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Sensor-Driven Condition-Based Generator
Maintenance Scheduling

Part 1: Maintenance Problem
Murat Yildirim, Xu Andy Sun, Nagi Z. Gebraeel

Abstract—Traditionally, generator maintenance scheduling has
been implemented using highly conservative maintenance policies
based on manufacturing specifications and engineering expertise
on the type of generators. However, recent advances in sensor
technology, signal processing, and embedded online diagnosis
provide more unit-specific information on the degradation char-
acteristics of the generators. In this two-paper study, we propose
a new generation maintenance framework that integrates the
sensor-driven predictive maintenance technologies with optimal
maintenance scheduling models. In Part 1, we propose a new
mixed-integer optimization model for generation maintenance
scheduling, which effectively incorporate the dynamic infor-
mation of generators’ health and maintenance cost provided
by the Bayesian prognostic models. In Part 2, we propose a
framework that extends the maintenance model presented herein,
and consider the effects of maintenance on network operation
by coordinating generator maintenance schedules with the unit
commitment and dispatch decisions. We introduce new reformu-
lations and efficient algorithms for solving large-scale instances of
the proposed maintenance scheduling model. Extensive comput-
ational studies using real-world degradation data demonstrates
the effectiveness of the new framework.

Index Terms—Condition based maintenance, sensor-driven
prognosis, asset reliability and sustainability, generator main-
tenance scheduling, mixed integer optimization

I. INTRODUCTION

Increasing electricity consumption, aging generators, and
the lack of investments on the power system infrastructure
impose strict requirements on generator maintenance schedul-
ing. Traditionally, maintenance activities have been scheduled
at regular intervals using the engineering expertise, manu-
facturing specifications, and failure statistics. These programs
often recommend frequent unnecessary maintenance routines
otherwise they run high risks of unexpected failures. Utility
companies strive to find more effective ways to extend the
equipment lifetime, to minimize the failure instances, to reduce
the frequency of the maintenance interruptions, and to alleviate
the negative impacts thereof [1]. Evidently, some major orig-
inal equipment manufacturers (OEMs) have started engaging
utility companies in long-term service agreements where they
remotely monitor their assets for potential faults. Typically,
sensor data from various generators are transmitted to a
centralized hub where conventional classifiers and control limit
based techniques are used to trigger alarms. The decisions are
typically restricted to imminent repairs with limited advance
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Fig. 1: Set of changes triggered by a new sensor information

warning capability [2], [3]. Considering the time-sensitive
nature of the decision making processes, e.g., unexpected
shut down of a power plant, any viable maintenance policy
must provide ample response time. On this end, predictive
analytical approaches can provide significant opportunities.
Advances in sensor technology and on-line diagnosis allows
commercial systems to detect the tractable degradation signals
representative of the level of deterioration in the generator
components [4]–[7]. These systems can acquire and process
sensor data in real time to provide accurate analysis on the
current degradation level (diagnosis), and to estimate the pro-
gression of these signals in the future (prognosis). Improved
understanding of the degradation processes in the generators
can potentially help improve the maintenance objectives.

In this paper, we propose a new framework for generation
maintenance scheduling that combines state-of-the-art sensor-
data analytics and mixed-integer programming techniques to
construct sensor-driven condition-based maintenance schedul-
ing models. Figure 1 presents the structure of the frame-
work, which consists of two modules: the predictive analytics
module and the optimal scheduling module. The predictive
analytics module employs Bayesian prognostic techniques to
dynamically estimate the remaining life distribution (RLD) of
generators from sensor data and update the dynamic mainte-
nance cost for each generator. The optimal scheduling module
incorporates the sensor analytics results into a mixed-integer
programming (MIP) model that coordinates the maintenance
and operation decisions in a generation fleet.

The immediate advantages of our approach is threefold.
First, we leverage the sensor based information for accurate
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and real-time prediction of RLD for individual generation
assets. Second, using these predictions, we develop opti-
mal fleet-wide condition based maintenance policies. Typi-
cally, optimal maintenance time for an individual generator
might not be optimal for the generator fleet, hence we need
a fleet-wide framework. Third, the integration of the fleet
maintenance schedule with the operational problem allows a
maintenance schedule that is adaptive to both the real-time
sensor information coming from the generation assets, and to
the operational considerations such as transmission flow and
demand satisfaction.

The contributions of this work can be summarized as
follows:

1) We provide a general degradation modeling framework
for generators in service. Unlike most approaches in
the literature, we present a sensor-driven method that
combines the population degradation data with unit
specific information to further refine the failure prob-
ability and the RLD. Using this estimate, we generate
dynamic maintenance cost functions for every generator.
This function considers the trade-off between the risks
associated with unexpected failures and the cost of
preventive maintenances in each generator.

2) We propose two sensor-driven adaptive maintenance
scheduling models:

a) We first consider a fleet maintenance model that
provides a generator fleet maintenance schedule
subject to limited labor resources and no opera-
tional constraints.

b) In the second approach, we expand the previous
model to consider the effects of maintenance on
network operation by coordinating generator main-
tenance schedules with the unit commitment (UC)
and dispatch decisions.

Proposed models differ significantly from the existing
models due to two main reasons: i) they incorporate the
dynamic sensor information into the optimization model,
and ii) they allow the optimization model to determine
the number of maintenances to be scheduled within the
planning planning horizon.

3) We provide a novel two-stage reformulation for the
second maintenance model and an effective solution
algorithm to solve large-scale instances. In particular, the
proposed maintenance model can be viewed as a MIP
with integer recourse variables (the UC decisions). The
reformulation relaxes the integer recourse but effectively
compensates for the cost difference between the original
and the relaxed models so that the exact cost of the
maintenance is recovered. This reformulation inspires
a two-level algorithm which essentially decomposes
the maintenance and operation decisions and iteratively
searches for the best maintenance solutions.

