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Abstract

We consider the problem of best k−subset convex regression using n observations in
d variables. For the case without sparsity, we develop a scalable algorithm for obtaining
high quality solutions in practical times that compare favorably with other state of the art
methods. We show that by using a cutting plane method, the least squares convex regression
problem can be solved for sizes (n, d) = (104, 10) in minutes and (n, d) = (105, 102) in hours.
Our algorithm can be adapted to solve variants such as finding the best convex or concave
functions with coordinate-wise monotonicity, norm bounded subgradients, and minimize
the `1 loss - all with similar scalability to the least squares convex regression problem.
Under sparsity, we propose algorithms which iteratively solve for the best subset of features
based on first order and cutting plane methods. We show that our methods scale for sizes
(n, d, k) = (104, 102, 10) in minutes and (n, d, k) = (105, 102, 10) in hours. We demonstrate
that these methods control for the false discovery rate effectively.

1. Introduction

Given data {(x1, y1), . . . , (xn, yn)}, we consider the problem of finding a convex function on the
x ∈ Rd variables (features) that best fits the dependent variables y ∈ R. Formally, we wish to
estimate a function f : Rd → R where

y = f(x) + ε (1)

with the requirement that f be a convex function. Here the random noise ε is assumed to have
zero mean. Note that one can equivalently perform concave regression, as the requirement that
f is convex is identical to restricting −f to be concave. As we discuss next, such convexity/con-
cavity constraints arise naturally in several settings. Such problems fall in the general class of
shape constrained function estimation.

Shape constrained regression problems have many applications in various fields such as, but
not limited to, operations research, econometrics, geometric programming [Magnani and Boyd,
2009], image analysis [Goldenshluger and Zeevi, 2006], and target reconstruction [Lele et al.,
1992]. In operations research, these problems arise in reinforcement learning [Shapiro et al.,
2009], [Hannah et al., 2014], in resource allocation [Topaloglu and Powell, 2003], and while
analyzing performance measures of queueing networks [Chen and Yao, 2001]. In economics,
such problems are encountered when demand [Varian, 1982], utility functions [Varian, 1984],
and production functions [Allon et al., 2007] are assumed to be concave. For a more detailed
list of applications, see Lim and Glynn [2012] and Hannah and Dunson [2013].
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The convex least squares estimator is the solution of the following generalized regression
problem:

min
f∈C

1

2

n∑
i=1

(yi − f(xi))
2, (2)

where C represents the space of convex functions on Rd. Note that Problem (2) is an op-
timization problem over functions. Surprisingly, this can be written equivalently as a finite
dimensional convex quadratic optimization problem where the variables are the function values
and subgradients at each of the points x1, . . . ,xn [Boyd and Vandenberghe, 2004]. As part of
the constraints, we enforce the convexity condition, i.e., the graph of the convex function lies
above each of its tangent planes. More precisely, this convexity condition implies that given
any point xi, the value of f at xi is greater or equal to the value of any tangent hyperplane of
f evaluated at xi. Clearly any convex function has a nonempty subdifferential at every point,
and the existence of such tangent planes is guaranteed. For this problem, it suffices to enforce
this condition for all n(n− 1) pairs of points xi,xj , 1 ≤ i, j ≤ n.

The resulting quadratic optimization problem with variables (θ, {ξi}ni=1) is given as follows.

min
θ,{ξi}ni=1

1

2

n∑
i=1

(yi − θi)
2

subject to θi + ξTi (xj − xi) ≤ θj ∀i, j,
θ ∈ Rn,

ξi ∈ Rd ∀i.

(3)

The variables θi represent the values of f(xi), and ξi belongs to the subdifferential set of the
convex function f at each xi. The solution to this problem θ∗ is referred to as the convex
least squares estimator (CLSE). Note that we recover the usual least squares linear regression
problem by setting ξi = ξ ∀i and θi = ξTxi ∀i.

We note that the feasible set of Problem 3 can be unbounded, that may lead to potential
instability. There can be multiple values of the subgradients leading to the same objective value.
Hence, we propose solving the following regularized optimization problem, for a given λ > 0,

min
θ,{ξi}ni=1

1

2

n∑
i=1

(yi − θi)
2 +

λ

2

n∑
i=1

‖ξi‖2

subject to θi + ξTi (xj − xi) ≤ θj ∀i, j,
θ ∈ Rn,

ξi ∈ Rd ∀i.

(4)

By adding a regularization term on the subgradients, which leads to a strongly convex objective,
the subgradients ξi,j cannot take any value for a given objective value and feasibility.

1.1. Related literature

In this section, we review the relevant literature. Recently, there has been considerable interest
in shape constrained regression among the statistics community. Seijo and Sen [2011] and
Lim and Glynn [2012] characterize and show consistency of the CLSE. Seijo and Sen [2011]
use off-the-shelf interior point solvers (like MOSEK, cvx) for solving the problem. But these
solvers do not scale well for n ≥ 300 due to the presence of O(n2) constraints. This motivated
the recent work by Mazumder et al. [2015] which presents a first order method based on the
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Alternating Direction Method of Multipliers (ADMM) to compute the optimal solutions for the
least squares convex regression problem. They demonstrate the flexibility of their approach
in the presence of monotonicity constraints, and bounded subgradients. Their method solves
instances of sizes of n ≈ 1000 to an accuracy of 10−3 in a few seconds, and moderate accuracy
solutions for n ≈ 5000 in a few minutes. However, their method cannot be easily extended
for least absolute deviation convex regression (where the loss function is the `1 norm rather
than the `2 least squares loss), or any joint constraints over the subgradients. Hannah and
Dunson [2013] consider an approximation of the convex regression problem which is based on
iteratively partitioning the set of observations, and report results for n of the order of 10, 000 in
a few minutes. Balázs et al. [2015] propose an aggregate cutting plane based method for solving
the full convex regression problem along with an approximate version, and they demonstrate
via numerical experiments that their algorithm solves instances with sizes of n ≈ 500 in a few
minutes. However, they do not perform large scale computations and show how their method
scales. Regarding statistical results, Han and Wellner [2016] sharply characterize the rate of
statistical convergence for the minimax risk.

