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Sensor-Driven Condition-Based Generator
Maintenance Scheduling

Part 2: Incorporating Operations
Murat Yildirim, Xu Andy Sun, Nagi Z. Gebraeel

Abstract—A framework for sensor driven condition based
generator maintenance scheduling was proposed in Part 1 [1].
In Part 2, we extend the previous model by incorporating the
unit commitment and dispatch into the optimal maintenance
scheduling problem. We reformulate this extended maintenance
scheduling problem as a two-stage mixed integer program. We
use this reformulation to construct an algorithm that obtains the
global optimal solution to the proposed generator maintenance
problem. Finally, we test and analyze the proposed model through
extensive experiments conducted on IEEE-118 bus system. For
every experiment, we present a benchmark analysis against the
maintenance models used in current industry practice and power
systems literature. Experimental results indicate that the pro-
posed maintenance schedules provide considerable improvements
in both cost and reliability.

Index Terms—Condition based maintenance, generator main-
tenance scheduling, two-stage mixed-integer optimization

NOMENCLATURE

Decision Variables:
νt,i,k ∈ {0, 1} νt,i,k = 1 iff the kth maintenance of

generator i starts at maintenance epoch t.
If a certain maintenance k is not scheduled,
then νt,i,k = νt,i,k`

for all t ∈ T , where
k` is the last scheduled maintenance.

zt,i,k ∈ {0, 1} zt,i,k = 1 iff the duration between the start
of the kth and the (k− 1)th maintenances
of generator i is t maintenance epochs.

zoi,k ∈ {0, 1} zoi,k = 0 iff the kth maintenance is sched-
uled for generator i within the planning
horizon.

xts,i ∈ {0, 1} xts,i = 1 iff generator i is committed in
hour s within maintenance epoch t.

πU,t
s,i ∈ {0, 1} πU,t

s,i = 1 iff generator i starts up in hour s
within maintenance epoch t.

πD,t
s,i ∈ {0, 1} πD,t

s,i = 1 iff generator i shuts down in hour
s within maintenance epoch t.

yts,i ∈ Rn
+ Generation output of generator i in hour s

within maintenance epoch t.
ψDC,t
s,p ∈ Rn

+ Demand curtailment in hour s within
maintenance epoch t at demand bus p.

ψTL,t
s,` ∈ Rn

+ Transmission line slack variable in hour s
within maintenance epoch t at line `.

Sets:
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V Set of loads.
G Set of generators.
Ki Set of possible maintenances for generator i.
L Set of transmission lines.
S Set of hours within one maintenance epoch.
T Set of maintenance epochs within the planning hori-

zon.
Constants:
Bt

s,i Generation cost of generator i in hour s within
maintenance epoch t.

Cd,i
toi ,t

Cost of maintenance for a partially degraded gen-
erator i, when the maintenance is scheduled to t
maintenance epoch after the time of observation toi .

Cn,i
t Cost of maintenance for a new generator i, when the

age of the generator at the time of its maintenance is
t maintenance epochs.

H Planning horizon in maintenance epochs.
L Maximum number of generators that can be under

maintenance simultaneously.
Mi Maximum number of maintenances to be scheduled

for generator i within the planning horizon.
PDC Penalty cost for unit unsatisfied demand.
PTL Penalty cost for unit overload on a transmission line.
Ri Remaining time required for maintenance of genera-

tor i at the start of the planning horizon.
UU,t
s,i Start-up cost of generator i in hour s within main-

tenance epoch t.
UD,t
s,i Shut-down cost of generator i in hour s within

maintenance epoch t.
V t
s,i No-load cost of generator i in hour s within mainte-

nance epoch t.
Y Maintenance duration in maintenance epochs.
ζdi Period within which at least one maintenance should

be scheduled to start for degraded generator i.
ζn Period within which at least one maintenance should

be scheduled to start for a new generator.

I. INTRODUCTION

In this paper, we expand on the adaptive predictive generator
maintenance model introduced in [1] by incorporating unit
commitment and dispatch decisions. We present a solution
methodology to solve this extended scheduling problem in
large cases. Finally, we run a series of experiments to present
the performance of the proposed model. The results indicate
that the use of adaptive predictive model provides considerable
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improvements in both cost and reliability as identified by the
IEEE task force [2].

The paper is organized as follows. In Section II we pro-
pose a new adaptive predictive maintenance model (APMII)
that considers unit commitment and dispatch decisions. In
Section III, we reformulate APMII as a two-stage mixed
integer problem, and also introduce its relaxation. In Section
IV, we propose a new reformulation of the APMII model,
which has a relaxed subproblem structure but the objective
is augmented so that it exactly recovers the true cost of the
APMII model. In Section V, we propose an exact algorithm
to solve a reformulation of this problem, which is particularly
useful for solving large-scale cases of the APMII model. In
Section VI, we present an experimental framework that uses a
degradation database to study a number of test cases. We show
the effectiveness of our model through extensive comparative
studies. In section VII, we conclude this paper with some
closing remarks.

II. ADAPTIVE PREDICTIVE MAINTENANCE PROBLEM II
In this section, we expand our analysis to consider gener-

ation commitment and dispatch in the optimal maintenance
scheduling problem. The key balance in APMII is between
explicit and implicit costs of maintenance. We continue lever-
aging the results of the predictive analytics to ensure an
adaptive characterization of the costs of maintenance, but at
the same time, we now consider the impact of maintenance
on operations, such as the overall production cost and network
feasibility. The main intuition behind APMII model is that, in
most practical applications, it would be preferable to deviate
from the pure maintenance optimal policy (APMI policy
presented in [1]) in an effort to decrease the unit commitment
and dispatch cost. Utility companies put great emphasis on
the forecasted demand while deciding on the maintenance
schedules. APMII provides a model that considers the conse-
quences of every maintenance action on the operational side,
while benefiting from the adaptive predictive estimates on the
generator failure risks. The maintenance variables are identical
as in AMPI, besides we also have commitment variable x and
dispatch variable y as defined in the beginning of the paper.