4) We construct a platform on which extensive experiments
using real-world physical degradation signals are con-
ducted. In particular, the predictive analytics module
acquires vibrational signals from rotating bearings in
a lab experiment to emulate generation degradation

signals. Extensive tests on the IEEE 118-bus system
show that the proposed maintenance model significantly
outperforms the traditional periodic maintenance and
reliability based maintenance models in key metrics such
as the number of unexpected failures, the frequency
of scheduled maintenances, the effectiveness in the use
of equipment life, and operation costs. These metrics
coincide with the objectives presented in [1].

Contribution 1, amd 2-a are addressed in this paper, while
contributions 2-b, and 3 are discussed in the Part II of this
study. Contribution 4 is presented separately for each paper.

The remainder of the paper proceeds as follows. In section
II, we present the fundamental works in the generator main-
tenance scheduling literature, and survey the developments in
condition monitoring techniques for generators. In section III,
we introduce the sensor-driven approach for estimating the
RLD of a generator. In section IV, we then use this estimation
to develop the dynamic maintenance cost of a generator, which
is communicated to the fleet maintenance models. Section V
introduces detailed formulation for the basic adaptive main-
tenance model. In Section VI, we present the degradation
framework used as the basis for the experiments. We first
present a method to estimate the population parameters of the
degradation signals using real world data. We then present an
experimental framework that uses this degradation database to
study a number of test cases. We show the effectiveness of our
model, and the impact of the maintenance updating frequency
on the maintenance performance. In section VII, we conclude
this paper with some closing remarks.

II. LITERATURE REVIEW

In the generator maintenance literature, most of the tech-
niques are based on the concept of periodic maintenance.
In particular, maintenances for each generator are conducted
within allowed maintenance windows, typically in a yearly
maintenance schedule [8]. Some approaches consider addi-
tional maintenance dependencies between generators, such
as priorities, exclusions, and separations between consecutive
maintenances [9]. Much work has been focused on opera-
tional and market-related challenges such as the interaction
between generation companies and independent system oper-
ators [9]–[11], the consideration of operational uncertainties
in load forecast, price, water inflow levels [12]–[14], and
the integration with the transmission maintenance [15]–[17].
Shahidehpour and Marwali provides a coherent review of the
problems in generator maintenance in [18], also highlighting
the fundamental works contributed by the authors. Recently,
[19] integrated the failure distribution of the generators into the
maintenance scheduling problem. To do so, the paper used an
approximation of a Weibull distribution to represent the failure
rate and maintenance dependency. This technique is called
the reliability-based maintenance approach since it captures
general failure behaviors of the generator type, but does not
consider any unit specific information.

This unit specific information from the generators can be
captured through the use of integrated sensor-based monitoring
systems. Three main monitoring techniques are common in
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practice: Mechanical, Electrical, and Chemical [4], [20]–[27].
Among these monitoring techniques, mechanical analyses pro-
vide the most sophisticated tools available to the operators
[4]. Recently, there has been an emphasis on increasing the
predictive power of condition monitoring systems in wind
turbines by considering seasonal effects [28], [29]. The interest
on condition monitoring has not been confined to the academic
communities. A number of case studies have been published
on the implementation of condition monitoring guided main-
tenance in medium sized combined-cycle power plants [30],
gas turbine engines [31], nuclear power plant components
[32], and wind turbines [7], [33], [34]. These single-generator
implementations are expected to increase in the future as the
studies show that investments on condition monitoring systems
are cost effective [5]–[7].

To our best knowledge, there is no comprehensive model
that incorporates state-of-the-art sensor analytics techniques
into the generation maintenance scheduling problem. The
paper sets out to propose such a framework.

III. PREDICTIVE ANALYTICS

Generators are equipped with hundreds and sometimes thou-
sands of sensors to monitor their condition and performance.
These sensor signals can be transformed into unique measures
known as degradation signals. Degradation signals capture
the current degradation state of the generator and provide
information about how that state is likely to evolve in the
future. Degradation signals provide the basis for estimating
the remaining lifetime of the asset. Typically, a set of similar
generators would exhibit a common functional form for their
degradation signals, i.e., degradation signals follow an in-
creasing exponential trend over time. However, the generators
experience different degradation rates. Failure time is the time
at which the degradation signal crosses a prespecified failure
threshold. Our underlying assumption is that the amplitude of
the degradation signal is directly correlated with the severity of
the degradation process. Although the generators may operate
under the same operating conditions, they still experience
different degradation rates, and hence different failure times.
This variability is due to numerous sources that include
homogeneity in manufacturing, materials used, etc.

In what follows, we will characterize the degradation in
generators, and use sensor observations to obtain accurate
predictions of their RLD.

A. Degradation Modeling and the Bayesian Framework

In this section, we develop a parametric model to character-
ize generator degradation. Our approach revolves around mod-
eling the degradation signal as continuous-time continuous-
state stochastic process. The basis of this approach is the
degradation modeling framework proposed by [7, 8, 9] where
a parametric stochastic model is used to model degradation
signals from a population of generators. The model consists
of deterministic and stochastic parameters. Deterministic pa-
rameter is used to capture fixed degradation attributes that are
constant across the generator population. Stochastic parameter

is assumed to follow a known distribution and capture the unit-
to-unit variability among the individual generators. Specifi-
cally, stochastic parameter is used to capture the variability
in the degradation rates. We represent the observed degradation
signal from generator i, or its suitable transformation, as
follows:

Di(t) = �i(t;, ✓i) + ✏i(t;�), (1)

where Di(t) is a continuous-time stochastic process represent-
ing the generator degradation measure observed through sen-
sors, �i(t;, ✓i) is a general parametric degradation function,
whose specific form depends on generators, and ✏i(t,�) is the
error term defined through the variance parameter �. In (1), 
characterizes the deterministic population-specific degradation
parameter common to all generators of the same type, and ✓i

represents the stochastic degradation characteristics unique to
generator i.

