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Abstract—As the modern transmission control and relay
technologies evolve, transmission line switching has become an
important option in power system operators’ toolkits to reduce
operational cost and improve system reliability. Most recent
research has relied on the DC approximation of the power flow
model in the optimal transmission switching problem. However,
it is known that DC approximation may lead to inaccurate flow
solutions and also overlook stability issues. In this paper, we
focus on the optimal transmission switching problem with the
full AC power flow model, abbreviated as AC OTS. We propose a
new exact formulation for AC OTS and its mixed-integer second-
order cone programming (MISOCP) relaxation. We improve this
relaxation via several types of strong valid inequalities inspired
by the recent development for the closely related AC Optimal
Power Flow (AC OPF) problem [1]. We also propose a practical
algorithm to obtain high quality feasible solutions for the AC
OTS problem. Extensive computational experiments show that
the proposed formulation and algorithms efficiently solve IEEE
standard and congested instances and lead to significant cost
benefits with provably tight bounds.

Index Terms—AC transmission switching, mixed-integer pro-
gramming, second order cone programming, semidefinite pro-
gramming, valid inequalities, cutting planes.

I. INTRODUCTION

Transmission switching, as an emerging operational scheme,
has gained considerable attention in both industry and
academia in the recent years [2]–[6]. Switching on and off
transmission lines, therefore, changing the network topology
in the real-time operation, may bring several benefits that the
traditional economic dispatch cannot offer, such as reducing
the total operational cost [3], [7], [8], mitigating transmission
congestion [9], clearing contingencies [10], [11], and improv-
ing do-not-exceed limits [12] .

Previous literature on OTS mainly relies on the DC approx-
imation of the power flow model to avoid the mathematical
complexity induced by the non-convexity of AC power flow
equations (see e.g. [2], [3], [13], [14]). This DC version of
the OTS problem can be modeled as a mixed-integer linear
program (MILP), which is a computationally challenging
problem and several heuristic method are proposed [15]–[17].
In a recent work [18], the authors propose a new formulation
and a class of valid inequalities to exactly solve the MILP
problem. However, even if this problem can be solved quickly,
it has been recognized that the optimal topology obtained by
solving DC transmission switching is not guaranteed to be
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AC feasible, also it may over-estimate cost improvements and
overlook stability issues [19].

The AC optimal transmission switching problem (AC OTS)
is much less explored. In [19], a convex relaxation of AC
OTS is proposed based on trigonometric outer-approximation.
The problem is formulated as a mixed integer nonlinear
program (MINLP) and solved using the solver BONMIN
to obtain upper bounds. In [20], a new ranking heuristic
is proposed based on the economic dispatch solutions and
the corresponding dual variables. In [21], DC OTS is solved
first and then a heuristic correction mechanism is utilized to
restore AC feasibility of the solutions. In this paper, we aim
to push the control scheme for transmission switching closer
to the real-world power system operation by proposing a new
exact formulation and an efficient algorithm for the AC OTS
problem.

There are several closely related problems in the literature,
which involve line switching decisions, such as the network
configuration problem [22], [23], transmission system plan-
ning [24], and intentional islanding [25]. The main ideas of
these works are based on conic relaxations or piecewise linear
approximations of the non-convex power flow equations.

Our study starts from the recent advances in a related
fundamental problem in power system analysis, namely the AC
Optimal Power Flow (AC OPF) problem, which minimizes the
generation cost to satisfy load and various physical constraints
represented in the AC power flow constraints, while the power
network topology is kept unchanged. It is demonstrated by
several authors that convex relaxations, especially semidefinite
programming (SDP) relaxations, of the AC OPF problem pro-
vide tight lower bounds on standard IEEE test instances [26]–
[29]. However, the computational burden of solving large-
scale SDP relaxations is still unwieldy. To solve for large-
scale systems, one may need to turn to computationally less
demanding alternatives such as quadratic convex [19], [30],
[31] or linear programming relaxations [32].

In a recent work [1], we proposed several strong second-
order cone programming (SOCP) relaxations for AC OPF,
which produce extremely high quality feasible AC solutions
(not dominated by the SDP relaxations) in a time that is an
order of magnitude faster than solving the SDP relaxations.
In this paper, we extend these new techniques to the more
challenging AC OTS problem. In particular, we first formulate
the AC OTS problem as an MINLP problem. Then, we propose
a mixed-integer second-order cone programming (MISOCP)
relaxation, which relaxes the non-convex AC power flow
constraints to a set of convex quadratic constraints, represented
in the form of SOCP constraints. The paper then provides
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several techniques to strengthen this MISOCP relaxation by
adding several types of valid inequalities. Some of these valid
inequalities have demonstrated to have excellent performance
for the AC OPF in [1], and some others are specifically
developed for the AC OTS problem. Finally, we also propose
practical algorithms that utilize the solutions from the MIS-
OCP relaxation to obtain high quality feasible solutions for
the AC OTS problem.

The rest of the paper is organized as follows: In Section
II we formally define AC OPF and present two exact for-
mulations. In Section III, we present AC OTS as an MINLP
problem and discuss its MISOCP relaxation. Then, we propose
several valid inequalities in Section IV and develop a practical
algorithm to solve AC OTS in Section V. We present the
results of our extensive computational experiments in Section
VI. Finally, some concluding remarks are given in Section VII.

II. AC OPTIMAL POWER FLOW

Consider a power network N = (B,L), where B and L
respectively denote the set of buses and transmission lines.
Generation units are connected to a subset of buses, denoted
as G ⊆ B. The aim of the AC optimal power flow (OPF)
problem is to satisfy demand at all buses with the minimum
total production costs of generators such that the solution
obeys the physical laws (e.g., Ohm’s and Kirchoff’s Law) and
other operational restrictions (e.g., transmission line flow limit
constraints).

