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Multistage Robust Unit Commitment with
Dynamic Uncertainty Sets and Energy Storage

Álvaro Lorca, Student Member, IEEE, and Xu Andy Sun, Member, IEEE

Abstract—The deep penetration of wind and solar power is
a critical component of the future power grid. However, the
intermittency and stochasticity of these renewable resources bring
significant challenges to the reliable and economic operation
of power systems. Motivated by these challenges, we present
a multistage adaptive robust optimization model for the unit
commitment (UC) problem, which models the sequential nature
of the dispatch process and utilizes a new type of dynamic
uncertainty sets to capture the temporal and spatial correlations
of wind and solar power. The model also considers the operation
of energy storage devices. We propose a simplified and effective
affine policy for dispatch decisions, and develop an efficient algo-
rithmic framework using a combination of constraint generation
and duality based reformulation with various improvements.
Extensive computational experiments show that the proposed
method can efficiently solve multistage robust UC problems on
the Polish 2736-bus system under high dimensional uncertainty
of 60 wind farms and 30 solar farms. The computational results
also suggest that the proposed model leads to significant benefits
in both costs and reliability over robust models with traditional
uncertainty sets as well as deterministic models with reserve rules.

Index Terms—unit commitment, robust optimization, renew-
able energy, solar power, wind power, energy storage.

I. INTRODUCTION

THE reliable and cost-effective operation of power systems
with an abundant presence of wind and solar power

depends critically on the competence of optimization methods
to effectively manage their uncertainty. The most crucial
decision process that faces this challenge is the unit commit-
ment (UC) problem, which schedules generating capacities for
the next day and prepares the power system for potentially
strong variations in the availability of intermittent renewable
resources.

Many efforts within the realm of optimization under un-
certainty have been developed for the UC problem. Two
main types of methods are stochastic programming and robust
optimization. Typically, stochastic programming methods in-
volve scenario trees for modeling uncertain parameters, see for
example [1], [2], [3], [4], and references therein. The stochastic
programming framework is versatile, however, it may induce
substantial computational difficulties for large-scale problems,
and it is difficult to properly represent temporal and spatial
correlations within scenario trees. Robust optimization instead
relies on the concept of uncertainty set, namely, a deterministic
set of realizations of uncertain parameters, which leads to sim-
plified models and improved computational tractability. The
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research on robust UC is growing rapidly, starting with a static
robust model for the contingency constrained UC proposed in
[5] and the two-stage robust UC models first developed in [6],
[7], and [8]. In [6] a security constrained robust UC model
is developed under net load uncertainty, [7] presents a robust
UC model with wind uncertainty and pumped-storage units,
and [8] develops a robust UC model with wind uncertainty and
demand response. Other two-stage robust UC approaches have
considered generator and transmission line contingencies [9],
the combination with stochastic UC [10], a worst-case regret
objective [11], and the use of exact and heuristic approaches
to solve bilinear subproblems [12], [13], to name a few works.
In two-stage robust UC models, generator on/off decisions are
selected in the first stage and then dispatch decisions are made
in the second stage with the full knowledge of all the uncertain
parameters in the future. This assumption on the knowledge
of future uncertainty in the two-stage model is unrealistic,
because in the real-life dispatch process the operators only
know realizations of uncertainty up to the time of the dispatch
decision.

A more accurate UC model should restrict operators’ actions
to only depend on uncertain parameters realized up to the
current decision period. That is, the non-anticipativity of
dispatch decisions needs to be enforced. Such a robust model
is called a multistage robust UC model. The benefit of such
a model over two-stage robust and deterministic UC models
is that the multistage model properly prepares the system’s
ramping capability to meet future demand variations, which is
especially important for systems with limited ramping capacity
and significant renewable variations [14].

Multistage robust optimization in its most general form
is computationally intractable, but the concept of affine pol-
icy has been proposed as an effective approximation, where
recourse decisions take the form of an affine function of
uncertain parameters [15]. In order to handle the large scale
of the UC problem, simplified affine policies were proposed
in [14], as well as a solution method based on constraint
generation. Another application of affine policies for UC can
be found in a stochastic UC model in [16], where the classic
approach of duality reformulation is used and computational
results are shown for a 2-dimensional uncertainty set and a
118-bus system. In the context of power systems, the affine
policy approach has also been applied in a stochastic economic
dispatch problem with energy storage decisions [17], in a
robust optimal power flow problem [18], and in a chance-
constrained optimal power flow problem [19].

A key component of any robust optimization model is
the uncertainty set used to represent uncertain parameters
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[20]. A particularly important challenge is to capture the
correlational structure of uncertain parameters. Most of the
existing literature, including the above robust optimization ref-
erences, have considered static uncertainty sets where tempo-
ral and spatial correlations are not systematically represented
or simply ignored. However, some important efforts have been
undertaken to try to improve these uncertainty models. In [21],
primitive uncertainties with potential asymmetric distributions
are considered as underlying factors that determine the un-
certain parameters of interest, which can be used to capture
dependencies. In [22], state-space representable uncertainty
sets are considered, which can also be used to capture certain
dependencies. In [23], the idea of dynamic uncertainty sets is
proposed to capture temporal and spatial correlations in wind
speeds.

The present paper significantly improves existing work,
especially our previous results in [14], in several important
directions. In particular, the paper addresses the following
research questions that have not been successfully resolved in
the existing literature: (i) How to incorporate temporal and
spatial dynamics of uncertainty from both wind and solar
generation in the multistage robust UC model? (ii) How to
efficiently solve the resulting multistage robust UC models
for large-scale systems with high dimensional uncertainty? (iii)
How to effectively utilize the dispatch policy obtained from the
multistage robust UC model in real-time dispatch? (iv) What
is the impact of using energy storage in the multistage robust
UC model? The contributions of this paper are summarized as
follows:

1) We develop a multistage robust UC model for both wind
and solar power uncertainty and energy storage using a
simple and effective affine policy. We also formulate a
new robust look-ahead economic dispatch model that
utilizes the affine dispatch policy obtained from the
multistage robust UC to improve the robustness of real-
time operation.

2) We develop a data-driven approach to construct dynamic
uncertainty sets for capturing joint temporal and spatial
correlations of multiple wind and solar farms, including
a critical enhancement to reduce the dimensionality of
these sets.

3) We develop an efficient solution method combining
constraint generation and the duality based approach
with various algorithmic enhancements, including the
use of outer approximation techniques for reformulating
inter-temporal constraints, the use of a one-tree Ben-
ders implementation, and constraint screening speed-up
techniques. The proposed algorithm can solve multistage
robust UC models for the Polish 2736-bus power system
with high-dimensional uncertainty within a couple of
hours on a modest personal computer, which offers a
practical solution for real-world operations.