We define the time of failure ⌧i of generator i as the first
time that the degradation signal Di(t) crosses the failure
threshold ⇤i, namely:

⌧i = min{t � 0 |Di(t) � ⇤i}. (2)

Given the degradation model parameters , � and ✓i, the
probability that generator i survives until time t can be found
as follows:

P (⌧i > t|✓i) = P ( sup
0st

Di(s) < ⇤i|✓i)

= P ( sup
0st

{�i(s;, ✓i) + ✏i(s;�)} < ⇤i|✓i).

In most cases, the stochastic parameter ✓i may be unknown.
We assume that it follows a certain prior distribution ⇡i(✓i).
This prior distribution reflects the engineering knowledge,
manufacturing specifications, and studies on failure statistics.
In cases where the degradation data from other generators are
available, ⇡i(✓i) can also be estimated.

The unconditional probability that generator i survives until
time t can then be presented as follows:

P (⌧i > t) =

Z
P ( sup

0st

Di(s) < ⇤i|✓i)⇡i(✓i)d✓i

=

Z
P

✓
sup

0st

{�i(s;, ✓i) + ✏i (s;�)} < ⇤i|✓i
◆
⇡(✓i)d✓i.

Observed degradation signals allow us to improve our
estimation on the parameter ✓i. More specifically, conditioning
on the degradation signal observations, we can update the
prior parameter distribution ⇡i(✓i) to the posterior distribution
�i(✓i) via Bayesian learning.

To accomplish that, for generator i, we observe the degrada-
tion signals do

i
= (d1

i
, . . . , d

t
o
i
i
) at times (in terms of the gen-

erator’s age) ti = {t1
i
, . . . , t
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i
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i
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i
< · · · < t
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i
.

We consider the observations from working generators. The
conditional joint density function of do

i
= (d1

i
, . . . , d

t
o
i
i
) given

the parameters  
i

can be represented as follows:

P (do

i
|✓i) =

Y

j

P (Di(tj) = d
j

i
|✓i, Aj),
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where Aj denotes the condition that Di(tk) = d
k

i
for all tk

i
2

to
i

such that tk
i
< t

j

i
. Given the observations do

i
, the posterior

distribution of the parameter set  
i

is given as follows:

�(✓i) = P (✓i|do

i
) = P (do

i
|✓i)⇡i(✓i)/P (do

i
).

The denominator P (do

i
) does not need to be computed

since it is a normalization factor. If an appropriate conjugate
pair can be found for the particular parameter distributions,
the posterior distribution �(✓i) might have a closed form
expression.

B. Estimating the Remaining Life - Prognosis

For a partially degraded generator i, once the distribution
of the degradation parameter ✓i is updated, the next challenge
is to estimate the distribution of its remaining life R

i

t
o
i

at
observation time t

o

i
:

P (Ri

t
o
i
> t) = P (⌧i > t+ t

o

i
|do

i
).

In other words, we estimate the distribution of the remaining
life R

i

t
o
i

of generator i at observation time t
o

i
, given the

posterior distribution �(✓i) as follows:

P (Ri

t
o
i
> t) =

Z
P

✓
sup

tosto+t

Di(s) < ⇤i|✓i
◆
�(✓i)d✓i.

(3)

In some cases, a closed form solution can be acquired for
this expression, e.g, linear models with normal i.i.d. error, and
brownian models with constant drift [35]. For other models,
sampling methods may be needed [36].

IV. DYNAMIC MAINTENANCE COST

A key aspect of our methodology is linking our predictive
model with the optimization framework. This is accomplished
by a dynamic maintenance cost function that models the
tradeoff between the cost of preventive maintenance (early
repair before failure) versus the cost of unexpected failure.
In this paper, we use the long-run average maintenance cost
per cycle as out dynamic cost function [37]:

C
d,i

t
o
i ,t

=
c
p

i
P (Ri

t
o
i
> t) + c

f

i
P (Ri

t
o
i
 t)

R
t

0 P (Ri

t
o
i
> z)dz + t

o

i

, (4)

which is the cost rate associated with conducting generator
maintenance t time periods after the time of observation t

o

i
;

c
p

i
and c

f

i
are the costs of planned maintenance and failure

replacement, respectively; cf
i

is typically higher than c
p

i
, since

unexpected failures requires maintenance to be conducted
on demand without prior planning. This leads to increased
costs in materials and labor. Additionally, any unexpected
failure might lead to a series of damages to the generator
subcomponents, further increasing the cost of maintenance.
The probability P (Ri

t
o
i
> t) in this function is derived from

the RLDs evaluated by expression (3). In essence, the dynamic
cost functions are directly related to the RLDs and hence the
degradation states of each generator.

Certain generators might be scheduled more than once.
Thus it would be beneficial to characterize the associated

maintenance cost of a new generator that has just completed
its maintenance. For a new generator, the maintenance cost
function C

n,i

t
takes the following form:

C
n,i

t
=

c
p

i
P (⌧i > t) + c

f

i
P (⌧i  t)

R
t

0 P (⌧i > z)dz
. (5)

The dynamic cost functions help identify the optimal time to
repair a generator based on their most recently updated RLD.
Our goal is to optimize these decisions across all the gener-

ators. In what follows, we discuss two types of optimization
models. The first focuses on maintenance optimization for a
fleet of generators while the second focuses on an integrated
maintenance-operations optimization model.