Let Y ∈ C|B|×|B| denote the nodal admittance matrix,
which has components Yij = Gij + iBij for each line (i, j) ∈
L, and Gii = gii −

∑
j 6=iGij , Bii = bii −

∑
j 6=iBij , where

gii (resp. bii) is the shunt conductance (resp. susceptance) at
bus i ∈ B and i =

√
−1. Let pgi , q

g
i (resp. pdi , q

d
i ) be the real

and reactive power output of the generator (resp. load) at bus
i. The complex voltage Vi at bus i can be expressed either
in the rectangular form as Vi = ei + ifi or in the polar form
as Vi = |Vi|(cos θi + i sin θi), where |Vi| =

√
e2i + f2i is the

voltage magnitude and θi is the phase angle. Real and reactive
power on line (i, j) are denoted by pij and qij , respectively
and computed as follows:

pij = −Gij(e2i + f2i ) +Gij(eiej + fifj)−Bij(eifj − ejfi)
qij = Bij(e

2
i + f2i )−Bij(eiej + fifj)−Gij(eifj − ejfi).

(1)

With the above notation, the AC OPF problem is given in
the so-called rectangular formulation as follows:

min
∑
i∈G

Ci(p
g
i ) (2a)

s.t. pgi − p
d
i = gii(e

2
i + f2i ) +

∑
j∈δ(i)

pij i ∈ B (2b)

qgi − q
d
i = −bii(e2i + f2i ) +

∑
j∈δ(i)

qij i ∈ B (2c)

V 2
i ≤ e2i + f2i ≤ V

2

i i ∈ B (2d)

p2ij + q2ij ≤ (Smax
ij )2 (i, j) ∈ L (2e)

pmin
i ≤ pgi ≤ p

max
i i ∈ G (2f)

qmin
i ≤ qgi ≤ q

max
i i ∈ G, (2g)

(1).

The objective function Ci(p
g
i ) is typically linear or convex

quadratic in the real power output pgi of generator i. Con-
straints (2b) and (2c) correspond to the conservation of active
and reactive power flows at each bus, respectively. Here, δ(i)
denotes the set of neighbor buses of bus i. Constraint (2d)
restricts voltage magnitude at each bus. Constraint (2e) puts
an upper bound on the apparent power on each line. Finally,
constraints (2f) and (2g), respectively, limit the active and
reactive power output of each generator to respect its physical
capability.

Note that the rectangular formulation (2) is a non-convex
quadratic optimization problem. However, we note that all
the nonlinearity and non-convexity comes from one of the
following three forms: (1) e2i + f2i = |Vi|2, (2) eiej + fifj =
|Vi||Vj | cos(θi − θj), (3) eifj − fiej = −|Vi||Vj | sin(θi − θj).
We define new variables cii, cij and sij for each bus i and
each transmission line (i, j) to capture the non-convexity. In
particular, we define for each i ∈ B and (i, j) ∈ L,

cii := e2i +f2i , cij := eiej+fifj , sij := eifj−ejfi. (3)

Now, we introduce an equivalent, alternative formulation of
the OPF problem as follows:

min
∑
i∈G

Ci(p
g
i ) (4a)

s.t. pgi − p
d
i = giicii +

∑
j∈δ(i)

pij i ∈ B (4b)

qgi − q
d
i = −biicii +

∑
j∈δ(i)

qij i ∈ B (4c)

pij = −Gijcii +Gijcij −Bijsij (i, j) ∈ L (4d)
qij = Bijcii −Bijcij −Gijsij (i, j) ∈ L (4e)

V 2
i ≤ cii ≤ V

2

i i ∈ B (4f)
cij = cji, sij = −sji (i, j) ∈ L (4g)

c2ij + s2ij = ciicjj (i, j) ∈ L (4h)

θj − θi = atan2(sij , cij) (i, j) ∈ L, (4i)
(2e)-(2g).

A variant of this formulation without (4i) was previously
proposed in [33] and [34] for radial networks (also see [35])
while it was later adapted to general networks in [36], [37].

III. AC OPTIMAL TRANSMISSION SWITCHING

AC Optimal Transmission Switching (AC OTS) is a variant
of the AC OPF problem in which transmission lines are
allowed to be switched on and off to reduce the total cost
of dispatch. AC OTS can be formulated as an optimization
problem, which aims to find a topology with the least cost
while achieving feasible AC power flow solutions. In this
section, we first formulate AC OTS as an MINLP and then,
propose an MISOCP relaxation to obtain lower bounds. We
will use OTS (resp. OPF) to denote AC OTS (resp. AC OPF)
for brevity, unless stated otherwise.

A. MINLP Formulation

Mathematical programming formulation of OTS can be
stated with the same variables as used in OPF with the addition
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of a set of binary variables, denoted by xij , for each line. The
variable xij takes the value one if the corresponding line (i, j)
is switched on, and zero otherwise. Then, OTS is formulated
as the following MINLP problem:

min
∑
i∈G

Ci(p
g
i ) (5a)

s.t. pij = (−Gijcii +Gijcij −Bijsij)xij (i, j) ∈ L (5b)
qij = (Bijcii −Bijcij −Gijsij)xij (i, j) ∈ L (5c)

(c2ij + s2ij − ciicjj)xij = 0 (i, j) ∈ L (5d)

(θj − θi − atan2(sij , cij))xij = 0 (i, j) ∈ L (5e)
xij ∈ {0, 1} (i, j) ∈ L, (5f)
(2e)-(2g), (4b)-(4c), (4f)-(4g).

Here, constraints (5b) and (5c) guarantee that real and reactive
flow on every line takes the associated values if the line is
switched on and zero otherwise. Similarly, constraints (5d) and
(5e) are active only when the corresponding binary variable
takes the value one.

We also note that the model (5) can be appropriately
modified to include circuit breakers between bus bars [38].

