objective function of both multi-stage and PA
models, the generation cost becomes

∑
n∈T

∑
i∈I

∑
k∈Ktn

pnhnkbink
(1 + r)tn−1 vink = ∑

n∈T
∑

k∈Ktn

pnbnk
(1 + r)tn−1 ∑

i∈I
vink = ∑

n∈T
∑

k∈Ktn

pnbnkdnk
(1 + r)tn−1 ,

which is a constant. This implies that in both multi-stage and PA models, the choice of generators to satisfy
demand will only depend on the investment costs. Moreover, for any subproblem solved during the course
of Algorithm 1, it follows from Lemma 1 that both multi-stage and PA model will expand the capacity in
the most economic way to meet the current demand, but will not build any generator that is not used in
the current period. In other words, multi-stage and PA models will make the same capacity expansion
decisions at the root node of the subtree corresponding to that subproblem. Therefore, the solution output
by Algorithm 1 is optimal to multi-stage problem (2.4).

5 Computational Experiments

In this section, we present extensive computational experiments to evaluate the proposed partially adaptive
stochastic model and Algorithm 1.
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5.1 Experiment data and setup

All the data in the experiments are obtained from the real world data collected by Jin et al. (2011). In
particular, the authors of Jin et al. (2011) collected hourly electricity demand data from years 1991 to 2007
for the Midwest region from the Midcontinent Independent System Operator (MISO), the natural gas price
data from years 1970 to 2006 for the same region from the Energy Information Administration (EIA), and
generation build cost data suggested by the Joint Coordinated System Planning Report 2008 (JCSP). The
GEP model has the year 2008 as the reference year and a 10-year planning horizon.

The uncertainty in the GEP problem comes from two sources: the natural gas price and the electricity
demand. Jin et al. (2011) verified that both of these stochastic processes can be reasonably modeled as
geometric Brownian motions with high temporal correlation. Hourly electricity demand is aggregated
into three types sub-periods: peak-load, medium-load, and low-load, according to the load duration curve
of the reference year. The following years’ load duration curves are assumed to share the same structure
as the reference year’s with incremental demand growth. There are six types of generators available for
capacity expansion, namely Base Load, Combined Cycle (CC), Combined Turbine (CT), Nuclear, Wind, and
Integrated Gasification Combined Cycle (IGCC). Among these six types of generators, both CC and CT
power plants are fueled by natural gas, which are subject to price uncertainty, and IGCC power plants are
fueled by coal, whose price is usually quite stable and thus assumed known.

The 10-year scenario tree is generated by applying a nonlinear programming approach introduced in
Høyland and Wallace (2001). In particular, the discrete samples and their associated probability structure
for the scenario tree are constructed so that the approximate distribution matches as well as possible the
desired statistical properties of the underlying continuous random variables, i.e. electricity demand and
fuel prices. The number of branches at each node in the scenario tree is chosen to be 3 to balance the size
of the tree and the accuracy of approximation (Jin et al. (2011)). For our case, the resulting tree has in total
39 = 19, 683 scenarios. The total expected generator investment cost and operation cost are discounted at an
annual rate of 8%.

When solving any mixed integer problem, the relative MIP optimality gap is set to 5× 10−3. Also, we
impose a time limit of 5 hours (18000 sec) on solving any of the two-stage, multi-stage, and PA models. The
same limit is applied to the total computation time of Algorithm 1 as well. Algorithm 1 is implemented in
Python 2.7.8 with Gurobi Python interface and Gurobi 5.5.0 as the MIP solver. All numerical experiments are
conducted on a Macbook Pro with 8G RAM and a 2.3 GHz Intel Core i5 processor.

5.2 Performance of PA model

In the first set of experiments, we solve the PA model ΠPA(µ) for different planning horizons T and different
critical times µ. The experiments aim to answer two questions: (1) What is the value of the multi-stage model
comparing to the two-stage model? (2) How fast can the PA model be solved and how well does the PA
model approximate the multi-stage model as µ increase? Recall again, for a fixed T, µ = 1 corresponds to
the two-stage model, and µ = T corresponds to the multi-stage model. Results are presented in Table 2.