V. ADAPTIVE PREDICTIVE MAINTENANCE MODEL I
In this section, we present the first adaptive predictive

maintenance model (APMI). In this model, the decision maker
leverages the condition monitoring information coming from
generation assets to decide on both the time and the number

of maintenances to be scheduled within the planning horizon.
We assume the operational decisions such as unit commitment
and dispatch are not significant, therefore they are ignored in
the APMI model. This assumption is applicable to problems
where the outage of an individual generator does not neces-
sarily cause significant impact on the system operations. For
example, in a fleet maintenance scheduling problem of a wind
farm composed of a large number of wind turbines, the outage
of one wind turbine has limited impact on the overall wind
farm operation.

A. Decision Variables

Before introducing the objective and constraints, we first
use a simple example to illustrate the meaning of the decision
variables z and ⌫. To ease exposition, we define ⌫ :,i,k =
{⌫1,i,k, . . . , ⌫H,i,k} and z:,i,k = {z1,i,k, . . . , zH,i,k}. In this
example, there are 14 maintenance epochs, each corresponding
to a week. Consider the following schedule:

⌫ :,i,1 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

⌫ :,i,2 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

⌫ :,i,3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

z:,i,1 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], zo
i,1 = 0

z:,i,2 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], zo
i,2 = 0

z:,i,3 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], zo
i,3 = 0.

In this schedule, the first maintenance of generator i starts
at week 3. The following maintenances start at weeks 8 and
14, respectively. ⌫ :,i,k indicate these starting times. z:,i,1 is
defined identical to ⌫ :,i,1. The remaining z:,i,k’s indicate the
time difference between two maintenances. For instance, the
time difference between the first and the second maintenance
is 5 weeks, and this difference is captured by z:,i,2.

Unique to our modeling is the predetermined input Mi

defined as the maximum number of maintenances to be
scheduled on generator i within the planning horizon H . Given
Mi, the model dynamically decides how many maintenances
to schedule. For this particular example we allow the model
to schedule up to 4 maintenances for generator i. In this
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example, 3 maintenances are scheduled within the planning
horizon of 14 weeks. Therefore, z:,i,4 is a zero vector, and
the corresponding vector of ⌫ :,i,4 is identical to that of the
third maintenance which is the last scheduled maintenance.

⌫ :,i,4 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

z:,i,4 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], zo
i,4 = 1.

Since the first three maintenances are scheduled for the gen-
erator, zo

i,k
= 0, 8k 2 {1, 2, 3}. The fourth maintenance is

not scheduled, therefore, zo
i,4 = 1.

B. Objective Function

The objective in the APMI model is to minimize the total
dynamic maintenance cost of the generator fleet:

X

i2G

HX

t=Ri+1

zt,i,1·Cd,i

t
o
i ,t�Ri

+
X

i2G

HX

t=Y+1

MiX

k=2

zt,i,k·Cn,i

t�Y
. (6)

Recall that the binary variable zt,i,k = 1 if the k-th and
the (k � 1)-th maintenances of generator i are separated by
t maintenance epochs. G denotes the set of generators. The
constants H,Ri,Mi, and Y refer to the planning horizon in
terms of maintenance epochs, the remaining time required for
maintenance of generator i at the start of the planning period,
the maximum number of maintenances to be scheduled for
generator i within the planning horizon, and the maintenance
duration, respectively.

The objective function evaluates the dynamic costs associ-
ated with the first and the consecutive maintenances separately.
The first maintenance might benefit from sensor information,
whereas the consecutive maintenances are conducted based on
new generator costs.

For the first maintenance, we consider two cases: 1) If
Ri = 0, then partially degraded generator i is operational
at the time of planning tp. In these cases, the cost function
for the generator i is determined using the sensor updated
RLDs. The age of generator i at tp is t

o

i
. For generator

i, sensor observations until time t
o

i
change the estimate on

the degradation parameters  
i
, and therefore the estimate on

P (Ri

t
o
i
> t). Since the dynamic maintenance cost C

d,i

t
o
i ,t�Ri

depends on this estimate, the objective function of APMI also
adapts to this update. Otherwise, 2) if Ri > 0, then generator
i has an ongoing maintenance at the time of scheduling and a
new generator will be available at time Ri + 1. For generator
i, we cannot observe any sensor information, therefore, the
dynamic cost for these cases will correspond to a time shifted
cost function of a new generator, namely, Cd,i

.,t�Ri
= C

n,i

t�Ri
.

Certain generators might be scheduled for more than one
maintenance. We assume that when a generator is maintained,
it starts a new degradation cycle. In other words, the generator
becomes as good as new. For these generators, the variable
z indicates the time difference between the start of two
consecutive maintenances. To find the generator age at the
time of maintenance, we simply shift the time in z, by the
duration of maintenance Y . When estimating the remaining
life distribution of these new degradation cycles, we use only
the prior estimations since no other information is revealed to
the decision maker at the time of planning.

We next introduce the model constraints.

C. Constraints

1) Maintenance time limits:

• Constraint (7) ensures that the first maintenance occurs
within ⇣

d

i
maintenance epochs, where ⇣

d

i
depends on the

RLD of unit i. Depending on the application, ⇣d
i

can be
set to a limiting period, when the updated cumulative
failure probability exceeds a specific control threshold.
Similarly, constraint (8) limits the duration between the
start times of two consecutive maintenances using the
threshold ⇣

n.