In the context of linear regression, the problem of sparse regression refers to finding the
optimal vector of coefficients β ∈ Rd which minimizes the sum of squares of the residuals,
with the additional restriction that β only have at most k (for some positive integer k < d)
elements different from zero. In high dimensional settings where d >> n such an assumption
is valuable for conducting statistical inference, and for settings where d < n sparsity improves
interpretability of the model. We explore the notion of sparsity in this setting - we impose the
restriction that the union of supports of the subgradients is a set with cardinality at most k. We
refer to this problem as the sparse convex regression problem. Sparsity and variable selection
for nonparametric regression models is a new and relatively unexplored area. Recently, Xu
et al. [2014] develop a method for high dimensional sparse convex regression which solves an
approximate problem, with the additional restriction that the target convex function f itself be
a sum of univariate convex functions. Additionally, they show that under certain conditions on
the samples, this approximation is accurate for the purpose of variable selection.

However, such a cardinality constraint makes the sparse linear regression problem NP-
hard [Natarajan, 1995], and has led to this problem being considered as intractable. However,
there have been tremendous advances in computing power over the last thirty years - both
in hardware and optimization software (see Bixby [2012], Nemhauser [2013] for more details),
which can computationally benefit such problems in statistics. Recently, there has been some
work that propose using modern Mixed Integer Optimization (MIO) methods along with tools
from first order methods in convex optimization for solving classical statistical problems such
as best subset selection [Bertsimas et al., 2016] and least quantiles regression [Bertsimas and
Mazumder, 2014]. More recently, Bertsimas and Van Parys [2016] propose a reformulation of
the sparse regression problem where, they develop a cutting plane algorithm using a duality
perspective that solves problems with sizes of n, d in the order of 100, 000s in a few seconds. We
explore the use of such techniques while solving the sparse convex regression problem, where
we select the best subset of features whose cardinality is bounded by k, and find the optimal
convex function on this subset.

1.2. Contributions

In this section, we outline the main contributions of our work.

1. In this paper, we consider the problem of convex regression, and develop a scalable algo-
rithm for obtaining high quality solutions in practical times that compare favorably with
other state of the art methods. We show that by using a cutting plane method, the least
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squares convex regression problem can be solved for sizes (n, d) = (104, 10) in minutes
and (n, d) = (105, 102) in hours. We emphasize that this approach can be also used for `1
convex regression (where we minimize the `1 norm of the residuals vector y − θ) as well
with similar scalability results.

2. We propose algorithms which iteratively solve for the best subset of features based on
first order and cutting plane methods. To the best of our knowledge, these are the first
algorithms for sparse convex regression. We consider two variants of this problem, and
develop algorithms for each of them. In one variant, we consider the sparse problem with
bounded subgradients, and develop iterative mixed integer optimization based algorithms
for solving it. In the second variant, we consider the sparse problem with ridge regular-
ization, and develop a binary cutting plane method for this problem. With the help of
computational experiments, we show that our methods are scalable and obtain near exact
subset recovery for sizes (n, d, k) = (104, 102, 10) in minutes, and (n, d, k) = (105, 102, 10)
in hours.

1.3. Structure of the Paper

The structure of the paper is as follows. In Section 2, we present the cutting plane algorithm
for solving the least squares convex regression problem and other variants. In Section 3, we
define the sparse convex regression problem, and present our solution approach. We illustrate
the effectiveness of our approach with computational results and discuss the results in Section
4.

1.4. Notation

For any positive integer n, we use [n] to denote the set of the first n positive integers, that
is, [n] = {1, . . . , n}. The response vector is an n-dimensional vector of observations, and the
covariates are each d-dimensional vectors, i.e., y ∈ Rn,xi ∈ Rd ∀i ∈ [n], where d ≥ 1. Also, ‖.‖0
denotes the `0 norm, given by the number of nonzero elements in a vector. Finally, Supp(x)
denotes the set of indices of the vector x whose corresponding values are non zero.

2. Optimization Algorithm for Convex Regression
In this section, we propose an algorithm to solve the convex regression problem. Additionally,
we show that our algorithm can easily accommodate the case with an `1 objective, as well as
other constraints on the subgradients.

2.1. Algorithm

We present a cutting plane based algorithm for solving Problem (4). We now explain the various
steps in the algorithm in the following subsections.

Cutting plane algorithms

Cutting plane algorithms are an effective tool for solving large-scale optimization problems
where the number of constraints is very high. Before we proceed, we define some terminol-
ogy that is commonly used in the large-scale optimization literature. In this context, master
problem refers to the full formulation (4) with n(n − 1) constraints, while the reduced master
problem refers to a problem with the same objective and variables, but with only a subset of

4



the constraints. The main idea behind these methods is to start solving the problem with a
few constraints initially - the initial reduced master problem. We then find the violated con-
straints, and iteratively add them in a delayed manner - at each iteration we solve a reduced
master problem (but with progressively more constraints than the initial reduced master prob-
lem). Consequently, such methods are also referred to as delayed constraint generation in the
large-scale optimization literature [Bertsimas and Tsitsiklis, 1997]. The success of this method
depends greatly on the efficiency of finding the violated constraints.

Initial reduced master problem

We start with a fraction of the n(n−1) constraints - an initial reduced master problem. Typically
only a small fraction of the n(n − 1) constraints will be active at the optimal solution to the
full problem, and solving the problem with only these active constraints is clearly equivalent to
solving the full problem. However, these active constraints are not known beforehand. A key
advantage of starting with a constraint set that is “close” to the active constraint set is that
it could substantially reduce the number of cuts added at later iterations, and reduce the net
computational burden.