Columns 1 and 2 in Table 2 show the length of the planning horizon of each instance and the value
of µ, respectively. Column 3 presents two numbers: the left one is the best lower bound on the optimal
cost of the ΠPA(µ) model found within the time limit, denoted as vL(µ), and the right one is the cost
of the best feasible solution for ΠPA(µ), denoted as vH(µ). Column 4 computes the gap between these
two numbers, namely (vH(µ)− vL(µ))/vL(µ), which measures the quality of the solution of the ΠPA(µ)
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Table 2: Solving PA models on GEP instances

T µ MIPObj OptGap vPA/vMS Time
(million $) (%) (%) (sec.)

3
1 [3065.34, 3079.21] 0.45 [43.34, 44.39] 0.03
2 [2426.14, 2435.36] 0.39 [13.45, 14.20] 0.06
3 [2132.58, 2138.57] 0.28 0 0.08

4

1 [4598.61, 4598.61] 0.00 [43.70, 44.42] 0.27
2 [4046.02, 4066.33] 0.50 [26.43, 27.70] 3.69
3 [3436.09, 3453.31] 0.50 [7.37, 8.45] 5.27
4 [3184.19, 3200.11] 0.50 0 3.22

5

1 [6225.63, 6250.71] 0.40 [42.92, 44.57] 1.07
2 [5667.38, 5685.59] 0.32 [30.11, 31.50] 26.46
3 [5029.97, 5072.60] 0.85 [15.47, 17.32] 18004.46
5 [4323.61, 4355.93] 0.75 0 18002.52

6

1 [8018.62, 8055.41] 0.40 [42.41, 44.99] 2.73
2 [7360.44, 7397.24] 0.50 [30.72, 33.15] 16.56
4 [6203.99, 6267.00] 1.02 [10.18, 12.80] 18003.85
6 [5555.77, 5630.84] 1.35 0 18003.95

7

1 [9889.73, 9927.02] 0.38 [41.02, 43.57] 9.72
2 [9199.12, 9236.99] 0.41 [31.17, 33.59] 13.86
4 [8033.43, 8097.94] 0.80 [14.55, 17.11] 18010.35
7 [6914.58, 7013.13] 1.43 0 18002.95

8

1 [11825.95, 11884.75] 0.50 [39.41, 42.37] 86.82
2 [11135.28, 11189.00] 0.48 [31.27, 34.04] 309.86
5 [9401.26, 9510.03] 1.16 [10.83, 13.92] 18000.91
8 [8347.79, 8482.69] 1.62 0 18000.30

9

1 [13717.37, 13735.28] 0.13 [35.56, 40.14] 343.97
2 [13110.29, 13174.39] 0.49 [29.56, 34.42] 1261.38
4 [11849.82, 11941.19] 0.77 [17.11, 21.84] 18001.53
7 [10367.49, 10509.44] 1.37 [2.46, 7.23] 18017.75
9 [9801.03, 10118.72] 3.24 0 18007.46

10

1 [15606.96, 15680.86] 0.47 [31.42, 38.82] 3730.84
2 [14998.67, 15087.53] 0.59 [26.30, 33.57] 18002.23
5 [13225.33, 13385.83] 1.21 [11.36, 18.50] 18020.00
8 [11793.87, 12127.18] 2.83 [0.00, 7.36] 18004.19
10 [11295.61, 11875.77] 5.14 0 18083.68

model. Column 5 computes lower and upper bounds on the gap between the ΠPA(µ) model and the
multi-stage model. In particular, the left number in Column 5 is (vL(µ)− vH(T))/vH(T), and the right one is
(vH(µ)− vL(T))/vL(T). For example, when T = 6, µ = 4, the lower bound is (6203.99− 5630.84)/5630.84×
100% = 10.18%, and the upper bound is (6267.00− 5555.77)/5555.77× 100% = 12.80%. Column 6 reports
the wall clock time of the MIP solver.