⇣
d
iX

t=1

⌫t,i,1 � 1, 8i 2 G. (7)

X

t2T
t · ⌫t,i,k �

X

t2T
t · ⌫t,i,k�1  ⇣

n
,

8i 2 G, k 2 Ki \ {1}.
(8)

where T , and Ki refer to the sets of maintenance epochs within
the planning horizon, and possible maintenances for generator
i, respectively.

2) Maintenance coordination:

• APMI allows a number of maintenances to be scheduled
within the planning horizon. Constraint (9) ensures that
for every such maintenance, a start time is selected.

X

t2T
⌫t,i,k = 1, 8i 2 G, k 2 Ki. (9)

• Constraint (10) controls two factors. Firstly, for generator
i, it dictates whether the k

th maintenance is scheduled
within H (namely, zo

i,k
= 0) or is projected to take place

beyond H (zo
i,k

= 1). Secondly, for any maintenance
that is scheduled within H , it ensures that a certain
time is selected to register the difference between two
consecutive maintenances.

z
o

i,k
+

X

t2T
zt,i,k = 1, 8i 2 G, k 2 Ki. (10)

• Constraint (11) ensures the k-th maintenance is scheduled
only if the (k � 1)-th maintenance is scheduled.

z
o

i,k
� z

o

i,k�1, 8i 2 G, k 2 Ki \ {1}. (11)

• Constraint (12) ensures the k-th maintenance cannot be
scheduled before the (k � 1)-th maintenance.

X

t2T
t · ⌫t,i,k �

X

t2T
t · ⌫t,i,k�1,

8i 2 G, k 2 Ki \ {1}.
(12)

• Constraint (13) stipulates that if the (k � 1)-th mainte-
nance is scheduled within ⇣

n periods from the end of
the planning horizon, then the k-th maintenance cannot
be scheduled after the (k�1)-th maintenance. Therefore,
constraints (12)-(13) together ensure that if the (k�1)-th
maintenance is scheduled within ⇣

n periods from the end
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of the planning horizon, then the k-th maintenance is not
scheduled.

H�⇣
nX

t=1

H · ⌫t,i,k�1 +
HX

t=H�⇣n+1

t · ⌫t,i,k�1

�
H�⇣

nX

t=1

H · ⌫t,i,k +
HX

t=H�⇣n+1

t · ⌫t,i,k,

8i 2 G, k 2 Ki \ {1}.

(13)

• Constraints (14) and (15) couple the z and ⌫ variables.
For the first maintenance, z and ⌫ variables are identical
as in constraint (14). For the remaining maintenances, z
captures the time difference of two consecutive mainte-
nances as in constraint (15).

zt,i,1 = ⌫t,i,1, 8t 2 T , i 2 G. (14)

X

t2T
t · zt,i,k =

X

t2T
t · ⌫t,i,k �

X

t2T
t · ⌫t,i,k�1, (15)

8i 2 G, k 2 Ki \ {1}.

• The following set of constraints ensure that a unit
maintenance cannot be started if there is an ongoing
maintenance. Constraints (16) and (17) represent this
relationship for the first maintenance and the consecutive
maintenances, respectively.

RiX

t=1

⌫t,i,1 = 0, 8i 2 G. (16)

H·zo
i,k

+
X

t2T
t · ⌫t,i,k �

X

t2T
t · ⌫t,i,k�1 � Y + 1 (17)

8i 2 G, k 2 Ki \ {1}.

3) Maintenance capacity:

• The following constraints (18) ensure that the number
of ongoing maintenances at time t does not exceed a
limit L, e.g., a limit on the available labor capacity. Such
constraints have been proposed in literature for problems
considering one maintenance per generator [18]. Since
our model allows a flexible number of maintenances,
we need to consider three cases separately: 1) if t 2
{1, . . . , H�⇣

n}, we need to check for every maintenance
k (constraint (18a)); 2) if t 2 {H�⇣

n+1, . . . , H�⇣
n+

Y � 1}, we check all maintenances scheduled up to time
H � ⇣

n and then check only the last maintenance after-
wards (constraint (18b)); 3) if t 2 {H�⇣

n+Y , . . . ,H},
we only check the last maintenance to eliminate double
counting (constraint (18c)).

X

i2G

X

k2Ki

Y�1X

e=0

⌫t�e,i,k  L 8t 2 {1, . . . , H � ⇣
n} (18a)

X

i2G

X

k2Ki

X

e2J 1(t)

⌫t�e,i,k +
X

i2G

X

e2J 2(t)

⌫t�e,i,Mi  L (18b)

8t 2 {H � ⇣
n + 1, . . . , H � ⇣

n + Y � 1}
X

i2G

Y�1X

e=0

⌫t�e,i,Mi  L 8t 2 {H � ⇣
n + Y , . . . ,H} (18c)

where the sets J 1(t) = {t � H + ⇣
n
, . . . , Y � 1} and

J 2(t) = {0, . . . , t�H + ⇣
n � 1}.

D. APMI Model

In summary, the APMI model is given as

(APMI) min
⌫,z

(6)

s.t. (7) � (18)
{z,v} 2 Fm

.

where Fm is defined as: Fm = {z,⌫| zt,i,k, ⌫t,i,k, z
o

i,k
2

{0, 1} 8t 2 T , 8i 2 G, 8k 2 Ki}.

VI. EXPERIMENTS

In this section we present the design of our experiments
and the results for APMI. We first use a special case of the
degradation model introduced in Section III to model real
world degradation data. We then show how we use this data to
conduct our experiment. Finally, we present the experimental
results to show the performance of the proposed models.