We motivate our algorithm from the solution to the convex regression problem for d = 1,
where the convexity condition is applied to only the immediate neighboring points. Recall, when
d = 1, Problem (4) can be computed by solving with only n− 1 constraints, i.e., by sorting xi’s
and considering the adjacent index pairs.

For d > 1, given x1, . . . ,xn, we form a spanning path (SP) based on the Euclidean distances
between these points. The algorithm works as follows - starting from xi1 (say i1 = 1), we find
the closest point (based on the usual Euclidean distance metric) xi2 to it, and add it as the next
point. We then find the closest point xi3 to xi2 over all the points excluding xi1 and xi2 , then
we find the closest point xi4 to xi3 over all the points excluding xi1 , xi2 and xi3 , and so on.
We utilize the n− 1 edges in the spanning path among x1, . . . ,xn as initial constraints. These
n− 1 constraints initially form the reduced master problem:

min
θ,ξ1,...,ξn

1

2
‖y − θ‖2 + λ

2

n∑
i=1

‖ξi‖2

subject to θi1 + ξ′i1(xi2 − xi1) ≤ θi2 ,

θi2 + ξ′i2(xi3 − xi2) ≤ θi3 ,

...
θin−1 + ξ′in−1

(xin − xin−1) ≤ θin ,

‖ξj‖∞ ≤M? ∀1 ≤ j ≤ n,

(5)

with the solution as θ̂, ξ̂1, . . . , ξ̂n. The last constraint bounds the feasible space, with M?

obtained via solving Problems 14 and 15.
Alternatively, we have also computed the minimum spanning tree (MST) among x1, . . . ,xn

and used the n− 1 edges of the MST as initial constraints. We have also used randomly chosen
pairs of points (Method (R)) as the initial reduced master problem and also selected the closest
point for each point xi (Method (C)). For d = 1, we note that the MST and SP methods
coincide. In Section 4, we compare Methods SP, MST, R and C.

5



Delayed constraint generation

For any given solution to the reduced master problem (5) given by θ̂, ξ̂1, . . . , ξ̂n, we need to
check if this is a feasible solution for the full problem. If it is indeed feasible, clearly it is also
optimal for the full problem. On the other hand, if it is not feasible, we need to find a violated
constraint efficiently. This problem of finding a violated constraint is also referred to as the
separation problem, as this amounts to finding a hyperplane that separates θ̂, ξ̂1, . . . , ξ̂n from
the feasible set (Bertsimas and Tsitsiklis [1997]). Thus, for each i, the ith separation problem
is to find the maximal index j(i), where

j(i) = arg max
1≤k≤n

{
θ̂i − θ̂k + ξ̂′i(xk − xi)

}
, (6)

and check if the corresponding largest value is greater than 0.
In practice, we only consider a constraint to be violated if it exceeds a given tolerance Tol.

In the case of such a violation, we add the constraint

θi + ξ′i(xj(i) − xi) ≤ θj(i) (7)

to the reduced master problem for each i, and re-solve it. Let us denote the index pairs of the
violated constraints we add at the kth iteration be given by Tk. Thus, at the kth iteration, the
problem we solve is given by

min
θ,ξ1,...,ξn

1

2
‖y − θ‖2 + λ

2

n∑
i=1

‖ξi‖2

subject to θi + ξTi (xj − xi) ≤ θj , ∀(i, j) ∈ T0,

θi + ξTi (xj − xi) ≤ θj , ∀(i, j) ∈ T1,

...
θi + ξTi (xj − xi) ≤ θj , ∀(i, j) ∈ Tk.

(8)

If max1≤k≤n

{
θ̂i − θ̂k + ξ̂′i(xk − xi)

}
≤ Tol ∀i ∈ [n], then the current solution is in fact optimal

for the full problem (4) with n(n − 1) constraints, and the method terminates. The complete
algorithm is as follows:

Algorithm 1 Cutting plane algorithm for Problem (4)
Input: Data (yi,xi), i = 1, . . . , n, tolerance Tol > 0.
Output: An optimal solution (θ∗, ξ∗1, . . . , ξ

∗
n) to Problem (4).

1: Solve the reduced master problem, i.e., Problem (8) with k = 0.
2: Set success = 0.
3: while success == 0 do
4: for 1 ≤ i ≤ n do
5: For this i, solve the separation problem (6) to find a j(i).
6: Add the corresponding violated constraint (Eq. (7)), to the reduced master problem.
7: end for
8: If there is no violated constraint within the tolerance Tol, set success← 1.
9: Else, re-solve Problem (8) with new constraint set Tk+1, consisting of additional con-

straint(s) added from Steps 4− 7.
10: k ← k + 1
11: end while
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We also note that this cutting plane algorithm, by successively adding violated constraints
to the reduced master problem, is guaranteed to converge to an optimal solution in a finite
number of steps [Kelley, 1960].

Theorem 1. The cutting plane Algorithm 1 converges to an optimal solution of Problem (4)
in a finite number of iterations.

2.2. `1 convex regression

Consider the problem of `1 convex regression, given by,

min
f∈C

n∑
i=1

|yi − f(xi)| (9)

where, as before, C is the space of convex functions on Rd. Such a variant is along the lines of
linear regression with an `1 loss, rather than the usual least squares loss. Problem (9) can be
written as an equivalent finite dimensional linear optimization problem (10), using additional
auxiliary variables z ∈ Rn

+ as follows.

min
θ,{ξi}ni=1,z

n∑
i=1

zi

subject to zi ≥ yi − θi ∀i,
zi ≥ −(yi − θi) ∀i,
θi + ξTi (xj − xi) ≤ θj ∀i, j,
θ, z ∈ Rn,

ξi ∈ Rd ∀i ∈ [n].