Table 2 provides answers to the above two questions. First, there is a significant value in solving the
multi-stage model. In particular, comparing to the two-stage model, the multi-stage model reduces the
total expected cost by more than 30% for all test instances (see Column 5). However, as Column 6 shows,
the multi-stage models for larger instances are difficult to solve within the time limit. This implies that it
may be worthwhile to approximate the multi-stage model by a PA model, which leads to the answer to the
second question. Second, as µ increases, the performance of the ΠPA(µ) model improves quite significantly,
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especially for instances with larger horizon length. For example, for the T = 9 instance, solving µ = 4
obtains a gap between PA and multi-stage models in the range of 17.11-21.84%, and solving µ = 7 further
shrinks the gap to no more than 7.23%. For the T = 10 instance, the ΠPA(µ) model with µ = 5 obtains a gap
no more than 18.50% higher than the multi-stage model. Furthermore, for all the test instances, we observe
that the PA model with a mid-range value of µ already decreases the gap of the two-stage model (µ = 1) by
more than 50%. This suggests the benefit of solving PA models with small µ values. Indeed, from Column 6,
we can see the PA models with large µ including the multi-stage model are computationally challenging
to solve. Thus, recursively traversing the tree by solving PA models with small µ may provide a better
multi-stage solution within a reasonable time limit. This is demonstrated by the next set of experiments.

5.3 Performance of Algorithm 1

This second set of experiments evaluate Algorithm 1 in the following way. On a T-year scenario tree T ,
Algorithm 1 solves all the PA models ΠPA(µ, n) with µ = 2 for the subtree T (n), for each node n up to level
T0 in the tree T , where T0 < T. Denote the optimal solution of ΠPA(µ, n) as zµ,n := {xµ,n

m , {yµ,n
mk }k∈Km}m∈T (n).

The final solution {zn}n∈T generated by Algorithm 1 is obtained as follows: zn := zµ,n
n , for each node n

up to level T0, i.e. tn ≤ T0, and zn := zµ,m
n for each node n with tn ≥ T0 + 1, where m = P(n) ∩ ST0 . That

is, the output solution z has a multi-stage expansion plan up to period T0 + 1, and if T0 ≤ T − 2, z has a
two-stage expansion plan from level T0 + 2 to the end of the planning horizon T. In other words, z has the
same decision structure in capacity expansion plan as the solution of a PA model ΠPA(µ, 1) for µ = T0 + 1,
solved at root node 1.

Compared to directly solving the ΠPA(T0 + 1, 1) model, Algorithm 1 solves a sequence of much smaller
problems of ΠPA(2, n), therefore, may significantly save computation time. Also, the ΠPA(T0 + 1, 1) model
may not be solvable to optimality within the time limit, whereas ΠPA(2, n) can usually be solved to high
precision quickly. In fact, we have already solved the ΠPA(T0 + 1, 1) model for various T and T0 in the
previous experiments. Most of these models for T ≥ 5 and T0 ≥ 2 cannot be solved within the time limit of 5
hours as shown in Table 2.

Of course, we also need to evaluate how good the resulting solution z is compared to an optimal
(or the best found) solution of ΠPA(T0 + 1, 1). Table 2 Column 3 presents the best lower bounds on the
optimal costs of ΠPA(T0 + 1, 1) and the best feasible solution found. Using the notation in the previous
subsection, these costs are denoted as vL(T0 + 1) and vH(T0 + 1), respectively. The expected cost of the z
solution is given as v(z) := ∑n∈T pn(a>n xn + ∑k∈Ktn

b>nkynk), where x and y are the capacity expansion and
generation production components of z (cf. objective function (2.2a)). For each T and T0, define OptGap :=
(v(z)− vL(T0 + 1))/vL(T0 + 1), which gives an upper bound on the gap between the Algorithm 1’s solution
z and the optimal ΠPA(T0 + 1, 1) solution. Also define ImprvGap := (vH(T0 + 1)− v(z))/vL(T0 + 1), which
measures how much the z solution improves on the best solution found by directly solving ΠPA(T0 + 1, 1)
(negative value means z solution is worse).