4) Extensive computational experiments on a simulation
platform that mimics the hour-to-hour operation of a
real-world power system are carried out to show the
benefits of the proposed models and algorithms in com-
parison to other robust and deterministic approaches.

The remainder of the paper is organized as follows. Section
II formulates the multistage robust UC model and the dispatch
policy, as well as an economic dispatch (ED) method that
exploits the robust adaptive dispatch policy. Section III pro-
poses dynamic uncertainty sets for modeling wind and solar
power. Section IV develops the solution algorithms. Section
V presents computational experiments. Section VI concludes.

II. MULTISTAGE ROBUST UNIT COMMITMENT MODEL

A. Fully-Adaptive Model

Consider the following fully adaptive robust UC model:

min
x,p(·)

c>x + max
pr∈Pr

∑
i∈Ng

∑
t∈T

Cgi p
g
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j∈Nd

djt =
∑
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pgit(p
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∑
i∈N r

prit(p
r
[t]) (1j)

+
∑
i∈N s

(
ps+it (pr[t])− p

s−
it (pr[t])

)
∀pr ∈ Pr, t ∈ T .

Here N d,N g,N l,N r,N s, T denote the sets of demand
nodes, generators, transmission lines, renewable units (wind
or solar), storage units, and time periods, respectively. Details
of notations are summarized below.

1) For conventional generator i at time t: xoit, x
+
it and x−it

are the on/off, start-up, and shut-down decisions, jointly
denoted by vector x; pgit(p

r
[t]) is the adaptive dispatch

policy of generator output, which is a function of the
uncertain available renewable power realized up to time
t; c is a vector encompassing no-load, start-up, and shut-
down costs of generators, and Cgi is the variable cost of
generator i; pg

it
and pgit are the minimum and maximum

output levels of generator i; RDit and RUit are the
ramp-down and ramp-up rates of generator i, and SDit

and SUit are the ramp rates when generator i shuts down
or turns on, respectively.

2) For renewable unit i at time t: prit denotes its available
power output, which is an uncertain parameter in the
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robust UC model (1); Pr is the uncertainty set for the
uncertain vector pr of available renewable output; prit(·)
is the dispatch policy of renewable unit i.

3) For storage unit i at time t: ps+it (·) and ps−it (·) are
respectively its discharge and charge policies; ps+

it
, ps+it ,

ps−
it

, and ps−it are the limits for its power output and
input; and qsi0, qsi , and ηsi are its initial storage level,
capacity, and efficiency.

Overall, vector x encompasses all binary decisions related
to generator commitment, and p(·) = (pg(·),pr(·),ps(·))
corresponds to a dispatch policy of conventional, renewable,
and storage units that are functions of the available renewable
power pr. For the transmission system, αdlj , α

g
li, α

r
li, and

αsli are the corresponding shift factor values for demands,
generators, renewable units, and storage units, respectively, for
transmission line l, based on a DC power flow model; fmaxl

is the flow limit for line l; and dtj is the demand level of node
j at time t.

In problem (1), the objective (1a) consists of minimizing
the sum of commitment costs (including no-load, start-up,
and shut-down costs) and the worst-case dispatch cost, which
is assumed to be linear for ease of exposition, but can be
replaced with a piecewise linear function without changing the
structure of the problem. Notice that the second-stage decision
in (1) is a policy function. The overall min−max structure
in (1a) can be equivalently written in the more familiar form
of nested min−max over time periods, where the dispatch
decision variables are vectors rather than policy functions. See
[24, Chapter 2] for more discussions. Eq. (1b) represents all
the commitment constraints, including as start-up and shut-
down constraints and minimum up and down times in the
set X (see e.g. [25] for details on the formulation). Eq. (1c)
enforces output limits when generators are on, and zero output
when they are off. Eq. (1d) is the ramping constraints. Eq.
(1e) restricts the dispatch level of a renewable unit to be
bounded by the available power of that unit. Eqs. (1f)-(1g)
are discharge and charge limit constraints for storage units. Eq.
(1h) enforces energy storage capacity bounds for storage units.
Eq. (1i) describes transmission line flow limit constraints. Eq.
(1j) enforces system energy balance. Notice that Eqs. (1c)-(1j)
are robust constraints, namely, they must hold for all pr ∈ Pr.

In multistage robust UC model (1), the dispatch decision
pt(p

r
[t]) at time t only depends on pr[t], the realization of

uncertain available renewable power up to time t, where [t] :=
{1, . . . , t}. This makes the decision policy non-anticipative. In
contrast, a two-stage robust UC can be formulated similarly
to (1) but replacing pt(p

r
[t]) by pt(p

r), thus making the
dispatch decision at time t adaptive to the realization of
uncertain available renewable power over all time periods,
which violates non-anticipativity. A more illuminating way to
see the difference is discussed in [14, Section 3.1], where the
multistage robust UC is reformulated as a nested sequence of
T stages of min-max problems, while the two-stage model
can be reformulated as a min-max-min problem.

B. Affine Dispatch Policy
Problem (1) is quite computationally challenging, which can

be seen from the fact that decision p(·) is in the infinite

dimensional space of functions. Alternatively, the compu-
tational difficulty can also be appreciated from the nested
reformulations mentioned above.

To make the problem computationally tractable, we re-
strict our attention to affine policies, also known as linear
decision rules [15], [18], [26]. To give some insight on the
affine dispatch policy, let us write it as pgit(p

r
[t]) = p̂git +∑

j∈N r

∑
τ≤t αitjτ (prjτ − p̂rjτ ), where p̂rjτ is the forecast

(or nominal) available renewable power, p̂git is the dispatch
level if the realized available renewable power is equal to the
forecast, and αitjτ is the sensitivity coefficient of dispatch
on the deviation between the realized and forecast available
renewable power. Note that this affine policy depends on the
uncertainty at all buses and all time periods prior to t. We call
such a policy a full affine policy.

It turns out that, for large-scale power systems, the above
full affine policy for problem (1) is too computationally
difficult to solve [14]. To deal with this difficulty, we use the
following simplified affine policy that adapts to an aggregation
of uncertainty:

Conventional units: pgit(p
r
[t]) = wgit +W g

it

∑
j∈N r

prjt (2a)

Storage units: ps+it (pr[t]) = ws+it +W s+
it

∑
j∈N r

prjt (2b)

ps−it (pr[t]) = ws−it +W s−
it

∑
j∈N r

prjt (2c)

Renewable units: prit(p
r
[t]) = writ +W r

t p
r
it, (2d)

where w,W are the new decision variables. In this type
of policy, dispatch decisions of generators and storage units
depend linearly on the total available renewable power at a
system level, and renewable units depend linearly on their own
local available power. As we will show, this simplified affine
policy performs surprisingly well for (1).

