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Minimal Impact Corrective Actions in
Security-Constrained Optimal Power Flow
Via Sparsity Regularization

Dzung T. Phan and Xu Andy Sun, Member, IEEE

Abstract—This paper proposes a new formulation for the cor-
rective security-constrained optimal power flow (SCOPF) problem
with DC power flow constraints. The goal is to produce a gener-
ation schedule which has a minimal number of post-contingency
corrections as well as a minimal amount of total MW resched-
uled. In other words, the new SCOPF model effectively clears
contingencies with corrective actions that have a minimal impact
on system operations. The proposed SCOPF model utilizes sparse
optimization techniques to achieve computational tractability for
large-scale power systems. We also propose two efficient decom-
position algorithms. Extensive computational experiments show
the advantage of the proposed model and algorithms on several
standard IEEE test systems and large-scale real-world power
systems.

Index Terms—Decomposition algorithm, £, regularization, se-
curity-constrained optimal power flow.

I. INTRODUCTION

ONTINGENCY analysis is routinely performed in the
operation of power systems. The goal is to ensure that
the system remains balanced and reliable in both normal state
and contingencies when any one or more components in the
power system, such as generators, transmission lines, trans-
formers, or other equipments, experience unexpected failure.
The optimal power flow (OPF) problem with contingency con-
straints considering the failure of one component at a time is
often referred to as the N — 1 security-constrained optimal
power flow (SCOPF). There are two major types of SCOPF
models: the preventive model [2] and the corrective model
[32].
The preventive SCOPF model (denoted as P-SCOPF) finds a
minimum cost normal state dispatch solution that is also feasible
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for all pre-specified contingency conditions. A general formu-
lation is given as follows:

o, 0 e f(@o, 1) (1a)
st g.(zeu0) =0, ce{0}UC (1b)
ho(z.,up) <0, ce{0}UC (lo)

where xy and z. represent state variables, such as nodal volt-
ages, of the normal state ¢ = 0 and the cth contingency, re-
spectively; C = {1,2,...,C} is the index set of pre-specified
C contingencies; in the following, we denote C = {0} U C; ug
represents control variables, such as generators power output,
of the normal state; (1a) is the normal state cost; (1b) represents
flow balance equations, and (1c) represents physical limit con-
straints on the generation output levels and circuit power flow.
In this paper, we are interested in transmission line contingen-
cies. So the cth contingency corresponds to the failure of the
cth transmission line. As noted above, the preventive model re-
quires the normal-state control variable u, to be feasible for all
contingency constraints.

The second type of SCOPF model is the so-called corrective
model (denoted as C-SCOPF), which allows the system operator
to re-adjust control variables after a contingency occurs. The
rationale is that the electrical components in the power system,
such as transmission lines and transformers, can usually sustain
a short period of overloading without being damaged [32]. This
capability gives the system operator a time window to adjust
control variables in order to eliminate any violations caused by
the contingency. Using the same notation, the C-SCOPF can be
formulated as follows:

xc,uc;r\lflclg{o}uc f (o, uo) (2a)
st. g.(xe,u:) =0, ceC (2b)

he(ze,u;) <0, ceC (2¢)

e — ol < B, ceC. (2d)

Here, the system operator minimizes the normal state cost (2a),
but now it has the flexibility to choose a control variable u,.
for each contingency ¢ in (2b) and (2c). The last constraint
(2d) imposes that the deviation between the normal state and
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the post-contingency controls for each contingency ¢ must be
within the bound #***. Note that constraints (2d) should be un-
derstood componentwise as |ue ; — g i| < g, Vi

The P-SCOPF model (1) forsakes the option to adjust control
variables, which makes the solution intrinsically conservative
and may result in a high operating cost. The situation can be
even worse for the preventive model when a feasible operating
point satisfying both normal and contingency constraints does
not exist. In comparison, the C-SCOPF model (2) is more flex-
ible in terms of allowing adjustment to control variable values
and thus may achieve a lower operating cost. However, the
C-SCOPF model also has some difficulties.

1) The first difficulty is computational, which is, to some de-

gree, shared by both preventive and corrective models.
In particular, SCOPF models have huge dimensionality.
For € contingency scenarios, the P-SCOPF model has the
same number of control variables and C' + 1 times more
state variables and constraints compared to the normal state
OPF model; the C-SCOPF model has roughly '+ 1 times
more state and control variables and constraints than the
normal state OPF. For large-scale power systems involving
numerous contingencies, centralized solution algorithms
may encounter prohibitive issues such as memory limit and
long computation time.

2) The second difficulty, unique to C-SCOPF, is that the op-
timal solution of the corrective model usually requires to
adjust the output levels of a large number of generators
(see discussions in [9], [10], [12], and [30]). This property
is particularly undesirable in the current industry practice
for several reasons. First, the system operators may only
be able to handle a limited number of corrective actions
due to time and communication constraints. Second, even
if the system operator is capable of handling all corrective
actions, from a security perspective, it is much more reli-
able to clear the contingency via adjusting a few number
of generators.

3) The third difficulty, also unique to C-SCOPF, is that the
corrective actions in the C-SCOPF model may involve a
large amount of MW rescheduling between the normal
state and contingencies. This will be demonstrated in
computational experiments in this paper. A large amount
of MW rescheduling not only increases operational com-
plexity and reduces system security, but also induces high
cycling costs to generators [27].