A. Objective Function

The objective is to minimize the maintenance and operations
cost:

ξm

[∑
i∈G

H∑
t=Ri+1

Cd,i
toi ,t−Ri

· zt,i,1 +
∑
i∈G

H∑
t=Y +1

Mi∑
k=2

Cn,i
t−Y · zt,i,k

]
+
∑
t∈T

∑
i∈G

∑
s∈S

(
V t
s,i · xts,i + UU,t

s,i · π
U,t
s,i + UD,t

s,i · π
D,t
s,i +Bt

s,i · yts,i
)

+
∑
t∈T

∑
s∈S

(∑
p∈D

(
PDC · ψDC,t

s,p

)
+
∑
`∈L

(
PTL · ψTL,t

s,`

))
, (1)

where ξm is the maintenance criticality coefficient. The ob-
jective function (1) consists of two components: dynamic
maintenance cost (the first line) and operational cost including
UC, dispatch, and penalty costs (the second and third lines).
For the explanation on the dynamic maintenance cost in the

first line of the objective function, we refer the reader to
Section V-B in [1]. The remaining cost factors are typical in
UC literature, e.g. [3], [4]

B. Constraints

The cost (1) is minimized subject to some of the constraints
defined in [1]. More specifically, APMII is subject to:

1) Maintenance time limits: This set refers to the restric-
tions on the time of the first maintenance, and the time
between consecutive maintenances, i.e. (7)-(8) in [1].

2) Maintenance coordination: These constraints i) impose
logical restrictions such as maintenance durations, ii) al-
low flexible number of maintenances within the planning
horizon, and iii) ensure a mapping between the time of
maintenance, and the age of the generator at the time of
maintenance, i.e. (9)-(17) in [1].

3) Maintenance capacity: This set of constraints ensure that
the number of ongoing maintenances at any time t does
not exceed a prespecified limit L, i.e. (18) in [1].

We consider two additional sets of constraints for coupling
of maintenance and operations, and unit commitment (UC).

1) Coupling of maintenance and operations:
• In cases where a certain generator is under maintenance

at the start of the planning horizon, the corresponding
commitment variable x is set to zero.

xts,i = 0 ∀i ∈ G and Ri > 0 (2)

∀s ∈ S, t ∈ {1, . . . , Ri}.

• In the following set of constraints, we couple the main-
tenance decision variable ν with the commitment vari-
able x. Constraint (3) ensures that if a unit is under
maintenance during maintenance epoch t, it cannot be
committed in any of the hours within that epoch. The
rational of (3) is similar to that of (18) in [1].

xts,i ≤ 1−
∑
k∈Ki

Y−1∑
e=0

νt−e,i,k (3a)

∀i ∈ G, t ∈ {1, . . . ,H − ζn}, s ∈ S

xts,i ≤ 1−
∑
k∈Ki

∑
e∈J 1(t)

νt−e,i,k +
∑

e∈J 2(t)

νt−e,i,Mi

(3b)
∀i ∈ G, t ∈ {H − ζn + 1, . . . ,H − ζn + Y − 1}, s ∈ S

xts,i ≤ 1−
Y−1∑
e=0

νt−e,i,k (3c)

∀i ∈ G, t ∈ {H − ζn + Y , . . . ,H}, s ∈ S,

where the sets J 1(t) = {t − H + ζn, . . . , Y − 1} and
J 2(t) = {0, . . . , t−H + ζn − 1}.

2) Unit commitment :
• The UC problem includes constraints on i) commitment

status: such as minimum up/down, and start-up/shut-
down, ii) dispatch level: such as energy balance, trans-
mission limit and ramping, iii) commitment coupling:
such as minimum and maximum dispatch levels for each
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generator based on the commitment status. In its compact
form, we represent this set of constraints as follows:

Fx+Gy ≤ ` (4)

where x includes the generator commitment, start-up, and
shut-down variables, and y includes generation dispatch,
demand curtailment, and line slack variables.

C. APMII Model

In summary, the APMII model is given as:

(APMII) min
z,ν,x,y

(1)

s.t. {(7)-(18) from Part I: [1]} ,
(2)− (4)
{z,ν} ∈ Fm,

x ∈ {0, 1}3|G|×H×|S|,y ∈ R(|G|+J)×H×|S|
+ ,

where J = |V|+ |L|. It turns out that we can relax the zt,i,k
variables to be continuous and still obtain a binary optimal
solution for both APMI and APMII, as shown in the following
lemma.

Lemma 1. If the binary variables zt,i,k’s in (APMII) are
relaxed to be continuous, then the relaxed problem still has
a binary optimal solution, which is thus optimal for (APMII).
The same statement also holds for APMI introduced in [1].

Proof. See Appendix B.

III. TWO-STAGE REFORMULATION OF APMII

The APMII model has a natural two-stage structure, namely
the first stage makes the maintenance decision, while the sec-
ond stage deals with the UC problem based on the maintenance
decision.

A. APMII Reformulation

The APMII model can be written in the following compact
form:

min
z,ν,x,y

c>z + v>x +b>y (5a)

s.t. Az +Kν ≤ g (5b)
Bν +Ex ≤ h (5c)

Fx +Gy ≤ ` (5d)

{z,ν} ∈ Fm,x ∈ {0, 1}3|G|×H×|S|,y ∈ R(|G|+J)×H×|S|
+ .

where z, ν are the maintenance variables, x is the generator
commitment, start-up, and shut-down variables, and y includes
generation dispatch, demand curtailment, and line slack vari-
ables. Here, dim g = 8 ·

∑
i∈GMi · |G|+H · |G|+H − 4 · |G|,

dimh = H · |S| · |G|, and dim ` = H · |S|+ 4 ·H · |S| · |G|+
2 ·H · |S| · |L| .

