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Abstract—This paper proposes an integrated framework for
wind farm maintenance that combines i) predictive analytics
methodology that uses real-time sensor data to predict future
degradation and remaining lifetime of wind turbines, with ii)
a novel optimization model that transforms these predictions
into profit-optimal maintenance and operational decisions for
wind farms. To date, most applications of predictive analytics
focus on single turbine systems. In contrast, this paper provides
a seamless integration of the predictive analytics with decision
making for a fleet of wind turbines. Operational decisions
identify the dispatch profiles. Maintenance decisions consider the
tradeoff between sensor-driven optimal maintenance schedule,
and the significant cost reductions arising from grouping the wind
turbine maintenances together - a concept called opportunistic
maintenance. We focus on two types of wind turbines. For the
operational wind turbines, we find an optimal fleet-level condition
based maintenance (CBM) schedule driven by the sensor data.
For the failed wind turbines, we identify the optimal time to
conduct corrective maintenance to start producing electricity.
The economic and stochastic dependence between operations
and maintenance decisions are also considered. Experiments
conducted on i) a 100-turbine wind farm case, and ii) a 200-
turbine multiple wind farms case demonstrate the advantages of
our proposal over traditional policies.

Index Terms—Real-time sensor-driven prognosis, condition-
based opportunistic maintenance, wind farm operations, mixed-
integer optimization

I. INTRODUCTION

Global investments on both on-shore and off-shore wind
assets have been growing steadily in recent years. Maintenance
operations, which constitute approximately 20-25% of the
total levelized cost per kWh of wind power assets [1], has
become a sector on its own right. This growing sector strives
to adapt to the maintenance concerns of wind farms that
differ significantly from conventional power systems. Firstly,
wind turbines are much more prone to failures [2], however
their relatively simple mechanical construction makes it easier
to monitor their failure processes via integrated sensors [3].
Secondly, due to the large number of wind turbines in a
wind farm, wind farm operators are usually more interested
in the profitability of the entire wind farms as opposed to the
prioritized reliability of individual wind turbines. This is in
sheer contrast with conventional power systems that impose
redundancies to eliminate the risks of any asset failure. As
we will demonstrate in this paper, an integrated maintenance
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framework that i) effectively harnesses sensor information to
predict the remaining lifetime of the turbines, and ii) considers
the interdependencies between the maintenance and operations
of all the turbines within a wind farm or multiple wind
farms, can provide significant benefits in both profitability and
reliability of wind farms.

A successful maintenance policy hinges on the accurate
understanding of failure risks. Traditionally, these risks have
been estimated based on manufacturing specifications and
engineering expertise on the turbine type and make. While
recovering many failure patterns that are common to specific
turbine populations, these traditional failure characterizations
often fall short of explaining properties that are specific to the
individual turbines in the field. To circumvent this problem,
there has been a recent interest in inferring the actual condition
of the wind turbines using integrated sensors. To do so, raw
sensor signals such as temperature, vibration, noise, etc., are
harnessed in real-time to recover characteristic features and
fault-based patterns that capture information about the physical
and performance degradation of the wind turbines in the field.
In condition monitoring (CM), appropriate transformations of
this sensor data, called the degradation signals, are used to
assess the current state of health of these assets. For example,
Figure 1 shows three degradation signals from three rotating
machines similar to the wind turbine components. The ob-
served degradation signal is typically correlated with the level
of degradation in these machines, and failure occurs when this
signal exceeds a standardized failure threshold. As evidenced
by the figure, identical machinery still exhibits considerable
differences in when they fail, and CM is instrumental in
capturing this variation. CM for wind turbines has been studied
extensively in the last decade [3], [4], since i) it can be used
to provide accurate predictions on the remaining life of the
turbines, which, in return, ii) can support the condition-based
maintenance (CBM) planning in wind farms.

Due to the highly interconnected nature of the maintenance
and operations activities in wind farms, many conventional
methods of CBM that focus on single turbine systems do not
scale well in practical applications. A successful CBM policy
for wind farms should consider operational interactions within
the farm, as well as the significant cost reductions resulting
from grouping the wind turbine maintenances — a concept
called opportunistic maintenance [6]. This last point refers to
the common practice of reducing the number of maintenance
crew visits to wind farms by scheduling the maintenance of
wind turbines together. Such a practice may reduce the cost
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Fig. 1. Vibration Based Degradation Signals [5].

of wind farm maintenance, since the maintenance crew visits
incur significant deployment costs, especially for off-shore
wind farms.

Current approaches to wind farm maintenance scheduling
can be categorized under two main lines of research: i)
opportunistic maintenance methods that do not use sensor
information, and ii) sensor-driven methods that focus on single
turbine systems. On the first line of research, maintenance and
operational models for wind farms rely on a combination of
i) reactive policies (repair it after it fails), and ii) fixed time-
based periodic schedules without using the sensor information.
Some of these models attempt to capture the interdependencies
between different wind turbines. There is a rich literature
on time-based opportunistic maintenance scheduling of wind
farms [6]–[8]. These time-based schedules, however, do not
account for the actual condition of the wind turbines when
planning maintenance activities, and therefore cannot be used
to anticipate failures. If implemented in a conservative fashion,
these policies may drive up the cost of maintenance and
decrease operational revenues due to frequent unnecessary
maintenances and downtime. On the second line of research,
wind turbine maintenance scheduling literature uses CM infor-
mation but focuses primarily on single turbine systems [9]–
[11]. Evidently, these models do not capture interdependencies
between different wind turbines, and often perform poorly in
a wind farm setting. In our experiments, we showcase how
these methods perform under different cost structures.