B. MISOCP Relaxation
Now, we propose an MISOCP relaxation of OTS (5). For

notational convenience, let cii = V 2
i and cii = V

2

i . Here,
we extend the definition of variables cij and sij , which now
take the values as before when the corresponding line is
switched on and zero otherwise. We also denote lower and
upper bounds of cij (resp. sij) as cij (resp. sij) and cij (resp.
sij), respectively, when the line is switched on. Next, we define
new variables cjii := ciixij . Using this notation, we present an
MISOCP relaxation as follows:

min
∑
i∈G

Ci(p
g
i ) (6a)

s.t. pij = −Gijcjii +Gijcij −Bijsij (i, j) ∈ L (6b)

qij = Bijc
j
ii −Bijcij −Gijsij (i, j) ∈ L (6c)

cijxij ≤ cij ≤ cijxij (i, j) ∈ L (6d)

sijxij ≤ sij ≤ sijxij (i, j) ∈ L (6e)

ciixij ≤ c
j
ii ≤ ciixij (i, j) ∈ L (6f)

cii − cii(1− xij) ≤ cjii (i, j) ∈ L (6g)

cjii ≤ cii − cii(1− xij) (i, j) ∈ L (6h)

c2ij + s2ij ≤ c
j
iic
i
jj (i, j) ∈ L, (6i)

(2e)-(2g), (4b)-(4c), (4f)-(4g), (5f).

Here, constraints (6b) and (6c) again guarantee that flow
variables takes the correct value when the line is switched
on and zero otherwise, due to constraints (6d)-(6f). On the
other hand, (6g)-(6h) restrict that cjii takes value cii when line
in switched on. We note that constraints (6f)-(6h) are precisely
the McCormicks envelopes [39] applied to cjii = ciixij .
Finally, (6i) is the SOCP relaxation of (5d).

We note that the non-convex constraint (5e) is dropped
altogether to obtain the MISOCP relaxation (6). In the next
section, we propose three ways to incorporate the constraint
(5e) back into the MISOCP relaxation.

IV. VALID INEQUALITIES

In this section, we propose three methods to strengthen the
MISOCP relaxation (6). They are based on the strengthening
methods we recently proposed for the SOCP relaxation of the
AC OPF problem in [1], which are combined with integer
programming techniques. In Section IV-A, we construct a
polyhedral envelope for the arctangent constraint (5e) in 3-
dimension. In Section IV-B, we propose a disjunctive cut gen-
eration scheme that separates a given SOCP solution from the
SDP cones. In Section IV-C, we propose another disjunctive
cut generation scheme that separates a given SOCP solution
from a newly-proposed cycle based McCormick relaxation of
the OPF problem. Finally, in Section IV-D, we propose vari-
able bounding techniques that provide tight variable bounds,
which is essential for the success of the proposed approach.

A. Arctangent Envelopes

First, we propose a convex outer-approximation of the angle
condition (5e) to the MISOCP relaxation. Our construction
uses four linear inequalities to approximate the convex enve-
lope for the following set defined by the arctangent constraint
(5e) for each line (i, j) ∈ L,

AT :=
{

(c, s, θ) ∈ R3 : θ = arctan
(s
c

)
, (c, s) ∈ B

}
, (7)

where we denote θ = θj−θi and drop (i, j) indices for brevity
and define the box B := [c, c]× [s, s]. We also assume c > 0.
The four corners of the box correspond to four points in the
(c, s, θ) space:

z1 = (c, s, arctan (s/c)), z2 = (c, s, arctan (s/c)),

z3 = (c, s, arctan (s/c)), z4 = (c, s, arctan (s/c)).
(8)

Let us first focus on the upper envelopes. Proposition 1 is
adapted from [1] to the case of OTS:

Proposition 1. Let θ = γ1 + α1c+ β1s and θ = γ2 + α2c+
β2s be the planes passing through points {z1, z2, z3}, and
{z1, z3, z4}, respectively. Then, for k = 1, 2, we have

γ′k + αkc+ βks+ (2π − γ′k)(1− x) ≥ arctan
(s
c

)
(9)

for all (c, s) ∈ B with γ′k = γk + ∆γk where

∆γk = max
(c,s)∈B

{
arctan

(s
c

)
− (γk + αkc+ βks)

}
. (10)

The nonconvex optimization problem (10) can be solved by
enumerating all possible Karush-Kuhn-Tucker (KKT) points.
A similar argument can be used to construct lower envelopes
as well. See [1] for details.

B. SDP Disjunction

In the second method to strengthen the MISOCP relaxation
(6), we propose a cutting plane approach to separate a given
SOCP relaxation solution from the feasible region of the SDP
relaxation of cycles. To start with, let us consider a cycle with
the set of lines C and the set of buses BC . Let v ∈ R2|C| be a
vector of bus voltages defined as v = [e; f ] such that vi = ei
for i ∈ B and vi′ = fi for i′ = i + |C|. Observe that if we
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have a set of c, s variables satisfying the definitions in (3) and
a matrix variable W = vvT , then the following relationship
holds between c, s, x and W ,

cij = (Wij +Wi′j′)xij (i, j) ∈ C (11a)
sij = (Wij′ −Wji′)xij (i, j) ∈ C (11b)
cii = Wii +Wi′i′ i ∈ BC (11c)
cijxij ≤ cij ≤ cijxij (i, j) ∈ C (11d)

sijxij ≤ sij ≤ sijxij (i, j) ∈ C (11e)

cii ≤ cii ≤ cii i ∈ BC (11f)

cjii = ciixij (i, j) ∈ C (11g)
xij ∈ {0, 1} (i, j) ∈ C (11h)
W � 0. (11i)

Let us define S := {(c, s, x) : ∃W : (11)}. Clearly, any
feasible solution to the OTS formulation (5) must also satisfy
(11). Therefore, any valid inequality for S is also valid for the
formulation (5).