In this formulation, the objective function is identical to
(1). The constraint (5b) corresponds to maintenance decisions,
such as the maintenance labor capacity constraints and the

interaction between different maintenance variables, namely
constraints (7)-(18) in [1]. Constraint (5c) couples the mainte-
nance and the unit commitment variables, so that a generating
unit is not committed, if a maintenance activity is still being
conducted on that particular unit. They correspond to the
constraints in (3) and (2).

The APMII model (5) can be decomposed into a two-stage
program, where the maintenance problem resides in the first
stage, and UC given maintenance decisions constitutes the
second-stage problem as follows,

min
z,ν

c>z + q(ν) (6a)

s.t. Az +Kν ≤ g (6b)
{z, ν} ∈ Fm.

where q(ν) denotes the UC problem given maintenance
decision ν. We consider minimum up/down, and ramping
constraints within the hours of the same maintenance epoch
(e.g. a week). In this way, once the maintenance decision ν
is fixed, the unit commitment decisions for any maintenance
epoch t ∈ T , namely {xt,yt}, become independent. Thus
the subproblem q(ν) can be further decomposed into different
maintenance epochs, q(ν) =

∑N
t=1 q

t(ν) where qt(ν) is given
by:

qt(ν) = min
xt,yt

(vt)>xt + (bt)>yt (7a)

s.t: Etxt ≤ ht −Btν, (7b)

F txt +Gtyt ≤ `t (7c)

xt ∈ {0, 1}3|G|×|S|,yt ∈ R(|G|+J)×|S|.

Even in large cases, it is not computationally expensive to
solve qt(ν) for a given ν.

B. Relaxation for APMII (R-APMII)

We next define a relaxation for the APMII problem, namely
R-APMII, by relaxing the binary UC variables to continuous
variables so that xt ∈ [0, 1]3|G|×|S|∀t ∈ T . This new model
can be decomposed into a master maintenance problem and a
linear relaxation of the UC subproblem in a similar manner.
We denote the objective of the relaxed UC subproblem in R-
APMII as q̃(ν), and its cost for any maintenance epoch t as
q̃t(ν). That is, q̃(ν) =

∑
t∈T q̃

t(ν). Then, R-APMII can be
represented as follows:

min
z,ν

c>z +
∑
t∈T

q̃t(ν) (8a)

s.t. Az +Kν ≤ g (8b)
z,ν ∈ Fm.

We note that this new formulation provides a lower bound
for the APMII problem. It is considerably easier to solve
through Benders’ Decomposition, since the subproblems are
non-integer. However, there is a need to link the solution of
this relaxed formulation to the APMII problem.
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IV. ALTERNATIVE FORMULATION (AF) FOR APMII

In this section, we construct an alternative formulation (AF)
that can recover the true cost of the APMII problem with a
subproblem structure identical to the relaxed model R-APMII.

We start with the observation that the interaction between
the maintenance and the unit commitment variables can be
completely characterized through generator’s maintenance sta-
tus. That is, for any maintenance epoch t, the UC cost can
be determined if we know which generators have an ongoing
maintenance. For the sake of clarity, we define an additional
variable mt

i that takes the value mt
i = 1 if generator i is

undergoing maintenance at maintenance epoch t, and mt
i = 0

otherwise. We note that mt
i is uniquely determined by the

maintenance variables ν. In particular, generator i would
have an ongoing maintenance at maintenance epoch t, if its
maintenance has started during {t − Y + 1, . . . , t}, in other
words, if

∑
k∈Ki

∑Y−1
e=0 νt−e,i,k ≥ 1. The idea is that to find

the cost for a certain maintenance status m̂, we can solve
the relaxed model, R-APMII, and then add the difference∑

t∈T q
t(m̂t) − q̃t(m̂t) back to the objective cost of the

relaxed model R-APMII. In this way, the cost of the true model
APMII is recovered.

We assume for the time being that we can enumerate all
possible maintenance statuses for every t ∈ T . This com-
plete set is denoted by Ω̄ := {Ω̄1

, . . . , Ω̄
H} with cardinality

H × 2|G|. We let m̂t
h denote one of these statuses at t with a

corresponding status index h ∈ Ω̄t. In what follows, we show
how we can i) create an additional variable and constraint
to check if the maintenance solution ν corresponds to the
particular maintenance status m̂t

h, and ii) recover the true UC
cost when the maintenance solution ν implies m̂t

h.
We start with the first objective. For generator status h at t,

we define a binary variable ηth subject to:

ηth ≥

 ∑
i∈K(m̂t

h)

mt
i −

∑
i∈F(m̂t

h)

mt
i −
∣∣K(m̂t

h)
∣∣+ 1

 , (9)

where the index set K(m̂t
h) := {i|m̂t

h,i = 1}, and F(m̂t
h) :=

{i|m̂t
h,i = 0}. This constraint ensures that the binary variable

ηth ≥ 1 when mt = m̂t
h, and ηth is not bounded otherwise.