Very few papers have used the sensor information while also
capturing the turbine interdependencies. Recently, [12] has
proposed a maintenance scheduling policy that considers op-
portunistic maintenance for wind turbines subject to condition
monitoring. In this work, the authors suggest a two-threshold
policy, whereby a strict failure threshold applies to the first
wind turbine to be maintained, and a more conservative failure
threshold is imposed on the remaining wind turbines in an
effort to group them with the first wind turbine. Although this
work proposes an opportunistic policy, it does not necessarily
consider the complex economic and maintenance interdepen-
dencies between the wind turbines.

In this paper, we propose a unified framework that integrates
i) a stochastic degradation methodology driven by the sensor
information, with ii) a novel optimization of operations and
maintenance (O&M) scheduling for an entire wind farm or
several wind farms. Our methodology is composed of two
key parts, the predictive analytics and the opportunistic O&M

Fig. 2. Proposed Framework for Adaptive Opportunistic Maintenance.

planning, which are shown in Figure 2 and outlined below.
In the predictive analytics part, we leverage the real-time

degradation data to predict the remaining life distribution
of wind turbines. In contrast to the diagnostic systems that
estimate the current state of wind turbine health, our approach
uses data-driven stochastic models to predict the future tra-
jectory of health, thus providing ample response time and
visibility for failure related risks. We incorporate real-time
signals from each wind turbine in order to provide accurate
predictions on the remaining life distributions (RLDs) that are
updated based on the most recent degradation state of that
wind turbine. The dynamically evolving RLDs are transformed
into dynamic cost functions that balance the expected cost of
maintenance against the cost of unexpected failure. The cost
functions act as a key link between the predictive analytics
and the optimization model.

In the opportunistic O&M scheduling part, the dynamic cost
functions are incorporated into a mixed integer optimization
model. The goal in this stage is to optimize the schedule
across the entire wind farm (or multiple wind farms), based
on the degradation states and predicted RLDs of each wind
turbine in the field. To do so, we develop a novel integrated
maintenance optimization model that provides a maintenance
schedule for a fleet of wind turbines based on their individual
degradation states and subject to limited labor resources and
weather conditions. We also consider the effects of mainte-
nance on electricity production by coordinating wind turbine
maintenance schedules with the turbine dispatch.

The contributions of this work can be summarized as
follows:

• We provide a unified framework for maintenance and
operations of wind farms, which offers a paradigm shift
from the two prominent approaches in literature: i) pe-
riodic and reactive approaches for wind farms that do
not consider the real-time sensor information from in-
situ wind turbines, and ii) sensor-driven approaches for
maintenance scheduling of single turbine systems that
do not necessarily consider the complex operational and
maintenance interdependencies across wind turbines.

• We develop an adaptive maintenance and scheduling op-
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timization model specifically for wind farms. We address
a number of unique challenges in scheduling of wind
farms, such as i) opportunistic maintenance, ii) optimal
corrective maintenance planning based on the wind power
and electricity price, and iii) optimal schedules across
multiple wind farm locations. Through our adaptive op-
timization model, we tightly couple the maintenance and
operations optimization in wind farms with the sensor-
driven dynamics.

• We construct an experimental framework to evaluate the
performance of the maintenance models. This framework
incorporates real-life vibration based degradation data
from a rotating machinery to emulate wind turbine degra-
dation, and uses wind data to mimic the operations of the
wind turbines in different wind farms.

We present the performance of our approach through an
extensive set of experiments on 100 and 200-turbine systems.
We set the benchmarks based on the prominent approaches
in literature. Extensive studies suggest that our framework
significantly lowers the risks of wind turbine failure, extends
equipment lifetime, decreases the cost of maintenance, and
increases the profitability of operations. These metrics are
suggested by the IEEE task force on maintenance [13].

The remainder of the paper proceeds as follows. Section II
introduces our proposed framework and methodology. Section
III provides the integrated maintenance-operations model. Sec-
tion IV presents the experimental framework and experimental
results. The conclusions are provided in Section V.

II. METHODOLOGY

In this section we introduce our integrated framework for
predictive analytics and optimization. We first present the
sensor-driven predictive methodology and use the resulting
statistical distributions of remaining lifetime to derive dynamic
maintenance cost functions. In other words, we illustrate that
as new sensor data is used to update the remaining life
predictions, the cost functions are updated dynamically as
well. We then introduce a scheduling optimization model that
fully adapts to these dynamic cost functions.

A. Predictive Analytics

We first present how the degradation signal observations can
be used to produce accurate predictions on the remaining life
distributions of wind turbines.

We represent degradation in wind turbines as a continuous-
time continuous-state parametric stochastic model. Our degra-
dation modeling framework is based on [14]–[17]. We de-
fine two types of degradation parameters: deterministic and
stochastic parameters. The deterministic parameters represent
population-specific degradation characteristics that are com-
mon across all the wind turbines. The stochastic parameters,
on the other hand, capture unit-to-unit variability. We define
the amplitude of the degradation signal in a wind turbine as
follows:

Di(t) = φi(t;κ,θi) + εi(t;σ), (1)

where Di(t) is a continuous-time stochastic process represent-
ing the amplitude of the wind turbine’s degradation signal,

φi(t;κ,θi) is a general functional form for the degradation
signal, i.e. every unit in the population is assumed to follow
this functional form. κ are deterministic parameters and θi are
stochastic parameters assumed to follow a distribution across
the entire population with that of wind turbine i representing
a random draw from that distribution. Finally, εi(t, σ) is a
Brownian error term that captures signal noise.

We assume that the degradation signal is acquired during
operation of the wind turbine, and the kth observation is
made at time toi . We use the observations to update the
degradation parameters within a Bayesian framework. More
specifically, we condition on the observed degradation signals
dki = {Di(t1), . . . , Di(tk)} at times t1, . . . , tk from wind tur-
bine i, and obtain the posterior distribution of the parameters,
u(θi), as follows:

u(θi) = P (dki |θi)π(θi)/P (dki ), (2)

where π(θi) is the prior distribution of θi. We note that in the
general case one must resort to sampling methods to estimate
this probability [18].