Note that S is a mixed-integer set. Ideally, one would be
interested in finding conv(S) to generate strong valid inequali-
ties. However, this is a quite computationally challenging task,
no easier than solving the original MINLP. Instead, we outer-
approximate conv(S) and obtain cutting planes by utilizing a
simple disjunction for a cycle C: Either every line is active,
that is

∑
(i,j)∈C xij = |C|, or at least one line is disconnected,

that is
∑

(i,j)∈C xij ≤ |C| − 1. Below, we approximate these
two disjunctions.

Disjunction 1: In the first disjunction, we have xij = 1 for
all (i, j) ∈ C. Let us consider the following constraints

cij = Wij +Wi′j′ (i, j) ∈ C (12a)
sij = Wij′ −Wji′ (i, j) ∈ C (12b)

cii = cjii (i, j) ∈ C (12c)
xij = 1 (i, j) ∈ C, (12d)

and define S1 := {(c, s, x) : ∃W : (12), (11c)− (11f), (11i)}.
Disjunction 0: In the second disjunction, xij = 0 for some

(i, j) ∈ C. Let us consider the following constraints

c2ij + s2ij ≤ c
j
iic
i
jj (i, j) ∈ C (13a)

ciixij ≤ c
j
ii ≤ ciixij (i, j) ∈ C (13b)

cii − cii(1− xij) ≤ cjii (i, j) ∈ C (13c)

cjii ≤ cii − cii(1− xij) (i, j) ∈ C (13d)
0 ≤ xij ≤ 1 (i, j) ∈ C (13e)∑
(i,j)∈C

xij ≤ |C| − 1, (13f)

and define S0 := {(c, s, x) : (13), (11d)-(11f)}.
We note that both S1 and S0 are conic representable. In

particular, these bounded sets are respectively semidefinite and
second-order cone representable. Therefore, conv(S1 ∪ S0)
is also conic representable (see Appendix A on how to
obtain a representation as an extended formulation), and by
construction, contains S.

Now, suppose a point (c∗, s∗, x∗) is given. We want to de-
cide whether this point belongs to conv(S1∪S0) or otherwise,

find a separating hyperplane. Given that we have an extended
semidefinite representation for conv(S1 ∪ S0), we can solve
an SDP separation problem to achieve this. See Appendix B.

C. McCormick Disjunction

The last method to strengthen the MISOCP relaxation (6)
is based on a new cycle-based OPF formulation we propose
in [1]. The key observation is as follows: instead of satisfying
the angle condition (5e) for each (i, j) ∈ L, we guarantee that
angle differences sum up to 0 modulo 2π over every cycle
C in the power network if all the lines of the cycle C are
switched on, i.e.( ∑

(i,j)∈C

θij − 2πk
) ∏
(i,j)∈C

xij = 0, for some k ∈ Z, (14)

where θij := θj − θi.
Next, we consider[
cos
( ∑
(i,j)∈C

θij
)
− 1
] ∏
(i,j)∈C

xij = 0 (15a)

cij =
√
ciicjj cos θijxij (i, j) ∈ C (15b)

sij =
√
ciicjj sin θijxij (i, j) ∈ C, (15c)

(11d)− (11h).

Here, (15a) is equivalent to (14) and (15b)-(15c) follow from
the definition of c, s variables. Let us defineM := {(c, s, x) :
∃θ : (15), (11d)− (11h)}. Again, observe that any feasible
solution to the OTS formulation (5) must also satisfy (15).
Therefore, any valid inequality for M is also valid for the
formulation (5).

We again follow a similar procedure to the previous section
and consider two disjunctions for a cycle C.

Disjunction 1: In the first disjunction, we have xij = 1 for
all (i, j) ∈ C. Note that (15a) reduces to

cos
( ∑
(i,j)∈C

θij
)

= 1.

Now, we can expand the cosine appropriately and replace
cos(θij)’s and sin(θij)’s in terms of c, s variables following
(15b)-(15c). This transformation yields a homogeneous poly-
nomial, denoted by pC , in terms of only c, s variables, and
an equivalent constraint pC = 0. However, pC can have up to
2|C|−1+1 monomials and each monomial of degree |C|. In [1],
we propose a method, which is used to “bilinearize” this high
degree polynomial by decomposing larger cycles into smaller
ones by the addition of artificial lines and corresponding
variables. We refer the reader to [1] for details.

Using the proposed decomposition scheme, we obtain a set
of bilinear polynomials qk(c, s, c̃, s̃) = 0, k ∈ KC , for a
given cycle C. Here, c̃, s̃ denote the extra variables used in
the construction.

Finally, we use McCormick envelopes for each bilinear
constraint to linearize the system of polynomials. For a given
cycle C, consider the McCormick relaxation of the bilinear
cycle constraints, which can be written compactly as follows:

Az + Ãz̃ +By ≤ c (16a)
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Ey = 0. (16b)

Here, z is a vector composed of the c, s variables, z̃ is a vector
composed of the additional c̃, s̃ variables introduced in the
cycle decomposition, and y is a vector of new variables defined
to linearize the bilinear terms in the cycle constraints. Con-
straint (16a) contains the McCormick envelopes of the bilinear
terms and bounds on the c, s variables, while (16b) includes
the linearized cycle equality constraints. Finally, we define the
set M1 := {(c, s, x) : ∃(c̃, s̃) : (16), (11d)-(11f), (12c)-(12d)}.

Disjunction 0: In the second disjunction, xij = 0 for some
(i, j) ∈ C. We take M0 := S0.

We note that both M1 and M0 are conic representable. In
particular, these bounded sets are respectively polyhedral and
second-order cone representable. Therefore, conv(M1 ∪M0)
is also conic representable, and by construction, contains M.

