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Abstract We investigate the augmented Lagrangian dual (ALD) for mixed
integer linear programming (MIP) problems. ALD modifies the classical La-
grangian dual by appending a nonlinear penalty function on the violation of
the dualized constraints in order to reduce the duality gap. We first provide
a primal characterization for ALD for MIPs and prove that ALD is able to
asymptotically achieve zero duality gap when the weight on the penalty func-
tion is allowed to go to infinity. This provides an alternative characterization
and proof of a recent result in Boland and Eberhard [7, Proposition 3]. We
further show that, under some mild conditions, ALD using any norm as the
augmenting function is able to close the duality gap of an MIP with a finite
penalty coefficient. This generalizes the result in [7, Corollary 1] from pure
integer programming problems with bounded feasible region to general MIPs.
We also present an example where ALD with a quadratic augmenting function
is not able to close the duality gap for any finite penalty coefficient.
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1 Introduction

We consider the general mixed integer (linear) programming (MIP) problem

zIP := inf{c>x | Ax = b,x ∈ X}, (1)

and its augmented Lagrangian dual (ALD)

zLD+
ρ := sup

λ∈Rn
inf
x∈X
{c>x+ λ>(b−Ax) + ρψ(b−Ax)},

where X is a mixed integer linear set, ρ is a given positive scalar, and ψ(·) is an
augmenting function with ψ(0) = 0 and ψ(u) > 0 for all u 6= 0. Here, Ax =
b are the complicating constraints, and relaxing these makes the remaining
problem easier.

In contrast to the convex setting, for nonconvex optimization problems, a
non-zero duality gap may exist when certain constraints are relaxed by using
classical Lagrangian dual (LD). ALD modifies classical LD by appending a
nonlinear penalty on the violation of the dualized constraints. The resulting
ALD problem then involves dual functions which are not necessarily affine
as in LD, and may be capable of penetrating possible ‘dents’ in the value
function (or perturbation function) thereby reducing the duality gap [26]. De-
pending on the properties of the value function of the underlying optimization
problem, various different forms of ALD approaches have been introduced (cf.
[1, 9, 10, 11, 12, 18, 19, 22, 23, 25, 26, 27, 28, 29, 30, 32, 34]). Under certain
conditions, a zero duality gap can be reached asymptotically by increasing the
coefficient on penalty function to infinity [32]. In some cases, the duality gap
can be closed with a large enough finite value of the penalty coefficient. In
this case, we say that the corresponding ALD involves exact penalization or
is exact. Rockafellar [25] and Bertsekas [2] used convex quadratic augment-
ing functions. Burke [13, 14] used norms as convex augmenting functions. For
these cases, necessary and sufficient conditions for exact penalization are pro-
vided in [13, 14, 26] which we will review in Section 2. For some classes of
non-convex optimization problems, the duality gap cannot be closed by us-
ing convex augmenting functions. For these problems, more general forms of
ALD are needed. For example, level-bounded augmenting functions were used
in [18] rather than convex ones. The works in [29] and [30] used a family of
augmenting functions with the almost peak at zero property, which includes
the augmenting functions in [18] as special cases. Note that the class of aug-
menting functions in [29] and [30] are generalizations of convex augmenting
functions in [26]. A weaker peak at zero property was considered in [22]. A
more general form of peak at zero property was investigated in [32] to provide
a unified nonlinear ALD. Using abstract convexity, ALD was studied in [12]
and [9] in Banach and Hausdorff topological spaces, respectively.

In this paper, we consider non-negative level bounded augmenting func-
tions in ALD for solving MIPs. Because of the non-convexity in MIP (1), a
non-zero duality gap may exist [33], that is zIP − zLD+

ρ > 0. Recently, Boland
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and Eberhard [7] showed that in ALD for MIPs, with a specific class of nonneg-
ative convex augmenting functions, lim

ρ→∞
zLD+
ρ = zIP. They also proved that

if X is a finite set (e.g. a bounded pure IP), then there exists a finite penalty
coefficient which closes the duality gap. We significantly generalize the results
of [7] . In particular, our contributions are as follows:

1. We first provide a primal characterization for the ALD of an MIP. This is
an alternative characterization to the one provided in [7, Theorem 1]. Using
this characterization, the ALD of an MIP can be viewed as a traditional
LD in a lifted space.

2. We give an alternative proof for the asymptotic zero duality gap property
of ALD for MIPs when the penalty coefficient is allowed to go to infinity.
This was first proved in [7, Proposition 3].

3. We prove that ALD using any norm as the augmenting function with a
sufficiently large but finite penalty coefficient closes the duality gap for
general MIPs. This generalizes the result in [7, Corollary 1] from the case
of pure integer programming with a bounded feasible region to general
MIPs with unbounded feasible regions.

4. Using our primal characterization, we also present an example where ALD
with a quadratic augmenting function is not able to close the duality gap
for any finite penalty coefficient.

The paper is organized as follows. Section 2 provides definitions and sur-
veys existing results on Lagrangian relaxation and augmented Lagrangian re-
laxation of general nonlinear optimization problems and specifically of MIPs.
Section 3 presents a primal characterization of the ALD of a general MIP and
the zero duality gap property when the penalty coefficient is allowed to go to
infinity. Section 4 proves that under mild conditions the ALD achieves zero
duality gap using any norm as the augmenting function with a finite penalty
coefficient.

2 Preliminaries

Let R, Q, and Z denote the sets of real, rational, and integer numbers, re-
spectively. For any vector a and matrix A with finite dimensions, denote their
transpose by a> and A>, respectively. For any set S ⊆ Rn, let conv(S), ri(S)
and cl(S) denote the convex hull, relative interior, and closure of the set S,
respectively. Moreover, let diam(S) := sup{‖u− v‖∞ : u ∈ S,v ∈ S} denote
the diameter of set S, where ‖ · ‖∞ is the l∞ norm.

Let x ∈ Zn1 ×Rn2 be the vector of decision variables, where n1 and n2 are
numbers of integer and continuous variables, respectively, and n := n1 + n2.
For given c ∈ Qn, b ∈ Qm, and A ∈ Qm×n, consider the general MIP problem
(1),

zIP := inf{c>x|Ax = b,x ∈ X},
where m is the number of complicating or coupling constraints, Ax = b. The
case with n2 = 0 is called a pure IP, while for a MIP we have n2 ≥ 1 and
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n1 ≥ 1. Denote the LP relaxation of zIP in problem (1) by zLP. We consider
MIP problems that satisfy the following assumption.

Assumption 1 For the MIP (1) we have the following:

a) X is a mixed integer linear set given by X = {x ∈ Zn1 × Rn2 : Ex ≤ f}
for some E ∈ Qm̄×n and f ∈ Qm̄, where m̄ is the number of the inequality
constraints in the definition of X. The problem data A, b, c, E, and f all
have rational entries, and without loss of generality, we can assume that
they are integral.

b) Problem (1) is feasible and its optimal value is bounded.