Problem (1) under affine policy (2) can be written in a
compact form as

min
x∈X,w,W

{
c>x + max

pr∈Pr

∑
t∈T

C>t (wt +Wt p
r
t )

}
(3a)

s.t. wt +Wt p
r
t ∈ Ωt

(
x, w[t−1] +W[t−1] p

r
[t−1], p

r
t

)
(3b)

∀pr ∈ Pr, t ∈ T ,

where (3b) represents (1c)-(1j). Note that (3) is still a large-
scale robust optimization problem with mixed-integer vari-
ables. In section IV, we will show that exploiting the structure
of (3) is crucial to efficiently solving it.

C. Policy-guided look-ahead ED method

The solution of problem (3) not only provides a UC sched-
ule x, but also a dispatch policy p(·) that may be utilized
in the real-time hour-to-hour dispatch process. We will show
that using this policy can significantly improve the flexibility
of real-time dispatch.

Consider the real-time dispatch operation at time t. Denote
the available renewable power realized up to this time as
pr,realized[t] . For future time periods τ > t, the available



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON POWER SYSTEMS 4

renewable power is forecasted as pr,forecastτ . Moreover, denote
dispatch decisions of all the units realized up to time t − 1
as prealized[t−1] . We propose a new ED model, called the policy-
guided look-ahead ED:

min
p̂t,...,p̂t+T ′

t+T ′∑
τ=t

∑
i∈Ng

Cgi p̂
g
iτ (4a)

s.t. p̂t ∈ Ωt(p
realized
[t−1] ,pr,realizedt ) (4b)

p̂τ ∈ Ωτ (p̂[τ−1],p
r,forecast
τ ) τ ∈ [t+ 1 : t+ T ′] (4c)

−RDi,t+1 x
o
i,t+1 − SDi,t+1 x

−
i,t+1 ≤ p

g
i,t+1(pr[t+1])− p̂

g
it

≤ RUi,t+1 x
o
it + SUi,t+1 x

+
i,t+1 (4d)

∀pr[t+1] ∈ P
r

[t+1]

(
pr,realized[t]

)
, i ∈ N g

τ∑
k=t

(
ηsi p

s−
ik (pr,forecast[k] )− ps+ik (pr,forecast[k] )

)
(4e)

=

τ∑
k=t

(
ηsi p̂

s−
ik − p̂

s+
ik

)
∀ i ∈ N s, τ ∈ [t+ 1 : t+ T ′].

Here p̂t is the dispatch decision to be implemented at time
t; p̂τ for τ > t is dispatch decision for future time periods
under the forecast condition; T ′ is the number of look-ahead
time periods in the ED model; Ωt(p

realized
[t−1] ,pr,realizedt ) in

(4b) represents all deterministic dispatch constraints at time
t (that is, a deterministic version of eqs. (1c)-(1j) for time
t); Ωτ (p̂[τ−1],p

r,forecast
τ ) in (4c) represents all dispatch con-

straints at time τ > t which depends on dispatch decisions in
previous periods, p̂[τ−1], and on forecast available renewable
power, pr,forecastτ .

The key constraints are (4d) and (4e). Constraint (4d)
enforces robust ramping requirement for dispatch from time
t to t + 1, where dispatch at t + 1 uses the affine policy
pgi,t+1(pr[t+1]) obtained from the multistage UC model (3).
Constraint (4e) enforces that the energy levels of storage
units under p̂ at time τ > t match those determined by the
affine dispatch policy for forecast available renewable power.
Pr[t+1](p

r,realized
[t] ) is the uncertainty set Pr restricted to the

observed available renewable power up to time t, and projected
up to time period t + 1. The philosophy of constraints (4d)
and (4e) is that using the affine dispatch policy pgi,τ (pr[τ ]) and
psiτ (pr,forecast[τ ] ) at future time periods can provide effective
guidance to the dispatch decision at time t, because these
affine policies are obtained from the multistage robust UC
model which has a holistic view of uncertainty. We will show
that this policy-guided look-ahead ED can better utilize storage
devices and has a better capability to hedge against uncertainty
than a deterministic look-ahead ED model (see Section V-B).

III. DYNAMIC UNCERTAINTY SET FOR WIND AND SOLAR
POWER

Wind and solar power present significant temporal and
spatial correlations [27]. In this section, we propose a new
type of dynamic uncertainty sets to capture such correlations.

A. Mathematical Formulation

The dynamic uncertainty set for the available wind and solar
power over a time horizon T is given as

Pr =
{
pr = (prit)i,t : ∃ u, v s.t. (5a)

prit = fit + git uit ∀ i ∈ N r, t ∈ T (5b)

ut =

L∑
l=1

Al ut−l +B vt ∀ t ∈ T (5c)

‖vt‖ ≤ Γ ∀ t ∈ T (5d)∑
t∈T
‖vt‖ ≤ ρΓ |T | (5e)

0 ≤ prit ≤ p
r,max
it ∀ i ∈ N r, t ∈ T

}
, (5f)

where prit is available power of renewable unit i at time t, f
and g account for deterministic seasonal components, ‖ · ‖ is
a norm, Γ > 0 is a size parameter, ρ ∈ (0, 1] determines a
“budget over time periods”, and pr,maxit determines an upper
bound on prit. Here vt ∈ RNv with Nv between 1 and |N r|.

The key feature of (5) is that both temporal and spatial
correlations between uncertain wind and solar power are
captured in (5c), where Al and B determine the temporal
and spatial correlations of uncertain renewable power. More
specifically, ut is the uncertainty in the wind and solar power
output after the seasonality pattern (fit, git) is filtered out;
ut includes both temporal and spatial correlations of these
uncertain resources in Al and B matrices; vt represents
residual uncertainty after temporal and spatial correlations are
further removed from ut. So vt can be viewed as representing
a random vector with uncorrelated components over time and
space. The support of vt is described by (5d)-(5e). The size
of the support is controlled by Γ, which is analogous to the
maximum number of standard deviations that we allow for
variations in each component of vt. We call (5) a dynamic
uncertainty set. As a special case, if the dimension of vt is
the same as that of ut, B is the identity matrix, Al’s are zero,
and ρ = 1, we obtain a static uncertainty set that ignores
temporal and spatial correlations and is separable over time
periods, similar to the budget uncertainty set used in literature
(see e.g. [6], [14]).