To deal with the first computational difficulty, several ap-
proaches are proposed in the literature. The main approaches
include iterative contingency selection schemes [1], [3], [5],
[8], [20], where contingency filtering techniques are devel-
oped to identify and include only those potentially binding
contingencies into the formulation; decomposition methods
[29], [32], [35], [38], where Benders decomposition is used to
decompose the SCOPF into a master problem and subproblems,
which check the solution feasibility and generate linear cuts
to the master problem; and a network compression method
[26], which is based on the observation that the impact of a
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contingency is in general confined to a localized area of the
power grid.

The second difficulty specific to the C-SCOPF model attracts
much attention recently. A series of papers [9], [10], [12], [13],
[30] discussed and proposed new models and solution methods
to resolve this issue. One of the key proposals is to use the fol-
lowing constraints to limit the number of corrective actions:

e — ugi| < @i Vi G,ecC (3a)
D sei <N, sc;€{0,1} VieGeel (3b)
iceg

where G is the set of generators, N, is the maximum number of
corrective actions allowed, and binary variable s, ; = 1 if gener-
ator #'s output can be changed in the cth contingency. Constraint
(3a) limits the output deviations of generators that are allowed
to change in each contingency c. In the optimal solution, con-
straint (3b) is usually satisfied as equality, i.e., the number of
changes would be equal to the maximum number N, which is
selected before the operation of the system.

The proposed constraint (3) allows the system operator to
control the number of corrective actions needed to clear the
contingency. However, it also has some drawbacks. The fore-
most one is that contraint (3) requires binary variables in the
C-SCOPF formulation, which significantly increases the com-
putational complexity of the resulting model. The recent paper
[30] proposed a method to exploit the use of DC SCOPF ap-
proximation to improve the iterative AC SCOPF algorithms.
Although this approach effectively reduces the complexity of
solving the AC SCOPF model, the proposed DC SCOPF ap-
proximation still contains binary variables, which makes it a
mixed-integer program (MIP) rather than the efficient contin-
uous formulation of the traditional DC SCOPF. Secondly, for
a large-scale power system, selecting a proper V.., the number
of needed post-contingency actions, to ensure feasibility of the
resulting corrective SCOPF is not a trivial task. Pre-setting the
value of N, may require some trial and error, which can be time
consuming and situation dependent.

The third difficulty specific to the C-SCOPF model does not
seem to have been much studied in the literature. We conduct
extensive computational experiments on several IEEE test sys-
tems of small (39-bus), medium (118-bus and 300-bus), and
large-scale (2383-bus and 3012-bus) sizes. The results show
that, for the conventional C-SCOPF model (2), the average ab-
solute value of the total MW rescheduling between the normal
state and a contingency state is around 3.15%-9.68% of the total
load, which leads to a large amount of cycling (i.e., ramping up
and down) of generators. Proposal (3) restricts the total number
of rescheduling, and its effect on reducing the amount of MW
rescheduling is neither direct nor optimized.

The above considerations motivate us to pursue a new
corrective SCOPF model to achieve the goal of producing a
generation schedule which has a minimal number of post-con-
tingency corrections as well as a minimal amount of total MW
rescheduled in corrective actions. In other words, the new
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SCOPF model effectively clears contingencies with corrective
actions that have a minimal impact on system operations. The
new model should also be computationally efficient by avoiding
integer decision variables, easy to decompose and viable for
parallel or distributed computation, and situation optimal in the
sense that the proposed C-SCOPF model lets the optimization
itself determine the best number of post-contingency actions
based on the system operating condition when the contingency
occurs, rather than pre-specify a fixed number.

The key observation is that the number of post-contingency
rescheduling for contingency ¢ is the same as the number of
non-zero entries in the vector (u. — ug). A vector with only
a few number of non-zero entries is called a sparse vector.
Therefore, the task of finding a generation schedule with few
post-contingency reschedulings is equivalent to finding u, and
{u.}ccc such that the resulting (s, — uy) is a sparse vector for
each ¢ € C. Furthermore, to find a corrective action that has
a minimal amount of MW rescheduling is equivalent to mini-
mizing a certain distance between #y and u.. These two objec-
tives, namely inducing a sparse solution as well as producing
a small total deviation, can be unified by sparse optimization
techniques.

With this motivation, we may summarize the main contribu-
tions of the paper as follows:

1) We propose a new type of C-SCOPF model, which we
call min-impact C-SCOPF:. 1t utilizes sparse optimization
techniques to induce solutions of sparsity and small MW
variations in post-contingency corrections, and it does not
require any binary or integer variables. For DC power
flow models, the proposed C-SCOPF formulation is again
a convex program, which can be much more efficiently
solved than models involving constraints (3).

2) The paper introduces efficient decomposition methods
based on the alternating direction method of multipliers
(ADMM) and its accelerated version [6], [23]. Using
these methods, the min-impact C-SCOPF model is de-
composed into a master problem and subproblems, each
corresponding to a contingency. These subproblems are
independent of each other, and can be solved by distributed
and parallel computation. The decomposition scheme is
also easy to implement.

3) We conduct extensive computational experiments on stan-
dard IEEE test systems and real-world sized power sys-
tems. The computational results show that the min-im-
pact C-SCOPF model effectively reduces the number of
post-contingency actions and simultaneously achieves es-
sentially the same operational cost as the traditional correc-
tive SCOPF model. The proposed decomposition methods
also significantly outperforms existing methods with the
state-of-the-art solvers.