This claim holds since: i) when mt = m̂t
h, the right hand

side equals 1, ii) otherwise, if there is at least one i where
mt

i 6= m̂t
h,i, then the right hand side becomes less than or

equal to zero. Constraint (9) is presented for the sake of
clarity. In reality, we need to link the solution ν to m̂t

h.
We note again that given the maintenance start variables ν,
maintenance status variables m can be obtained in a straight
forward way. We also note that if the k-th maintenance is not
scheduled for generator i, then νt,i,k = νt,i,k−1 ∀t ∈ T . In
order to eliminate double-counting of maintenance instances,
the constraint (9) can be constructed using ν as follows:

ηth ≥
∑
i∈G

(
Rt

h,i·

(∑
k∈Ki

Y−1∑
e=0

νt−e,i,k

)
− U t

h,i

)
+ 1 (10a)

∀t ∈ {1, . . . ,H − ζn}

ηth ≥
∑
i∈G

Rt
h,i·

∑
k∈Ki

∑
e∈J 1(t)

νt−e,i,k +
∑

e∈J 2(t)

νt−e,i,Mi


−
∑
i∈G

U t
h,i + 1 (10b)

∀t ∈ {H − ζn + 1, . . . ,H − ζn + Y − 1}

ηth ≥
∑
i∈G

(
Rt

h,i·
Y−1∑
e=0

νt−e,i,Mi
− U t

h,i

)
+ 1 (10c)

∀t ∈ {H − ζn + Y , . . . ,H},

where Rt
h,i = 1, U t

h,i = 1 if m̂t
h,i = 1. Otherwise, Rt

h,i =
−1, U t

h,i = 0. Note that the term with Rt
h,i corresponds to the

difference of summations in (9). The second term with U t
h,i

provides the cardinality of the set in (9). J 1(t) and J 2(t)
are defined similarly in [1, Eq.(18b)-(18c)]. We denote the
constraint (10) for maintenance epoch t and the binary variable
ηth in its compact form as: (rth)>ν + ηth ≥ uth.

Define the cost eth associated with the h-th maintenance
status m̂t

h as the difference between the true and relaxed costs
of the UC subproblem at time t, namely,

eth = qt(m̂t
h)− q̃t(m̂t

h). (11)

where qt(m̂t
h) is the solution qt(ν) in (7) for any ν that

implies m̂t
h.

We can repeat this process for all h ∈ Ωt
h. Then, the

following holds for any ν:

qt(ν) = q̃t(ν) + min
η

{∑
h∈Ω̄t

ηthe
t
h : ηth ≥ uth − (rth)>ν,∀h ∈ Ω̄t

}
.

(12)
In fact, the solution for this problem is clear, that is, only

for one h ∈ Ω̄
t, uth−(rth)>ν = 1 is true. We denote this term

by h∗. Then: qt(ν) = q̃t(ν) + eth∗ .
We next use this observation to reformulate the APMII

problem, by replacing q(ν) with its equivalent in (12). The
following AF problem can attain the optimal objective cost
and maintenance decisions of APMII:

AF Problem:

min
z,ν,η

c>z + e>η +
∑
t∈T

q̃t(ν) (13a)

s.t. Az +Kν ≤ g (13b)

(rth)>ν + ηth ≥ uth ∀t ∈ T ,∀h ∈ Ω̄
t (13c)

z,ν ∈ Fm,η ∈ {0, 1}H×2|G| . (13d)

In the following, we develop an iterative algorithm to solve
this AF problem.

V. SOLUTION ALGORITHM FOR APMII

APMII is a computationally expensive problem to solve.
Therefore, it is important to design an efficient algorithm to
solve large-scale APMII models. In this section, we present
an exact solution algorithm that uses the special structure of
APMII to intelligently reconstruct the elements of (13), in an
attempt to find the optimal solution for APMII. We have two
observations to motivate the algorithm at this point: i) the
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cost q̃t(ν) can be recovered through Benders’ decomposition,
ii) more importantly, it would be sufficient to incorporate
subset of maintenance statuses Ω ⊆ Ω̄ in the AF problem
to recover the true UC cost. This set is typically small due to
the following properties of the maintenance problem:

1) The minimizer of the maintenance cost term c>z is
an important factor for determining the time of main-
tenance. The APMII’s optimal solution typically do not
schedule maintenance very far from this minimizer.

2) The difference between the total cost of the relaxed
formulation R-APMII and the APMII problem is small.
Therefore, when one considers the maintenance cost and
relaxed UC cost, it suffices to check only a number
of different points before the true costs from these
points reside below the lower bounds of conducting
maintenance in other time epochs.

In line with these claims, for a given set of generator
maintenance statuses Ω := ∪t∈T {Ωt : Ωt ⊆ Ω̄

t} and a set
of Benders’ optimality cuts BD := ∪t∈T {BDt}, a restricted
master problem RMP(Ω,BD) can be presented as follows:

RMP(Ω,BD) Problem:

min
z,ν,η,ϕ

c>z + e>η +
∑
t∈T

ϕt (14a)

s.t. Az +Kν ≤ g (14b)

(rth)>ν + ηth ≥ uth ∀t ∈ T ,∀h ∈ Ωt (14c)

(αt
k)>(ht

k −B
t
kνk) + (βt

k)>`tk ≤ ϕt (14d)

∀t ∈ T ,∀k ∈ BDt

z,ν ∈ Fm,η ∈ {0, 1}|Ω|.

The Benders’ optimality constraints (14d) will be discussed
in the algorithm description. When Ωt = Ωt

c for all t, and
the set BD ensures Benders’ convergence so that the optimal
ϕt∗ = q̃t(ν∗) for all t, the optimal maintenance decisions
{z∗,ν∗}, and the objective total cost becomes identical in
APMII, AF, and RMP. This simple observation comes from
Eq. (12). As we noted previously, only a subset of these
generator availability vectors may be needed to recover the
optimal cost and maintenance decisions {z∗,ν∗} for APMII.
This observation provides a claim parallel to the findings of
[5].