We define the time of failure as the first time that the
degradation signal reaches the failure theshold Λi. Given that
we have observed a sequence of degradation signals, and com-
puted the posterior estimates of the degradation parameters,
distribution of the ith wind turbine’s remaining lifetime at
observation time toi , namely Ritoi , can be estimated using the
procedure outlined in Appendix A.

Next we will focus on transforming these RLDs to dynamic
maintenance cost functions that are used by our optimization
model.

B. Dynamic Maintenance Cost

The predictive framework introduced in the previous section
is tightly integrated into our optimization model. This is
achieved through a dynamic cost function that translates the
RLD of wind turbines into a degradation-based function of
cost over time. More specifically, the dynamic maintenance
cost function quantifies the tradeoff between the cost of pre-
ventive action and the risk of unexpected failures by defining
their corresponding probabilities through the sensor-updated
remaining life estimates. The dynamic maintenance cost is
represented as follows [15]:

Citoi ,t =
cpiP (Ritoi > t) + cfi P (Ritoi ≤ t)∫ t

0
P (Ritoi

> z)dz + toi
, (3)

where Citoi ,t represents the cost rate associated with conducting
wind turbine maintenance t time periods after the time of
observation toi ; c

p
i and cfi are the costs of planned maintenance

and failure replacement, respectively.
The dynamic maintenance cost (3) uses renewal reward [19],

[20] to characterize the long-run expected maintenance cost.
The numerator evaluates the expected cost of maintenance,
where the terms cpiP (Ritoi > t) and cfi P (Ritoi ≤ t) represent
the expected cost of preventive and corrective actions, respec-
tively. The denominator, on the other hand, represents the
expected length of the cycle. The first term,

∫ t
0
P (Ritoi > z)dz,
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finds the expected remaining lifetime of the component given
that the preventive maintenance is planned at time t, and toi is
the deterministic time of observation that is already a part of
the current cycle.

We note that this function adapts to sensor observations,
since the probability P (Ritoi > t) is derived using the
procedure outlined in Section II-A. This function uses the
sensor information to identify the optimal maintenance time
for each wind turbine. Our objective, however, is to capture
the complex interdependencies for a fleet of wind turbines,
and optimize maintenance for the entire wind farm. In what
follows, we will integrate these cost functions from each wind
turbine into a novel optimization model to accomplish this
goal.

C. Optimization Model

In this section, we propose a novel mixed-integer opti-
mization model for the sensor-driven adaptive opportunistic
maintenance and operations scheduling (AOMO) of wind
farms. In contrast to [16], [17], our scheduling model considers
opportunistic maintenance and captures many unique consider-
ations in wind farm maintenance, e.g., allowing a failed wind
turbine to stay idle until the optimal time for its corrective
maintenance.

A key aspect of our framework is the link between predictive
analytics and the wind farm maintenance and operations
scheduling. To connect them, a discretized form of the sensor
updated dynamic maintenance cost from every wind turbine
in field is incorporated into the objective function. In order to
ensure the optimal scheduling of maintenance and operations
for the entire farm, we consider various constraints and inter-
dependencies, such as i) the limits on the maintenance crew
capacity, ii) the operational factors dependent on electricity
price and forecasted wind speed, and iii) the significant
cost reductions resulting from grouping the wind turbine
maintenances together. This is accomplished by coupling the
operations and maintenance in two different scenarios. Firstly,
a wind turbine under maintenance does not produce power.
Secondly, any wind turbine that fails unexpectedly can stay in
a failed state until a corrective maintenance is scheduled. Thus
a tradeoff occurs in terms of when to schedule the corrective
maintenance. The optimization model determines whether it
is more profitable to conduct maintenance right away so that
the wind turbine can start generating electricity, or if it would
make more sense to delay maintenance so that the maintenance
can be grouped with other wind turbines as well. Depending
on the electricity price, forecasted wind speed, and the sensor-
updated failure risks, our model automatically determines how
aggressive it should group the maintenances of wind turbines;
thus providing an optimal maintenance policy that can adapt
to the operator requirements.

We also extend our model for cases where a single main-
tenance crew can handle a number of different locations. For
these cases, we consider the factors such as travel time, and
differing costs of site visits. Difference in the site visit costs are
associated with the remoteness of the location and the distance
to the shore for on-shore and off-shore farms, respectively.

In Section III, we formally present the development of the
optimization model outlined in this section.

III. SENSOR-DRIVEN ADAPTIVE SCHEDULING OF
MAINTENANCE AND OPERATIONS

We denote the set of maintenance epochs by T and the set
of wind turbines by G. The set G can be further partitioned
into two subsets of wind turbines at the time of planning tp.
The first subset, denoted by Go, includes the wind turbines that
are either operational or under maintenance at tp. The second
subset of G, denoted as Gf , includes those wind turbines that
are in failed state at tp. An operational turbine can undergo
preventive maintenance. For this, we let the binary variable z
determine the start time of preventive maintenance, thus zit = 1
if the maintenance of an operational turbine i starts at period
t. There is a dynamic maintenance cost associated with these
decisions as discussed in Section II-B.

A failed turbine can only experience corrective maintenance.
We use binary variables υ to determine the start time of
corrective maintenance, thus υit = 1 if turbine i experiences a
corrective maintenance at period t. There is no time-dependent
maintenance cost associated with υ.

Moreover, x is a binary decision variable, whereby x`t = 1
means that the maintenance crew visits wind farm location
` at period t. There is a significant crew deployment cost
Cv,`t associated with this variable. Each period t in T is
divided to constituent subperiods S in order to model wind
farm operations in more detail. More specifically, yis,t ∈ Rn+
denotes the generation level from wind turbine i during period
t ∈ T and subperiod s ∈ S.