Table 3 clearly shows that Algorithm 1 significantly reduces the computation time compared to directly
solving the PA model (see Columns 6 and 7). Also as shown in Column 4 “OptGap”, Algorithm 1 is able
to produce a z solution that is within at most 1.5% from the optimal ΠPA(T0 + 1, 1) solution. Furthermore,
as shown in Column 5 “ImprvGap”, the z solution constructed by Algorithm 1 actually improves over
the best feasible solution found by directly solving the ΠPA(T0 + 1, 1) for almost all instances, except for
T = 5, T0 = 2 where the z solution is slightly worse by 0.02%. In fact, the improvement steadily increases
as T and T0 increase. For the 9-period problem, Algorithm 1 stopping at T0 = 8 improves over the direct
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Table 3: Computation Study on Algorithm 1

T T0 v(z) OptGap ImprvGap PA time Alg 1 Time
(million $) (%) (%) (sec.) (sec.)

3 2 2138.57 0.28 0.00 0.08 0.07

4 2 3451.26 0.44 0.06 5.27 0.62
3 3200.11 0.50 0.00 3.22 0.89

5 2 5073.68 0.87 −0.02 18004.46 16.97
4 4353.10 0.68 0.07 18002.52 19.75

6 3 6255.76 0.83 0.18 18003.85 106.19
5 5621.10 1.18 0.17 18003.95 119.86

7 3 8081.19 0.59 0.21 18010.35 360.23
6 6987.25 1.05 0.37 18002.95 519.12

8 4 9463.10 0.66 0.50 18000.91 1324.39
7 8440.01 1.10 0.51 18000.30 1833.46

9
3 11923.71 0.62 0.15 18001.53 1749.95
6 10465.37 0.94 0.42 18017.75 6921.59
8 9951.13 1.53 1.71 18007.46 7141.51

10
4 13302.09 0.58 0.63 18020.00 6838.51
7 11934.25 1.19 1.64 18004.19 14771.03
9 11462.33 1.48 3.66 18083.68 15446.97

method by 1.71% in expected cost, while the computation time is only 40% of the latter. For the 10-period
problem, Algorithm 1 stopping at T0 = 9 improves over the direct method by 3.66% in expected cost with
computation time reduced by 15%. Also note that for these two instances, the ΠPA(T0 + 1, 1) model is the
full multi-stage model. Therefore, the last instance shows that, by recursively traversing the tree with solving
small PA models, the resulting solution is within 1.48% from the true optimal full multi-stage solution for
the 10-year planning problem. The computation is done within 4.3 hours.

5.4 Effect of different node orderings

As alluded to in Section 4.1, Algorithm 1 works for any topological ordering chosen for the nodes of the
scenario tree. We distinguish four typical orderings, corresponding to breath-first-search (BFS) and depth-
first-search (DFS) on the tree. For the simplicity of exposition, suppose for every node n ∈ T , all its children
nodes are positioned from top to bottom in the order of increasing demand. This is possible because the
scenario tree is generated in a way that no two nodes sharing the same parent node have the same demand.
Figure 3 illustrates four types of typological orderings on a simple example.

In particular, we have the following four orderings and their corresponding search strategies:

1. BFS_LOW: breath-first-search on the tree, and within each level, nodes are visited from top to bottom;
2. BFS_HIGH: breath-first-search, and within each level, nodes are visited from bottom to top;
3. DFS_LOW: depth-first-search, and selects the child node with lowest demand;
4. DFS_HIGH: depth-first-search, and selects the child node with highest demand.