In this paper, we focus on using DC power flow models in
the OPF problem. Despite of many excellent studies (see, e.g.,
[8], [11], [22], [31], [32], [35], [37], and [40]), solving SCOPF
problems with AC power flow constraints is still a major com-
putational challenge in power system analysis. At the same time,
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SCOPF with DC power flows is widely used in the industry
practice. Many ISOs in the U.S. are using linearization in one
form or another to approximate the full AC OPF in their day-
ahead and real-time operations [14], [38]. A similar observation
is also reported in a recent comprehensive overview of the cur-
rent industry practice in real-time operation and planning, pub-
lished by FERC [21]. Based on these reports and our own in-
teractions with the practitioners, improvements on DC SCOPF
models will have significant impact on the industry. In fact,
solving DC SCOPF models reliably and quickly for large-scale
power systems is still a computational challenge. Some recent
works show promising results in this direction [3], [15], [30],
[38]. As a step toward obtaining solutions feasible to the AC
power flow model, an AC feasibility check module can be cou-
pled to the DC SCOPF model in an iterative manner. Recent
work such as [30] has made notable progress in exploiting DC
SCOPF approximation to solve the AC SCOPF problem, which
is also the ultimate goal of this research. However, to emphasize
the key innovation of the paper, we keep the presentation with
DC power flows.

The organization of the paper is as follows. Section II pro-
poses the new corrective SCOPF model. Section III introduces
efficient decomposition algorithms to solve the proposed model.
Section IV reports computational results. Section V concludes
the paper.

II. MIN-IMPACT C-SCOPF

We propose the following DC-based min-impact C-SCOPF
model to achieve significant reduction in the number of post-
contingency actions and the amount of MW rescheduling:

. 0 c 0
o F) + T; I — 2, (4a)
s.t. Fo(p©,0°,d,) <0, VYeel (4b)
p<p°<p, YeelC (4¢)
0<0°<08, Yeel (4d)
p°—p°| < Ap, Veecl (4e)

where the decision variables are power output of generating
units p° and bus voltage angles 0° for the normal state, and
p°,0° for each contingency ¢ in the contingency index set C.
The constraints (4b)—(4e) are standard in DC-based C-SCOPF
models. In particular, (4b) includes the power flow balance and
flow limit constraints for the transmission network in contin-
gency ¢ when the cth transmission line is outed (equalities can
always be expressed by two opposing inequalities); (4c) and
(4d) are bound constraints on the generators' output levels and
the bus voltage angles, respectively; (4e) constrains the dif-
ference between the normal state and post-contingency gen-
eration levels, where Ap depends on the generators' ramping
capabilities.
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A. Sparsity and £1-Regularization

The key deviation of the proposed model (4) from the existing
C-SCOPF model (2) is in the objective function (4a), which has
the following additional term:

> lp =Pl =7> > Ipf — pf

ccl cel ieg

)

with 7 > 0. This term is called the ¢; -regularization, which is
added exactly for the purpose of inducing sparsity in (p¢ — p°).

The technique of #;-regularization has become very influ-
ential in the compressed sensing community (e.g., see [7],
[17], and [19]). As an example, let us consider a classical
problem in signal processing, called the sparse signal recovery.
In particular, we want to find a solution z to the linear system
Mz = b so that z has the least number of nonzero entries,
i.e., the sparsest solution. This problem can be formulated
as min{||z||o : M=z = b}, where the {y-norm ||z||p simply
counts the number of nonzero entries in 2. However, ||z||o is a
non-convex function and directly minimizing this function over
linear constraints is proved to be an NP-hard problem [33]. It
can be reformulated by introducing integer variables, which
then lead to a mixed-integer program. To avoid the computa-
tional burden of solving MIPs, we can approximate ||z||q by a
convex function. It turns out that the tightest convex approxi-
mation to ||z||o on the hypercube [—1,1]™ is the ¢;-norm |||y
(see, e.g., [18].) Therefore, min{||z||; : Mx = d} represents a
convex approximation to the difficult problem of sparse signal
recovery. In fact, in many situations, the #; -norm minimization
recovers the exact sparse solution. The amazing effectiveness of
the ¢4 -regularization is observed in a wide range of applications
in signal processing (e.g., see [4], [28], and [39]). This powerful
sparse optimization technique seems to just start finding its
applications in power system analysis. Jabr et al. [25] is among
the first to use the ¢;-norm to minimize the amount of reactive
power injection and the number of locations installed for VAr
planning under various operating scenarios.

For our problem of C-SCOPF, the ¢;-regularization term in
(5) “kills two birds with one stone” in the sense that it not only
induces sparisty in (p° — p°), but also minimizes the absolute
value of total variations between the normal state and the post-
contingency solutions.

B. Reformulation to a Smooth Optimization Problem

Note that the min-impact C-SCOPF model (4a)—(4¢) is a non-
smooth convex optimization problem due to the non-smooth-
ness of the £1-norm term, which makes it difficult to solve di-
rectly. However, (4a)—(4e) can be reformulated as a smooth op-
timization problem by using new variables w;:

min  f(p°) + 7 Z wy (62)
i€G,ceC

st. (p5,0°) € F. VeeC (6b)

~Ap<p°—p’<Ap Vcecl (6¢)

—w <p°—p’ <w® Veel (6d)
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where F. is the feasible region defined by (4b)—(4d), and in
the objective function (6a), the ¢;-regularization ) .. [|p® —
p°|[1 is replaced with a linear term 3 ;. wi and reformulated in
constraint (6d).