A. Objective function

The objective in the AOMO model is to maximize the net
profit of maintaining and operating a wind farm:

max
z,υ,x,y

∑
i∈G

∑
t∈T

∑
s∈S

yis,t · πs,t︸ ︷︷ ︸
operational revenue

−
∑
`∈L

∑
t∈T

x`t · C
v,`
t︸ ︷︷ ︸

crew deployment cost

−ξm
∑
i∈Go

∑
t∈T

zit · Citoi ,t︸ ︷︷ ︸
expected turbine maintenance cost

, (4)

where πs,t is the electricity price at period t, subperiod s, and
ξm is the maintenance criticality coefficient.

The objective function (4) evaluates the operational revenue
as well as two sources of expenditures: crew deployment
cost and turbine maintenance cost. Evaluation of the first
two terms is trivial. The last term, the turbine preventive
maintenance cost, corresponds to the dynamic maintenance
cost associated with a turbine maintenance. Notice that the
dynamic maintenance costs Citoi ,t’s are computed from the
RLDs of operating wind turbines, which are updated based
on sensor observations. In this way, the objective function (4)
adapts to these dynamic sensor updates over time.
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B. Constraints

1) Wind turbine maintenance coordination: Constraint (5)
ensures that a wind turbine’s preventive maintenance is sched-
uled within the time limit ζi, which is defined as the first time
that its sensor-updated reliability falls below a control thresh-
old η. More specifically, ζi := min{t ∈ T : P (Ritoi > t) < η}.
Constraint (6) limits the number of corrective maintenances
within the planning horizon to at most one per wind turbine.

ζi∑
t=1

zit = 1, ∀i ∈ Go. (5)

∑
t∈T

υit ≤ 1, ∀i ∈ Gf . (6)

The following constraints ensure that maintenance crew
visits the wind farm ` if any of the wind turbines within
that wind farm is scheduled for preventive (7) or corrective
maintenance (8).

zit ≤ x`t, ∀` ∈ L, i ∈ G`o, t ∈ T , (7)

υit ≤ x`t, ∀` ∈ L, i ∈ G`f , t ∈ T , (8)

where G`o and G`f are the sets of operational, and failed wind
turbines at location `, respectively.

2) Maintenance crew coordination: Constraint (9) limits
the maintenance crew visits to only one of the wind farm
locations during a single maintenance epoch. Constraint (10)
ensures that if the weather conditions are harsh at wind
farm location `, then the maintenance crew cannot conduct
maintenance at that location.∑

`∈L

x`t ≤ 1, ∀t ∈ T , (9)

x`t = 0, ∀` ∈ L, t ∈ T `w, (10)

where T `w is the set of times when a crew cannot visit the
wind farm ` due to extreme weather conditions.

The following constraint considers the distance between
wind farm locations ` and `′, and ensures that a maintenance
cannot be initiated before the required travel time θ`,`′ passes.
For every pair of locations {`, `′}, we enforce (11).

x`
′

t + x`τ ≤ 1, ∀t ∈ {θ`,`′ + 1, . . . , T }, τ ∈ {t− θ`,`′ , . . . , t}.
(11)

3) Maintenance capacity: The following constraint (12) en-
sures that the number of ongoing maintenances at time t does
not exceed a limit on maintenance labor capacity per period at
location `, namely M `

t . For onshore and offshore wind farms,
this limitation may depend on the labor capacity, or the number
of available workboats and helicopters, respectively.∑

i∈G`o

zit +
∑
i∈G`f

υit ≤M `
t , ∀` ∈ L, t ∈ T . (12)

4) Operational considerations: The maintenance decision
variables z,υ are coupled with the operational decisions y.

Constraint (13) ensures that i) an operational turbine i
produces electricity within its available capacity at epoch t,
namely pts,i, which depends on the forecasted wind power at
period t, subperiod s; and ii) a wind turbine under maintenance
can not produce electricity.

yts,i ≤ pts,i · (1− zit), ∀i ∈ Go, t ∈ T , s ∈ S. (13)

Constraint (14) stipulates that a failed wind turbine should
be scheduled for corrective maintenance before it can start
producing electricity. This constraint, along with (6), allows
the model to dynamically determine whether or not to schedule
a failed wind turbine for corrective maintenance within the
planning horizon. When scheduled, it also determines the time
of corrective maintenance. Both of these decisions are driven
by the potential loss in production revenue.

yts,i ≤ pts,i ·
t−1∑
j=1

υij , ∀i ∈ Gf , t ∈ T , s ∈ S. (14)

In summary, the AOMO model is given as

(AOMO) min
z,υ,x,y

(4)

s.t. (5)− (14)
z,υ,x binary,y ≥ 0.

IV. EXPERIMENTAL RESULTS

In this section we present three studies to highlight the
performance of AOMO. In the first study, we perform a
benchmark analysis. We also present the impact of different
crew deployment costs on the maintenance schedule. In the
second study, we analyze how different electricity prices
affect the resulting maintenance schedule of AOMO. In the
third study, we consider a scenario with multiple wind farm
locations. The first two studies schedule the maintenance of
a single wind farm with 100 wind turbines, whereas the last
study considers wind farms in three different locations with
100 wind turbines in the first location, and 50 wind turbines
in each of the second and third locations.

To emulate degradation in wind turbine systems, we utilize
a database of vibration signals from a rotating machinery;
where rolling element bearings are run from brand new state
to failure, and their raw vibration spectra are acquired contin-
uously. The raw signals are then transformed into degradation
signals by using the knowledge on their physics-of-failure. The
details of this transformation can be found in [21], [22]. To
analyze the degradation in this setup, we use exponential base
case model, where the evolution of the degradation signals are
characterized by exponential stochastic trends. The predictive
analytics used for this data is presented in Appendix B. The
exponential base case is typically used to model degradation
in machines where preliminary degradation accelerates the
progression of subsequent degradation. This is typical of
applications such as wind turbines, where mechanical wear,
crack propagation, and fatigue leads to equipment failure.
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Examples of similar degradation are omnipresent in spalling
of the main bearings, teeth wear and breakage of gears in the
gearbox attached to the turbine generator, among others.