All the experiments in Section 5.3 are conducted with the BFS_LOW ordering. It is interesting to see the
performance of Algorithm 1 under different node orderings, because traversing the scenario tree in different
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Figure 3: Four topological orderings on a 3-period tree
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Corresponding search strategies: (a) BFS_LOW; (b) BFS_HIGH; (c) DFS_LOW; (d) DFS_HIGH.

orders may reveal how fast the solution improves as we explore the node sequence, which may also shed
some light on which nodes are important to explore, thus helps the decision maker decide whether to refine
the current solution by branching through a specific node.

Figure 4 contains the cost improvement curves in an 8-year GEP instance under four different nodes
orderings: BFS_LOW, BFS_HIGH, DFS_LOW, and DFS_HIGH. The upper-left figure shows how cost of the z
solution is improved as allowed computation time limit increases. The other four figures correspond to the
cost improvements as the number of visited nodes increases in these four orderings. Indeed, there is one
subproblem associated with each node of the tree. The more subproblems Algorithm 1 solves, the lower cost
the z solution incurs.

Figure 4: solution cost improvement under four different orderings
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Figure 4 shows that, if there is no limit on computation time, i.e. Algorithm 1 is allowed to run until
traversing all nodes in the scenario tree, then, as expected, there is no difference in the final policies
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corresponding to the above four different node orderings. The total computation times required are also
almost the same. This is not surprising since all nodes are explored in a topological ordering, and the sets of
subproblems solved are identical under each of these four orderings. The only difference is the sequence of
solving these subproblems. However, if computation time is limited, we notice from Figure 4 that DFS_HIGH
produces a better solution than the other three. This indicates that refining the solution on the subtree
corresponding to higher demands (as well as higher natural gas prices) improves the solution value faster.
Numerical results suggest that as the solution gets refined along this subtree, capacity expansion decisions
are postponed. While generation cost is also higher in later periods, the savings of postponing capacity
expansion dominates the increment in generation cost.

In the other four figures, we observe that subproblems in earlier periods take more time since they
contains more variables and constraints. In addition, subproblems on some nodes take more time or reduce
the total exptected cost in a larger scale than others, and these two effects usually show up as a pair. These
nodes correspond to the ones in early periods of the scenario tree. However, there do exist some nodes
whose subproblems take a long time to solve but do not substantially improve the total cost. In other words,
the subproblems on such nodes do not contribute to a significant improvement to the overall solution. It
could be interesting if the decision maker can identify such nodes beforehand and skip over them when
implementing Algorithm 1.

6 Concluding remarks

We consider a long-term power generation expansion planning problem and propose a new framework of
partially adaptive stochastic mixed integer optimization models for the GEP problem and generic capacity
expansion planning problem. Our model unifies the two-stage and multi-stage approaches, and provides
the decision maker with the flexibility to adjust the adaptivity of the capacity expansion decisions with
respect to uncertainty realizations. Since an optimal solution to the PA model is always feasible to the
multi-stage model, we present nontrivial bounds for the gap between these two models. Furthermore,
we propose an approximation algorithm which recursively solves a sequence of PA models and returns a
feasible multi-stage solution. We identify a set of sufficient conditions under which the algorithm produces
an optimal multi-stage solution.

We conduct extensive computational experiments on the PA models and the proposed recursive algorithm
on a realistic scale generation expansion planning problem. Numerical results show that PA model provides
significant value to the long-term generation expansion problem. It considerably reduces the expected total
cost of the GEP problem comparing to the traditional two-stage model. Computation also shows that, with
a small amount of flexibility in the expansion decision (i.e. small µ in the ΠPA(µ) model), the PA model
can approximate the multi-stage model fairly well. Computational experiments further shows that it is not
necessary to directly solve the PA model, but rather recursively traversing the scenario tree and solving a
sequence of small sized PA models can produce near-optimal solution with a much reduced computation
time. We also explore the impact of different search orderings on the performance of the algorithm and its
implications.
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