Let us introduce auxiliary variable p*¢ and impose the fol-
lowing constraint:

O,c 0

pc=p, VeeCl.

Also notice that, since the objective function has the term

i.c W5, at the optimum, w* = |p¢ — p°| must hold. Hence, we
can remove the constraints —Ap < p° — p® < Ap and add an
upper bound w® < Ap. In this way, the number of constraints
is reduced. We have the following reformulation:

min (") +7 Y wf (7a)
i€G,ceC

st. (p,0°) € F. VYeel (7b)

—w <pt—p'C<w® VeelC (7¢)

w' <Ap VeeC (7d)

p’e—p' =0 VeecC (7e)

which is ready for applying ADMM-based decomposition.

III. DECOMPOSITION ALGORITHMS BASED ON ADMM

Problem (7) is a large-scale optimization problem. However,
inspecting the structure of the formulation reveals that the con-
straints are almost separable into contingencies, except for con-
straint (7¢) which couples the feasible sets of different contin-
gencies. This coupling can be separated by penalizing constraint
(7e) and forming the augmented Lagrangian of (7):

Ly=f@") +7 > wi+> (A)" (" —p°)

i€G,ceC cel
Y 0,c .02
35 E Ip™e =217 (®)

ceC

where v > 0 is a penalty parameter.

A. Decomposition by ADMM

Define the primal variables z = (p°,8°) and z = (2°).cc,
where 2¢ = (p%,0°p"°,w°), and the dual variable
A = (X%).cc. The traditional ADMM for solving (7) has the
following form [6]:

Ty = arg rrg)]g Ly (x, 24, ) (9a)
Zi11 = arg 1;161? Ly(xi1,2, M) (9b)
Aiy1 =M+ v (Azyp1 + Bz — h) (%0)

where X = g, the set Z is the feasible region defined by
constraints (7b)—(7d), and Az+ Bz = h represents the coupling
constraint (7e).

To facilitate the presentation, define the following two key
optimization problems:

107~ ) et 23 I B (0

ceC

min

@°,0°yeF,
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and
- c c gl c
min re'w' +a' (p°°—B)+ §||p0’ - B> (11)
p‘:.e ,pO,A:’wc
st. (p°,6° € F.
—we Spcipo,c ch

w® < Ap

where the parameters e, 3¢, and 8 will be specified in the
algorithms.

Algorithm 1 applies ADMM (9) to solve the min-impact
C-SCOPF (7).

Algorithm 1: ADMM for Min-Impact C-SCOPF

1: Initialization: { = 1

2: repeat

3: force {0,1,...,C} do

4: if ¢ = 0 then

5: Solve (10) fora = Y. A{ and B° = e
6: Denote the optimal solution as (p. |, 87, ;)
7: else

8: Solve (11) fora = A7 and 8 = pY,,

9: Denote optimal solution as (p©, 8, p%¢, w®); 1
10: Update multipliers:

c c 0,¢ 0
Ay = A+ (pt+1 _Pt+1)

11: end if
12:  end for

13: t+t+1
14: until a stopping criterion is met.

Notice that, forc € {1,2, ..., C}, the subproblems (11) for C
contingencies can be solved in parallel. The following theorem
shows the convergence of Algorithm 1.

Theorem 1: Assume that f(p") is closed, proper, and convex.
The ADMM iterates in Algorithm 1 satisfy that as ¢ — oo, the
following hold:

1) p) —p? — 0 foreach ¢ € C;

2) the objective function value f(py)+7 Y2, g oo (wS)s con-

verges to the optimal value;
3) the dual variable A] converges to dual optimal solution.
Proof: 1Tt suffices to verify that the Lagrangian L defined
in (8) with v = 0 has a saddle point. Then, we can invoke
the convergence theorem of ADMM given in [6, Section 3.2.1].
Equivalently, it suffices to show that the strong duality holds
between the primal problem (7) and the following dual problem:

max Iillgl Lo(z, 2z, A)

s.t.  (7b),(7c), (7d)

(12)
which in turn is a generalized dual of (7), where only con-
straint (7¢) is dualized. Notice that the feasible region defined
by (7b), (7¢), and (7d) is bounded. The theory of generalized
duality for linear programs guarantees the strong duality prop-
erty if both (7) and (12) are both feasible, which holds for our
case. This finishes the proof. O
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B. Accelerated ADMM

The seminal work of Nesterov [34] proposes a general algo-
rithmic framework to significantly accelerate the traditional gra-
dient descent algorithms for solving convex optimization prob-
lems. A recent work [23] shows that Nesterov's framework can
also accelerate the ADMM algorithm.