Usually problem (1) is taken to be structured so that X includes integrality
constraints, simple bounds on variables, and other simple constraints.

Remark 1 Note that under Assumption 1-a, conv(X) and conv({x : Ax =
b,x ∈ X}) are rational polyhedra by Meyer’s theorem [20]. By Assumption
1 (rationality of input data and boundedness of zIP), the value of the LP
relaxation of MIP (1) is bounded [5], i.e. −∞ < zLP ≤ zIP < ∞. Let λ̄LP be
a rational optimal vector of dual variables for Ax = b in the LP relaxation of
(1). Moreover, zIP is attainable and the inf in the objective function of (1) can
be replaced by min. That is, there exists an optimal solution x∗ of problem
(1) such that x∗ ∈ X, Ax∗ = b and zIP = c>x∗.

It is worth mentioning that the equality relation inAx = b does not impose
any restriction on the type of these constraints. Because any inequality can
be replaced by an equality constraint with a new non-negative slack variable.
The non-negativity of the introduced variable can be absorbed in X. Moreover,
in the case of a pure IP, this slack variable will automatically be an integer
variable following Assumption 1-a.

Definition 1 (Value function). The value function for problem (1) is defined
as

p(u) := inf{c>x|Ax = b+ u,x ∈ X}. (2)

Note that p(0) = zIP. The value function is a very important tool for
the theoretical examination of constrained optimization problems [29]. The
properties of the value functions for IPs and MIPs were studied in [4, 5, 6,
21, 24]. For an MIP problem with rational data, the value function is lower
semicontinuous [21] and piecewise polyhedral with finitely many pieces in any
bounded set [4].

Definition 2 (Lagrangian relaxation and dual). For a given Lagrange multi-
plier vector λ ∈ Rm, the corresponding Lagrangian relaxation (LR) of (1) is
given as

zLR(λ) := inf
x∈X

{
c>x+ λ>(b−Ax)

}
, (3)

and the associated Lagrangian dual (LD) is

zLD := sup
λ∈Rm

zLR(λ). (4)
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A well known primal characterization of LD is given by [17] as

zLD = inf
x

{
c>x | Ax = b,x ∈ conv(X)

}
. (5)

Remark 2 Note that by rationality of the input data in Assumption 1, zLD is
attainable and inf in the objective function of (5) can be replaced by min.

Definition 3 (Augmented Lagrangian relaxation and dual). The augmented
Lagrangian relaxation (ALR) of (1) has the following form [26]:

zLR+
ρ (λ) := inf

x∈X
{c>x+ λ>(b−Ax) + ρψ(b−Ax)}. (6)

Here, ρ > 0 is a fixed given parameter called penalty coefficient and ψ is an
augmenting function. In this paper, unless explicitly mentioned, we assume
that ψ satisfies the following assumption.

Assumption 2 ψ : Rm → R+ is a proper, nonnegative, lower semicon-
tinuous, and level-bounded augmenting function, that is ψ(0) = 0, ψ(u) >
0 for all u 6= 0, diam{u | ψ(u) ≤ δ} < +∞ for all δ > 0. Moreover
lim
δ↓0

diam{u | ψ(u) ≤ δ} = 0.

Note that non-negative convex augmenting functions satisfy Assumption
2. The augmented Lagrangian dual (ALD) is as follows.

zLD+
ρ := sup

λ∈Rm
zLR+
ρ (λ). (7)

Since the augmenting function ψ(·) is nonnegative, zLD+
ρ is a non-decreasing

function of ρ. Moreover, since ρψ(b−Ax) ≥ 0 we have zLR(λ) ≤ zLR+
ρ (λ) for

all λ ∈ Rm and ρ > 0. Therefore, zLD ≤ zLD+
ρ for any ρ > 0. Moreover

zLR+
ρ (λ) ≤ inf

x∈X:Ax=b

{
c>x+ λ>(b−Ax) + ρψ(b−Ax)

}
= inf
x∈X:Ax=b

c>x

= zIP,

where the inequality holds because {x ∈ X : Ax = b} ⊆ X. The first equality
follows from ψ(0) = 0. The second equation holds by definition of zIP. Thus,
zLD+
ρ ≤ zIP. In summary, for all ρ > 0,

−∞ < zLP ≤ zLD ≤ zLD+
ρ ≤ zIP < +∞, (8)

where the strict inequalities in the upper and lower bounds hold from Assump-
tion 1.
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2.1 Exact Penalty Representation

Definition 4 (Exact penalty representation [26, Definition 11.60]). A dual
vector λ̄ is said to support an exact penalty representation for problem (1) if,
for all ρ sufficiently large, zIP = zLR+

ρ (λ̄) and

argmin
x∈X:Ax=b

c>x = argmin
x∈X

{c>x+ λ̄
>

(b−Ax) + ρψ(b−Ax)}.

The smallest ρ which satisfies this property is called the adequate penalty
threshold. A criterion for the exact penalty representation presented in [26] is
as follows. Suppose that zLR+

ρ (λ) > −∞ for at least one (λ, ρ) ∈ Rm× (0,∞).

Then, a vector λ̄ supports an exact penalty representation for problem (1) if
and only if there exist an open neighborhood W ⊂ Rm of 0 and a scalar ρ̂ > 0
such that

p(u) ≥ p(0)− λ̄>u− ρ̂ψ(u), ∀u ∈W.

If zLD+
ρ = zIP for some ρ > 0, then ALR (6) can recover a primal solution

for the MIP problem (1).

Proposition 1 Suppose Assumption 1 holds and zIP = zLD+
ρ̂ = zLR+

ρ̂ (λ̄) for

some finite ρ̂ > 0 and λ̄ ∈ Rm. Then, any optimal solution of ALR (6) with
λ = λ̄ and ρ = ρ∗ > ρ̂ is an optimal solution of the MIP problem (1), and
vice versa. That is, λ̄ supports an exact penalty representation for the MIP
problem (1).

Proof Let ρ∗ be any scalar such that ρ∗ > ρ̂. Let x̄ be an optimal solution
of MIP problem (1) (the existence of an optimal solution for problem (1) is
guaranteed under Assumption 1). Then, it holds that x̄ ∈ X, Ax̄ = b, and
c>x̄ = zIP. Thus,

c>x̄+ λ̄
>

(b−Ax̄) + ρ∗ψ(b−Ax̄) = c>x̄ = zIP = zLR+
ρ∗ (λ̄).

where the last equality follows from the facts that zLR+
ρ̂ (λ̄) ≤ zLR+

ρ∗ (λ̄) ≤ zIP

and zIP = zLR+
ρ̂ (λ̄). Therefore, x̄ solves ALR (6) with ρ∗ and λ̄. Moreover, it

shows that the optimality is achieved for this case of ALR (6).
To prove the other side, let x∗ ∈ X be any optimal solution of ALR (6)

with ρ∗ and λ̄, i.e. c>x∗ = zLR+
ρ∗ (λ̄). We claim that x∗ solves problem (1), i.e.

x∗ ∈ X,Ax∗ = b and c>x∗ = zIP. Note that as a feasible solution of ALR (6),
x∗ belongs to X. Assume by contradiction Ax∗ 6= b. Then, ψ(b −Ax∗) > 0
and therefore

ρ̂ψ(b−Ax∗) < ρ∗ψ(b−Ax∗). (9)

Moreover,

zIP = zLD+
ρ̂ = zLR+

ρ̂ (λ̄) ≤ c>x∗ + λ̄
>

(b−Ax∗) + ρ̂ψ(b−Ax∗)

< c>x∗ + λ̄
>

(b−Ax∗) + ρ∗ψ(b−Ax∗)
= zLR+

ρ∗ (λ̄),

(10)
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which contradicts zLR+
ρ∗ (λ̄) being a lower bound for zIP. Therefore, Ax∗ = b.