To test the performance of a maintenance policy, we de-
signed an experimental framework. Our experimental frame-
work involves two modules: planning module, and an execu-
tion module. In the planning module, we solve an optimization
model to schedule the maintenance and operations of the
wind turbines for a 200 day planning horizon, given the
dynamic maintenance costs of the operational wind turbines.
We use Gurobi 5.6.0 [23]. In the execution module, we fix
the maintenance schedule for the first 16 days (freeze period).
We then model the chain of events during this period. We
use the degradation data from a real-world rotating machin-
ery application as representative of the degradation observed
in the wind turbines. We ensure that the expected lifetime
corresponds to wind turbine statistics provided by [24]. For
each day within the freeze period, we determine which wind
turbines experience an ongoing maintenance (preventive or
corrective maintenance as dictated by the fixed schedule of the
optimization model), an unexpected failure or an idle period.
For every wind turbine i ∈ Go, an unexpected failure occurs
when the degradation function of the wind turbine reaches
failure threshold before the time of its scheduled preventive
maintenance. The remaining wind turbines i ∈ Gf stay
idle until a reactive maintenance occurs. Once the execution
module reaches to the end of the freeze period, we update the
dynamic maintenance costs for each operational wind turbine
based on the most recent sensor observations (as in Section
II-B). We also update the list Go and Gf . During this execution
module, for each subperiod, we keep track of the following
metrics:
• Revenues: Based on the availability of each wind turbine,

wind profile and electricity price, we calculate the result-
ing operational revenue.

• Expenditures: We obtain the wind turbine maintenance
cost by the sum of the number of preventive actions
and the unexpected failures multiplied by cp and cf ,
respectively. We obtain the crew deployment cost by
multiplying the crew visit instances by their associated
deployment costs.

• Maintenance Metrics: We record the number of crew
visits, unexpected failures, and preventive and reactive
maintenances. We also register the total idle time of wind
turbines.

We execute the experimental process 20 times in a rolling
horizon fashion to cover a period of 320 days. To have a
fair comparison, we repeat this experimental procedure 10
times with different initial wind turbine ages, and calculate
the metrics by taking the average of the corresponding metrics
from these experiments. The age of the wind turbines at the
start of experiments is obtained by running them for a warm-
up period. We next present the results of our experiments.

A. Comparative Study on AOMO, and the Impact of Crew
Deployment Cost

In this study, we first perform a comparative study for
AOMO. To do so, we compare the cost and maintenance

Fig. 3. Comparative Study on Net Profit of Maintenance Policies subjected
to Different Crew Deployment Costs.

metrics of AOMO, with three benchmark models:
• Adaptive Non-opportunistic Model (ANM): The ANM

model is identical to our proposed model AOMO, except
that in ANM the crew visits do not have an associated
cost, namely Cv,`t = 0 ∀` ∈ L, t ∈ T in (4). ANM
generalizes single turbine maintenance policies in the
literature [9]–[11] to cases with multiple wind turbines.

• Periodic Model (PM): The PM model differs from
AOMO in two aspects: i) it does not benefit from the
sensor-driven dynamic maintenance costs, thus we set
Cd,itoi ,t = 0 ∀i ∈ Go, t ∈ T , and ii) it includes a set of
constraints to ensure that the wind turbine’s preventive
maintenance occurs when the wind turbine’s age is be-
tween 130 and 142 days. Depending on the age and type
of the wind turbine, periodic maintenance frequencies of
wind turbines differ between 3 months to a year [25]. The
period presented herein is obtained using the degradation
database and the traditional approach presented in [26].

• Reactive Model (RM): The RM model does not schedule
any preventive actions, however it is identical to AOMO
in terms of how it schedules the corrective maintenances.
To do so, we replace constraint (5) with zit = 0 ∀t ∈
T , ` ∈ L, i ∈ G`.

Figure 3 provides the net profits of the four policies under
different crew deployment cost profiles. Net profit is defined
by the difference between the operational revenue and expen-
ditures (crew deployment and turbine maintenance). We let the
price of electricity be $25/MWh as in [27], and use the yearly
wind data from [28]. We let cf = 4 × cp = $16K, and fix
the deployment cost to a constant value, i.e. cv = Cv,`t ∀` ∈
L, t ∈ T , following the yearly maintenance costs provided by
[29], [30]. We note that AOMO always provides a better net
profit than the benchmark models, since:
• AOMO adapts to the crew deployment costs: When the

cost cv = 0, AOMO becomes identical to ANM. How-
ever, as cv increases, AOMO significantly outperforms
ANM, as cost incentives in AOMO dynamically integrate
the benefits of the opportunistic maintenance. In fact, for
higher values of cv , ANM provides a worse performance
compared to the more basic models like PM and RM.
This clearly demonstrates that ad-hoc maintenance poli-
cies driven by single wind turbine analysis, even if they
use sophisticated sensor-driven predictive models, can
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perform poorly as the crew deployment cost increases.
To obtain the full benefit of sensor-driven maintenance,
a policy should integrate the dynamics within the main-
tenance and operations of the wind farm as a whole.

• AOMO is driven by sensor information: In contrast to
PM and RM, AOMO detects the condition of the wind
turbines using sensor observations, and adapts the sched-
ule accordingly. The differences in revenue represents the
economic value of this sensor information.