In Algorithm 2, we propose the accelerated ADMM algo-
rithm for the SCOPF. The key difference from the traditional
ADMM (Algorithm 1) is the additional acceleration step in
Lines 12-16 in Algorithm 2 and the two new sequences f’?f1
and ;\j 1 1- In particular, the acceleration step is carried out when
the largest residual (max(d; 1, ;1) — max(dy, r¢)) has been
reduced, where d;, r; are defined as

0,¢ 0
P — P

e :max’
[s3 oS

¢ c
’ ||0t - ot—l

dy = max (|[p; — p 4

Algorithm 2: Accelerated ADMM for Min-Impact
C-SCOPF

o0 S

0.c 0,c
Py —Pia

(s <
wy — wflem) :

?
[e.9]

1: Initialization: t = 1

2: repeat
3: force {0,1,...,C} do
4. if ¢ = 0 then .
5: Solve (10) fora = 3 .. A, and B8° = p"°
6: Denote the optimal solution as (p?, 1,8, )
7: else y
8: Solve (11) fora = A, and 8 = p}, ,
9: Denote the optimal solution (p¢, 8°, p%¢, w®), 11
10: Update multipliers:
c N 0,¢c
A1 = A+ (Pt-h —p?+1>
11: Acceleration step:
12: if max(dt, Tt) — max(dt+1, T’t+]_) > (0 then
13: Update:
1+ 1+ 4a?
ag+1 = - 9
0 0e  at—1 7 g, 0,¢
P =Pt T DPipy — Py
t+1
3¢ c at 1 c e
At+1 - At+1 + (At+1 At)
ag41
14: else
15: Update:
~0,c 0,c ¢ e
aty1 =1, Py =Piis A = A
16: end if
17: end if
18: end for

190 t+t+1
20: until a stopping criterion is met.
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TABLE I
DESCRIPTION OF TEST POWER SYSTEMS. |A/| IS THE NUMBER OF BUSES;
|G| Is THE NUMBER OF GENERATORS; | B3| IS THE NUMBER OF BRANCHES;
|C| Is THE NUMBER OF CONTINGENCIES; AND #VAR IS THE NUMBER
OF VARIABLES IN THE PROPOSED FORMULATION (4A)—(4E)

Case INT 1G] Bl ¢ #var
NE39 39 10 46 30 2728
IEEE118 118 54 186 130 37990
IEEE300 300 69 411 120 80949
PL2383 2383 320 3572 120 615406
PL3012 3012 293 3572 150 953867

It is shown that Algorithm 2 can accelerate the traditional
ADMM (Algorithm 1) to obtain an optimal convergence rate for
a first-order method under favorable conditions. For example,
when the objective function is strongly convex, Algorithm
2 achieves an e-optimal solution within O(1/+/€) iterations,
whereas Algorithm 1 needs O(1/¢) iterations [23]. The objec-
tive function being strongly convex is a stringent requirement
in order to establish this theoretical convergence rate. For the
min-impact C-SCOPF model (4), the objective function is
not strongly convex. However, computational experiments in
Section IV show that Algorithm 2 can considerably reduce the
number of iterations.

Nonetheless, let us not overlook the usefulness of Algorithm
1. In fact, Algorithm 1 facilities our understanding of the ac-
celeration. More importantly, it has more robust convergence,
e.g., Theorem 1 establishes its convergence under quite gen-
eral conditions. A closer study in the computation performance
also shows that Algorithm 2 needs more dedicate algorithmic
setup to fully realize its efficiency. For example, warm-start is
more crucial for Algorithm 2. This can be partially explained by
the fact that the acceleration step (Lines 12—-16) in Algorithm
2 causes jumps in the parameters, which makes subproblems
more difficult to solve starting from the solution of the previous
iteration. We propose a warm-start strategy which uses other
contingency's solution within the same iteration to speed up the
subproblems of Algorithm 2 in case of a big jump.

IV. COMPUTATIONAL EXPERIMENTS

A. Experimental Setup

The proposed algorithms are implemented in MATLAB
7.10. All tests are conducted on a 64-bit Windows 7 ThinkPad
W520 with Intel i7-2720QM 2.2-GHz CPU and 8 GB of RAM.
The power systems used in this section are summarized in
Table I and their data are extracted from the software toolbox
MATPOWER [41].

A contingency considered in our experiments refers to the
failure of a transmission line. Every active generator is able to
adjust up to 10% of its maximum power output capacity for the
post-contingency actions. The number of contingency scenarios
in each system is presented in the fifth column of Table I, and
“#Var” is the number of decision variables in the min-impact
C-SCOPF model.
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We select 7 = 10~ 24/IG| in (7a) and y = 1 in (10)—~(11), and
use the following stopping conditions based on the decrease of
the primal and dual residuals [6]:

re < e /IN[C]

o
4 ¥ max VZH(po’c)tP,mw%ll

ceC

dy < e ANT+ e Y II)1?
ceC

where €7l = 1074, €%%% = 1073, We say that a generator i is
rescheduled for contingency ¢ € C if generator #'s post-contin-
gency output is sufficiently different from its pre-contingency
level, i.e., |[pf — p?| > 1073,

B. Models Analysis

In this section, we compare the following models: the tra-
ditional P-SCOPF model (1), the traditional C-SCOPF model
(2), the traditional C-SCOPF model with integer constraints (3),
which we call the MIP model, and the proposed min-impact
C-SCOPF model (4).