To further illustrate the meaning of Γ, consider the static
case described above (where ut = vt and ρ = 1), the norm
is the `∞ norm, i.e. ‖ · ‖ = ‖ · ‖∞, and git corresponds to the
standard deviation of available power at renewable unit i and
time t. In this case we obtain fit − Γ git ≤ prit ≤ fit + Γ git
and no coupling relations between renewable units or time
periods, and we can thus interpret Γ as the “number of standard
deviations” that we allow for available power variations at each
renewable unit and time period. This is the most basic uncer-
tainty set corresponding to a box. For the general dynamic
uncertainty set, the intuition for the choice of Γ is similar,
except that Γ will now determine the “number of standard
deviations” that we allow for variations of each component in
vt.

The concept of dynamic uncertainty sets was first proposed
in [23], where uncertainty in wind speed is modeled and a
power curve is used to transform wind speed into available
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wind power. In this paper, we directly model uncertainty in
wind power to improve computational efficiency. Furthermore,
we model both wind and solar power uncertainty and their
correlations. Notice that the norm in (5d), (5e) can be any
norm such as `1, `2, `∞ or a combination thereof, such as the
intersection of `1 and `∞.

B. Parameter Estimation And Dimension Reduction

To estimate the parameters of the dynamic uncertainty set
(5), we consider the following stochastic model for available
power of renewable units:

p̃rit = fit + git ũit ∀ i ∈ N r, t ∈ T (6a)

ũt =

L∑
l=1

Al ũt−l + ε̃t ∀ t ∈ T , (6b)

where p̃rit is the power available at renewable unit i at time
t, and ε̃t is an i.i.d. random vector under certain distribution.
In this paper, we assume ε̃t to have a multivariate normal
distribution centered at zero with covariance matrix Σ. Other
distributions could be assumed with a proper choice of the
norm in (5d), (5e) in the dynamic uncertainty set (e.g. using
the approach in [21]).

In order to estimate the parameters of this model, f and g
can be estimated using linear regression after identifying daily
seasonality in the volatility of available renewable power. Next,
ũt corresponds to a multivariate autoregressive process, and
given a choice of time lag L, Al and Σ can be estimated
using statistical inference techniques from time series analysis
[28]. Using this, B in (5) can be estimated by Cholesky
decomposition of Σ as Σ = BB>.

At this point, it is important to note that the dimension of
the uncertainty set plays a fundamental role in the difficult-
ness of solving the associated robust optimization problem.
Under the presence of many renewable units, Pr can have
a large dimension. We can reduce the dimension of Pr by
principal component analysis as follows. The matrix Σ can
be eigen-decomposed as Σ = V ΛV >, where V contains the
eigenvectors and Λ has the eigenvalues in the diagonal. Then,
we ignore the smaller eigenvalues in Λ and the corresponding
eigenvectors in V by removing the corresponding columns of
B = V Λ1/2. In this way, the number of columns Nv in (5)
left in B can be any number from 1 to |N r|. If Nv is selected
too close to |N r|, then a high-dimensional uncertainty set is
obtained, resulting in a large problem. If Nv is too close to 1,
then the uncertainty representation may be too inaccurate. The
right balance will depend on the particular instance solved.

IV. SOLUTION METHOD

The affine multistage robust UC model (3) is a so-called
semi-infinite program, i.e. there are finite number of decision
variables, but infinite number of constraints. Due to this, a
deterministic counterpart of (3) needs to be formulated. There
are two main classes of approaches for this purpose. The
most widely used approach is the duality based approach [29]
that replaces each robust constraint by its dual program with
additional variables and constraints. The other less explored
approach is based on constraint generation [14], [30], which

dynamically generates violated scenarios and the associated
deterministic constraints. These two approaches are combined
in the solution method proposed in this section, and special
structures of (3) are exploited.

Section IV-A introduces the basic constraint generation
framework. Section IV-B exploits the special structure of the
robust generation limit and energy balance constraints in (3).
Section IV-C presents an outer approximation method for re-
formulating the inter-temporal constraints in (3). Section IV-D
discusses several techniques to further enhance the efficiency
of the overall algorithm.

A. Constraint Generation Framework

Constraint generation (CG) is recently applied to solve
large-scale robust optimization problems [14], [30]. The mas-
ter robust UC problem in the CG algorithm can be written as

min
(x,w,W ,z)∈Ω

c>x + z (7a)

s.t. ak(W )>pr ≤ bk(x,w, z) ∀ k ∈ [K], pr ∈ Pk, (7b)

where z corresponds to the worst-case dispatch cost, K is
the number of robust constraints in the problem, and Pk
is the current set of extreme points of the uncertainty set
Pr considered for the k-th robust constraint. The basic CG
algorithm solves the master problem (7), and checks if the
k-th robust constraint is violated by the current solution, and
if so, the associated worst-case scenario from Pr is added to
Pk, and the master program is solved again. This method is
formally presented in Algorithm 1.

Algorithm 1 Constraint generation
1: repeat
2: Solve Master Problem (7)
3: for all k ∈ {1, ...,K} do
4: pr

k ← argmax
{
ak(W )>pr : pr ∈ Pr}

5: If ak(W )>pr
k > bk(x,w, z) let Pk ← Pk ∪ {pr

k}
6: end for
7: until ak(W )>pr

k ≤ bk(x,w, z) for all k ∈ [K]

To give a concrete example of the robust constraint (7b),
let us consider the upper output limit constraint in (1c) for
a generator i at time t under affine policy (2). The robust
constraint in this case is given by

wgit +W g
it

∑
j∈N r

prjt ≤ xoit p
g
it ∀p

r ∈ Pr,

where akjτ (W ) = W g
it for τ = t and akjτ (W ) = 0 for τ 6= t,

for any j ∈ N r, and bk(x,w, z) = xoit p
g
it − w

g
it. All other

robust constraints in the master problem are similarly defined.
This basic CG framework is the starting point to develop a

practical algorithm for solving large-scale robust UC prob-
lems. The key is to fully exploit the structure of (3). In
the full algorithm described in this section, we will handle
transmission line flow limit constraints (1i) through CG; for
all other constraints, we use more efficient reformulations.
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B. Reformulation of generation limit and balance constraints

The deterministic counterparts of the robust generation limit
(1c) and the energy balance constraints (1j) in the affine UC
model (3) can be explicitly derived without any dualization of
the uncertainty set.

1) Generation limit constraints: Due to the structure of the
simplified affine policy (2), we can directly identify the worst-
case scenarios for the robust generation limit constraints.