Due to the two-stage nature of this problem, we propose
a two-level algorithm to solve APMII. In the upper level, the
algorithm solves the restricted master problem RMP(Ω,BD)
iteratively to generate Benders’ optimality cuts for every
maintenance epoch. The Benders’ optimality cuts are ap-
pended to the set BD, and the algorithm repeats the Benders’
process until convergence. Then the current solution is used
to generate variables and constraints as in Eq. (10) in order to
recover the true cost of APMII. We append the maintenance
scenario of the current solution to the set Ω, then check for
convergence in terms of true cost recovery. Repeat the process
if cost convergence criteria is violated; otherwise, terminate.
Flowchart of the algorithm is illustrated in Figure 1 and the
method is formally presented in Algorithm 1. The following
theorem proves the convergence of the algorithm.

Fig. 1. Flowchart of the proposed algorithm for solving APMII.

Theorem 1. Algorithm 1 with tolerances εb and εc terminates
in a finite number of steps, and returns an ε-optimal main-
tenance solution {z∗,ν∗}, i.e. ρ∗ ≤ ρ(z∗,ν∗) ≤ ρ∗(1 + ε),
where ρ∗ is the optimal cost of APMII, ρ(z∗,ν∗) = c>z∗ +
q(ν∗) in (6), and ε = (1 + εb)(1 + εc)− 1.

Proof: See Appendix A.
Remark: Note that the current form of the algorithm has

slack variables in the demand balance and line flow constraints
in the unit commitment subproblem, so it remains feasible
for any maintenance decision ν. We can also remove these
slack variables and incorporate Benders’ feasibility cuts to
RMP(Ω,BD).

VI. EXPERIMENTS

In this section we present the experimental implementation
and results for APMII. We first present a description of
the experimental procedure. In what follows, we provide a
convergence analysis for the solution of APMII using the
algorithm introduced in Section V. We then briefly introduce
the experimental procedure, and use this procedure to conduct
two comparative studies on APMII. The first study considers
the basic case, where we assume that handling a failed gener-
ator takes the same amount of time as conducting preventive
maintenance. The second study considers a more realistic case
where the failure interruption takes twice as long as a planned
maintenance interruption. We will illustrate the effectiveness
of our approach in each study.

A. Experiment Implementation

In all of our analyses, we use the IEEE 118-bus system.
The system has 54 generators, 118 buses, and 186 transmission
lines. We obtain the age of generators at the start of the exper-
iments by running the generators for a warming period. We set
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Algorithm 1: Solution Algorithm for APMII

1 Let BD ← ∅, Ω← ∅, k ← 0, and h← 0.
2 Denote the tolerance levels of Benders’ decomposition

and total cost as εb ≥ 0 and εc ≥ 0, respectively. Define
the corresponding convergence flags as Benders’
decomposition convergence (BDC), and total cost
convergence (TCC). Let ε← (1 + εb)(1 + εc)− 1,
BDC ← 0, and TCC ← 0.

3 while TCC = 0 do
4 h← h+ 1

/* Start Benders’ for current RMP */
5 while BDC = 0 do
6 k ← k + 1
7 Solve RMP(Ω,BD). Denote its optimal solution

as {zk,νk,ηk,ϕk} and optimal cost as ρ∗k.
8 for t ∈ T do
9 Solve the dual of q̃t(νk):

q̃t(νk) = max
αt,βt

(αt)>(ht −Btνk) + (βt)>`t

s.t. (Et)>αt + (F t)>βt ≤ vt

(Gt)>αt ≤ bt

αt ≤ 0,βt ≤ 010

Denote optimal solution as {αt
k,β

t
k}.

11 end
12 if

∑
t∈T q̃

t(νk) > (1 + εb) ·
∑

t∈T ϕ
t
k then

13 for t ∈ T do
14 if q̃t(νk) > ϕt

k then
15 Generate a Benders’ optimality cut

(αt
k)>(ht

k −B
t
kν) + (βt

k)>`tk ≤ ϕt.
Add this cut to the list BDt.

16 end
17 end
18 else
19 BDC ← 1
20 end
21 end

/* End Benders’ for current RMP */
Execute TCR(RMP(·),νk, ρ

∗
k, (q̃

t(νk))∀t, ε
c,Ω, h)

/* Run the TCR procedure */
22 end
23 z∗ ← zk and ν∗ ← νk.

Output: Maintenance solution {z∗,ν∗}.

the maintenance decisions weekly, and operational decisions
hourly. The decisions are subject to all the constraints outlined
in Section II-B. Planning horizon for each problem is set at 110
weeks. We set the preventive maintenance cost cp = 200, 000
and the failure cost cf = 800, 000. In all our experiments, we
use Gurobi 5.6.0 [6].

In our experimental studies, we use a degradation analysis
procedure similar to [1]. More specifically, we take the vi-
brational data from rolling element bearings as representative
of generator degradation. To model the degradation of the
bearings, we use the exponential degradation function with
Brownian error. We refer the reader to [1] for details on the

Procedure True Cost Recovery(TCR) for APMII
Input: RMP(·),νk, ρ

∗
k, (q̃

t(νk))∀t, ε
c,Ω, h

1 δh ← 0.
2 for t ∈ T do
3 Find the generator statuses at t corresponding to the

solution νk, namely m̂t.
4 if m̂t is not contained in the list Ωt then
5 Ωt ← Ωt ∪ {m̂t}. Solve qt(νk) in model (7).
6 eth ← qt(νk)− q̃t(νk), and δh ← δh + eth.
7 Add variable ηth, cut (rth)>ν + ηth ≥ uth and

objective cost ηthe
t
h to RMP(·).

8 end
9 end

10 if ρ∗k + δh ≤ ρ∗k(1 + εc) then /* If current RMP
cost is sufficiently close to its
corresponding true cost */

11 TCC ← 1, BDC ← 1
12 else
13 TCC ← 0, BDC ← 0
14 end

Output: RMP(·), δh,Ω, BDC, TCC

estimation of the prior estimates, and the real-time Bayesian
updates of the degradation parameters.