Note that in (10) the equality relations hold by assumption, the first inequality
holds by definition of zLR+

ρ̂ (λ̄), and the strict inequality follows from (9).
Furthermore,

zIP = zLR+
ρ̂ (λ̄)

≤ zLR+
ρ∗ (λ̄) = c>x∗ + λ̄

>
(b−Ax∗) + ρ∗ψ(b−Ax∗) = c>x∗

≤ zIP,

(11)

where the first two equalities hold by assumption and the third equality follows
from Ax∗ = b. Therefore, c>x∗ = zIP which completes the proof. 2

Two important cases of ALR are the proximal and sharp Lagrangian. Next,
we present their definitions, and necessary and sufficient conditions for sup-
porting an exact penalty representation in these cases.

2.2 Proximal Lagrangian

Definition 5 (Proximal Lagrangian). An ALR generated with the augment-
ing function ψ(u) = 1

2‖u‖
2
2 is called a proximal Lagrangian.

Definition 6 (Proximal subgradient [26, Definition 8.45]). A vector λ ∈ Rm
is called a proximal subgradient of a function f : Rm → R at ū, a point where
f(ū) is finite, if there exist ρ > 0 and δ > 0 such that

f(u) ≥ f(ū)− λ>(u− ū)− 1

2
ρ‖u− ū‖22, ∀u s.t. ‖u− ū‖2 ≤ δ.

The existence of a proximal subgradient at ū corresponds to the existence of
a ‘local quadratic support’ to f at ū.

In a proximal Lagrangian, suppose that there exists (λ, ρ) ∈ Rn × (0,∞)
such that zLR+

ρ (λ) > −∞ . Then, a necessary and sufficient condition for a

vector λ̄ to support an exact penalty representation is that λ̄ is a proximal
subgradient of the value function p(u) at u = 0 [26].

2.3 Sharp Lagrangian

Definition 7 (Sharp Lagrangian). An ALR which uses a norm as an aug-
menting function, i.e. ψ(u) = ‖u‖, is called a sharp Lagrangian.

Definition 8 (Calmness [26, Ch. 8.F]). A function f : Rm → R is calm
at u from below with modulus κ ∈ R+ if f(u) is finite and on some open
neighborhood V of u, one has

f(u) ≥ f(u)− κ‖u− u‖, ∀u ∈ V.
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Consider a function f which is not calm at u from below. Then, a small shift in
u can produce a proportionally unbounded downward shift in f . Calmness is a
basic regularity condition under which we can study the sensitivity properties
of certain variational systems [15].

In the sharp Lagrangian, suppose that zLR+
ρ (0) > −∞ for some ρ ∈ (0,∞).

Then, a necessary and sufficient condition for the vector λ̄ = 0 to support an
exact penalty representation is that the value function p(u) is calm from below
at u = 0 [13, 14, 26].

2.4 ALD for MIPs

For the MIP problem (1), under some technical assumptions, Boland and Eber-
hard [7] showed that the duality gap for ALD, zLD+

ρ − zIP, goes to zero as the
penalty coefficient ρ goes to infinity.

Proposition 2 [7, Proposition 3] Suppose ψ is of the form ψ(u) = φ(‖u‖)
for some norm ‖ · ‖ in Rm where φ : R+ → R+ is a convex, monotonically
increasing function for which φ(0) = 0 and there exists δ > 0 for which

lim inf
a→+∞

φ(a)

a
≥ δ > 0

with diam{a|φ(a) ≤ δ} ↓ 0 as δ ↓ 0. Moreover, at least one of the following
conditions holds: 1) The solution set of the LP relaxation of problem (1) does
not contain a lineality space. 2) The matrices A and D have rational entries
and the norm ‖.‖ used in the definition of ψ is the l∞ norm. 3) conv(X) is
bounded. Then

zLD* := sup
ρ>0

zLD+
ρ = lim

ρ→∞
zLD+
ρ = zIP.

Boland and Eberhard [7] also showed that if X is a finite set of discrete
elements then ρ does not need to go to infinity to close duality gap.

Corollary 1 [7, Corollary 1] Suppose X is a finite set and assumptions in
Proposition 2 hold. Then, there exists a ρ∗ with 0 < ρ∗ <∞ such that zLD+

ρ∗ =

zIP.

3 Zero Duality Gap with ALD

In this section, we first present a primal characterization of the ALD for MIPs.
Then, we prove that strong duality holds for ALD of general MIPs when the
penalty coefficient is allowed to go to infinity. Our primal characterization and
the strong duality result hold for a general, not necessarily convex augmenting
function, satisfying Assumption 2. We also discuss the relation of our results
to the recent results in [7].
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3.1 A Primal Characterization of ALD

Similar to the equivalence of (4) and (5) for the LD, we can give a primal
characterization for the ALD problem (7). The key observation is that (7)
can be viewed as an LD of a problem in a lifted space. Then, the primal
characterization follows from strong duality in convex optimization with usual
regularity conditions.

Let us first find the primal problem for the ALD problem (7).

zLD+
ρ = sup

λ∈Rm
inf
x∈X

{c>x+ λ>(b−Ax) + ρψ(b−Ax)}

= sup
λ∈Rm

inf
x∈X,ψ(b−Ax)≤ω

{c>x+ ρω + λ>(b−Ax)} (12)

= sup
λ∈Rm

inf
x,ω
{c>x+ ρω + λ>(b−Ax) : (x, ω) ∈ conv(Sψ)}, (13)

where Sψ denotes the feasible region of the inf problem in (12), i.e.

Sψ :=
{

(x, ω) ∈ Rn+1 : ψ(b−Ax) ≤ ω, x ∈ X
}
, (14)

and (13) holds because the objective function in (12) is linear. Now switching
the sup and inf in (13), we have the dual problem of (13) given as

ẑLD+
ρ := inf

(x,ω)∈conv(Sψ)
sup
λ∈Rm

{c>x+ ρω + λ>(b−Ax)}

= inf
x,ω
{c>x+ ρω : Ax = b, (x, ω) ∈ conv(Sψ)}. (15)

Theorem 1 below shows that, under a mild regularity condition, strong
duality holds between (13) and (15), i.e. zLD+

ρ = ẑLD+
ρ . Note that (15) only

involves primal variables x, ω. Therefore, this gives a primal characterization of
the ALD problem (13). To prove this result, we need a few simple propositions
and a nonlinear Farkas lemma.