Here we want to emphasize the differences in the scope and
goal of the analysis in this paper from the ones appeared in
the literature. In particular, our goal is to study the proposed
min-impact SCOPF formulation and algorithms in the context
of DC models, whereas the works in [10] and [30] aim to solve
AC SCOPF models with limited re-dispatch actions. The DC
SCOPF with the MIP formulation (3) is solved as an interme-
diate step to provide a list of contingencies and re-dispatch gen-
erators to the AC SCOPF model [30]. Therefore, it is reason-
able to use a small number of allowable re-dispatch actions in
this DC SCOPF problem with integer variables, and solve it
to a larger optimality gap if needed to speed up the conver-
gence. Also, since contingency filtering techniques are used, the
set of contingencies in these works is usually small [10], [30].
However, for our purpose of studying the effectiveness of the
min-impact SCOPF, we want to solve all the above formula-
tions with DC models as precisely as possible to have an ac-
curate comparison, and we also test the models on large-scale
systems with a large number of contingencies to explore its po-
tential for solving practical problems to optimality. We believe
such a comparison constitutes an essential part in a thorough
and scientific study of the proposed model and algorithms.

The traditional P-SCOPF and C-SCOPF models are solved
using the state-of-the-art interior-point solver SDPT3 called
through CVX (see [16] and [36]); the MIP model is solved
using Gurobi v5.5.0 with the default setting (e.g., the relative
optimality gap is 10™% and the absolute optimality gap is
10710 [24]). To demonstrate the advantage of the ADMM
decomposition, the min-impact C-SCOPF is solved by two
methods: the interior-point method without decomposition
and the accelerated ADMM algorithm. The computation times
of these algorithms are shown under the “Time” columns in
Table II, with “Time (IPM)” and “Time (Alg 2)” for the two
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TABLE II
COMPARISON OF MODELS IN TERMS OF OBJECTIVE VALUES, NUMBER OF CORRECTIVE ACTIONS, AND RUNNING TIMES (IN SECONDS)
P-SCOPF C-SCOPF MIP Min-Impact

Case IC] Cost  Time %Res Cost Time | N. %Res Cost Time | %Res Cost Time (IPM) Time (Alg 2)
NE39 30 infeas. - | 98.71 564.54 1.19 3 20.64 564.54 1.02 741 564.54 2.06 0.52
IEEE118 115 1271.18 326 | 98.16 1261.46 5.61 2 180 1262.61 205.37 152 1261.51 7.03 091
IEEE300 89 infeas. - | 96.71 711587 14.00 5 723 7115.88 363.21 7.67 7116.56 20.39 1.38
PL2383 36 | 1913451 96.04 | 56.14 18461.95 84.05 9 249 18511.24 10995.59 0.87 18461.95 81.32 24.11
PL3012 36 | 2515141 184.58 81.95 25058.10 114.43 14 205 25063.80 13636.34 2.06 25058.24 121.60 37.04

methods solving the min-impact C-SCOPF model. The running TABLE III

times are reported in seconds. COMPARISON OF AVERAGE RESCHEDULED MW

In all experiments, the same value of N, is used for every MW Rescheduled
contingency in the MIP model. As the MIP model is solved Case Demand | C-SCOPF  MIP  Min-Impact
by a MIP solver, we observe that the running time in general NE39 6254.2 297.1 140.9 27.1
d hen th ber N.. ofall d hedules i IEEE118 4242.0 410.8 21.6 0.6

eCreE.lse.SW entl en]:lm e.I'A Ol a OWe. rescnedules mcreases IEEE300 23525.8 741.6 408.2 16.1
(see similar observations in [30]). Thus in order to compare the PL2383 245482 1296.7  517.9 53.9
MIP model and our proposed min-impact C-SCOPF model in PL3012  27169.6 | 11844 1518 79.8
a fair way, we choose N, as large as possible so that the levels
of average rescheduling percentages of two models are similar TABLE IV

. . . S SOLUTIONS OF THE TRADITIONAL C-SCOPF MODEL FOR NE39
and the computation time of the MIP model is minimized.

1) Operational Costs and Minimal Impact Corrections: g Normal Cont. I Cont. 2 Cont. 3 Cont. 4 Cont. 5
Comparing the four SCOPF models in Table II, a benefit of the Gl 832 158.0 148.4 151.0 166.4 159.6
P-SCOPF del is that t ti heduli . G2 646.0 638.8 628.5 629.2 646.0 638.0

- model 1s that o post-contingency rescheduling 1s g3 636.1 6012 6667 6675  578.1 6855
needed when the system is feasible. However, it may happen G4 648.4 635.5 631.8 631.7 630.7 643.7
that there is no pre-contingency plan feasible for all the contin- G5 5080 4936 4912 4912 4906 4998

. . G6 642.9 662.8 655.1 655.0 653.0 587.9
gencies, for example, in the case of NE39 and IEEE300. Also, G7 580.0 5647 561.8 561.8 560.4 533.6
the P-SCOPF model incurs in general a higher generation cost G8 564.0 553.6 5459 543.8 564.0 555.7
for the normal case. As shown in the IEEE118, PL2382, and g?o 132(5)2 1332‘;’ lgg-;’; lggg; 12138(5)8 lggzg
the PL3012 cases, the normal state operational costs (column - — : - - —
“Cost”) of P-SCOPF are on average 1.55% higher than the

. TABLE V

corrective SCOPF models.. . . L. SOLUTIONS OF THE MIN-IMPACT C-SCOPF MODEL FOR NE39