(10)

We utilize the dual simplex algorithm, as when we introduce a new cut the optimality conditions
are satisfied, while the previous solution may be infeasible. As we illustrate in Section 4, this
method is fast in practice and scales well.

2.3. Extensions

Algorithm 1 can be extended to accommodate the following additional requirements on f(·):

a) The function f is coordinate-wise monotone, i.e., its subgradients ξi are either ξi ≥ 0 or
ξi ≤ 0 (non-decreasing or non-increasing respectively) for all i.

b) The subgradients ξi are bounded, i.e., ‖ξi‖p ≤ L ∀i for some L and `p norm ‖.‖p. The
usual cases of p ∈ {1, 2,∞} result in conic optimization problems and can be handled by
this approach. Such constraints could be added as a part of the reduced master problem
all at once, or in a delayed manner as and when they are violated.

3. Sparse Convex Regression
In this section, we consider the problem of sparse convex regression, in which the union of
supports of the subgradients of f in each point x is a set whose cardinality is bounded by k.
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We formulate this as the following optimization problem over sets,

min
θ,{ξi}ni=1,S

1

2

n∑
i=1

(yi − θi)
2 +

λ

2

n∑
i=1

‖ξi‖22

subject to θi + ξTi (xj − xi) ≤ θj ∀i, j,
Supp(ξi) ⊆ S ∀i,
θ ∈ Rn,

ξi ∈ Rd ∀i,
|S| ≤ k, S ⊆ {1, . . . , d} .

(11)

3.1. Primal approach

In this section, we present a primal-based approach of solving for the optimal subset of features
for the convex regression problem. Consider the following mixed integer (binary) quadratic
optimization (MIQO) problem

min
θ,z,{ξi}ni=1

1

2

n∑
i=1

(yi − θi)
2 +

λ

2

n∑
i=1

‖ξi‖22

subject to θi + ξTi (xj − xi) ≤ θj ∀1 ≤ i, j ≤ n,

|(ξi)j | ≤Mzj ∀i ∈ [n], j ∈ [d],
n∑

j=1

zj ≤ k,

z ∈ {0, 1}d ,
θ ∈ Rn,

ξi ∈ Rd ∀i ∈ [n].

(12)

for some positive constant M .
To solve this problem, we first develop heuristics based on convex optimization which gener-

ate solutions and are fast in practice. We solve a reduced MIQO problem (using a commercial
mixed integer optimization solver (Gurobi)) to generate lower bounds, which provide a guaran-
tee on the quality of this solution. Bertsimas et al. [2016] used commercial state of the art MIO
solvers to solve the sparse linear regression problem with considerable success. We present the
details on this algorithm in the following section.

Algorithmic approach

In this section, we present an algorithm to solve Problem (12). To summarize, our solution
approach involves generating lower bounds by solving the reduced MIQO problem, and improv-
ing this bound at each successive iteration. We use heuristics in order to find feasible solutions
fast, and generate lower bounds in order to determine the quality of the proposed solution, or
potentially improve it further. We elaborate in more detail on the heuristics in Section 3.3. In
order to determine the quality of our solution (in terms of optimality gap), we generate lower
bounds. For this, we solve the full sparse problem as an MIQO problem, but with only the
initial reduced set of constraints to start. Whenever possible, we warm-start this problem with
a feasible solution obtained via heuristics, which we briefly discuss in Section 3.3. We then
iteratively add the violated constraints to Problem (12) to tighten the bounds, similar in spirit
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to the cutting plane approach. For the upper bound, we solve the full convex regression problem
on this restricted support. To be precise, this problem is given by

min
θ,ξ1,...,ξn

1

2

n∑
i=1

(yi − θi)
2 +

λ

2

n∑
i=1

‖ξi‖22

subject to θi + ξ′i
(
(xj)S − (xi)S

)
≤ θj ∀i, j,

‖ξi‖∞ ≤M ∀i,
ξ ∈ Rk ∀i,θ ∈ Rn.

(13)

where S is the support set obtained from the MIO solution, and vS is the vector v restricted
to the set S. The overall primal algorithm is as follows:

Algorithm 2 Primal approach.

Input: Initial constraints (C(0), a subset of the n(n−1) constraints), tolerance ε > 0, a positive
integer T .

Output: A sparse optimal solution to problem (12).
1: Initialize Problem (12) with the initial constraints C0.
2: Use the initialization heuristic (Section 3.3) to generate an initial solution S(0).
3: Set t← 1.
4: while t ≤ T AND gap > ε do
5: Solve problem (12), with reduced constraint set C(t), to obtain support set S(t), possibly

utilizing S(t−1) as a warm-start.
6: Set LB (Lower bound) to the optimal objective of problem (12).
7: With the output support, solve Problem (13) on the support S(t).
8: Update UB (Upper bound) to be the optimal objective.
9: Update gap ← UB−LB

LB .
10: Add (at most) n violated constraints (one for each 1 ≤ i ≤ n), which forms C(t+1) by

this solution to the lower bound MIQO problem (12) to obtain the support S(t+1).
11: Warm start it with the solution to the same lower bound problem constraints on this

restricted support set S(t+1) by solving Problem (13).
12: t← t+ 1
13: end while

Computing the bound M

In this section, we describe how we compute bounds on the subgradient values. For some initial
feasible solution θ0 and ξ01, . . . , ξ

0
n for Problem (11), we solve the following problems, for each

1 ≤ t ≤ n, 1 ≤ u ≤ d:

min
θ,ξ1,...,ξn

ξt,u

subject to
1

2
‖y − θ‖2 + λ

2

n∑
i=1

‖ξi‖22 ≤
1

2
‖y − θ0‖2 + λ

2

n∑
i=1

‖ξ0i ‖22,

θi + ξ′i(xj − xi) ≤ θj ∀i, j,

(14)
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and
max

θ,ξ1,...,ξn
ξt,u

subject to
1

2
‖y − θ‖2 + λ

2

n∑
i=1

‖ξi‖22 ≤
1

2
‖y − θ0‖2 + λ

2

n∑
i=1

‖ξ0i ‖22,

θi + ξ′i(xj − xi) ≤ θj ∀i, j.