Proposition 3 Projx(conv(Sψ)) = conv(X).

Proof For any (x, ω) ∈ conv(Sψ), there exist xi ∈ X and ψ(b −Axi) ≤ ωi

for i = 1, . . . , n+ 2 so that x =
∑n+2
i=1 λix

i, ω =
∑n+2
i=1 λiω

i, and
∑n+2
i=1 λi = 1

with λi ≥ 0 for all i = 1, . . . , n + 2 (by Caratheodory’s Theorem). Clearly,
x ∈ conv(X), which shows Projx(conv(Sψ)) ⊆ conv(X).

For the other direction, take any x ∈ conv(X). Then x can be written as

x =
∑n+1
i=1 λix

i for each xi ∈ X and λi’s form a convex combination. Let ωi :=

ψ(b −Axi) and ω :=
∑
i λiωi. Then, for each i, (xi, ωi) ∈ Sψ, and (x, ω) =∑

i λi(x
i, ωi). Therefore, (x, ω) ∈ conv(Sψ), i.e. x ∈ Projx(conv(Sψ)). This

completes the proof. 2

Proposition 4 Let S be a nonempty convex set in Rn+1. Then ri(Projx(S)) =
Projx(ri(S)).

This follows from the well-known fact ri(A(S)) = A(ri(S)), where A is a
linear transformation and S is a convex set. See e.g., [3].
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Proposition 5 There exists x ∈ ri(conv(X)) and Ax = b if and only if
Problem (15) has a feasible point in ri(conv(Sψ)).

Proof If (15) has a feasible point (x̄, ω̄) in ri(conv(Sψ)), then Ax̄ = b and
x̄ ∈ Projx(ri(conv(Sψ))). by Proposition 4, x̄ ∈ ri(Projx(conv(Sψ))). By
Proposition 3, we have x̄ ∈ ri(conv(X)).

For the other direction, take any x̄ ∈ ri(conv(X)) and Ax̄ = b. By Propo-
sition 3, we have x̄ ∈ ri(Projx(conv(Sψ))). By Proposition 4, then we know
that x̄ ∈ Projx(ri(conv(Sψ))), i.e. there exists (x̄, ω̄) ∈ ri(conv(Sψ)) and
Ax̄ = b. 2

Lemma 1 (Nonlinear Farkas’ Lemma (Prop. 3.5.4, [3])) Let C be a
nonempty convex subset of Rn, and let f : C → R and gj : C → R, for
j = 1, . . . , r be convex functions. Consider the set F given by F = {x ∈ C :
g(x) ≤ 0}, where g(x) = (g1(x), . . . , gr(x)), and assume that f(x) ≥ 0 for all
x ∈ F . Consider the subset Q∗ of Rr given by

Q∗ =
{
λ ∈ Rr : λ ≥ 0, f(x) + λ>g(x) ≥ 0,∀x ∈ C

}
.

Then, Q∗ is nonempty if the functions gj for j = 1, . . . , r are affine, and F
contains a relative interior point of C.

Next, we present the primal characterization of the ALD problem (7) as
following theorem.

Theorem 1 If there exists x ∈ ri(conv(X)) such that Ax = b, and zLD+
ρ >

−∞, then for all ρ > 0,

zLD+
ρ = inf

x,ω
c>x+ ρω (16a)

s.t. Ax = b (16b)

(x, ω) ∈ conv(Sψ). (16c)

Proof Essentially, we want to show that strong duality holds between the
primal and dual pair of convex programs (13) and (15), i.e. ẑLD+

ρ = zLD+
ρ

(recall that ẑLD+
ρ is defined in (15)). By Proposition 5, if there exists x ∈

ri(conv(X)) and Ax = b, then (16) has a feasible point in ri(conv(Sψ)).
To apply the nonlinear Farkas’ lemma, we first rewrite the linear equality
constraints in (16b) as linear inequalities Ãx ≤ b̃ with Ã = [A>,−A>]>

and b̃ = [b>,−b>]>; we can also subtract ẑLD+
ρ from the objective function

of (16a) so the new optimal value is zero. Furthermore, denote the feasible
region of (16) as

F :=
{

(x, ω) ∈ conv(Sψ) : Ãx ≤ b̃
}
.

Since F contains a point in the relative interior of conv(Sψ), by Lemma 1, we
know that there exists a multiplier vector λ∗ ≤ 0 such that

c>x+ ρω − ẑLD+
ρ + (λ∗)>(b̃− Ãx) ≥ 0, ∀(x, ω) ∈ conv(Sψ).
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From this, we obtain

inf
(x,ω)∈conv(Sψ)

c>x+ ρω + (λ∗)>(b̃− Ãx) ≥ ẑLD+
ρ

⇒ zLD+
ρ = sup

λ≤0
inf

(x,ω)∈conv(Sψ)
c>x+ ρω + λ>(b̃− Ãx) ≥ ẑLD+

ρ .

By the weak duality between (13) and (15), we already have zLD+
ρ ≤ ẑLD+

ρ ,

therefore, this shows that zLD+
ρ = ẑLD+

ρ for all ρ > 0. 2

Remark 3 A similar primal characterization of (7) is given in [7, Theorem 1].
In particular, the primal characterization in [7] has the following form

zLD+
ρ = min

ω̂>0

{
ρω̂ + min

x

{
c>x : Ax = b,x ∈ Xψ(ω̂)

}}
, (17)

where Xψ(ω̂) := conv({x ∈ Rn : ψ(b − Ax) ≤ ω̂, x ∈ X}). Note that
(17) first minimizes over ω̂ then over x, whereas the primal characterization
obtained in (16) minimizes x, ω jointly. Of course, (16) can also be written in
this order as

zLD+
ρ = min

ω̂>0

{
ρω̂ + min

x

{
c>x : Ax = b,x ∈ X ′ψ(ω̂)

}}
, (18)

where X ′ψ(ω̂) := {x ∈ Rn : (x, ω̂) ∈ conv(Sψ)}. The difference between (17)
and (16) is more clear if we rewrite the sets Xψ(ω̂) and X ′ψ(ω̂) as follows,

Xψ(ω̂) = Projx

(
conv

(
Sψ ∩ {(x, ω) : ω = ω̂}

))
X ′ψ(ω̂) = Projx

(
conv

(
Sψ
)
∩ {(x, ω) : ω = ω̂}

)
. (19)