If we compare the traditional C-SCOPF with the min-im-

pact C-SCOPF in Table II, we can see that the number g Normal Cont. I  Cont. 2 Cont. 3  Cont. 4  Cont. 5
: : F o : s Gl 83.2 95.4 832 96.0 123.5 83.2

of rescheduling is 51g§11ﬁcan.tly reduced in the min 1mpact peis 646.0 646.0 6460 646.0 646.0 6460
C-SCOPF model, i.e., %Res is much smaller for the min-im- G3 624.9 604.1 624.9 600.0 576.0 624.9
pact model. For all five test systems, the min-impact C-SCOPF G4 650.8 650.8 650.8 651.4 650.8 650.8
requires less than 8% of the generators to be rescheduled, gg gggg 2233 gggg 223(9) gggg 2233
and for the large power systems (PL2383 and PL3012), OIlly G7 580:0 580:0 580:0 580j0 580:0 580:0
0.87% and 2.06% of all generators need to reschedule for any G8 5640 5640  564.0 5640  564.0 564.0
contingency. In comparison, the traditional C-SCOPF requires GY 865.0 865.0 865.0 865.0 865.0 865.0
gency P ’ d G10 1055.0 1100.0 1055.0 1095.1 1100.0 1055.0

almost all generators to be rescheduled for NE39, IEEE118,
and IEEE300, 56.14% rescheduling for the 2383-bus system,
and 81.95% for the 3012-bus system. At the same time, the
operational costs of C-SCOPF and min-impact C-SCOPF are
essentially the same for all practical purposes. It shows that the
small number of reschedules from the £;-regularization model
increases the power system reliability without increasing the
operation cost.

Table III reports the average absolute value of MW resched-
uled between the normal case solution and a post-contingency
corrective action. It shows that the proposed min-impact
C-SCOPF model requires a significantly less amount of MW
rescheduling than the traditional C-SCOPF and the MIP models
in all test cases. In particular, comparing to the MIP model,
the min-impact C-SCOPF model reduces the amount of MW
rescheduling by 80.77% for NE39, 97.22% for IEEEI1IS,
96.06% for IEEE300, 89.59% for PL2383, and 47.44% for
PL3012. Comparing to the traditional C-SCOPF, the amount

of MW rescheduling is reduced even more: 90.88% for NE39,
99.85% for IEEE118, 97.83% for IEEE300, 95.84% for
PL2328, and 93.26% for PL3012. 1t is clear that {; -regulariza-
tion not only produces a sparse solution, but also substantially
reduces the total amount of MW rescheduling.

We use the NE39 test case to further illustrate the effect of
the min-impact C-SCOPF model on reducing the number of
reschedulings. Tables IV and V show the solutions of the tra-
ditional C-SCOPF and the min-impact C-SCOPF models, re-
spectively. There are 10 generators and 30 transmission con-
tingencies in the NE39 system. To save space, we only show 5
contingencies.

For the traditional C-SCOPF model in Table IV, almost all
generators have to be rescheduled to respond to the contingen-
cies (indicated by numbers in bold face), whereas the min-im-
pact C-SCOPF model is able to reschedule a small percentage of
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Fig. 1. Sparsity level, generation cost, and CPU times as functions of 7. (a) Percentage of rescheduled generators %Res. (b) Generation cost. (¢) CPU times.

all generators. For example, In contingencies 1 and 5, all genera-
tors have to reschedule in the traditional C-SCOPF model, while
only 3 out of 10 generators need to reschedule for the min-im-
pact C-SCOPF model for contingency 1 and no rescheduling for
contingency 5.

2) Computation Time: Let us go back to Table II. If we
compare the running times of solving the MIP model and those
of solving the min-impact C-SCOPF model without decompo-
sition (column “Time (IPM)”), we can see that, to achieve a
similar level of average rescheduling percentages (“%Res”),
the min-impact C-SCOPF model without decomposition can
already be solved much faster than the MIP model. In partic-
ular, for the small system NE39, the min-impact C-SCOPF
is slightly slower, but for the medium-size systems (118-bus
and 300-bus), the solution time of the min-impact C-SCOPF
is on average 4.45% of the MIP model; for the large systems
(2383-bus and 3012-bus), on average the min-impact C-SCOPF
can be solved within or around 2 minutes, whereas the MIP
model needs more than 3 hours. Also, the operational costs of
the min-impact C-SCOPF model are slightly better than the
MIP model for most test cases.

The last column [“Time (Alg.2)”] shows the running times of
solving the min-impact C-SCOPF models with the accelerated
ADMM decomposition Algorithm 2. Comparing to the running
times without decomposition [“Time (IPM)”’], we can see that
the decomposition method is effective in reducing the compu-
tation times from the direct method. For the two large systems,
Algorithm 2's solution time is on average 30.05% of that of the
interior-point solver. Later, we will show more detailed study of
the Algorithm 2's performance.

3) Selection of Regularization Parameter: It is a non-trivial
task to select an appropriate value for the parameter 7 in the
min-impact C-SCOPF model (4). In general, higher values of ~
increase the weight of the £; -regularization term in (4a), there-
fore, increase the sparsification effect.

We use the PL2383 system as an example to illustrate the
impact of 7 on the sparsity of the solution, the operational cost,
and the computation time. Similar observations apply to other
test cases. In particular, Fig. 1(a) plots the average percentage
of the number of generation rescheduling (“%Res”) in the min-
impact C-SCOPF model as a function of 7. We can see that

there is a “phase-transition” type behavior, for all values of
> 3.2 x 107°, the min-impact model produces consistently
low number of rescheduling around 1% or lower.