In this paper, we use vibration data acquired from a ro-
tating machinery application; namely rolling element bearing
degradation captured through condition monitoring. Rolling
element bearing is chosen for several reasons: i) In condition
monitoring of generating units, mechanical methods constitute
the most mature branch of technologies used in industry
practice [4]. ii) Rolling element bearings are typical examples
of components that experience degradation during operation
[38].

We use the degradation from bearings as representative of
the degradation observed in the generating units. An experi-
mental setup is used to observe the degradation of bearings
from brand new state until their failure. Details of this setup
can be found in [35].

A. Degradation Modeling

We next present a special case of the degradation framework
introduced in Section III to be used for analyzing the condition
monitoring data from our rotating machinery application.

We define Di(t) as the amplitude of the degradation signal
of generator i 2 G, at time t. The magnitude of Di(t)
is assumed to be correlated with the underlying physical
degradation severity in the generator, and will be used to
model the generator degradation. For the degradation data we
consider, exponential degradation function provides the best
fit. We represent this function, Di(t) as follows:

Di(t) = �+ ✓ie
�it+✏i(t)��2t

2 = �+ ✓ie
�it��2t

2 e
✏i(t), (19)

where � and � are constant deterministic parameters, ✓i and
�i are random variables, and ✏i(t) is a Brownian motion [35].
We focus on the log exponential degradation function denoted
by Li(t) := ln(Di(t)� �),

Li(t) = ✓
0
i
+ �

0
i
t+ ✏i(t) (20)
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where ✓
0
i
= ln(✓i) and �

0
i
= �i�(�2

/2) are assumed to follow
prior normal distributions ⇡(✓0

i
) and ⇡(�0

i
), with means µ0 and

µ1, and variances �
2
0 and �

2
1 , respectively.

We use a two-stage method to estimate the population prior
distributions, µ0, µ1,�0,�1. In stage 1, we develop estimates
for ✓

0
i
, and �

0
i

for each specimen. The resulting estimates are
used in stage 2 to evaluate the prior distributions. We denote
the log degradation function amplitude at observation time
tk as `i(tk), and assume that we monitor `i(tk) at times
t1, t2, ..., hi, where t1 < t2 < ... < hi. In our experiment,
the sensor data is observed with constant intervals.

Stage 1 Estimate. In this stage, we estimate the component
specific degradation parameters ✓i, and �i, based on data
acquired from one tested specimen. We require that the error
term ✏i(0) = 0, thus Li(0) = ✓̂i . Since the error increments
in Brownian motion are i.i.d, we use the incremental values
to estimate �i as follows:

�̂i =
1

hi

hiX

k=1

`i(tk)� `i(tk�1)

tk � tk�1

where hi is the time of last observation before generator i

fails. Once �̂i is obtained, we can estimate �
2
i

as follows:

�̂
2
i
=

1

(hi � 1)
⇥

hiX

k=1

⇣
`i(tk)� `i(tk�1)� (tk � tk�1)�̂i

⌘2

(tk � tk�1)

since the term
⇣
`i(tk)� `i(tk � 1)� (tk � tk�1) �̂

⌘
is nor-

mally distributed with mean 0, and variance �
2(tk � tk�1).

Stage 2 Estimate. In this stage, we use the estimates in
Stage 1 from a number of components to obtain the estimates
for the population degradation parameters. We use the sample
mean of ✓̂i and �̂i for components i 2 {1, 2, ..., G}, to find
the estimates µ̂0 and µ̂1. We use the corresponding sample
variances to acquire the estimates �̂2

0 and �̂
2
1 . Lastly, we obtain

the estimate �̂
2 from {�̂2

1 , �̂
2
2 , ..., �̂

2
G
}.

B. Prognosis

Degradation signals are acquired during operation of the
generator. Using this data, the degradation parameters can be
updated in a Bayesian manner. Given that the observed logged
degradation signal {`i(t1), . . . , `i(tk)} at times t1, . . . , tk from
a particular generator i, the posterior distribution of the
degradation parameters (✓0

i
,�

0
i
) can be estimated as a bivariate

normal distribution with means (µ✓
0
i
, µ�

0
i
), variances (�✓

0
i
,��

0
i
)

and correlation coefficient ⇢i [35]:

µ✓0i
=

�
`i,1�

2
0 + µ0�

2t1
� �

�2
1tk + �2

�
� �2

0t1
⇣
�2
1

Pk
e=1 `i,e + µ1�

2
⌘

(�2
0 + �2t1) (�2

1tk + �2)� �2
0�

2
1t1

µ�0
i
=

⇣
�2
1

Pk
e=1 `i,e + µ1�

2
⌘ �

�2
0 + �2t1

�
� �2

1

�
`i,1�

2
0 + µ0�

2t1
�

(�2
0 + �2t1) (�2

1tk + �2)� �2
0�

2
1t1

�2
✓0i

=
�2�2

0t1
�
�2
1tk + �2

�

(�2
0 + �2t1) (�2

1tk + �2)� �2
0�

2
1t1

�2
�0
i
=

�2�2
1

�
�2
0 + �2t1

�

(�2
0 + �2t1) (�2

1tk + �2)� �2
0�

2
1t1

⇢i = � �0�1
p
t1p

(�2
0 + �2t1) (�2

1tk + �2)
,

where `i,e = `i(te)� `i(te�1).
The failure time ⌧i of generator i is defined as the first

time that the logged degradation signal Li(t) crosses failure
threshold ⇤. More specifically, ⌧i = inf (t : t > 0, Li(t) = ⇤).