From this, we can see Xψ(ω̂) ⊆ X ′ψ(ω̂). In this sense, (17) provides a stronger
characterization than (18), when the joint minimization over (x, ω) is split
out in the order of ω and x. In fact, the proof in [7] that established (17) is
quite involved. The difficulty exactly lies in characterizing the properties of the
optimal objective value of the inner minimization in (17) as a single variable
function in ω. In comparison, our primal characterization (16) bypasses this
difficulty by only looking at the joint minimization problem. It seems that this
insight to view the ALD as a traditional LD problem in a lifted space is new,
which makes the derivation of (16) quite simpler. Our primal characterization
also requires less assumptions than (17). In particular, (17) requires that the
augmenting function is convex in a particular form and at least one of the
three assumptions stated in Proposition 2 hold, whereas our primal character-
ization works for both convex and non-convex augmenting functions, and the
relative interior condition in Theorem 1 is a rather mild regularity condition.
In addition, as we will show now, Assumptions 1 and 2 are enough to prove
the zero duality gap result for ALD of general MIPs. A similar result is also
proved in [7, Proposition 3] through their characterization (17), again under
more restricted conditions.
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3.2 Zero Duality Gap for MIPs

From the primal characterization (16) we can see the zLD+
ρ is a non-decreasing

function of ρ. Since zLD+
ρ is upper bounded by zIP, therefore we have

−∞ < zLD* := sup
ρ>0

zLD+
ρ = lim

ρ→+∞
zLD+
ρ ≤ zIP.

We want to show that in fact zLD* = zIP. Recall that λ̄LP is defined as a
rational optimal vector of dual variables for Ax = b in the LP relaxation of
problem (1).

Proposition 6 Suppose Assumptions 1 and 2 hold. For given ρ > 0 and
ε > 0, define ω∗ρ,ε as

ω∗ρ,ε := inf
x,ω

ω

s.t. x ∈ X,
ψ(b−Ax) ≤ ω,

c>x+ λ̄
>
LP(b−Ax) + ρω − zLR+

ρ (λ̄LP) ≤ ε.

(20)

Then, the limit ω∗ρ := lim
ε↓0

ω∗ρ,ε exists and lim
ρ→+∞

ω∗ρ = 0.

Proof From definition and finiteness of zLR+
ρ (λ̄LP), and feasibility of problem

(1), we know that problem (20) is feasible. For all ρ > 0 and ε > 0, nonnega-
tivity of ψ implies ω∗ρ,ε ≥ 0. Moreover, the first and third constraints in (20)
imply

ω∗ρ,ε ≤
1

ρ
(zLR+
ρ (λ̄LP) + ε− c>x− λ̄>LP(b−Ax)), for some x ∈ X

≤ 1

ρ
(zIP + ε− zLP),

(21)

where the second inequality follows from the facts that zLR+
ρ (λ̄LP) ≤ zIP and

zLP ≤ c>x+ λ̄
>
LP(b−Ax), for all x ∈ X. By taking limits ε ↓ 0 on both sides

of (21) we have

0 ≤ ω∗ρ = lim
ε↓0

ω∗ρ,ε ≤ lim
ε↓0

1

ρ
(zIP + ε− zLP) =

1

ρ
(zIP − zLP) (22)

Note that ω∗ρ,ε is non-decreasing as ε ↓ 0. Moreover, ω∗ρ,ε is upper bounded.
Then, lim

ε↓0
ω∗ρ,ε exists. By taking limits ρ→ +∞ on both sides of (22) we have

lim
ρ→+∞

ω∗ρ = 0. 2
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Lemma 2 Consider ω∗ρ as described in Proposition 6. Let us define z̃LR+
ρ (λ̄LP)

as follows:

z̃LR+
ρ (λ̄LP) := inf

x,ω
{c>x+ λ̄

>
LP(b−Ax) + ρω}

s.t. x ∈ X,
ψ(b−Ax) ≤ ω,
(1− δ)ω∗ρ ≤ ω ≤ (1 + δ)ω∗ρ.

(23)

Then,

zLR+
ρ (λ̄LP) =z̃LR+

ρ (λ̄LP)

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax) + ρ(1− δ)ω∗ρ}

s.t. x ∈ X,
ψ(b−Ax) ≤ (1 + δ)ω∗ρ,

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax)}

s.t. x ∈ X,
ψ(b−Ax) ≤ (1 + δ)ω∗ρ,

(24)

for any 0 < δ < 1.

Proof Clearly, zLR+
ρ (λ̄LP) ≤ z̃LR+

ρ (λ̄LP), due to the last constraint in (23).

Let αρ := z̃LR+
ρ (λ̄LP) − zLR+

ρ (λ̄LP). Assume by contradiction, zLR+
ρ (λ̄LP) <

z̃LR+
ρ (λ̄LP) or equivalently αρ > 0. Then, for all (x, ω) satisfying constraints

of (23) it holds

c>x+ λ̄
>
LP(b−Ax) + ρω ≥ z̃LR+

ρ (λ̄LP) = zLR+
ρ (λ̄LP) + αρ,

which implies (x, ω) is infeasible for problem (20) if 0 < ε < αρ. There-
fore, ω∗ρ,ε /∈ ((1 − δ)ω∗ρ, (1 + δ)ω∗ρ) for 0 < ε < αρ, which contradicts with

ω∗ρ = lim
ε↓0

ω∗ρ,ε. Therefore, zLR+
ρ (λ̄LP) = z̃LR+

ρ (λ̄LP). Inequalities in (24) hold,

because ρω ≥ ρ(1 − δ)ω∗ρ ≥ 0 and ψ(b − Ax) ≤ (1 + δ)ω∗ρ, for all (x, ω)
satisfying constraints of (23). 2

Theorem 2 Suppose Assumptions 1 and 2 hold. Then, sup
ρ>0

zLD+
ρ = zIP.
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Proof Following (8), it is enough to show that sup
ρ>0

zLD+
ρ ≥ zIP. Let δ be a

given positive scalar in (0, 1). By definition of ALD, we have

zLD+
ρ = sup

λ∈Rm
inf
x,ω
{c>x+ λ>(b−Ax) + ρω : x ∈ X, ψ(b−Ax) ≤ ω}

≥ inf
x,ω
{c>x+ λ̄

>
LP(b−Ax) + ρω : x ∈ X, ψ(b−Ax) ≤ ω}

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ψ(b−Ax) ≤ (1 + δ)ω∗ρ} (25a)

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ κρ} (25b)

= min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ κρ} (25c)

where κρ := diam{u | ψ(u) ≤ (1 + δ)ω∗ρ} = sup{‖u‖∞ | ψ(u) ≤ (1 + δ)ω∗ρ}.
Inequality (25a) holds by Lemma 2, and (25b) follows from level boundedness
of ψ. Equality (25c) is valid by Assumption 1. By taking limits on both sides
of (25b) we have

lim
ρ→+∞

zLD+
ρ ≥ lim

ρ→+∞
min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ κρ}

≥ min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ lim

ρ→+∞
κρ}

(26a)

= min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ 0} (26b)

= min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X,Ax = b}

= min
x
{c>x : x ∈ X,Ax = b}

= zIP.

where (26a) follows from lower semicontinuity of value functions for MIPs with
rational data [21]. Equality (26b) holds by Assumption 2, i.e. lim

ρ→+∞
κρ = 0.