In order to test the effectiveness of APMII, we design
an experimental framework consisting of two main modules:
i) optimization module, and ii) execution module. In the
optimization module, given dynamic maintenance costs and re-
maining maintenance downtimes for each generator, we solve
APMII. Then in the execution module, we fix the maintenance
schedule during the freeze time, and execute the chain of
events during a freeze period. Experimental implementation
for the APMII is similar to that of APMI, except that in the
implementation for APMII, for every time period, we deter-
mine which generators are available (not failed, or undergoing
maintenance), and solve a unit commitment problem with the
available generators. This allows us to calculate the resulting
operational costs for each week. We let the freeze period
τR = 8 weeks, and solve the maintenance problems in a rolling
horizon fashion to cover a period of 48 weeks.

In order to ensure a fair comparison, we repeat this imple-
mentation spanning 48 weeks, using generator with different
ages. We take the average of these experiments to obtain any
of the metrics we present.

B. Experiment Results

1) Convergence Analysis: We first highlight the conver-
gence performance of our algorithm using one of the instances
of APMII used in our case studies. Direct solution of this
problem with the state-of-the-art MIP solver such as Gurobi
proves to be problematic with the solver quickly running into
memory problems on our computer with 8GB RAM. However,
we can solve this problem to 0.3% optimality gap using the
proposed algorithm in 20 Benders’ iterations (k = 20) and 15
cost recovery iterations (h = 15). The total running time is
121 minutes.
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Fig. 2. Convergence Analysis for APMII on IEEE-118 Bus System.

Figure 2 shows the cost recovery iterations. The dashed
line denote the dual solution of the RMP problem for current
Benders’ iteration k, namely c>zk + e>ηk +

∑
t∈T q̃

t(νk).
This provides a valid lower bound as indicated in the proof of
Theorem 1. We also calculate the upper bound (ρ∗k+δh in TCR
Procedure, line 10). We note when εb = 0, the lower bound
is monotonically increasing, while the corresponding feasible
solution (ρ∗k + δh) does not exhibit a monotone behavior.

In our experiments, we enforce a higher optimality gap
of 1%, and the proposed algorithm converges in at most 4
iterations, within 35 minutes.

2) Comparative Study on APMII: In this section, we
consider the fleet maintenance scheduling of conventional
generators. For these generators, the effect of any outage
on the operational costs is significant. In this comparative
study, we set the generator maintenance downtime ratio to
be 1 : 1, meaning that conducting preventive maintenance
takes the same amount of time as handling a failure. We use
the algorithm presented in section IV to solve APMII with
optimality gap of 1%.

We show the superiority of the maintenance scheduling
of APMII by comparing it with the periodic, RBM and
APMI models. The periodic model has the same modifications
imposed on APMII. As a result, the periodic model conducts
maintenance at a maintenance epoch i between the 66th

and 69th weeks with the objective of minimizing the total
operational cost. Therefore, the periodic model for this study
is a cost minimization problem. For the RBM case, we use the
exact optimization model of APMII, however the cost function
for this scenario is derived using a Weibull distribution. We
first derive a Weibull estimate using the failure times from the
rotating machinery application FW (t), and then condition this
distribution on the time of survival to estimate the remaining
life distribution and the associated maintenance costs. We also
evaluate the performance of the APMI model in this study.
To find the resulting schedule, we first implement the APMI
model during the freeze period. Based on the fixed schedule,
we find the resulting operational (UC) costs. We continue this
process in a rolling horizon fashion.

Table I presents the reliability and cost metrics for the four
policies considered in the comparative study. We first compare
APMII with the periodic model and RBM. We note that RBM
remains a conservative policy in comparison to the periodic
model, since it schedules more preventive maintenances (24.9
v.s. 23.9), incurs less number of unexpected failures (12.3 v.s.
13.7) and sacrifices more lifetime (1019.6 v.s. 943.6 weeks).

APMII, on the other hand, benefits from the additional
sensor data to learn more about the ongoing degradation in
the generators. Consequently, APMII decreases the number of
unexpected failures by 86.9% compared to the periodic model,
and by 85.4% compared to the RBM model. Considering the
total useful life unused among the 54 generators, we see that
APMII provides significant improvements, i.e., unused life of
APMII is only 31.9% of the periodic model, and 29.5% of
RBM, respectively.

We note that periodic and RBM policies have comparable
maintenance costs, with periodic policy incurring an addi-
tional maintenance cost of $0.9M on average. APMII incurs
a smaller maintenance cost that constitutes 42.31% of the
periodic, and 44.94% of the RBM policy. The periodic mainte-
nance policy results in significantly higher operational costs.
This is because the periodic policy enforces a maintenance
window that limits the flexibility of the maintenance policy to
adapt to the demand profile.

The operational costs of the RBM and the APMII shows an
interesting pattern. This pattern reflects the trade-off between
the minimization of the operations cost, and the maintenance
cost. RBM and APMII uses the same problem structure,
however, since the remaining life estimates of RBM is not as
accurate as APMII, the dynamic cost function of RBM is more
flat. This, in turn, allows more flexibility for RBM to further
minimize the operational cost, at the expense of increased
risks of unexpected failures. We note that the flat dynamic
maintenance cost function of RBM generates a slightly lower
operational cost, but increases the maintenance cost so much
that the total cost of RBM exceeds that of APMII.