Proposition 1. Under affine policy (2), robust generation limit
constraints (1c) are equivalent to

xoit p
g
it
≤ wgit +W g

it p
r,total
t ≤ xoit p

g
it

∀ i ∈ N g, t ∈ T , pr,totalt ∈
{
pr,total,mint , pr,total,maxt

}
, (8)

where

pr,total,mint = min
pr∈Pr

∑
j∈N r

prjt ∀ t ∈ T (9a)

pr,total,maxt = max
pr∈Pr

∑
j∈N r

prjt ∀ t ∈ T . (9b)

Proof of Proposition 1. The result follows from the fact that

max
pr∈Pr

a
∑
j∈N r

prjt = max
{
a pr,total,mint , a pr,total,maxt

}
,

for any given a.

A similar result holds for robust constraints of storage units’
output and input limits (1f) and (1g), as well as for renewable
unit output limit constraints (1e). Details are omitted for space.

2) Energy balance constraints: The deterministic counter-
part of the robust energy balance constraints can also be
obtained in closed form.

Proposition 2. Under affine policy (2), robust energy balance
constraints (1j) are equivalent to the following system of
equations, for every t ∈ T ,∑
i∈N g

wgit +
∑
i∈N r

writ +
∑
i∈N s

(
ws+it − w

s−
it

)
=
∑
j∈Nd

djt (10a)

∑
i∈N g

W g
it +W r

t +
∑
i∈N s

(W s+
it −W

s−
it ) = 0, (10b)

whenever the uncertainty set Pr is full-dimensional.

Proof of Proposition 2. The robust energy balance constraint
for each t can be written compactly as at(W )>prt = bt(w)
for all prt ∈ P

r
, where at(W ) and bt(w) are linear in W and

w, respectively. If Pr is full-dimensional, then at(W ) = 0
and bt(w) = 0 must hold, which gives (10a)-(10b).

C. Outer approximation for inter-temporal constraints

The worst-case cost constraint, ramping constraints (1d),
and the storage capacity constraints (1h) all involve decisions
over consecutive time periods, i.e. they induce inter-temporal
coupling between dispatch decisions. Dualizing these robust
constraints introduces a large number of new variables and
constraints, while directly applying CG may lead to slow con-
vergence. In this section, we introduce an outer approximation
method for efficient reformulation. Observe that, due to the

simplified affine policy structure (2), the inter-temporal robust
constraints in (3) only depend on total system-level available
renewable power rather than on bus-level details. So we can
project the bus-level uncertainty set (5) to its equivalence
for system-level uncertainty. However, this latter uncertainty
set still involves a large number of variables. Thus, we use
outer approximation (OA) to further reduce its dimension.
This technique is general. We use it here to reformulate
inter-temporal constraints, and in section IV-D2 for screening
transmission constraints.

The inter-temporal robust constraints in (3) can be written
as

max
pr,total
[t1:t2]

∈Pr,total
[t1:t2]

t2∑
t=t1

atotalt (W ) pr,totalt ≤ b(x,w, z), (11)

where

Pr,total[t1:t2] =
{
pr,total[t1:t2] : ∃pr ∈ Pr s.t.

pr,totalt =
∑
j∈N r

prjt ∀t ∈ [t1 : t2]
}

is the projection of bus-level uncertainty set Pr unto the
total available renewable power, and atotalt (W ), b(x,w, z) are
properly defined depending on the particular robust constraint.
We then replace Pr,total[t1:t2] by the following OA P̂r,total[t1:t2] .

P̂r,total[t1:t2] =
{
pr,total[t1:t2] : (12)

pr,total,mint ≤ pr,totalt ≤ pr,total,maxt ∀t ∈ [t1 : t2]

4total
t

≤ pr,totalt − pr,totalt−1 ≤ 4totalt ∀t ∈ [t1 + 1 : t2]
}
,

where

4total
t

= min
pr∈Pr

∑
j∈N r

(
prjt − prj,t−1

)
∀ t ∈ [t1 + 1 : t2] (13a)

4totalt = max
pr∈Pr

∑
j∈N r

(
prjt − prj,t−1

)
∀ t ∈ [t1 + 1 : t2]. (13b)

Observe that this set is indeed an OA of Pr,total[t1:t2] (i.e.

Pr,total[t1:t2] ⊂ P̂
r,total
[t1:t2] ) due to (13), thus ensuring robust feasi-

bility when replacing Pr,total[t1:t2] in (11). Also observe that the

OA (12) only involves the pr,totalt variables, whereas Pr,total[t1:t2]

has many more additional variables u,v as in (5). Thus,
solving (11) over the OA set becomes much faster than over
the original uncertainty set Pr,total[t1:t2] . The proposition below
summarizes this result, and the use of duality based approach
to reformulate the resulting robust constraint.

Proposition 3. Robust constraint (11) is implied by

max
pr,total
[t1:t2]

∈P̂r,total
[t1:t2]

t2∑
t=t1

atotalt (W ) pr,totalt ≤ b(x,w, z),

which is equivalent to the existence of vectors π,π,φ,φ ≥ 0
such that

t2∑
t=t1

(
pr,total,maxt πt − pr,total,mint πt

)
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+

t2∑
t=t1+1

(
4totalt φt −4

total

t
φ
t

)
≤ b(x,w, z)

πt − πt + φt − φt − φt+1 + φ
t+1

= atotalt (W )

∀t ∈ [t1 : t2]

φt1 = φ
t1

= φt2+1 + φ
t2+1

= 0.

Proof of Proposition 3. The result follows from Pr,total[t1:t2] ⊂
P̂r,total[t1:t2] and then taking the dual over P̂r,total[t1:t2] .

Finally, we note that in [14] the separability over time
periods of a static uncertainty set is exploited to reformulate
ramping constraints in a simple way, also exploiting the fact
that these constraints only couple two time periods. However,
the more general dynamic uncertainty sets (5) are not separable
over time periods, and energy storage constraints couple up to
T time periods. Due to this, the technique presented above
based on OA and the duality based approach is a critical
enhancement that allows efficiently handling energy storage
and dynamic uncertainty sets in the multistage robust UC.

See [31, Chapter 6] for more discussion on outer approxi-
mations.

D. Further Algorithmic Enhancements

The CG framework is further enhanced by the following
techniques.