A conservative estimate for the probability of failure can be
presented as the boundary crossing probability of the Brownian
motion process [39]. In this context, the failure time ⌧i follows
an Inverse Gaussian distribution with mean parameter � =
⇤�`i(tk)

µ�0
and shape parameter � = (⇤�`i(tk))

2

�2 , that is:

P{⌧ = t|`1, . . . , `k} = ftk(t) =

r
�

2⇡t3
exp

⇢
��(t� �)2

2�2t

�
.

C. Experimental Implementation

In order to test our model, we design an experimental
framework. In this framework i) we first solve the maintenance
problem to determine the maintenance schedule, and then
ii) we execute the chain of events during a freeze period.
Based on what happens during this period, we update the
operating environment and resolve the maintenance problem.
This procedure exhibits a rolling horizon fashion.

We present the two main modules of the experimental
procedure as follows:

1) Optimization module: Given dynamic maintenance costs
and remaining maintenance downtimes for each gener-
ator, this module solves APMI.

2) Execution module: Given the maintenance plan, this
module mimics the system behavior for the duration of
the freeze period. More specifically, it uses the degra-
dation database from the rotating machinery application
to represent the degradation processes in each generator.
For every maintenance epoch during the freeze period,
the module checks if any of the generators are experi-
encing a maintenance downtime, a scheduled preventive
maintenance, or an unexpected failure. To detect failure,
the module checks if the degradation signal associated
with the generator exceeds the failure threshold. This
process is repeated for every maintenance epoch within
the freeze period. For any failed generator, the module
keeps the asset under maintenance for a specified dura-
tion. Then, a new degradation signal from the database
is chosen to represent the degradation of the new gen-
erator after maintenance. Once the execution module
reaches to the end of the freeze period, it updates the
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Fig. 2: Experimental Framework

dynamic maintenance costs for each generator based on
the most recent sensor observations. More specifically,
the execution module utilizes the observations from the
degradation signals of the generators, and derives new
RLD and dynamic maintenance cost estimates following
the procedure in section VI-B. The module also takes
account of the generators that have undergoing mainte-
nances.
During the execution module process, the key metrics
such as the number of unexpected failures & successful
preventive maintenances, and the unused life of every
generator that experiences preventive maintenance, is
computed to present the effectiveness of the current
maintenance policy.

Figure 2 presents this experimental framework.

D. Experimental Results

In this section we present a series of studies to show the
performance of APMI. In our analyses, we use a 54 generator
system. We obtain the age of generators at the start of the
experiments by running the generators for a warming period.
In all our studies, we set the preventive maintenance cost cp =
$200, 000 and the failure cost c

f = $800, 000. In order to
ensure a fair comparison, we repeat every scenario ten times
with different generator ages, and take the average of these
experiments. All the models are solved using Gurobi 5.6.0
[40].

For the purposes of this paper, the generator maintenance
decisions are weekly as suggested by [8], and the system
level generator maintenance scheduling is updated according
to the specified freeze period ⌧R. Planning horizon for every
optimization model is 110 weeks. Depending on the type
of generator and the comprehensiveness of the maintenance
study, different periods can be considered for the maintenance
decision blocks and the updating frequency.

All experiments involve executing the maintenance frame-
work introduced in the previous subsection. More specifically,
to test the performance of a maintenance policy, we first
solve the maintenance problem, then run the execution module,
which i) mimics the system behavior during the freeze period,
and ii) collects the important performance metrics for the
analysis. We repeat this process in a rolling horizon fashion.

1) Comparative Study on APMI: In this study, we perform
a benchmark test for APMI. To do so, we compare the
performance of APMI with two policies: periodic maintenance
and reliability based maintenance (RBM). In the periodic
maintenance policy, we modify the existing APMI model as

Fig. 3: A Scheduling Plan from Comparative Studies of APMI

follows: i) we let the dynamic maintenance cost be zero, that
is C

d,i

t
o
i ,t

= C
n,i

t
= 0 8i 2 G, 8t 2 T , and ii) we include an

additional constraint to ensure that maintenance is conducted
when the generator’s age is between 66 and 69 weeks. This
period is obtained by using the traditional approach proposed
by [41]. The problem solves as a feasibility problem with
labor capacity constraints. For the RBM case, we use the
exact optimization model of APMI, however the cost function
for this scenario is derived using a Weibull distribution. We
first derive a Weibull estimate using the failure times from the
rotating machinery application FW (t), and then condition this
distribution on the time of survival to estimate the remaining
life distribution and the associated maintenance costs. FW (t)
in this model, provides the best available prediction of the
remaining life distribution without condition monitoring [35].
We let the freeze period ⌧R = 8 weeks, and solve the
maintenance problems in a rolling horizon fashion to cover
a period of 48 weeks.

In Figure 3, we illustrate different maintenance policies in
one of the scheduling scenarios obtained during the compara-
tive studies. Note that the maintenance decisions are weekly.
For the sake of illustration, we present the maintenance
schedules using time blocks of 8 weeks. We also present
the schedule for 14 generators only. A black box indicates
a preventive maintenance, and gray box indicates a failure.

We first note that APMI detects when the generator’s condi-
tion becomes critical, and conducts a preventive maintenance.
For instance, APMI schedules a maintenance between week 25
and 32 for generator 13. This maintenance was not conducted
by the periodic model or the RBM model. Therefore, both of
them incurred an unexpected failure. In some cases, APMI
required maintenance to be conducted at earlier time blocks.
For instance, APMI conducts maintenance for generator 7 in
the first 8 weeks, otherwise the generator would have failed
between the weeks 9 and 16. This means that APMI conducts
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the maintenance of the generator earlier in order to decrease
the risks of failure. This leads to the concept of unused life.
Unused life is defined as the time difference between the
time of maintenance, and the failure time of the generator
under no maintenance regime. This metric quantifies how
much of the generator’s available life is sacrificed by the
maintenance policy. Evidently, as this value decreases, the
risk of failure increases. If the maintenance scheduler would
have infinite labor crew resources and perfect information
about the component’s failure time, the maintenance would
be conducted right before failure. This forms a theoretical
bound on the maintenance performance. Since this is not the
case in any practical scenario, any additional information helps
the policy use more of generators’ useful life. For instance,
generator 9 was put under schedule by the periodic and the
RBM, although it could survive the 48-week period. Sensor
information provided this insight for APMI policy, and thus a
maintenance was not scheduled.