We next analyze the value of sensor information in detail
by considering the effect of crew deployment cost on different
maintenance policies. Tables I, II, and III compare the cost
and maintenance metrics associated with AOMO, PM and
RM, respectively. All the maintenance metrics presented in
the tables refer to the entire farm. For instance, “# preventive
actions” is a measure of the total number of preventive actions
experienced by all the wind turbines in the wind farm. Recall
that some wind turbines that experience an unexpected failure
would stay in a failed state until their corrective maintenance
is scheduled. The total duration of time spent in this failed
state is denoted as idle days. We note that, regardless of
the crew deployment cost cv , AOMO provides the following
advantages:

• Improve reliability while decreasing the turbine main-
tenance cost: AOMO uses the sensor-driven predictive
models to detect when the wind turbine condition be-
comes critical, and performs maintenance when needed.
This significantly decreases the number of failure in-
stances, and provides considerable savings in wind tur-
bine maintenance cost. For instance, when cv = 12cp,
AOMO decreases failure instances by 70.6% and 85.2%
compared to PM and RM respectively. Reductions in
wind turbine maintenance cost correspond to 44.2% and
57.3% of the costs in PM and RM respectively.

• Increase availability and operational revenue: Decreas-
ing the number of failure instances reduces the number
of idle days, which ensures that more wind turbines are
available at any time, making the most of the available
generation capacity. As a result, the operational revenue
increases in AOMO (e.g. by 2.8% and 8.3% compared
to PM and RM respectively, when cv = 12cp ).

• Decrease crew visits: The AOMO schedule experiences
fewer number of outages (failures and preventive mainte-
nances). Consequently, it also significantly decreases the
need for frequent crew visits (in comparison to PM) for
cases when cv > 0 (e.g. decrease by 18.1% and 7.3% in
outages and crew visits, respectively, when cv = 12cp).

We next analyze the impact of the crew visit cost on AOM. Ta-
ble I shows that as the crew deployment cost increases, the cost
factors also increase, causing a rise in crew deployment cost
and a decrease in net profit as a clear consequence. However
there are a number of other changes that are not as obvious.
With increasing cv , AOMO groups the maintenance of wind
turbines more aggressively, thus decreasing the crew visits,
and the associated crew deployment cost. This inevitably
deviates the maintenance policy from the optimal maintenance
suggested by the sensor-driven approach, leading to a slight

increase in the number of failures. This also corresponds to
an increase in the turbine maintenance cost. Increasing cv also
leads to more idle days. As it becomes progressively more
expensive to schedule a visit, AOMO waits for more wind
turbines to degrade before fixing a failed wind turbine. We
note however, that AOMO dynamically determines how to
alter its schedule to find the optimal policy under different
cv scenarios. By doing so, AOMO accurately considers the
tradeoff between the optimal wind turbine maintenance policy,
and the significant cost reductions attained by limiting the
number of crew visits; thus AOMO result in a significantly
better net profit value.

B. Impact of Electricity Price on AOMO

We next analyze the impact of electricity price on the
schedule of AOMO (Table IV). To do so, we consider a farm
with 100 wind turbines, and fix the costs cv = 3 × cf =
12 × cp = $48K. We change the electricity price from
$12.5/MWh to $100/MWh to study the impact of electricity
price on the maintenance and operational metrics. We can
clearly detect that increasing the electricity price increases the
operational revenue, and therefore the net profit. In addition,
we note that there is a significant dependency between the
length of the idle time, and the price of electricity. If a
failed wind turbine is maintained early on, the revenue from
their production would not be lost. However, if the reactive
maintenance can be postponed, then the number of crew visits
can be decreased. As the electricity prices rise, the opportunity
cost of lost revenue also increases, allowing the maintenance
policy to schedule more crew visits to minimize the loss of
production. As crew visits increase, the need to postpone the
preventive maintenances decreases, leading to less number of
failure instances. This leads to a slight increase in expenditure
(increase in crew deployment cost and decrease in wind turbine
maintenance cost). However, the increase in expenditure is
outweighed by the production revenues.

C. Multiple Location Performance of AOMO

In the last study, we analyze a scenario where a single
maintenance crew is responsible for 3 wind farm locations.
The first location has 100 wind turbines, while the second
and third locations have 50 wind turbines each. As in the first
experimental study, the price of electricity is $25/MWh, and
the wind turbine maintenance costs are cf = 4× cp = $16K.
For the first and the second locations, we fix the crew deploy-
ment costs as certain multiples of the preventive maintenance
cost. However, we make the crew deployment cost of the third
location significantly more expensive, cv,3 = 10×cv,1. We also
enforce that it takes one maintenance period to go to location 3
from location 1 or 2, and vice versa. The results are presented
in Table V.

We first analyze some of the interesting dynamics between
the second and the third locations. We note that since the
number of wind turbines are the same, for the case where
cv,3 = cv,2 = 0, the maintenance metrics are similar.
However as the crew deployment cost increases, location 3
crew deployment cost becomes significantly larger than that
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TABLE I
BENCHMARK FOR ADAPTIVE OPPORTUNISTIC MAINTENANCE & OPERATION (AOMO)

cv / cp:= 0 4 8 12 16 20 24 28

Net Profit $10.83 M $10.41 M $10.15 M $9.87 M $9.62 M $9.38 M $9.15 M $8.94 M
Operational Revenue $11.82 M $11.81 M $11.80 M $11.79 M $11.78 M $11.78 M $11.77 M $11.75 M
Expenditures $0.99 M $1.40 M $1.65 M $1.92 M $2.15 M $2.40 M $2.62 M $2.81 M
· Turbine Maintenance $0.99 M $1.03 M $1.04 M $1.06 M $1.08 M $1.09 M $1.10 M $1.14 M
· Crew Deployment $0 M $0.37 M $0.60 M $0.85 M $1.08 M $1.30 M $1.52 M $1.67 M

# Preventive Actions 185.9 177.2 173.1 173.8 179.5 178.8 178.4 172.6
# Turbine Failures 15.2 19.8 21.8 23.0 22.5 23.5 24.3 27.9
# Crew Visits 95 23.1 18.9 17.8 16.8 16.3 15.8 14.9
# Idle Days 104.4 134.4 158.6 180.2 208.2 212.2 224.8 272.6