Now, suppose a point (c∗, s∗, x∗) is given. We want to
decide whether this point belongs to conv(M1 ∪ M0) or
otherwise, find a separating hyperplane. Given that we have
an extended second-order cone representation for conv(M1 ∪
M0), we can solve an SOCP separation problem.

In our computations, we observed that stronger cuts are
obtained by combining SDP and McCormick Disjunction. In
particular, we separate cutting planes from conv((S1 ∩M1)∪
S0) by solving SDP separation problems.

D. Obtaining Variable Bounds

Note that the arctangent envelopes and the McCormick
relaxations are more effective when tight variable upper/lower
bounds are available for the c and s variables. Now, we explain
how we obtain good bounds for these variables, which is the
key ingredient in the success of our proposed methods.

Observe that cij and sij do not have explicit variable bounds
except the implied bounds due to (4f) and (4h) as

−V iV j ≤ cij , sij ≤ V iV j (i, j) ∈ L.

However, these bounds may be quite loose, especially when
the phase angle differences are small, implying cij ≈ 1 and
sij ≈ 0 when the corresponding line is switched on. Therefore,
one should try to improve these bounds.

We adapt the procedure proposed in [1] (which dealt only
with OPF) to the case of OTS in order to obtain variable
bounds, that is, we solve a reduced version of the full MISOCP
relaxation to efficiently compute bounds. In particular, to find
variable bounds for ckl and skl for some (k, l) ∈ L, consider
the buses which can be reached from either k or l in at most
r steps. Denote this set of buses as Bkl(r). For instance,
Bkl(0) = {k, l}, Bkl(1) = δ(k) ∪ δ(l), etc. We also define
Gkl(r) = Bkl(r) ∩ G and Lkl(r) = {(i, j) ∈ L : i ∈
Bkl(r) or j ∈ Bkl(r)}. Then, we consider the following SOCP
relaxation:

pgi − p
d
i = giicii +

∑
j∈δ(i)

pij i ∈ Bkl(r) (17a)

qgi − q
d
i = −biicii +

∑
j∈δ(i)

qij i ∈ Bkl(r) (17b)

pij = −Gijcjii +Gijcij −Bijsij (i, j) ∈ Lkl(r) (17c)

qij = Bijc
j
ii −Bijcij −Gijsij (i, j) ∈ Lkl(r) (17d)

p2ij + q2ij ≤ (Smax
ij )2 (i, j) ∈ Lkl(r) (17e)

V 2
i ≤ cii ≤ V

2

i i ∈ Bkl(r + 1) (17f)

pmin
i ≤ pgi ≤ p

max
i i ∈ Gkl(r) (17g)

qmin
i ≤ qgi ≤ q

max
i i ∈ Gkl(r) (17h)

cijxij ≤ cij ≤ cijxij (i, j) ∈ Lkl(r) (17i)

sijxij ≤ sij ≤ sijxij (i, j) ∈ Lkl(r) (17j)

ciixij ≤ c
j
ii ≤ ciixij (i, j) ∈ Lkl(r) (17k)

cii − cii(1− xij) ≤ cjii (i, j) ∈ Lkl(r) (17l)

cjii ≤ cii − cii(1− xij) (i, j) ∈ Lkl(r) (17m)
cij = cji, sij = −sji (i, j) ∈ Lkl(r) (17n)

c2ij + s2ij ≤ c
j
iic
i
jj (i, j) ∈ Lkl(r) (17o)

0 ≤ xij ≤ 1 (i, j) ∈ Lkl(r) (17p)
xkl = 1. (17q)

Essentially, (17) is the continuous relaxation of MISOCP
relaxation applied to the part of the power network within
r steps of the buses k and l. ckl and skl can be minimized
and maximized subject to (17) for each edge (k, l) to obtain
lower and upper bounds, respectively. These SOCPs can be
solved in parallel, since they are independent of each other. It
is observed that a good tradeoff between accuracy and speed
is to select r = 2 [1]. Constraint (17q) may seem to restrict
the feasible region, however, the way we defined ckl and skl
variables, they are the values for cosine and sine components
when xkl = 1 (otherwise, they are 0). Therefore, it is enough
for the bounds to be valid for xkl = 1 only.

Bounds on an artificial edge (i, j) used in the construction
of McCormick envelopes are chosen as follows:

cij = −cij = sij = −sij = V iV j . (18)

A similar idea can be used to fix some of the binary
variables as well. In particular, we can minimize xkl over (17)
after omitting (17q). If the optimal value turns out to be strictly
positive, then xkl can be fixed to one.

V. ALGORITHM

In this section, we propose an algorithm to solve OTS. The
algorithm has two phases. The first phase involves solving a
sequence of SOCPs obtained by relaxing integrality restriction
of the binary variables in MISOCP (6), and incorporates cycle
inequalities generated from the extended SDP and McCormick
relaxations in Section IV-B and IV-C. In this phase, the aim
is to strengthen the lower bound on the MISOCP relaxation.
The second phase involves solving a sequence of MISOCP
relaxations strengthened by cycle inequalities. The aim in this
phase is to obtain high quality feasible solutions for OTS. In
particular, this is achieved by solving OPF subproblems with
fixed topologies obtained from the integral solutions found
during the branch-and-cut process of solving the MISOCP
(6). This procedure is repeated by “forbidding” the topolo-
gies already considered in order to obtain different network
configurations in the subsequent iterations.
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Now we formally define the ingredients of the algorithm.
First, let SOCP (V) be the continuous relaxation of MISOCP
(6) with a set of valid inequalities V obtained from cycle
inequalities using extended SDP and McCormick relaxations.
The set V is dynamically updated T1 times. Similarly, we de-
fine MISOCP (V,F) as the MISOCP relaxation of OTS with
a set of valid cycle inequalities V and forbidden topologies F .
Here, we forbid a topology x∗ ∈ F by adding the following
“no-good” cut (see [40] for generalizations) to the formulation:∑

(i,j):x∗ij=1

(1− xij) +
∑

(i,j):x∗ij=0

xij ≥ 1. (19)

We denote by LBt as the optimal value of MISOCP (V,F)
and Pt as the set of all integral solutions found by the solver
at the t-th iteration. For instance, CPLEX offers this option
called solution pool. In a practical implementation, this part
is repeated T2 times.