This completes the proof. 2

4 Exact Penalty Representation of ALD for MIPs

4.1 Pure IP case

A special case of problem (1) is the pure IP case, where all variables are
integral, i.e. n2 = 0. Zero duality gap and exact penalty representation us-
ing proximal Lagrangian for pure IPs were established in [5, Theorem 1.5].
Boland and Eberhard [7, Corollary 1] proved exact penalty representation for
ALD of pure IPs with a bounded feasible region, i.e. X is finite, and the aug-
menting functions satisfying assumptions in Proposition 2. In this section, we
extend this recent result to show exact penalty representation for pure IPs
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under weaker assumptions on the augmenting functions (e.g., the augmenting
function does not have to be convex) and X may not be necessarily finite.

Theorem 3 Suppose problem (1) is a pure IP with potentially infinitely many
feasible solutions, and Assumptions 1 holds. If

inf{ψ(b−Ax) : x ∈ X,Ax 6= b} ≥ δ > 0 (27)

for some strictly positive value of δ, then there exists a finite ρ∗ ∈ (0,+∞)
such that zLD+

ρ∗ = zIP.

Proof Following (8), it suffices to find a finite ρ∗ such that zLD+
ρ∗ ≥ zIP. Let

ρ̄ > 0 be any positive penalty coefficient. By assumption, there exists a δ > 0
which satisfies (27). Furthermore, let x0 be any arbitrary feasible solution of

(1), i.e. x0 ∈ X and Ax0 = b. Set ρ∗ = c>x0−zLP

δ . Note that 0 < ρ∗ < +∞,

because δ > 0 and −∞ < zLP ≤ c>x0 < +∞. We claim that zLD+
ρ∗ ≥ zIP.

Observe that we have

zLD+
ρ∗ = sup

λ
zLD+
ρ∗ (λ) ≥ zLD+

ρ∗ (λ̄LP) = inf
x∈X

{
c>x+ λ̄

>
LP(b−Ax) + ρ∗ψ(b−Ax)

}
.

(28)

There are two cases.

1. For all x ∈ X with Ax = b,

c>x+ λ̄
>
LP(b−Ax) + ρ∗ψ(b−Ax) = c>x ≥ zIP. (29)

2. For all x ∈ X with Ax 6= b,

c>x+λ̄
>
LP(b−Ax) + ρ∗ψ(b−Ax)

= c>x+ λ̄
>
LP(b−Ax) +

(
c>x0 − zLP

δ

)
ψ(b−Ax)

≥ c>x+ λ̄
>
LP(b−Ax) +

(
c>x0 − zLP

)
(30a)

≥ zLP +
(
c>x0 − zLP

)
(30b)

= c>x0

≥ zIP,

where (30a) holds because −∞ < zLP ≤ zIP ≤ c>x0 and ψ(b−Ax) ≥ δ >
0 for all x ∈ X with Ax 6= b by (27); (30b) follows by definition of λ̄LP.

Inequalities (29) and (30) imply

inf
x∈X

{
c>x+ λ̄

>
LP(b−Ax) + ρ∗ψ(b−Ax)

}
≥ zIP.

Together with (28), we have

zLD+
ρ∗ ≥ zIP.

This completes the proof. 2
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Note that for the pure IP case of problem (1) under Assumption 1, any
augmenting function defined in Proposition 2 satisfies (27). Even the index
function I : Rm → {0, 1} where

I(u) =

{
0 if u = 0,
1 otherwise

can be used as an augmenting function ψ(·) to satisfy (27).

4.2 MIP case

For a general MIP with both continuous and integer variables, we need more
conditions on the augmenting function to have an exact penalty representation.
For example, if ψ(·) = ‖·‖22, i.e. the proximal Lagrangian case, this augmenting
function satisfies the assumptions in Proposition 2 as well as (27) when X is
a pure integer set. However, for a general MIP, there may not exist a finite
0 < ρ∗ < ∞ such that zLD+

ρ∗ = zIP under this augmenting function. In this
section, we first give an example to show that proximal Lagrangian fails to have
an exact penalty representation for a simple MIP in three variables. Then we
prove that, when the augmenting function is any norm (but not the squared
norm) i.e., for the sharp Lagrangians, the ALD always has an exact penalty
representation for general MIPs. Finally, we extend this result to some classes
of augmenting functions that are not convex.

4.2.1 Counterexample MIP for Proximal Lagrangian

Proposition 7 There exists an MIP problem of the form (1) and an augment-
ing function satisfying assumptions in Proposition 2 such that zLD+

ρ < zIP for
all finite ρ > 0.

Next, we verify this proposition with a simple example.

Example 1 Consider the following MIP problem, with one binary and two
continuous variables.

zIP = min
x1,x2,x3

− x1 − x2

s.t. − x1 + x2 = 0

0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}

(31)

The only feasible points for (31) are (x1, x2, x3) = (0, 0, 0) and (x1, x2, x3) =
(0, 0, 1) with objective value 0. Then, zIP = 0. Projection of the feasible re-
gion of (31) without the constraint −x1 + x2 = 0 into the space of x1 and x2

contains the blue lines in Figure 1. The points satisfying −x1 + x2 = 0 are
depicted by a red line in this space.
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We show that in Example 1, for ALD with ψ(·) = ‖ · ‖22, zLD+
ρ < 0 for all

ρ > 0. From Theorem 1, ALD (15) with ψ(·) = ‖ · ‖22 becomes

zLD+
ρ = inf − x1 − x2 + ρω

s.t. (x1, x2, x3, ω) ∈ conv(S2)

− x1 + x2 = 0.

(32)

where,

S2 :=

(x1, x2, x3, ω) ∈ R4 :

ω ≥ (−x1 + x2)2

0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}

 .

Consider (x̂1, x̂2, x̂3, ω̂) = (0, r, 0, r2) and (x̃1, x̃2, x̃3, ω̃) = (r, 0, 1, r2) where
r(ρ) = min{1, 1

2ρ}. Obviously, both (x̂1, x̂2, x̂3, ω̂) and (x̃1, x̃2, x̃3, ω̃) belong

to S2. Then, (x̄1, x̄2, x̄3, ω̄) := 1
2 (x̂1, x̂2, x̂3, ω̂) + 1

2 (x̃1, x̃2, x̃3, ω̃) = ( r2 ,
r
2 ,

1
2 , r

2)
belongs to Conv(S2). Projection of the points (x̂1, x̂2, x̂3, ω̂), (x̃1, x̃2, x̃3, ω̃) and
(x̄1, x̄2, x̄3, ω̄) in the space of x1 and x2 can be depicted as points A, B and C,
respectively, in Figure 1. Because (x̄1, x̄2, x̄3, ω̄) ∈ conv(S2) and −x̄1 + x̄2 = 0,
the point (x̄1, x̄2, x̄3, ω̄) is a feasible solution of (32). Therefore,

zLD+
ρ ≤ −x̄1 − x̄2 + ρω̄ = −r + ρr2 ≤ max

{
−1

2
,− 1

4ρ

}
< 0 = zIP, ∀ρ > 0

(33)
which shows zLD+

ρ < zIP for all ρ > 0, i.e. there is no finite ρ∗ such that

zLD+
ρ∗ = zIP. Note that the second inequality in (33) follows from the fact that