(15)

We note that the feasible regions of Problems (14) and (15) are bounded, and hence the
optimal objective values for both these problems is guaranteed to be finite.

Let M∗ be the maximum of the optimal solution absolute values of (14) and (15) over all
1 ≤ t ≤ n and 1 ≤ u ≤ d. An optimal solution of (11) is clearly feasible to both (14) and
(15). Therefore, using M∗ in the formulation (12) does not exclude optimal solutions to (11)
and therefore the optimal solution values of Problems (11) and (12) are equal.

3.2. Dual approach

In this section, we adapt the approach proposed by Bertsimas and Van Parys [2016] for sparse
linear regression to this convex regression setting. We solve the following regularized problem,
for a given λ > 0,

min
θ,ξ1,...,ξn

1

2
‖y − θ‖2 + λ

2

n∑
i=1

‖ξi‖2

subject to θi + ξ′i(xj − xi) ≤ θj ∀i, j,
Supp(ξi) ⊆ S ∀i,
θ ∈ Rn,

ξi ∈ Rd ∀i,
|S| ≤ k, S ⊆ {1, . . . , d} .

(16)

Before we proceed, we introduce some notation. Sd
k denotes the set of d dimensional binary

vectors with at most k non-zero components, i.e.,

Sd
k = {z ∈ {0, 1}d :

d∑
i=1

zi ≤ k}.

We next present the following result that transforms this problem to a binary optimization
problem with a convex objective function.
Theorem 2. Problem (16) is equivalent to solving the following binary optimization problem
with convex objective, given by

min
z∈Sd

k

g(z), (17)

where

g(z) =max
µ≥0

− 1

2

n∑
i=1

yi +

n∑
j=1

µji −
n∑

j=1

µij

2

− 1

2λ

n∑
i=1

d∑
p=1

zp

 n∑
j=1

µij(xj − xi)

2

p

, (18)

and a subgradient of g is given by the vector with pth element given by

(∂g(z))p = −
1

2λ

n∑
i=1

 n∑
j=1

µ̂ij(xip − xjp)

2

, (19)

where µ̂ is an optimal solution to the concave maximization problem given in Eq. (18).
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Proof. Using binary variables z ∈ {0, 1}d to denote the support set
(
zj = 0 ⇐⇒ (ξi)j = 0 ∀i ∈

[n]
)
, we write Problem (16) as

min
z∈Sd

k ,Z=diag(z)
min

θ,ξ1,...,ξn

1

2
‖y − θ‖2 + λ

2

n∑
i=1

‖ξi‖2

subject to θi + ξ′iZ(xj − xi) ≤ θj ∀i, j.
(20)

We take the dual of the inner convex optimization problem, which is given by

max
µ≥0

− 1

2

n∑
i=1

yi +
∑
j

µji −
∑
j

µij

2

− 1

2λ

n∑
i=1

∥∥∥∥∥∥
∑
j

µijZ(xi − xj)

∥∥∥∥∥∥
2

.

For brevity, let vi =
∑

j µij(xi − xj). Note that Z′Z = Z2 = Z, and thus we get

max
µ≥0

− 1

2

n∑
i=1

yi +
∑
j

µji −
∑
j

µij

2

− 1

2λ

n∑
i=1

d∑
p=1

zp

 n∑
j=1

µij(xj − xi)

2

p

, (21)

and thus, the result follows.

From Theorem 2, as g is convex in z, we use µ̂ to compute the subgradient of g which we
use to solve the outer binary minimization problem using cutting planes. This is equivalent to
approximating the convex function g by a piecewise linear function of its lower tangents, while
improving the outer approximation by adding a new tangent at each iteration. To be precise,
we solve the outer problem as

min
z∈{0,1}d

max
i=1,...,m

{
g(zi) + ∂g(z(i))′(z− zi)

}
subject to

d∑
i=1

zi ≤ k,

(22)

or equivalently in epigraph form,

min
z∈{0,1}d,γ

γ

subject to g(zi) + ∂g(z(i))′(z− zi) ≤ γ ∀1 ≤ i ≤ m

subject to

d∑
i=1

zi ≤ k,

(23)

where m is the number of cuts added.
While solving Problem (22) we use dynamic constraint generation, or lazy callbacks, which

enables the solver to avoid building multiple branch and bound trees each time a new constraint
is added to the problem. This leads to only one branch and bound tree being built. Typically,
lazy constraints are used when the full set of constraints is too large to enumerate explicitly.
Under this scheme, cuts are added to the model whenever a binary feasible solution is found.

As mentioned in Bertsimas and Van Parys [2016] for the sparse linear regression case, the
linear relaxation of problem (17) provides strong warm starts to problem (16). This motivates
the following corollary.
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Corollary 2.1. The linear relaxation of problem (17) is given by the following convex opti-
mization problem with semi-infinite constraints:

min
µ≥0,γ

1

2

n∑
i=1

yi +
∑
j

µji −
∑
j

µij

2

+ γ

subject to γ ≥ 1

2λ

d∑
p=1

zp


n∑

i=1

∑
j

µij(xip − xjp)

2 ∀z ∈ ∆k,d

(24)

where ∆k,d =
{
z ∈ Rd : 0 ≤ z ≤ 1,

∑d
i=1 zi ≤ k

}
.