Let OPF (x) denote the value of a feasible solution to OPF
problem (4) for the fixed topology induced by the integral
vector x. Finally, UB is the best upper bound on OTS. Now,
we present Algorithm 1.

Algorithm 1 OTS algorithm.
Input: T1, T2, ε.
Phase I: Set V ← ∅, F ← ∅, UB ←∞.
for τ = 1, . . . , T1 do

Solve SOCP (V).
Separate cycle inequalities for each cycle in a cycle basis
to obtain a set of valid inequalities Vτ .
Update V ← V ∪ Vτ .

end for
Phase II: Set t← 0.
repeat
t← t+ 1
Solve MISOCP (V,F) to obtain a pool of integral
solutions Pt and record the optimal cost as LBt.
for all x ∈ Pt do

if OPF (x) < UB then
UB ← OPF (x)

end if
end for
Update F ← F ∪ Pt.

until LBt ≥ (1− ε)UB or t ≥ T2

Observation 1. If OPF (x) returns globally optimal solution
for every topology x, ε = 0 and T2 = ∞, then Algorithm 1
converges to the optimal solution of OTS in finitely many
iterations.

Observation 1 follows from the fact that there are finitely
many topologies and by the hypothesis that OPF (x) can be
solved globally , which is possible for some IEEE instances
using moment/sum-of-squares relaxations [41]. Although Ob-
servation 1 states that Algorithm 1 can be used to solve OTS to
global optimality in finitely many iterations, the requirement
of solving OPF (x) to global optimality may not be satisfied
always. In practice, we can solve OPF subproblems using local
solver, in which case we have Observation 2.

Observation 2. If OPF (x) is solved by a local solution
method, then we have LB1 ≤ z∗ ≤ UB upon termination
of Algorithm 1, where z∗ is the optimal value of OTS.

VI. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of our extensive com-
putational experiments on standard IEEE instances available
from MATPOWER [42] and instances from NESTA 0.3.0
archive with congested operating conditions [43]. The code
is written in the C# language with Visual Studio 2010 as the
compiler. For all experiments, we used a 64-bit computer with
Intel Core i5 CPU 2.50GHz processor and 16 GB RAM. Time
is measured in seconds. We use three different solvers:
• CPLEX 12.6 [44] to solve MISOCPs.
• Conic interior point solver MOSEK 7.1 [45] to solve SDP

separation problems.
• Nonlinear interior point solver IPOPT [46] to find local

optimal solutions to OPF (x).
We use a Gaussian elimination based approach to construct a
cycle basis proposed in [18] and use this set of cycles in the
separation phase.

A. Methods
We report the results of three algorithmic settings:
• SOCP: MISOCP formulation (6) in Phase II without

Phase I (i.e. T1 = 0).
• SOCPA: SOCP strengthened by the arctangent envelopes

introduced in Section IV-A.
• SOCPA Disj: SOCPA strengthened further by dynami-

cally generating linear valid inequalities obtained from
separating an SOCP feasible solution from the SDP and
McCormick relaxation over cycles using a disjunctive
argument T1 times. In particular, a separation oracle is
used to separate a given point from conv((S1∩M1)∪S0).

The following four performance measures are used to assess
the accuracy and the efficiency of the proposed methods:
• “%OG” is the percentage optimality gap proven by our

algorithm calculated as 100×(1−L̃B1/UB). Here, L̃B1

is the lower bound proven, which may be strictly smaller
than LB1 due to optimality gap tolerance and time limit.

• “%CB” is the percentage cost benefit obtained by line
switching calculated as 100× (1−UB/OPF (e)), where
e is the vector of ones so that OPF (e) corresponds to
the OPF solution with the initial topology.

• “#off” is the number of lines switched off in the topology
which gives UB.

• “TT” is the total time in seconds, including preprocessing
(bound tightening), solution of T1 = 5 rounds of SOCPs
to improve lower bound and separation problems to
generate cutting planes (in the case of SOCPA Disj),
solution of T2 rounds of MISOCPs and several calls to
local solver IPOPT with given topologies. MISOCPs are
solved under 720 seconds time limit so that 5 iterations
take about 1 hour (optimality gap for integer programs
is 0.01%). Preprocessing and separation subproblems are
parallelized.

We choose parameter T2 = 5 and pre-terminate Algorithm 1
if 0.1% optimality gap is proven.
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TABLE I
RESULTS SUMMARY FOR STANDARD IEEE INSTANCES.

SOCP SOCPA SOCPA Disj
case %OG %CB #off TT(s) %OG %CB #off TT(s) %OG %CB #off TT(s)
6ww 0.16 0.48 2 1.29 0.02 0.48 2 0.67 0.01 0.48 2 1.28

9 0.00 0.00 0 0.26 0.00 0.00 0 0.22 0.00 0.00 0 0.55
9Q 0.04 0.00 0 0.42 0.04 0.00 0 0.33 0.04 0.00 0 0.97
14 0.08 0.00 0 0.66 0.09 0.00 0 0.70 0.01 0.00 1 1.81

ieee30 0.05 0.00 1 1.95 0.05 0.00 0 1.67 0.02 0.00 1 3.84
30 0.07 0.52 1 4.60 0.06 0.52 2 5.01 0.03 0.51 2 9.39

30Q 0.44 2.05 2 24.43 0.43 2.03 5 25.80 0.13 2.24 5 44.16
39 0.03 0.00 0 2.53 0.01 0.02 1 3.17 0.01 0.02 1 4.48
57 0.07 0.02 4 6.18 0.07 0.02 4 8.72 0.08 0.01 1 13.59
118 0.19 0.08 4 3065.64 0.15 0.12 10 2553.59 0.17 0.08 16 3174.01
300 0.16 0.02 9 2318.89 0.15 0.03 12 3624.12 0.10 0.05 15 2803.31

Average 0.12 0.29 2.1 493.35 0.10 0.29 3.3 565.82 0.05 0.31 4.0 550.67

TABLE II
RESULTS SUMMARY FOR NESTA INSTANCES FROM CONGESTED OPERATING CONDITIONS.