−r + ρr2 =

{
−1 + ρ× 12 = −1 + ρ ≤ − 1

2 , if 0 < ρ < 1
2

− 1
2ρ + ρ×

(
1
2ρ

)2

= − 1
4ρ , if 1

2 ≤ ρ.

x1

x2

−x1 + x2 = 0

0

1

1

r A

C

r

B

Fig. 1 Projection of the feasible region of Example 1 in the space of x1 and x2.
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u

p(u)

g1(u)

g2(u)

g3(u)

-1

1-1 0

Fig. 2 Value function and some augmenting functions for Example 1

Another point of view for this example is exploring its value function with
respect to the first constraint, which is

p(u) = inf
x1,x2,x3

− x1 − x2

s.t. − x1 + x2 = u

0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}.

(34)

It is easy to check that p(u) = −|u|, for any u ∈ [−1, 1]. Note that the problem
(34) is infeasible if u /∈ [−1, 1]. Consider the supporting functions g1(u), g2(u)
and g3(u) which are based on augmenting functions ψ1(u) = 1.5|u|, ψ2(u) = u2

and ψ3(u) = 0.5u2, respectively. The value function and these supporting
functions are depicted in Figure 2. From this figure, it is clear that ψ2(u) = u2

can result in a strictly smaller duality gap comparing to ψ3(u) = 0.5u2. But, no
quadratic supporting function to p(·) can reach p(0) = 0. However, the sharp
augmenting function ψ1(u) = 1.5|u| closes the duality gap in this example.

Example 1 showed that, for ψ(·) = ‖ · ‖22, there may exist MIP problems
such that zLD+

ρ < zIP, for any finite value of ρ.

4.2.2 Exact ALD with the sharp Lagrangian for MIPs

Next, we show that using any norm as an augmenting function with a suffi-
ciently large penalty coefficient closes the duality gap for the general MIPs.
One approach is to verify the calmness condition in Subsection 2.3 for the
value function of an MIP. In this section, we provide a self contained proof for
this result.
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Theorem 4 Consider problem (1) with both integer and continuous variables.
Suppose Assumption 1 holds, and ψ(·) = ‖ · ‖, where ‖ · ‖ is any norm. Then
there exists a finite 0 < ρ∗ < +∞ such that zLD+

ρ∗ = zIP.

Proof First, let us show the result for ψ(·) = ‖ · ‖∞. Then, we extend it to
any norm by the equivalence of norms in a Euclidean space. Let ψ(·) = ‖ · ‖∞
and 1m be an m dimensional vector with all entries equal to 1. Then Sψ is a
polyhedron,

Sψ =
{

(x, ω) ∈ Rn+1 : ‖b−Ax‖∞ ≤ ω, x ∈ X
}

=
{

(x, ω) ∈ Zn1 × Rn2+1 : −1mω ≤ b−Ax ≤ 1mω, Ex ≤ f
}
.

(35)

Then, by Assumption 1 and due to Meyer’s theorem [20], there is a rational
polyhedral representation for the set conv(S‖.‖∞)∩{(x, ω) ∈ Rn+1 : Ax = b}.
Denote this representation by H [xω] ≥ h, where H ∈ Qm̂×(n+1) and h ∈ Qm̂,
for some finite integer m̂. Then, by the primal characterization of ALD in
Theorem 1, the ALD problem (7) for a given ρ > 0 can be written as follows,

zLD+
ρ = inf

x,ω
c>x+ ρω

s.t. H

[
x
ω

]
≥ h.

(36)

Note that, for a given ρ > 0, problem (36) is an LP and its dual can be written
as follows.

zDLD+
ρ := sup

y
h>y

s.t. H>y =

[
c
ρ

]
y ≥ 0.

(37)

Note that zLD+
ρ = zDLD+

ρ , since zLD+
ρ > −∞ and by strong duality for LPs.

We are interested in a finite positive ρ∗ such that zLD+
ρ∗ ≥ c>x∗, where x∗

is an optimal solution of (1). The existence of such a ρ∗ is equivalent to the
existence of (y∗, ξ∗, ρ∗) with ξ∗ = 0 for the following feasibility problem in
(y, ξ, ρ),

h>y + ξ ≥ c>x∗

H>y =

[
c
ρ

]
y ≥ 0

ρ ≥ 1

ξ ≥ 0.

(38)

Let Ξ be the projection of the feasible set of (38) into the ξ space. Note that
by Fourier-Motzkin Elimination, Ξ is itself a polyhedron. Then, Ξ is a closed
set.
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Consider a sequence ξk ↓ 0 as k → +∞. Since zDLD+
ρ = zLD+

ρ ≤ zIP

for any ρ ≥ 0, and ψ(·) = ‖ · ‖∞ satisfies Assumption 2, by Theorem 2,
zLD+
ρ ↑ zIP = c>x∗ as ρ→∞. By closedness of Ξ, 0 ∈ Ξ because ξ∗ = 0 is a

cluster point of Ξ. That is, there exists some y∗ and ρ∗ such that (y∗, 0, ρ∗)
is a feasible solution of (38). Therefore, zLD+

ρ∗ ≥ zIP, which along with zLD+
ρ∗

being a lower bound for zIP, we conclude zLD+
ρ∗ = zIP = c>x∗. Note that

zIP = sup
λ∈Rm

inf
x∈X

c>x+ λ>(b−Ax) + ρ∗‖b−Ax‖∞

= sup
λ∈Rm

inf
(x,ω)∈S‖·‖∞

c>x+ λ>(b−Ax) + ρ∗ω

= sup
λ∈Rm

inf
(x,ω)∈conv(S‖·‖∞ )

c>x+ λ>(b−Ax) + ρ∗ω

= inf
(x,ω)∈conv(S‖·‖∞ )

c>x+ λ̄
>

(b−Ax) + ρ∗ω

= inf
(x,ω)∈S‖·‖∞

c>x+ λ̄
>

(b−Ax) + ρ∗ω

= inf
x∈X

c>x+ λ̄
>

(b−Ax) + ρ∗‖b−Ax‖∞

(39)

for some λ̄ ∈ Rm, where the second equality follows from definition of S‖·‖∞ in
(35). The third and fifth equations hold because minimizing a linear objective
function on a set is equivalent to minimizing it on the convex hull of that
set. The fourth equality is valid by strong duality for LPs, because under
Assumption 1 and due to Meyer’s theorem [20], conv(S‖·‖∞) is a rational
polyhedron. The last equality follow from definition of S‖·‖∞ in (35). Then,

c>x+ λ̄
>

(b−Ax) + ρ∗‖b−Ax‖∞ ≥ zIP, ∀x ∈ X

Recall that for any norm ‖ · ‖ in finite dimensions there exists 0 < γ < 1

such that 1
γ ‖u‖ ≥ ‖u‖∞ ≥ γ‖u‖, by the equivalence of norms. Take ρ̂ = ρ∗

γ .
Then,

c>x+ λ̄
>

(b−Ax)+ ρ̂‖b−Ax‖ ≥ c>x+ λ̄
>

(b−Ax)+ρ∗‖b−Ax‖∞, ∀x ∈ X

which implies

zLD+
ρ̂ ≥ zLR+

ρ̂ (λ̄) = inf
x∈X

c>x+ λ̄
>

(b−Ax) + ρ̂‖b−Ax‖ ≥ zIP (40)