TABLE I: Benchmark for APMI

APMI with ⌧R = 8 Periodic RBM APMI

# Preventive 23.5 33.4 26.6

# Failures 13.7 9.6 1.5

# Total Outages 37.2 43.0 28.1

Unused Life (weeks) 908.6 1409.3 309.5

Maintenance Cost $15.66 M $ 14.36 M $ 6.52 M

We next analyze the results of the comparative study as
shown in Table I. The comparative study involves running
ten instances of the 48-week experimental implementation for
each method. In other words, the results in Table I come from
30 experiments, and every presented metric is obtained by
taking the average of ten experiments.

The first set of metrics relate to the average number of
preventive maintenances, failures and total outages observed
during these studies. Unused life refers to the average number
of sacrificed weeks among all generators. Given the same
information, a scheduling model that increases the number of
preventive maintenances is expected to create a more conser-
vative maintenance policy, and therefore incur less number
of unexpected failures, and sacrifice more lifetime. In our
experiment, RBM policy is more conservative, scheduling
more preventive maintenances (33.4 v.s. 23.5) than periodic,
and consequently incurring a decreased number of unexpected
failures (9.6 v.s. 13.7), and sacrificing more weeks of generator
lifetime (1409.3 v.s. 908.6 weeks). In terms of the maintenance
cost, however, RBM provides significant benefits.

APMI, on the other hand, utilizes the sensor information to
improve upon both of these benchmark policies. APMI con-
ducts slightly more preventive maintenances than the periodic
model, while incurring significantly less unexpected failures
(1.5 for APMI v.s. 13.7 for Periodic) and saving substantial
unused lifetime (34.1% of that of the periodic model).

The maintenance cost presented in table is calculated by
multiplying the average number of successful preventive main-
tenances and unexpected failures by c

p, and c
f respectively,

and then by calculating the total cost incurred. The cost of
APMI is 41.6% of the cost in the periodic model. Compared to
the RBM model, APMI conducts less preventive maintenances
and incurs significantly less failures and unused lifetime. This
shows that the maintenance schedule of APMI is superior
to that of the periodic and RBM models in terms of both
reliability and cost.

TABLE II: Impact of the Freeze Time on APMI

⌧R = 8 ⌧R = 6 ⌧R = 4 ⌧R = 2

# Preventive 26.6 27.2 26.9 26.8

# Failures 1.5 1.1 0.7 0

# Total Outages 28.1 28.3 27.6 26.8

Unused Life (wks) 309.5 306.9 255.2 187.7

Maintenance Cost $6.52 M $6.32 M $5.94 M $5.36 M

2) Impact of the Freeze Time on Maintenance Schedules:

Having a flexible maintenance crew that can adapt to more
frequent changes in the maintenance schedule might be a fea-
sible economic option for the fleet maintenance for generators
of smaller capacities. Since APMI model mainly considers this
type of generator fleets, it might be beneficial to study the
effect of the freeze time ⌧R on the maintenance performance.
In this study we compare the performance of the maintenance
models when the freeze period: i) ⌧R = 8 weeks, ii) ⌧R = 6
weeks, iii) ⌧R = 4 weeks, and iv) ⌧R = 2 weeks. Table II
presents the results.

As the freeze time decreases, in other words, as the updates
in the maintenance schedule become more frequent, APMI can
learn more about the generator’s degradation characteristics
before making the final maintenance plan. This corresponds
to a better understanding if a maintenance can be postponed
(thus getting more out of the available resources), or scheduled
to an earlier time (thus decreasing the risks of failure). We
note that the average costs of maintenance decreases as the
maintenance schedule is updated more frequently. Thus, it
would be reasonable to invest up to $200, 000 to improve the
maintenance crew flexibility to be capable of ⌧R = 6 weeks,
as opposed to ⌧R = 8 weeks. Additional investment of up
to $380, 000 can be made to further improve the flexibility so
that the crew can respond to monthly changes in maintenance.
⌧R = 2 follows a similar pattern.

VII. CONCLUSION

In the Part 1 of this two-part study, we proposed a math-
ematical framework that incorporates the sensor-driven pre-
dictive analytics that estimates the remaining life distribution
of generators, into the maintenance scheduling optimization
problem. To do so, we proposed an innovative mixed-integer
optimization model for the fleet maintenance problem. Exper-
imental results indicate that using our method provides signif-
icant advantages in both cost and reliability. More specifically,
APMI significantly reduces the number of unexpected failures
by � 84.37%, the unused life by � 65.93%, and the mainte-
nance cost by � 54.59 (See Table I). We also note that APMI
favors flexible maintenance workforce. As the maintenance
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crew’s ability to adapt to changes in the maintenance schedule
increases, the APMI model allows observation of more sensor
information before making decisions, therefore improving the
quality of the maintenance schedule (See Table II).

In part II, we expand the model presented herein to con-
sider the effects of maintenance on network operation by
coordinating generator maintenance schedules with the unit
commitment (UC) and dispatch decisions. We also propose
an effective solution algorithm to solve the new model, and
conduct computational experiments.
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