We solve the relaxation to generate warm-starts for the original binary optimization problem
(22). Once again, we use cutting planes to solve this problem. At the optimal solution, the
support set would be the corresponding indices of the k largest values of the vector v, with pth

element given by

vp =

n∑
i=1

 n∑
j=1

µij(xip − xjp)

2

. (25)

In practice, we have observed that this method does provide good quality warm-starts.
Before we elaborate further, we introduce some terminology. Here, the outer problem refers

to the binary minimization problem (22). As we have noted in the statement of the theorem 2,
evaluating the function g requires us to solve an optimization problem (18), which we shall
henceforth refer to as the inner problem.

Column generation methods for the inner problem

An issue with the above approach is that for the inner problem, the number of variables µ is too
large, i.e., O(n2), and is thus not practical for larger n. Hence, we propose a column generation
approach for solving the inner problem (18). We start with a subset of all the n(n−1) variables
µ (with the rest set to zero), and add corresponding variables as we go along. From the KKT
conditions, for a given dual optimal solution µ̂ we recover the primal variables as:

θi = yi +
n∑

j=1

µ̂ji −
n∑

j=1

µ̂ij ∀i,

ξi =
1

λ

n∑
j=1

µ̂ijZ(xi − xj) ∀i.
(26)

We add the violated constraint if

θi + ξ′i(xj − xi)− θj ≤ 0. (27)

If not, then for any i, we find the j∗ such that

j∗ = arg max
1≤j≤n

{
θi − θj + ξ′i(xj − xi)

}
, (28)

and add the variable µij∗ to the set of active variables, and re-solve problem (18).
In practice, problem (18), while having relatively simple nonnegative constraints, has a dense

quadratic objective, which often results in larger solve times. Instead, we solve its dual, which is

12



the inner minimization problem in Eq. (20). We use Algorithm 1 to solve the inner minimization
problem in (20) and calculate the variables θ and ξ1, . . . , ξn, as well as the dual variables µij

corrsponding to the constraints in Eq. (20). Given these values, and the expression in Eq. (19),
we compute the subgradient of g at this value of z, and add the corresponding constraint to the
outer binary optimization problem in the case of a violation. This dual approach differs from
the method in Bertsimas et al. [2016], which is a primal method. In Section 4, we observe that
this dual approach has a significant edge over the primal one.

We now present the complete algorithm for the dual approach:

Algorithm 3 Cutting plane based algorithm for the dual approach
Input: λ > 0, tolerance ε > 0.
Output: Optimal support z∗.

1: Start with γ0 = 0 and some feasible z0.
2: t← 0.
3: while γt < g(zt) + ε do
4: Compute a subgradient value of g at zt, using Theorem 2.
5: Add the constraint g(zt) + ∂g(zt)′(z − zt) ≤ γ.
6: Re-solve the outer problem (23), with solution given by (zt+1, γt+1).
7: t← t+ 1.
8: end while

3.3. Initialization heuristics

In this section, we briefly describe a thresholding based heuristic for the sparse convex regression
problem. This method provides an alternative approach of generating warm starts to solving
the relaxation problem (24). For the sake of brevity, we do not include the ridge regularization
term, but these methods can be easily adapted to include it as well.

min
θ,ξ

1

2
‖y − θ‖2

subject to Āθ +

n∑
i=1

B̄iξi ≤ 0,

Supp(ξi) ⊆ S ∀i,
θ ∈ Rn,

ξi ∈ Rd ∀i,
|S| ≤ k, S ⊆ {1, . . . , d} .

(29)

where Ā, B̄i are the full matrices representing the total n(n− 1) constraints. Typically at any
feasible solution, only a few of the constraints will be active. Let the indices of the binding
constraints be described in T , and the sub matrices be given by AT , BT,i. Thus, the problem
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can be written as
min
θ,ξ

1

2
‖y − θ‖2

subject to ĀTθ +
n∑

i=1

B̄T,iξi ≤ 0,

Supp(ξi) ⊆ S ∀i,
θ ∈ Rn,

ξi ∈ Rd ∀i,
|S| ≤ k, S ⊆ {1, . . . , d} .

(30)

Dualizing the linear inequality constraints, the objective is given by

f(θ, ξ) = max
λ≥0

1

2
‖y − θ‖2 + λ′(ĀTθ +

n∑
i=1

B̄T,iξi). (31)

We smoothen the objective function by subtracting a strongly convex term ( τ2‖λ‖
2) for some

fixed scalar τ > 0. Note that we need to efficiently compute this function f for different values
of θ, ξ. The smooth convex objective is now

fτ (θ, ξ) = max
λ≥0

1

2
‖y − θ‖2 + λ′(ĀTθ +

n∑
i=1

B̄T,iξi)−
τ

2
‖λ‖22. (32)

This function fτ is Lipschitz continuous with parameter `, where ` = λMAX(M′M)
τ [Nesterov,

2005]. The matrix M ∈ R(m)×(n+nd), where m is the number of rows of ĀT (the number of
active equality constraints), and is given by

M =
[
ĀT B̄T,1 . . . B̄T,n.

]
Now, the optimal λ∗

τ can be computed by

λ∗
τ =

1

τ
(ĀTθ +

n∑
i=1

B̄T,iξi)+. (33)

We then apply an upper quadratic approximation to the above function, followed by an iter-
ative thresholding procedure to the above function fτ (θ, ξ1, . . . , ξn), while sequentially reducing
the value of τ . The complete details of this algorithm can be found in the Appendix.