SOCP SOCPA SOCPA Disj
case %OG %CB #off TT(s) %OG %CB #off TT(s) %OG %CB #off TT(s)

3lmbd 3.30 0.00 0 0.14 2.00 0.00 0 0.14 1.17 0.00 0 0.30
4gs 0.65 0.00 0 0.11 0.16 0.00 0 0.13 0.00 0.00 0 0.27

5pjm 0.18 0.27 1 0.61 0.01 0.27 1 0.41 0.02 0.27 1 0.89
6ww 6.06 7.74 1 1.23 1.34 7.74 1 1.64 1.05 7.74 1 1.97

9wscc 0.00 0.00 0 0.19 0.00 0.00 0 0.20 0.00 0.00 0 0.30
14ieee 1.02 0.33 1 2.86 0.89 0.45 2 3.48 0.41 0.45 2 4.49
29edin 0.43 0.00 2 12.79 0.24 0.18 13 299.82 0.33 0.08 21 181.74
30as 1.81 3.13 2 14.82 0.35 3.30 5 19.52 0.34 3.30 5 24.93
30fsr 3.24 44.20 2 9.72 0.05 44.98 2 4.76 0.03 44.98 3 6.97

30ieee 0.54 0.46 1 12.28 0.40 0.48 2 10.61 0.15 0.48 2 13.37
39epri 1.92 1.10 1 11.56 0.80 1.41 2 13.20 0.70 1.52 2 12.65
57ieee 0.12 0.10 3 41.48 0.12 0.10 2 58.97 0.09 0.10 3 29.86
118ieee 41.67 4.33 3 225.57 21.51 27.98 30 3838.62 7.50 39.09 21 3856.76
162ieee 0.57 1.05 9 3675.75 0.63 1.00 15 3861.29 0.60 1.00 15 3855.50
189edin 5.31 1.10 3 540.02 4.81 0.13 2 2194.80 5.58 0.00 0 3634.02
300ieee 1.00 0.10 12 3655.10 0.65 0.37 21 3640.14 0.61 0.35 21 3651.95
Average 4.24 3.99 2.6 512.76 2.12 5.52 6.1 871.73 1.16 6.21 6.1 954.75

B. Results

The results of our computational experiments are presented
in Tables I and II for standard IEEE and NESTA instances,
respectively. We considered instances up to 300-bus since
Phase II of the Algorithm 1 does not scale up well for larger
instances. Let us start with the former: IEEE instances are a
relatively easy set since transmission line limits are generally
not binding. Therefore, cost benefits obtained by switching are
also limited. The largest cost reduction is obtained for case30Q
with 2.24%. Among the three methods, the most successful
one is SOCPA Disj, on average proving 0.05% optimality gap
and providing 0.31% cost savings. In terms of computational
time, SOCP is the fastest, however, its performance is not
as good as the other two. Quite interestingly, SOCPA Disj is
faster than SOCPA, on average, for this set of instances. In
terms of comparison with other methods, unfortunately, there
is limited literature for this purpose. In [19], nine of these
instances (except for cases 9Q and 30Q) are considered and a
quadratic convex (QC) relaxation based approach is used. On
average, their approach proves 0.14% optimality gap, which is
worse than any of our methods over the same nine instances.
The only instance QC approach is better is 118ieee with 0.11%
optimality gap, while it is worse than our methods for case300
with a 0.47% optimality gap.

Now let us consider NESTA instances with congested
operating conditions. This set is particularly suited for line
switching as more stringent transmission line limits are im-
posed. In fact, large cost improvements are observed for some
test cases. For instance, about 45% and 39% cost reductions
are possible for cases 30fsr and 118ieee, respectively. Other
instances with sizable cost reductions include cases 6ww and
30as. SOCPA Disj is again the most successful method if we
look at averages of optimality gap (1.16%) and cost savings
(6.21%). It certifies that the best topology is within 1.17% of
the optimal for all the cases except for 118ieee and 189edin.
In terms of computational time, SOCP is again the fastest,
however, its performance is significantly worse than the other
two. We also note that SOCPA improves quite a bit over SOCP
in terms of optimality and cost benefits with 70% increase in
computational time. SOCPA Disj takes about only 10% more
time than SOCPA. As we go from SOCP to SOCPA Disj,
problems get more complicated and sometimes, MISOCPs are
not solved to optimality within time limit. Consequently, for
cases 189edin and 300ieee, the optimality gaps proven and
cost benefits obtained by SOCPA Disj can be slightly worse.

Finally, we note that that optimality gaps can be explained
by two non-convexities: 1) integrality, 2) power flow equations.
For instance, in case 3lmbd, the optimality gap can only be
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Fig. 1. Flow diagram for the solution of NESTA case6ww without any line switching. The numbers above each generator node respectively represent the
active and reactive power output. Similarly, the numbers near each edge respectively represent the active and reactive power flow of the line in the direction
from the small indexed bus to the large indexed one. The figure is generated by modifying [47].
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(47.36, 20.85) (17.30, 15.89) (51.32, 61.37)

(38.19, 11.88) (2
2.
57
, 2
2.
93
)

(3
7.
96
, 4
6.
46
) (27.85, 12.84)

(115.44, 16.81)

(55.35, 76.74)

(72.79, 89.66)

(78.24, 70)

(78.24, 70)

(78.24, 70)

explained by the non-convexity of power flow equation since
all the relevant topologies are considered. Similarly, at least
some portion of the relatively large optimality gaps for cases
118ieee and 189edin may be attributed to non-convexity of
power flow equations. Consequently, any future improvements
on strengthening the convex relaxations of OPF problem can
be useful in closing more gaps in OTS as well.