TABLE II
BENCHMARK FOR OPPORTUNISTIC PERIODIC MAINTENANCE (PM)

cv / cp := 0 4 8 12 16 20 24 28

Net Profit $9.61 M $9.26 M $8.95 M $8.65 M $8.34 M $8.04 M $7.75 M $7.42 M
Operational Revenue $11.51 M $11.49 M $11.46 M $11.47 M $11.47 M $11.47 M $11.47 M $11.47 M
Expenditures $1.89 M $2.23 M $2.51 M $2.82 M $3.13 M $3.43 M $3.72 M $4.05 M
· Turbine Maintenance $1.89 M $1.89 M $1.89 M $1.90 M $1.88 M $1.89 M $1.89 M $1.89 M
· Crew Deployment $0 M $0.34 M $0.62 M $0.92 M $1.25 M $1.54 M $1.83 M $2.16 M

# Preventive Actions 160.4 162.9 162.1 162.1 161.0 162.2 160.7 161.1
# Turbine Failures 78.3 77.6 77.6 78.2 77.5 77.8 77.8 77.8
# Crew Visits 47.1 21.3 19.5 19.2 19.5 19.2 19.1 19.3
# Idle Days 823.4 1122.8 1238.8 1232.0 1236.2 1246.2 1243.6 1252.0

TABLE III
BENCHMARK FOR OPPORTUNISTIC REACTIVE MAINTENANCE (RM)

cv / cp:= 0 4 8 12 16 20 24 28

Net Profit $8.58 M $8.44 M $8.40 M $8.16 M $7.87 M $7.71 M $7.47 M $7.38 M
Operational Revenue $11.11 M $11.13 M $11.07 M $10.89 M $10.66 M $10.54 M $10.22 M $10.12 M
Expenditures $2.53 M $2.62 M $2.68 M $2.74 M $2.79 M $2.84 M $2.75 M $2.73 M
· Turbine Maintenance $2.53 M $2.52 M $2.51 M $2.48 M $2.44 M $2.44 M $2.39 M $2.38 M
· Crew Deployment $0 M $0.10 M $0.17 M $0.25 M $0.35 M $0.40 M $0.36 M $0.36 M

# Preventive Actions - - - - - - - -
# Turbine Failures 158.1 157.8 157.0 155.2 152.5 152.2 149.2 148.5
# Crew Visits 38.0 6.2 5.2 5.3 5.4 5.0 3.8 3.2
# Idle Days 1754.0 1806.2 2102.4 2621.2 3277.6 3616.8 4499.4 4776.4

TABLE IV
IMPACT OF ELECTRICITY PRICE ON MAINTENANCE SCHEDULE (AOMO)

Electiricty Price ($/MWh) 12.5 25 37.5 50 62.5 75 87.5 100

Net Profit $4.01 M $9.88 M $15.77 M $21.68 M $27.55 M $33.44 M $39.35 M $45.24 M
Expenditures $1.89 M $1.91 M $1.91 M $1.92 M $1.94 M $1.95 M $1.95 M $1.96 M
· Turbine Maintenance $1.06 M $1.06 M $1.05 M $1.05 M $1.05 M $1.05 M $1.04 M $1.04 M
· Crew Deployment $0.83 M $0.85 M $0.87 M $0.87 M $0.88 M $0.90 M $0.90 M $0.92 M

# Preventive Actions 174.4 175.1 178.8 178.8 178.9 180.7 179.6 180.3
# Turbine Failures 22.5 22.5 20.7 20.7 21.1 20.4 20.1 20.0
# Crew Visits 17.3 17.8 18.1 18.1 18.4 18.8 18.8 19.0
# Idle Days 184.7 181.3 168.0 166.0 166.6 156.3 154.2 152.8

of location 2. AOMO optimizes the maintenance over all the
locations, thus provides a schedule that is much more proactive
in location 2. Evidently, location 3 experiences more failures,
and idle days, and significantly less crew visits and preventive
maintenances, in comparison to location 2.

Lastly, we compare locations 1 and 2. We note that the
crew deployment cost for both locations remain the same.
However, as the crew deployment cost increases, location 1
becomes more efficient than location 2. When cv = 12cp,
100 wind turbines in location 1 stay idle for a total of 266.6

days, whereas 50 wind turbines in location 2 stay idle for
210.8 days. This means that a wind turbine in location 2 is
expected to stay idle significantly longer than a wind turbine
in location 1. This happens because one would have to wait
longer to group multiple wind turbine maintenances together
in a location with a smaller number of wind turbines. Thus
the schedule in location 2 deviates more from the optimal
CBM policy to get the same benefits of the opportunistic
maintenance. This inevitably leads to more failures. When
failures occur, wind turbines wait longer for their corrective
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TABLE V
MULTIPLE LOCATIONS PERFORMANCE OF AOMO

cv,1 / cp:= 0 4 8 12 16

Location 1: 100 Wind Turbines, Nominal Crew Deployment Cost
# Preventive Actions 178.3 173.6 172.6 171.9 170.3
# Turbine Failures 19.8 22.9 22.9 25.2 28.2
# Crew Visits 47.1 23.1 18.5 16.5 14.7
# Idle Days 160.8 215.4 217.2 266.6 319.0

Location 2: 50 Wind Turbines, Nominal Crew Deployment Cost
# Preventive Actions 87.0 84.3 84.0 82.0 77.6
# Turbine Failures 10.0 12.5 15.7 16.4 19.2
# Crew Visits 32.1 16.9 13.9 12.0 10.5
# Idle Days 111.2 155.0 192.4 210.8 276.2

Location 3: 50 Wind Turbines, Expensive (10×) Crew Deployment Cost
# Preventive Actions 88.4 43.8 39.0 38.2 36.8
# Turbine Failures 12.2 41.1 45.1 45.8 47.0
# Crew Visits 27.7 5.4 5.0 4.7 4.4
# Idle Days 149.4 1237.8 1403.8 1588.6 1733.8

maintenance to be grouped with other wind turbines.