4. Computational Experiments
Our objective in this section is

1. To understand the scalability and run times of Algorithm 1 for convex regression for
synthetic and real data.

2. To compare the performance of Algorithm 1 to other state of the art methods.

3. To understand the scalability and run times of Algorithms 2 and 3 for sparse convex
regression. Given that there are no competing approaches for this problem to the best of
our knowledge, we do not include any comparisons.
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The structure of this section is as follows. In Section 4.1, we discuss the data generation
mechanism, and compare various initialization schemes for Algorithm 1 in Section 4.2. We
then examine its run times on synthetic data in Section 4.3, and infeasibility of the solution
at each iteration of Algorithm 1 in Section 4.4. Next, we compare it with other approaches in
Section 4.5, and discuss the run times of Algorithm 1 applied to the convex regression problem
with an `1 loss in Section 4.6. We then present the run times and infeasibility of Algorithm 1
on real data in Section 4.7. Next, we consider the sparse convex regression problem in Section
4.8, where we present the run times of Algorithm 2 (primal approach) and Algorithm 3 (dual
approach) for various sizes. Additionally, we present the accuracy and run times of Algorithm 3
as a function of various parameters such as k, d, ρ, SNR, and present the false positive rates of
both the algorithms as well in this section. We conclude by discussing our findings from these
experiments in Section 4.9.

In all the experiments that follow, we use Gurobi 6.5.2 Gurobi as the optimization solver,
within the Julia programming language [Bezanson et al., 2014] using the JuMP modeling frame-
work [Dunning et al., 2015]. All computations were performed on nodes of the Engaging cluster,
which is a collaboration between the Massachusetts Green High Performance Computing Center
(MGHPCC) and several of Boston’s leading universities. Each compute node of the cluster had
two 8-core, 2GHz Intel Xeon E2650 processors, 64GB of memory and 3.5TB of local disk. We
provide the code and test instances data at https://github.com/nmundru/scr. In the online
supplement, we briefly describe the code for generating the random data, and implementing the
algorithms in this paper.

4.1. Synthetic Data

In this section, we generate X data from a standard Gaussian distribution, and use the convex
function Φ(x) = ‖x‖22, where yi = Φ(xi) + εi, 1 ≤ i ≤ n. The errors εi are assumed to be
independent and identically distributed Gaussian, i.e., N(0, σ2), for i = 1, . . . , n. We scale the
data appropriately so that the Signal to Noise ratio (SNR) is 3, i.e., Var(µ)

Var(ε) = 3. Finally, before
feeding the data into the algorithm, we mean-center and normalize the features and response
vectors to have unit `2 norm.

We report the number of blocks of cuts (iterations) added till the end, along with another
metric called primal infeasibility [Mazumder et al., 2015],

Primal infeasibility =
1

n
‖V‖F (34)

where the matrix V has entries given by Vi,j = (θ̂i + ξ̂′i(xj − xi) − θ̂j)+, ∀1 ≤ i, j ≤ n, where
z+ = max {z, 0}. Vi,j indicates the magnitude of violation of that constraint, and a value of 0
indicates no violation. Note that ‖ · ‖F denotes the usual Frobenius norm, where

‖V ‖2F =

n∑
i=1

n∑
j=1

V 2
i,j . (35)

Finally, Tol is the threshold above which we report the constraint to be violated.

4.2. Comparison of initialization methods for the reduced master problem

In this section, we apply Algorithm 1 to the least squares convex regression problem (4). We
compare the run times of different ways of forming the reduced master problem for Problem
(4): We used methods MST, SP, C and R. MST refers to the Euclidean minimum spanning
tree formed on the set of points x1, . . . ,xn. SP refers to the spanning path approach described
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in Section 2.1. C refers to finding the point closest to each point, and adding that pair in that
order. For example, if xj is closest to xi, we add the constraint

θi + ξ′i(xj − xi) ≤ θj .

Finally, R refers to finding a point randomly sampled from the remaining n−1 for each xi, and
adding the resulting n constraints. The last four methods 2-MST, 2-SP, 2-C, and 2-R denote
two sided constraints, i.e., for each pair (xi,xj), we add both the constraints

θi + ξ′i(xj − xi) ≤ θj

and
θj + ξ′j(xi − xj) ≤ θi.

The term Tol in Table 1 refers to the tolerance to which each of the n(n − 1) constraints is
satisfied while terminating Algorithm 1. The sizes for all the instances are set to (n, d) =
(104, 10), and we use the least squares objective function ‖x‖22 without the ridge regularization
term of the subgradients. All entries in the table are averaged over the same twenty instances.
The numbers in parenthesis indicate the standard deviation.

Method Tol Cuts added (Blocks) Primal Infeasibility Run time (seconds)
MST 0.10 26 (2) 0.0104 (0.0001) 94.44 (20.826)
SP 0.10 9 (6) 0.0112 (0.0002) 21.36 (12.820)
C 0.10 25 (2) 0.0106 (0.0002) 55.93 (4.539)
R 0.10 6 (3) 0.0106 (0.0002) 15.39 (6.125)

2-MST 0.10 26 (2) 0.0098 (0.0002) 343.53 (62.363)
2-SP 0.10 15 (5) 0.0091 (0.0001) 35.66 (11.276)
2-C 0.10 26 (2) 0.0104 (0.0002) 131.09 (18.933)
2-R 0.10 21 (2) 0.0088 (0.0001) 46.47 (5.273)

MST 0.05 29 (2) 0.0073 (0.0002) 221.21 (40.035)
SP 0.05 25 (2) 0.0078 (0.0002) 56.75 (7.027)
C 0.05 30 (2) 0.0061 (0.0001) 117.07 (19.565)
R 0.05 26 (3) 0.0074 (0.0001) 57.95 (8.107)

2-MST 0.05 31 (3) 0.0055 (0.0001) 1448.46 (313.576)
2-SP 0.05 25 (2) 0.0068 (0.0001) 58.30 (7.041)
2-C 0.05 31 (2) 0.0059 (0.0001) 567.26 (121.269)
2-R 0.05 26 (2) 0.0064 (0.0001) 61.51 (6.861)

Table 1: The effect of the initialization method for (n, d) = (104, 10) in the `2 convex regression
for tolerances Tol = 0.1 and 0.05.

The results of Table 1 suggest that starting from a “good” initial reduced master problem
can substantially impact the total run time of Algorithm 1. Both the Spanning path (SP) and
Random (R) methods outperform the other methods. SP and R perform similarly, with the
one-sided being marginally better than the two-sided constraints. We chose R in all of our
further experiments.