1) One-tree Benders implementation: The presence of bi-
nary variables in the master problem implies that if the con-
straint generation approach presented in IV-A is directly used,
then a potentially large number of mixed-integer programs will
have to be solved throughout the algorithm, which may be
quite slow. We propose an efficient alternative which is to use
the one-tree Benders approach, in which the solver builds only
one branch-and-bound tree and adds the generated constraints
as the branch-and-bound process unfolds. Solver callbacks are
required in this implementation. For example, lazy constraint
callbacks [32] are required in CPLEX.

Another alternative, discussed in [14], consists of “fixing
and releasing” binary variables in order to generate multiple
cuts to the mixed-integer master problem. However, this still
requires potentially building from scratch more than one
branch-and-bound tree and is dominated by the more efficient
one-tree Benders approach.

2) Constraint screening using fast computed upper bounds:
Each iteration of the CG algorithm needs to solve the fol-
lowing separation problem for each robust constraint k, by
checking whether

max
pr∈Pr

ak(W )>pr ≤ bk(x,w, z) (14)

holds for the fixed z,x,w,W . It amounts to solving a linear
program over the dynamic uncertainty set (5) for each k. This
can be time consuming for large instances. We propose to
screen the robust constraints in the following way. In each
iteration of the CG master problem, calculate an upper bound
ubk(W ) for the left-hand side of (14) as

ubk(W ) = max
pr∈P̂r

k

ak(W )>pr, (15)

where P̂rk is an outer approximation of Pr, so that
maxpr∈Pr ak(W )>pr ≤ ubk(W ). Then, before solv-
ing (14) for each robust constraint k, we check whether
ubk(W ) ≤ bk(w, z). If this holds, then (14) must also hold,
and we do not need to solve a linear program over the
uncertainty set. Otherwise, we solve the linear program to
check if (14) holds or not.

In order for this screening process to be efficient, (15) must
be solved very fast. For this purpose, we construct interval
type sets P̂rk for robust transmission constraints, under which
upper bounds can be computed by simply checking the sign
of the elements in W . Since typically many robust constraints
are far from being violated (e.g., some transmission lines are
rarely congested), such robust constraints will be screened very
rapidly using this technique.

3) Strategy for checking loose constraints: After checking
for the feasibility of all robust constraints in the problem, it is
possible that several of them are quite far from being violated.
These loose constraints are unlikely to become violated in
the next iteration. Given this, we restrict the set of robust
constraints to those that were violated or close to being
violated in the last iteration, and only get back to checking
all robust constraints once the master problem has converged.
This process can be repeated as needed until the optimal
solution has been found and feasibility is ensured for all robust
constraints.

V. COMPUTATIONAL EXPERIMENTS

We conduct extensive computational experiments to eval-
uate the solution method and to understand the benefits of
the new model. The experiments are carried out using an
adapted version of the 2736-bus Polish system [33]. The
system contains 289 generators (28880 MW of total capacity),
60 wind farms (10689 MW installed), 30 solar farms (6299
MW installed), 10 storage units (600 MW of total output
capacity), 2011 demand nodes (17831 MW average, 22594
MW peak) and 100 transmission lines. The energy storage
capacity of each storage unit corresponds to five hours at full
output, their ramping capacities are unconstrained, and their
efficiency is 80% [34]. We use wind and solar power data
from NREL’s Western Wind and Solar Integration Datasets
[35]. All the experiments have been implemented using Python
2.7 in a PC with an Intel Core i5 processor at 2.4 GHz
with 4GB memory, using CPLEX 12.6 as the MIP solver.
Section V-A studies the performance of the proposed solution
method, including a comparison of solution quality obtained
with and without the outer-approximation technique. Section
V-B evaluates the advantages of the proposed approach.

A. Performance of the solution method

Here we study how the various techniques presented in
section IV contribute to an effective solution method. In the
experiments, we use a horizon of T = 24 hours with hourly in-
tervals. The f, g,A,B parameters of the dynamic uncertainty
set (5) are estimated using 30 days of the NREL data. The
time lag and the dimension of v are set as L = 1, Nv = 25,
respectively. For the size parameters, we set ρ = 0.1 and
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test various Γ values. The norm in (5c)-(5d) is defined as
‖ · ‖l1∩l∞ = max

{
‖ · ‖1/

√
Nv , ‖ · ‖∞

}
, resulting in a

polyhedral uncertainty set. An optimality gap of 1% is used
for solving MIPs in the CG algorithm.

TABLE I
SOLUTION TIME (HOURS) FOR THE 2736-BUS SYSTEM

Γ 0.25 0.5 1 2 3 4
CG T T T T T T

CG + OTB T T T T T T
CG + OTB + OA 1.53 2.16 1.50 1.79 1.59 2.64

CG + OTB + OA + CS 0.96 2.04 1.27 1.45 1.30 0.79

Table I presents the computation time of different combi-
nations of solution techniques presented in Section IV. In this
Table, “CG” corresponds to the basic constraint generation
algorithm described in Section IV-A, “OTB” is the one-tree
Benders implementation discussed in Section IV-D1, “OA”
uses the outer-approximation technique in Section IV-C, and
“CS” uses constraint screening and the strategy for check-
ing loose constraints in Sections IV-D2 and IV-D3. All the
methods incorporate the reformulations in Section IV-B, so
“CG+OTB+OA+SC” is the full solution method presented in
Section IV. “T” stands for reaching a time limit of 6 hours.

We can observe that all of the enhancements are important
for efficiency. The basic CG has to solve many difficult
mixed integer programs, making it very slow for such a large-
scale instance. Method “OTB” builds only one branch-and-
bound tree and generates the constraints in an integrated way,
however, the number of robust constraints generated through
CG is still very large, making the process slow. This is
fixed in “CG+OTB+OA” by reformulating the robust inter-
temporal constraints for worst-case cost, ramping, and storage
capacities, in such a way that they are enforced throughout the
whole progress of the algorithm with a simple computational
representation, leaving the sequential generation of constraints
only for transmission. Finally, “CG+OTB+OA+SC” further
improves the algorithm by reducing the overall number of
separation problems (14) solved, through quickly recognizing
several robust constraints that are not violated.

To further show the effectiveness of outer approximation, we
study its tightness. In particular, Table II compares the worst-
case cost obtained using the outer approximation method in
section IV-C to that obtained without using this technique
(with running time longer than 6 hours). We can observe that
the loss of solution quality is small, specially for small values
of the size parameter Γ, confirming the value of this technique.