Fig. 1(b) shows the plot of operational cost versus 7. The
operational cost of the min-impact C-SCOPF model is essen-
tially the same as that of the traditional C-SCOPF for all values
of 7 < 0.065, and then increases to the level of the P-SCOPF
model for all 7 > 2.0. Therefore, there is a range of 7 € [3.2 x
10~%,0.065], where the min-impact C-SCOPF model generates
a pre-contingency plan that requires very few post-contingency
actions and at the same time keeps essentially the same cost
level as the traditional corrective model.

Fig. 1(c) reports the CPU times in seconds of the interior-
point solver and the ADMM Algorithm 2. The running times
for the accelerated ADMM remain almost constant in the range
of 7 < 10~ and then moderately increase as 7 becomes larger,
but is always smaller than the interior-point solver.

C. Tests for Large Number of Contingencies

This section illustrates the computational performance of pro-
posed algorithms in solving the min-impact C-SCOPF model
with a large number of contingencies, where the MIP model
with traditional DC C-SCOPF and integer constraints (3) is pro-
hibitive to solve to optimality due to computational complexity.

1) Warm-Start Strategy: As discussed in Section I1I-B, the
accelerated ADMM needs a more dedicate warm-start to speed
up the subproblems. The usual strategy of using the previous it-
eration's solution as the starting point is not effective in some
cases, especially due to the acceleration steps that introduce
jumps in the parameters A. To overcome this issue, we propose
to use a solution of another contingency in the same iteration ¢
as the warm-start for a given contingency. First, we use the pre-
vious step's solution strategy for solving a few contingencies
to predict the jump. If a significant increase in running time is
observed, we switch to this warm-start technique. The simple
strategy proves to be quite effective in speeding up the sub-
problems.

2) Computation Time: We solve the min-impact C-SCOPF
model (7) using the two ADMM-base decomposition methods
(columns “Alg. 1” and “Alg. 2” in Table VI) and the interior-
point method by SDPT3 (column “IPM”). Column |C| shows
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TABLE VI
COMPARISON OF RUNNING TIMES (IN SECONDS)

IPM Alg. 1 Alg. 2
Case [C] | %Res Time | Iter  Time | Iter  Time
NE39 30 7.41 2.06 | 189 0.74 | 113 0.52
IEEE118 130 1.37 9.25 | 183 2.31 60 0.99
IEEE300 120 7.24 22.40 | 228 7.25 35 2.61
PL2383 120 0.15 | 26990 | 114 122.68 46 11249
PL3012 150 098 | 397.94 | 129 233.75 48 171.86

a larger number of contingencies for each test case comparing
to Table II, “%Res” is the average percentage of the number of
rescheduled generators achieved by the min-impact C-SCOPF
model, and “Iter” is the number of iterations of the ADMM al-
gorithms. Times are reported in seconds.

The table shows that both Algorithms 1 and 2 clearly outper-
form the interior-point solver in computation time for all test
cases. The accelerated ADMM, i.e., Algorithm 2, requires a
fewer number of iterations than the regular ADMM (Algorithm
1), the computation times of Algorithm 2 are also faster than
those of Algorithm 1.

It is important to point out that the subproblems for all con-
tingencies in the ADMM-based algorithms can be fully paral-
lelized. In our current implementation such parallelization prop-
erty has not been exploited, i.e., the algorithms are implemented
in a serial fashion in MATLAB, and the CPU times reported in
Table VI are the total running times of the serial implementation.
We expect that the running times of the ADMM-based algo-
rithms can be substantially reduced in a parallel implementation.

We can see that the min-impact C-SCOPF model is particu-
larly effective for large-scale systems. This can be clearly seen
from the last two test systems in Table VI: on average only
0.15% of generators need to be rescheduled for the 2383-bus
case with 120 contingencies, and 0.98% of generators resched-
uled for the 3012-bus case with 150 contingencies. Comparing
to Table II, the rescheduling is 0.87% and 2.06% for the same
two test systems but a fewer number of contingencies (36 con-
tingencies), respectively.

V. CONCLUSION

In this paper, we propose a new model for the security-con-
strained optimal power flow problem with DC power flow
constraints, which produces a generation schedule with a
minimal number of post-contingency corrections as well as a
minimal amount of total MW rescheduled. That is, the new
SCOPF model effectively clears contingencies with corrective
actions that have a minimal impact on system operations. To
achieve this, we apply the ¢;-regularization technique to the
corrective SCOPF model. We also propose two ADMM-based
parallelizable algorithms and warm-start techniques for solving
the new model. Computational results comparing with the
traditional SCOPF corrective model show that the min-impact
C-SCOPF model significantly reduces the number of post-con-
tingency generator rescheduling and the total MW rescheduled.
This effect of clearing contingencies with a minimal impact
on system operation is particularly clear for large-scale test
systems with a large number of contingencies. The min-impact
C-SCOPF model achieves essentially the same level of low
generation cost as the traditional corrective SCOPF model,
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and can be solved much faster than the existing SCOPF model
with MIP formulation. The proposed ADMM-based algorithms
also show promising computational performance comparing
to the state-of-the-art interior-point solver in terms of solution
speed. These proposed algorithms are viable for parallelization
which will further improve the computation time, especially
for large-scale power systems.
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