C. Discussion

In this section, we take a closer look at some of the instances
with large cost benefits and try to gain some insight as to
1) how these large savings are obtained, and 2) how simple
heuristics may fail to produce comparable results. Firstly,
using a small example, we illustrate how large cost savings can
be obtained. Secondly, we compare the results of our algorithm
with a commonly used heuristic based on switching the best
line and demonstrate how different the solution quality can be.

To address the first issue, let us concentrate on a small
instance, namely case6ww from NESTA archive. This instance
has the same topology and line characteristics as the standard
IEEE test case but load and generation parameters are slightly
different. In particular, pdi = 78.24, qdi = 70, V i = 0.95
and V i = 1.05 for the load buses i = 4, 5, 6 while the data
for generation buses 1, 2 and 3 is summarized in Table III.
With this topology, the local optimal solution obtained using
IPOPT with objective value of 273.76 is given in Figure 1.
We note that the lines (1, 5), (2, 4) and (3, 6) are congested
in this configuration. On the other hand, if the line (1, 2)
is switched off, then the objective value reduces to 252.57,
corresponding to a 7.74% cost saving over the initial topology.
The difference is due to the fact that the outputs of generators

TABLE III
GENERATOR DATA FOR NESTA CASE6WW TEST CASE.

pmin
i pmax

i qmin
i qmax

i V i = V i cost
1 25 200 −100 100 1.05 1.276311
2 18.75 106 −100 100 1.05 0.586272
3 22.5 93 −100 100 1.07 1.29111

1 and 2 are now changed to (85.56, 32.74) and (84.25, 63.26),
respectively. Notice that with the new topology, the cheaper
generator 2 is used more, which results in the cost reduction.
In the initial topology, this is not possible since the voltage
magnitudes of the generators are fixed, and lines (1, 5) and
(2, 4) are congested.

Now, let us consider the second issue. Due to the com-
binatorial nature of OTS problem, heuristics are frequently
used to obtain suboptimal solutions. A commonly used one
is to switch off a single line to obtain cost benefits [12],
[48]. Although this heuristic idea is easy to implement and
works well in some instances, there are no guarantees on its
accuracy. For example, in case6ww, the best line to switch off
is, in fact, (1, 2) suggested by both the best line heuristic and
our algorithm. However, for other problems with large cost
benefits, this is not always the case. For instance, in case30as
and case30fsr, the best line heuristic reduces the overall cost
to 2.99% and 44.02% respectively, compared to 3.30% and
44.98% obtained from our algorithm. For case118ieee, the
cost reduction is dramatically different. The best line heuristic
reduces the cost only by 19.52% while our algorithm provides
a topology with 39.09% saving. Moreover, the best line
heuristic does not provide any guarantee on how good the
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solution is while our algorithm gives optimality guarantees
by construction. Therefore, adapting Algorithm 1 in real-time
operations can yield significant savings over simple heuristics.

VII. CONCLUSIONS

In this paper, we proposed a systematic approach to solve
the AC OTS problem. In particular, we presented an alternative
formulation for OTS and constructed a MISOCP relaxation.
We improved the strength of this relaxation by the addition
of arctangent envelopes and cutting planes obtained using
disjunctive techniques. The use of these disjunctive cuts help
in closing gap significantly. Our experiments on standard and
congested instances suggest that the proposed methods are
effective in obtaining strong lower bounds and producing
provably good feasible solutions.

We remind the reader that AC OTS is a challenging problem
since it embodies two types of non-convexities due to AC
power flow constraints and integrality of variables. We hope
that the methodology developed in this paper can eventually
be further improved to solve AC OTS problem in real life
operations. As a future work, we would like to pursue finding
ways to improve the solution time of MISOCPs as this step is
the bottleneck in Algorithm 1. Also, decomposition methods
can be sought to solve large-scale problems more efficiently,
which could make the proposed approach adaptable to real life
instances.

APPENDIX

A. Convex Hull of Union of Two Conic Representable Sets

Let S1 and S2 be two bounded, conic representable sets

Si = {x : ∃ui : Aix+Biu
i �Ki bi} i = 1, 2.

Here, Ki’s are regular (closed, convex, pointed with non-
empty interior) cones. Then, a conic representation for
conv(S1 ∪ S2) is given as follows:

x = x1 + x2, λ1 + λ2 = 1, λ1, λ2 ≥ 0

Aix
i +Biu

i �Ki biλi i = 1, 2.

B. Separation from an Extended Conic Representable Set

Let S be a conic representable set S = {x : ∃u :
Ax+Bu �K b}. Here, K is a regular cone. Suppose we want
to decide if a given point x∗ belongs to S and find a separating
hyperplane α>x ≥ β if x∗ /∈ S. This problem can be formu-
lated as maxα,β

{
β − α>x∗ : α>x ≥ β ∀x ∈ S

}
, where the

constraint can be further dualized as

Z∗ := max
α,β,µ
{β − α>x∗ : b>µ ≥ β,A>µ = α,B>µ = 0,

µ ∈ K∗,−e ≤ α ≤ e,−1 ≤ β ≤ 1},

where K∗ is the dual cone of K. If Z∗ ≤ 0, then x∗ ∈ S,
otherwise, the optimal α, β from the above program gives the
desired separating hyperplane. For details, please see [1].
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