Another interesting pattern can be recognized between
APMI and APMII. We note that APMI minimizes the main-
tenance cost without considering the impact on operational
costs. APMII, on the other hand, optimizes the maintenance
schedule to minimize the total cost, thus deviating from the
optimal maintenance cost (provided by APMI), to ensure more
gains from the operational cost. This makes APMI marginally
more reliable, yet significantly more expensive than APMII.

In terms of the total cost, we see that the RBM policy
performs better than the periodic policy. This is due to the
considerable difference in the operational costs of the periodic
policy and the other policies. But APMII achieves the smallest
total cost among four policies with savings of $12.6M, $7.9M,
and $1.2M compared to the periodic, RBM, and APMI,
respectively.

3) Comparative Study on APMII with Realistic Failure
Recovery Times: In the previous section, we assumed that
conducting a preventive maintenance takes the same amount
of time as handling an unexpected failure. In reality, when
a generator fails, maintenance practitioners need significantly
more time to put the generator back online, since: i) an
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TABLE I
BENCHMARK FOR APMII - MAINTENANCE DOWNTIME RATIO 1:1

Periodic RBM APMI APMII

# Preventive 23.9 24.9 26.6 26.1

# Failures 13.7 12.3 1.5 1.8

# Total Outages 37.6 37.2 28.1 27.9

Unused Life (wks) 943.6 1019.6 309.5 300.7

Maintenance Cost $15.74 M $ 14.82 M $6.52 M $6.66 M

Operations Cost $ 188.19 M $ 184.35 M $185.98 M $184.62 M

Total Cost $ 203.92 M $ 199.17 M $192,50 M $191.28 M

TABLE II
BENCHMARK FOR APMII - MAINTENANCE DOWNTIME RATIO 1:2

Periodic RBM APMI APMII

# Preventive 24.0 25.3 26.6 25.7

# Failures 13.7 12.2 1.5 1.9

# Total Outages 37.7 37.5 28.1 27.6

Unused Life (wks) 950.1 1012.9 309.4 295.6

Maintenance Cost $15.76 M $14.82 M $6.52 M $6.66 M

Operations Cost $191.24 M $186.54 M $ 186.09 M $185.08 M

Total Cost $207.00 M $201.36 M $ 192.61 M $191,74 M

unexpected failure can cause other subcomponents to fail as
well, increasing the scope of inspection and maintenance, ii)
full inventory of the needed maintenance equipment and crew
would not be ready to start the maintenance immediately. To
model this realistic scenario, we set the failure recovery time
twice as long as a preventive maintenance duration, thus using
maintenance downtime ratio 1 : 2.

Table II presents the reliability and cost metrics in this
scenario. Reliability results are comparable to the previous
section. We note that since APMI and APMII incurs less
number of failures, they are effected only minimally by the set
of changes introduced in this section. However, we observe a
significant effect of these changes on the operational costs of
the periodic and RBM policies. Introducing realistic failure
recovery increases the operational cost of APMII by $0.46M,
while the periodic and RBM policies incur an additional
operational cost of $3.1M and $2.2M, compared to the corre-
sponding numbers in Table I, respectively. This effect is due to
the significant number of failures experienced by the periodic
and RBM policies.

Table II also shows that APMII provides significant savings
on operational cost and total cost. In particular, the operational
cost of APMII is $6.2M, $1.5M, and $1.0M lower than the
that of the periodic, RBM, and APMI policies, respectively.
Correspondingly, the total cost of APMII is $15.3M, $9.6M,
and $0.9M lower.

4) Discussion on the Results: The results show that the
proposed framework has significant advantages in terms of
maintenance and operational costs and system reliability over
the traditional approaches. More specifically, comparing to the
best performance of the periodic and RBM policies, Table II

shows the following advantages of our approach:
• APMI/II significantly reduce the number of unexpected

failures: In all our experiments, we observe that our
models provide significant improvements in terms of the
unexpected failures. Comparing to the best among the
periodic and RBM policies, APMI and APMII only have
12.3% and 15.6% of the unexpected failures, respectively.

• APMI/II extend the equipment lifetime: Using the ad-
ditional sensor observations allow our policy to utilize
more of the generator lifetime. This is because our
approach can reason through predictive analytics when
a maintenance might not be necessary. We observe that
the unused lifetimes of APMI and APMII are 32.6% and
31.1% of the best among the periodic and RBM policies,
respectively.

• APMI/II require less outages: Compared to the bench-
marks, our approach always required less interruptions
to the generator’s dispatch schedule, i.e. the total outages
of APMI and APMII are 74.9% and 73.6% of the best
among the periodic and RBM policies, respectively.

• APMI/II significantly reduce the maintenance costs: Our
approach incurs less than 44.9% of the maintenance costs
associated with the periodic and RBM policies.

• APMII significantly reduce the total cost: In terms of the
total cost, APMII outperforms all three other models, with
savings of $15.3M, $9.6M, and $0.9M comparing to the
periodic, RBM, and APMI policies.

VII. CONCLUSION

In this paper, we present an extended model on the unified
framework that links low-level performance and condition
monitoring data with high-level operational and maintenance
decisions for generators. The operational decisions identify
the optimal commitment and dispatch profiles that satisfy the
demand and network feasibility requirements. Maintenance
decisions focus on arriving at an optimal fleet-level sensor-
driven schedule that accounts for optimal asset-specific sched-
ules driven by the condition monitoring data. We provide
an effective solution algorithm to solve large instances of
APMII, and show the effectiveness of our approach. To
conduct the computational studies, we implement an exper-
imental framework that integrates the dynamic information
obtained from sensor measurements and predictive analytics
with the proposed maintenance scheduling module. Extensive
computational experiments are conducted on this platform. In
particular, real-world degradation data collected from sensor
measurements of rotating bearings are used in the experi-
ments. The experiments compare the proposed sensor-driven
condition-based generation maintenance approach (APMII)
with the traditional periodic and reliability-based approaches,
and the APMI model introduced in [1].