Given the complexity of the multistage robust UC with
dynamic uncertainty sets, the large-scale 2736-bus instance

TABLE II
WORST-CASE COST FOR THE 2736-BUS SYSTEM WITH AND WITHOUT

OUTER APPROXIMATIONS

Γ 0.25 0.5 1 2 3 4
With OA (M$) 11.675 11.892 12.368 13.194 13.833 14.428

Without OA (M$) 11.675 11.881 12.344 13.115 13.738 14.324
Difference 0.00% 0.09% 0.19% 0.61% 0.69% 0.72%

solved here, and the simple computer where these experiments
were carried out, we believe that the solution method proposed
here is very promising for an eventual practical implementa-
tion in real-world power systems with a significant adoption
of wind and solar power.

B. Comparison to other UC and ED models
This section studies the performance of three different

UC solutions and ED methods on a simulation platform of
the dispatch process that mimics the hour to hour operation
of the power system. This simulation consists of a rolling-
horizon process where, given an on/off schedule for generators
(UC solution x), a dispatch problem is solved for every
t = 1, . . . , T , starting with t = 1 and moving forward until
t = T , with uncertain parameters at time t revealed only at
that time. That is, when solving a dispatch problem at time t
the values of uncertain parameters at future time periods are
not known. The dispatch problem solved at time t implements
dispatch decisions for that time, and it takes as input the
dispatch decisions implemented in the previous time periods.
N = 100 such simulations are carried out, with T = 24 hours,
and then several cost and reliability metrics are examined. The
trajectories for wind and solar power are generated using the
stochastic model in Eq. (6), using 30 days of data for parameter
estimation. For the 2736-bus system, the N = 100 simulated
trajectories present an average of 5164 MW for available wind
power and 1133 MW for available solar power, resulting on
an average renewable penetration of 35.3%.

The following UC and ED models are tested: multistage ro-
bust UC with dynamic uncertainty sets using the policy-guided
look-ahead ED method proposed in section II-C (RobUC-
Dynamic), multistage robust UC with static uncertainty sets
using the policy-enforcement ED method proposed in [14]
(RobUC-Static), and deterministic UC with reserves using
deterministic look-ahead ED (DetUC).

The deterministic UC corresponds to a modification of
problem (1) in the case where the uncertainty set only con-
tains the forecast trajectory for available renewable power,
Pr = {pr,forecast}, thus collapsing the dispatch policy to
one dispatch plan rather than a function, pt(p

r
[t]) = pt. This

model is further enhanced by reserves through replacing eq.
(1c) by

xoit p
g
it

+ r−it ≤ p
g
it ≤ x

o
it p

g
it − r

+
it ∀i ∈ N g, t ∈ T ,

and adding constraints∑
i∈N g

r−it ≥ R
−
t ,

∑
i∈N g

r+
it ≥ R

+
t ∀t ∈ T ,

where r−it , r
+
it ≥ 0 are the down-reserve and up-reserve

provided by generator i at time t, and R−t , R
+
t are the down-

reserve and up-reserve requirement levels at time t. Notice
that the multistage robust UC (1) does not need to consider
reserve requirements, given that it addresses uncertainty in a
direct and systematic way, determining reserves endogenously.

The policy-enforcement ED can be formulated as

min
p̂t

∑
i∈Ng

Cgi p̂
g
it : Eqs. (4b) and (4d) hold

 ,
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and the deterministic look-ahead ED as

min
p̂t,...,p̂t+T ′


t+T ′∑
τ=t

∑
i∈Ng

Cgi p̂
g
iτ : Eqs. (4b) and (4c) hold

 .

With this we can see that the policy-guided look-ahead ED (4)
generalizes both the above EDs by utilizing the affine policies
obtained from the multistage robust UC in the robust ramping
constraints (4d) and enforcing storage levels constraints (4e)
in a multi-period look-ahead framework, which are both very
important to leverage the benefits of energy storage resources.
Here, we use T ′ = 3 look-ahead periods.

For the two robust UC models, the size of the uncertainty
sets is parameterized by Γ, and for the deterministic UC, the
reserve requirement levels R−t , R

+
t are selected as R−t =

R+
t = Γ σTNLt , where σTNLt is the standard deviation

of total net load (namely, total demand minus total available
renewable power) at time t, under the simulated trajectories
[36]. To properly study the performance of all these methods,
ED problems are extended with penalty variables for violations
of energy balance and transmission line capacity limits, each
with a unit cost of $5000/MWh.

The simulation results for the 2736-bus system are presented
in Table III, where “Cost Avg” is the average of total cost over
the N = 100 simulations, “Cost Std” is the standard deviation
of total cost, “Cost CVaR” is the conditional value at risk of
total cost at a 10% level (that is, the average total cost of the
10 highest total costs, given N = 100), “Penalty Cost Avg”
is the average penalty cost, “Penalty Freq” is the proportion
of time periods where penalty occurred, “Renewables Util”,
utilization of renewables, is the proportion of used renewable
power with respect to available renewable power, and “Stored
Avg” is the average level of stored energy.

1) Robust UC v.s. Deterministic UC: First, for both robust
and deterministic UC models, the trade-off between opera-
tional cost and system reliability (cost std, penalty freq, CVaR)
is controlled by the uncertainty set size parameter Γ and the
reserve level parameter, respectively. Higher Γ or reserve level
improves system reliability but may increase cost. Second, the
robust UC models significantly improve both the operational
cost and reliability over DetUC. In particular, comparing to the
best economic performance of DetUC (Γ = 4), the RobUC-
Dynamic model at Γ = 1 achieves a decrease of 7.62% in
average cost, 91.64% in cost std, 35.49% in CVaR, and at the
same time completely eliminates penalty; the RobUC-Static
model at Γ = 3 achieves a decrease of 7.04% in average cost,
90.77% in cost std, and 34.87% in CVaR, and also eliminates
penalty. Notice that, at its best performance (Γ = 4), DetUC
still has substantial penalty cost. See Figure 1 for a graphical
representation of this comparison. Third, the robust models
curtail renewables slightly more than the DetUC model to
achieve significantly improved system reliability.