On the other hand, zLD+
ρ̂ ≤ zIP by (8). Therefore, zLD+

ρ̂ = zIP. 2

Remark 4 Note that ρ̂ and λ̄ in the proof of Theorem 4 satisfy the assumptions
in Proposition 1. Therefore, any optimal solution of ALR (6) with λ = λ̄ and
ρ > ρ̂ solves the MIP problem (1).

Next, we show that the value of λ̄ in the proof of Theorem 4 really does
not matter.
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Proposition 8 Consider problem (1) under Assumption 1. Suppose ψ(·) =
‖ · ‖, where ‖ · ‖ is any norm. For any λ̃ ∈ Rm, there exists a finite ρ∗(λ̃) such
that zLR+

ρ∗ (λ̃) = zIP.

Proof Let ρ̂ and λ̄ be as considered in (40). By the equivalence of norms,
there exists 0 < γ < 1 such that 1

γ ‖u‖ ≥ ‖u‖2 ≥ γ‖u‖. From Cauchy-Schwarz
inequality, for all x ∈ X, it holds

λ̃
>

(b−Ax) ≥ −‖λ̃‖2‖b−Ax‖2 ≥ −
1

γ
‖λ̃‖2‖b−Ax‖,

λ̄
>

(b−Ax) ≤ ‖λ̄‖2‖b−Ax‖2 ≤ γ‖λ̄‖2‖b−Ax‖,
and consequently,

λ̃
>

(b−Ax) ≥ λ̄>(b−Ax)−
(

1

γ
‖λ̃‖2 + γ‖λ̄‖2

)
‖b−Ax‖. (41)

Take ρ∗ = ρ̂+
(

1
γ ‖λ̃‖2 + γ‖λ̄‖2

)
. Then,

c>x+ λ̃
>

(b−Ax) + ρ∗‖b−Ax‖ ≥ c>x+ λ̄
>

(b−Ax) + ρ̂‖b−Ax‖. (42)

By taking inf
x∈X

from both sides of (42) and considering (40) it is implied that

zLR+
ρ∗ (λ̃) ≥ zIP. This result along with zLR+

ρ∗ (λ̃) being a lower bound for zIP,

concludes zLR+
ρ∗ (λ̃) = zIP. 2

Next, we extend Theorem 4 to a more general class of augmenting functions
than norms.

Theorem 5 Consider an MIP problem (1) satisfying Assumption 1. Then,
there exists a finite ρ̂ such that zLD+

ρ̂ = zLR+
ρ̂ (λ̄LP) = zIP if ψ is an augment-

ing function such that

– ψ(0) = 0,
– ψ(u) ≥ δ > 0, for all u /∈ V ,
– ψ(u) ≥ γ‖u‖∞, for all u ∈ V ,

for some open neighborhood V of 0, and positive scalars δ, γ > 0.

Proof From Proposition 8, there exists a finite ρ∗ such that zLR+
ρ∗ (λ̄LP) = zIP

for ψ(·) = ‖·‖∞. Now, consider the cases where ψ is not a norm but it satisfies

the conditions stated above. Take ρ̂ = max
{
zIP−zLP

δ , ρ
∗

γ

}
. There are two cases.

1. For all x ∈ X such that (b−Ax) /∈ V , it holds

c>x+ λ̄
>
LP(b−Ax) + ρ̂ψ(b−Ax) ≥ zLP + ρ̂ψ(b−Ax)

≥ zLP +
zIP − zLP

δ
ψ(b−Ax)

≥ zLP + zIP − zLP

≥ zIP
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2. For all x ∈ X such that (b−Ax) ∈ V , it holds

c>x+ λ̄
>
LP(b−Ax) + ρ̂ψ(b−Ax) ≥ c>x+ λ̄

>
LP(b−Ax) +

ρ∗

γ
ψ(b−Ax)

≥ c>x+ λ̄
>
LP(b−Ax) + ρ∗‖b−Ax‖∞

≥ zIP.

Then,

c>x+ λ̄
>
LP(b−Ax) + ρ̂ψ(b−Ax) ≥ zIP, ∀x ∈ X, (43)

which implies zLD+
ρ̂ ≥ zLR+

ρ̂ (λ̄LP) ≥ zIP. This result along with zLR+
ρ̂ (λ̄LP)

being a lower bound for zIP, concludes zLR+
ρ̂ (λ̃) = zIP. 2

Remark 5 It is easy to check that for any norm ‖·‖ and scalar r with 0 < r < 1,
the non-convex function ψ(·) = ‖·‖r satisfies the conditions stated in Theorem
5.

5 Conclusions and final remarks

In this paper we studied ALD for general linear MIP problems. We presented a
primal characterization of ALD for MIPs and showed the asymptotic zero dual-
ity gap property with non-negative level bounded and not necessarily convex
augmenting functions. Moreover, we showed that under some mild assump-
tions, ALD achieves zero duality gap for general MIPs with a finite penalty
coefficient and a general class of augmenting functions. We also show that
some augmenting functions such as the squared Euclidean norm are exact in
the pure IP cases, but there exists MIP counterexamples for which these aug-
menting functions may result in a non-zero duality gap for any value of the
penalty coefficient.

Solving IP and MIP problems by ALD may have computational advantages
over the classical Lagrangian relaxation approaches, since ALD may produce
better dual bounds and provide primal solutions. The main drawback of ALR
and ALD methods is that the resulting subproblems are not separable because
of the nonlinear augmenting functions. To overcome this issue, the alternating
direction method of multipliers (ADMM) [8] and related schemes have been
developed for convex optimization problems. However, it is not at all clear how
to decompose ALD for MIP and more general nonconvex problems and utilize
parallel computation. Based on ADMM, a heuristic decomposition method was
developed in [16] to solve MIPs arising from electric power network unit com-
mitment problems. In a continuous and non-convex setting, a decomposition
approach using ADMM was developed for the AC optimal power flow problem
in electric power grid optimization [31]. Further developing theories and algo-
rithms to solve ALD for MIPs and general non-convex optimization problems
with decomposition schemes is an important future research direction.
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