V. CONCLUSIONS

In this paper, we propose an integrated framework that
utilizes the critical information provided by sensor-driven
analytics in order to enhance wind farm maintenance and
operational decisions. Unlike the traditional methods, the
proposed framework effectively uses the sensor information
coming from wind turbines to learn their unique degra-
dation patterns and to dynamically estimate the remaining
life distribution; this information is then incorporated into
an optimal predictive maintenance and operations model. In
contrast to many existing sensor driven wind turbine mainte-
nance policies, the proposed method considers the complex
interdependencies between wind turbines within a wind farm,
and captures specific maintenance requirements. We conduct
extensive experiments using real rotating machinery vibration
signals. The results demonstrate significant improvements in
terms of both reliability and profitability for large-scale wind
farm maintenance.

As future work, we plan to extend the model to incorpo-
rate uncertainty in wind power, electricity price and weather
conditions. In this study, we focused on characterizing and
controlling the stochastic degradation of the wind turbines,
but assumed a deterministic future profile on operational
cost/price aspects. It would be interesting to capture the effect
of uncertainty in prices and market conditions with a more
detailed operations model, and illustrate how the schedul-
ing decisions would be affected. In addition, uncertainty in
weather conditions would also capture an interesting dynamic,
whereby certain time periods when a maintenance crew would
plan to schedule a visit, may need to be postponed or cancelled
due to abrupt changes in weather conditions.

APPENDIX A
PROCEDURE TO PREDICT THE REMAINING LIFE

DISTRIBUTION FOR THE GENERAL CASE

The objective is to predict the distribution of the remaining
life, namely Rito , given the posterior distribution u(θi). The
procedure can be outlined as follows:

Step 1. Select a sufficiently large number of realizations M .
Step 2. Simulate M realizations of θi from the distribution

u(θi). Denote by θ̃i,n the nth realization of θi. For all n,
condition on θ̃i,n to simulate the stochastic degradation
function Di|θ̃i,n(t) for all t > to, until the simulated
signal reaches the failure threshold Λi. Register this time
t as the time of failure for the nth simulation, and let
this realization of remaining life be r̃ito,n.

Step 3. Use the realizations r̃ito,n from all the simulations to
estimate the distribution of Rito .

APPENDIX B
EXPONENTIAL BASE CASE

The exponential base case degradation model can be for-
mally expressed is follows:

Di(t) = φ+ θie
βit+εi(t)−σ

2t
2 = φ+ θie

βiteεi(t)−
σ2t
2 , (15)

where Di(t) is the amplitude of the degradation signal of
turbine i at time t, φ and σ are constant deterministic pa-
rameters, θi is a lognormal random variable where ln θi is
normally distributed with mean µ0 and variance σ2

0 , βi is
a normal random variable with mean µ1 and variance σ2

1 ,
and εi(t) is a zero-mean Brownian motion error term with
variance σ2t. We assume that the variables θi, βi and εi(t)
are mutually independent variables. It is more convenient to
transform this function to its corresponding logged functional
form, Li(t) := ln(Di(t)− φ):

Li(t) = θ′i + β′it+ εi(t), (16)

where θ′i = ln θi and β′i = βi − (σ2/2) are random variables
following prior normal distributions π(θ′i) and π(β′i), with
means µ0 and µ′1 = µ1 − (σ2/2), and variances σ2

0 and σ2
1 ,

respectively.
Next we introduce our Bayesian methodology. We denote

the logged degradation data until observation k occurring at
time toi , as `ki = {`1i , ..., `ki }. The term `ei = Li(te)−Li(te−1)
denotes the difference between the observed signals at time
te and te−1 for all e ∈ {2...k}, whereas `1i = Li(t1). We
then condition on `ki to provide accurate predictions on the
remaining life distribution of the wind turbine. We obtain
the posterior distribution on the parameters θ′i, β

′
i, namely

u(θ′i, β
′
i) as follows:

u(θ′i, β
′
i) = P (`ki |θ′i, β′i)π(θ′i)π(β′i)/P (`ki ), (17)

where P (`ki ) is a constant normalization factor. For this
particular case, we can obtain a closed-form characterization
of u(θ′i, β

′
i) as a bivariate normal distribution with means

(µθ′i , µβ′
i
), variances (σθ′i , σβ′

i
) and correlation coefficient ρi,
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where:

µθ′i =

(
`1iσ

2
0 + µ0σ

2t1
) (
σ2
1tk + σ2

)
− σ2

0t1
(
σ2
1

∑k
e=1 `

e
i + µ′

1σ
2
)

(σ2
0 + σ2t1) (σ2

1tk + σ2)− σ2
0σ

2
1t1

µβ′
i
=

(
σ2
1

∑k
e=1 `

e
i + µ′

1σ
2
) (
σ2
0 + σ2t1

)
− σ2

1

(
`1iσ

2
0 + µ0σ

2t1
)

(σ2
0 + σ2t1) (σ2

1tk + σ2)− σ2
0σ

2
1t1

σ2
θ′i

=
σ2σ2

0t1
(
σ2
1tk + σ2

)
(σ2

0 + σ2t1) (σ2
1tk + σ2)− σ2

0σ
2
1t1

,

σ2
β′
i
=

σ2σ2
1

(
σ2
0 + σ2t1

)
(σ2

0 + σ2t1) (σ2
1tk + σ2)− σ2

0σ
2
1t1

ρi = −
σ0σ1

√
t1√

(σ2
0 + σ2t1) (σ2

1tk + σ2)
,

Details on the derivation of this Bayesian framework is
provided in [5].

Given the posterior distribution u(θ′i, β
′
i), the distribution of

the remanining life can be estimated using an Inverse Gaussian
distribution with mean

(
Λ−`i(tk)
µβ′

)
and shape

(
(Λ−`i(tk))2

σ2

)
.

We refer the reader to [5], [14] for the predictive performance
of similar sensor-driven degradation models.
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