In this two paper study, we provided an integration of the
sensor driven predictive analytics into the generator mainte-
nance problem. We presented the set of changes triggered by
low-level sensor observation, all the way to the high-level fleet
maintenance scheduling. We provided two novel maintenance
models driven by this sensor information. We developed an
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algorithm that capitalizes on the specific structure of the
maintenance model we proposed. To test the effectiveness
of our approach, we modeled a number of benchmarks,
and developed an experimental framework that benefits from
degradation data from real-life rotating machinery application.
We presented the advantages of our approach in a number of
different settings.

We hope that the sensor-driven optimization framework
presented herein can be used as a basis for a new paradigm
for generation maintenance in power systems.
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APPENDIX A
PROOF OF LEMMA 1

The APMII model (6) can be represented as follows:

min
zo,ν

q(ν) +
∑
i∈G

∑
k∈Ki

min
z:,i,k

{
c>i,kz:,i,k|z:,i,k ∈ Pi

k(zo,ν)
}
,

where, given feasible zo,ν, the APMII’s constraints Pi
k(zo,ν)

over z:,i,k’s are decoupled for each i, k. We want to show
that for any fixed {zo,ν}, if we relax z:,i,k to be in [0, 1],
the relaxed problem still has a binary optimal solution in
z:,i,k. For k = 1, z:,i,1 = ν :,i,1 has to be binary due to
(14) in [1]. In the following, we focus on k ≥ 2. For any
i ∈ G, k ≥ 2, if zoi,k = 1, then zt,i,k = 0 ∀t by (10) in
[1]. If zoi,k = 0, then

∑
t∈T zt,i,k = 1 by (10) in [1] and∑

t∈T tzt,i,k =
∑

t∈T tνt,i,k−
∑

t∈T tνt,i,k−1 =: bik by (15)
in [1], which, together with constraint (12) in [1], ensures that
bik is a nonnegative integer. Denote the k-th maintenance cost
of generator i at time t as φi,k(t) = Cn,i

t , which is convex
in t given by the definition of the dynamic maintenance cost
functions in [1]. Since

∑
t∈T zt,i,k = 1 and zt,i,k ≥ 0, then

for any zt,i,k feasible for the relaxed problem, the Jensen’s
inequality suggests

φi,k(bik) = φi,k(z1,i,k + 2z2,i,k + · · ·+HzH,i,k)

≤ z1,i,kφi,k(1) + z2,i,kφi,k(2) + · · ·+ zH,i,kφi,k(H)

= c>i,kz:,i,k.

Thus, q(ν) +
∑

i∈G c
>
i,1z:,i,1 +

∑
i,k≥2 φi,k(bik) is a lower

bound to the optimal cost of the relaxed problem for the fixed

zo,ν. In fact, this lower bound can be achieved by the solution
zt,i,k = 1 if t = bik and 0 otherwise for k ≥ 2. This binary
solution together with z:,i,1 = ν :,i,1 ∀i ∈ G is feasible for the
relaxed problem, therefore also optimal for APMII.

Lastly, we let q(ν)← 0, and APMII reduces to AMPI. Thus
the lemma also applies to AMPI. This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Finite convergence: In each iteration h of Algorithm 1,
the Benders’ decomposition with tolerance εb terminates in
finite steps; then if the condition in line 10 of TCR is true,
Algorithm 1 terminates. Otherwise, TCR augments the set Ω
by at least one different maintenance status. Since the number
of all possible statuses is H2|G|, TCR is executed at most
H2|G| number of times, at which point Ω becomes Ω̄ and
ρ∗k + δh = ρ∗k, thus terminating the algorithm.
ε-Optimality: (i) We first prove that ρ∗k ≤ ρ∗, where ρ∗k is

the optimal cost of the final RMP solved before Algorithm 1
terminates. We note that for any feasible maintenance solution
{z,ν}, we have

c>z+ min
η,ϕ

{
e>η +

∑
t∈T

ϕt|s.t : (14c), (14d)

}
≤ c>z+ q(ν).

Let {z′,ν′} be the optimal solution of APMII, i.e: ρ∗ =
ρ(z′,ν′). Then we have

ρ∗k = min
z,ν∈I

{
c>z + min

η,ϕ

{
e>η +

∑
t∈T

ϕt|s.t : (14c), (14d)

}}

≤ c>z′ + min
η,ϕ

{
e>η +

∑
t∈T

ϕt|s.t : (14c), (14d)

}
≤ c>z′ + q(ν′) = ρ∗,

where I denotes the feasible set for problem (6).
(ii) Next, we claim that ρ∗k ≤ ρ(z∗,ν∗) ≤ ρ∗k(1 + ε). The

first inequality holds because ρ∗k ≤ ρ∗ and ρ∗ ≤ ρ(z∗,ν∗).
If the condition in Algorithm 1, line 12, does not hold, i.e.

if
∑

t∈T q̃
t(νk) ≤ (1 + εb) ·

∑
t∈T φ

t
k, then:

ρ∗k ≤ c>zk + e>ηk +
∑
t∈T

q̃t(νk) + δh = ρ(z∗,ν∗) (17a)

≤ (1 + εb)

(
c>zk + e>ηk +

∑
t∈T

φtk + δh
)
, (17b)

where (17b) = (1 + εb)(ρ∗k + δh). Since ρ∗k + δh ≤ ρ∗k(1 + εc):

ρ∗k ≤ (17b) ≤ (1 + εb)(1 + εc) ρ∗k = (1 + ε)ρ∗k.

Using (i) and (ii), we have ρ∗ ≤ ρ(z∗,ν∗) ≤ (1 + ε)ρ∗. This
concludes the proof.
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