2) RobUC-Dynamic v.s. RobUC-Static: Robust UC with
dynamic uncertainty sets (RobUC-Dynamic) further improves
over robust UC with static uncertainty sets (RobUC-Static).
First, RobUC-Dynamic at Γ = 1 achieves better performance
in all three categories: 0.62% lower cost avg, 9.57% lower
cost std, and 0.96% lower CVaR than RobUC-Static at its

TABLE III
SIMULATION RESULTS FOR POLISH 2736-BUS SYSTEM

Multistage robust UC with dynamic uncertainty set
using policy-guided look-ahead ED (RobUC-Dynamic)
Γ 0.25 0.5 1 2 3 4

Cost Avg (M$) 12.089 11.459 11.567 11.729 11.865 12.017
Cost Std (M$) 1.991 0.262 0.189 0.199 0.202 0.200

Cost CVaR (M$) 17.343 12.000 11.907 12.086 12.228 12.377
Penalty Cost Avg ($) 29424 884 0 0 0 0

Penalty Freq 4.67% 0.29% 0.00% 0.00% 0.00% 0.00%
Renewables Util 99.2% 99.1% 99.1% 98.6% 97.6% 96.5%

Stored Avg (MWh) 613 689 726 709 847 1080

Multistage robust UC with static uncertainty set
using policy-enforcement ED (RobUC-Static)

Γ 0.25 0.5 1 2 3 4
Cost Avg (M$) 24.844 18.215 13.676 11.671 11.639 11.765
Cost Std (M$) 11.654 7.998 3.851 0.608 0.209 0.213

Cost CVaR (M$) 49.390 36.601 23.397 13.037 12.023 12.156
Penalty Cost Avg ($) 563688 285140 93386 4696 0 0

Penalty Freq 31.63% 19.83% 8.63% 0.58% 0.00% 0.00%
Renewables Util 98.6% 98.6% 98.3% 97.5% 96.7% 96.1%

Stored Avg (MWh) 26 46 88 101 129 151

Deterministic UC with reserve using deterministic look-ahead ED (DetUC)
Γ 0.25 0.5 1 2 3 4

Cost Avg (M$) 18.405 20.878 16.687 16.485 17.018 12.520
Cost Std (M$) 6.935 7.446 5.605 5.363 5.805 2.260

Cost CVaR (M$) 34.362 36.326 30.015 29.058 29.739 18.458
Penalty Cost Avg ($) 295995 400152 223927 215491 237765 48136

Penalty Freq 37.13% 32.83% 32.33% 32.08% 27.92% 9.63%
Renewables Util 98.8% 99.0% 98.8% 98.8% 98.9% 99.0%

Stored Avg (MWh) 384 380 381 381 369 377

Fig. 1. Performance measures for RobUC-Dynamic at Γ = 1, RobUC-Static
at Γ = 3 and DetUC at Γ = 4

best performance Γ = 3. In other words, robust UC with
dynamic uncertainty sets dominates the performance of static
uncertainty sets. Second, we can also observe that the average
level of storage utilization for RobUC-Dynamic is much higher
than that of RobUC-Static. This difference is mainly driven
by the different ED models used. In particular, the policy
guided look-ahead ED in RobUC-Dynamic is more effective at
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deploying energy storage devices than the policy-enforcement
ED by following the multistage policy for storage decisions.
Third, RobUC-Dynamic utilizes more renewable power than
RobUC-Static for all levels of Γ. This is due to the fact that the
dynamic uncertainty set is more realistic and less conservative
than the static uncertainty set.

In summary, robust UC models dominate the deterministic
UC model in all operational cost and system reliability metrics.
Moreover, the multistage robust UC model with dynamic
uncertainty sets and policy-guided look-ahead ED dominates
RobUC-Static. RobUC-Dynamic also exhibits higher utiliza-
tion of storage devices and reduces renewable curtailment.

VI. CONCLUSION

We present a multistage robust UC model with dynamic
uncertainty sets for power systems with significant wind and
solar power and storage units. We also propose a novel
dispatch process to accompany the robust UC model. An ef-
ficient solution framework based on constraint generation and
duality reformulations, with several algorithmic improvements,
is developed. With extensive computational experiments, we
show that the proposed algorithm can solve large-scale mul-
tistage robust UC models with high dimensional uncertainty
in a time budget suitable for the day-ahead operation. The
proposed robust UC model with the novel ED method is
shown to dominate the deterministic UC with reserve and look-
ahead ED in both operational cost and system reliability. The
proposed dynamic uncertainty sets also effectively capture the
temporal and spatial correlations of wind and solar power,
which is important for further improving the performance of
the multistage robust UC model. The new ED method leads
to more utilization of storage units and less curtailment of
renewable power.

In summary, the proposed multistage robust UC model,
the dynamic uncertainty sets, the policy-guided look-ahead
ED, and the solution methodology significantly improve over
the existing deterministic and multistage robust UC models
and solution methods, and provide a novel and effective
approach for operating large-scale power systems with a large
number of wind and solar farms and storage devices. Finally,
a challenging topic for future work is to incorporate security
constraints into the multistage robust UC framework.
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programming: modeling and theory. SIAM, 2009, vol. 9.

[25] J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight mixed integer linear
programming formulations for the unit commitment problem,” IEEE
Transactions on Power Systems, vol. 27, no. 1, p. 39, 2012.

[26] D. Kuhn, W. Wiesemann, and A. Georghiou, “Primal and dual linear
decision rules in stochastic and robust optimization,” Mathematical
Programming, vol. 130, no. 1, pp. 177–209, 2011.

[27] L. Xie, P. Carvalho, L. Ferreira, J. Liu, B. Krogh, N. Popli, and M. Ilic,
“Wind integration in power systems: Operational challenges and possible
solutions,” Proceedings of the IEEE, vol. 99, no. 1, pp. 214–232, 2011.

[28] G. C. Reinsel, Elements of multivariate time series analysis. Springer
Science & Business Media, 2003.

[29] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization.
Princeton University Press, 2009.

[30] D. Bertsimas, I. Dunning, and M. Lubin, “Reformulations versus cutting
planes for robust optimization,” Computational Management Science,
2015.

[31] H. Tuy, Convex analysis and global optimization. Kluwer Academic
Publishers, 1998.

[32] IBM ILOG CPLEX, “V12. 1: User’s Manual for CPLEX,” International
Business Machines Corporation, 2009.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON POWER SYSTEMS 11

[33] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-
POWER: Steady-state operation, planning and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, no. 1, pp. 12–19, 2011.

[34] P. Denholm, J. Jorgenson, M. Hummon, T. Jenkin, D. Palchak, B. Kirby,
O. Ma, and M. O’Malley, “The value of energy storage for grid ap-
plications,” http://www.nrel.gov/docs/fy13osti/58465.pdf, 2013, NREL
Technical Report: NREL/TP-6A20-58465.

[35] C. W. Potter, D. Lew, J. McCaa, S. Cheng, S. Eichelberger, and
E. Grimit, “Creating the dataset for the western wind and solar inte-
gration study (USA),” Wind Engineering, vol. 32, no. 4, pp. 325–338,
2008.

[36] M. Black and G. Strbac, “Value of bulk energy storage for managing
wind power fluctuations,” IEEE Transactions on Energy Conversion,
vol. 22, no. 1, pp. 197–205, 2007.
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