4.3. Run times of `2 convex regression

In this section, we report how Algorithm 1 scales as n, d increase for Problem (4), different
tolerances and least square objective. Table 2 presents the results obtained for a tolerance of
0.1, while Table 3 shows the results for a tolerance of 0.05.
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n d Cuts (Blocks) Infeasibility Run time
103 101 24 (2) 0.0147 (0.0016) 2.4s (1.5s)
104 101 8 (5) 0.0106 (0.0002) 16.5s (8.7s)
104 102 14 (3) 0.0107 (0.0003) 169.2s (35.5s)
104 103 22 (6) 0.0107 (0.0002) 1.5h (0.4h)
105 101 5 (4) 0.0054 (0.0001) 1156.9s (859.4s)
105 102 5 (1) 0.0056 (0.0001) 3.8h (0.4h)
105 5× 102 6 (1) 0.0056 (0.0001) 19.1h (3.0h)

5× 105 101 5 (4) 0.0034 (0.0000) 20.2h (7.2h)

Table 2: Run times for Tol = 0.1 and `2 convex regression.

n d Cuts (Blocks) Infeasibility Run time
103 101 36 (4) 0.0026 (0.0004) 58.0s (25.6s)
104 101 25 (3) 0.0074 (0.0001) 57.0s (8.4s)
104 102 110 (3) 0.0065 (0.0003) 1369.3s (91.7s)
105 101 11 (6) 0.0039 (0.0001) 1.0h (0.4h)
105 102 11 (1) 0.0040 (0.0000) 6.8h (0.7h)

Table 3: Run times for Tol = 0.05 and `2 convex regression.

We make the following observations:

• As the number of dimensions increases, the problem becomes harder to solve as each
added constraint becomes more dense. This is reflected in both Tables 2 and 3.

• The largest instances of (105, 500) and (5× 105, 10) took almost a day on average to solve
to the required tolerance. While we tried solving them with Tol = 0.05, the run time took
more than 24 hours, after which we terminated them. For such problems, the interior
point solvers, even if they solve the initial reduced master problem, stall at subsequent
iterations when the quadratic problem has close to a million constraints.

• When tolerance is reduced to 0.05, the run times of (104, 102) increases from a 2.5 minutes
to 23 minutes with the average number of iterations increasing by a factor of eight.

• To further aid in interpreting the results, we performed a linear regression of the run times
versus n, d and Tol. Our results indicate that a linear relationship between these variables
has an R2 of 0.96, which indicates a good fit. Regressing the logarithms of times versus
the logarithm of n and d yields that the run time depends on n1.25 and d1.05, which also
resulted in an R2 value of 0.96.

4.4. Infeasibility as a function of iterations

In this section, we aim to understand how the primal infeasibility changes as a function of the
iterations for different values of tolerance. In addition to primal infeasibility defined in (34), we
report the maximum violation defined as

max
i∈[n],j∈[n]

{
θi − θj + ξ′i(xj − xi)

}
, (36)
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as well as the constraints added at each iteration. We present two instances with (n, d) =
(104, 10) - with tolerance set to 0.1 and 0.05 respectively, and illustrate the progress of the
algorithm - constraints added at each iteration, primal infeasibility and the maximum violation
at the end of each iteration.
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Figure 1: Progress of Algorithm 1 for (n, d) = (104, 10), Tol = 0.1.
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(b) Maximum violation defined
in (36) as a function of the
number of iterations.
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Figure 2: Progress of Algorithm 1 for (n, d) = (104, 10), Tol = 0.05.

Figures 1-2 suggest that Algorithm 1 makes rapid progress to decrease infeasibility. It takes
twenty to twenty five iterations to decrease infeasibility (and violation) to near zero. Moreover,
the number of cuts added decreases substantially as Algorithm 1 progresses. At the final few
iterations when Algorithm 1 is close to convergence, the algorithm only adds typically less
than 5 constraints at each iteration. Even for the larger sizes, we observe this trend of fewer
constraints per iteration at later stages of the algorithm.
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4.5. Comparison with other state of the art methods

In this section, we compare Algorithm 1 with two other recent methods proposed in the literature
for the least squares convex regression Problem (4):

1. The cutting plane based method proposed in Balázs et al. [2015] and referred as aggregated
cutting planes (ACP). The main difference with Algorithm 1 is that Balázs et al. [2015]
use aggregated constraints in the reduced master problem.

2. The method in Mazumder et al. [2015], where the authors use an Alternating Direction
Method of Multipliers (ADMM) framework to solve the least squares convex regression
problem.

The ACP algorithm solves a variant of Problem (4), with bounds on both the function values
and the subgradients, which we both set to ∞ in Algorithm 1. Both the ACP algorithm and
Algorithm 1 were run with an upper bound of 1000 on the iteration limit and Tol = 0.1. Each
of the rows with n < 105 were averaged over twenty random independently generated samples of
that given size, while the larger ones (n ≥ 105) were averaged over ten independently generated
samples.

In Table 4, we record the final values of primal infeasibility and total running times for
Algorithm 1 and ACP respectively As far as the quality of solution is considered, the final
infeasibility indicates that the solutions obtained from both these methods are quite similar.
However, Algorithm 1 is approximately twenty times faster than Algorithm ACP as (n, d)
increase. For (n, d) = (105, 102), while Algorithm 1 obtained solutions in a few hours, the ACP
algorithm did not complete even after 24 hours, after which it was terminated. We remark
that most of the time Algorithm ACP takes is to form the initial aggregation constraints. The
results followed a similar pattern for Tol = 0.05, and thus we omit them for the sake of brevity.

n d (Alg. 1) Inf. (Alg. 1) Run time (ACP) Inf. (ACP) Run time
103 101 0.0143 (0.0012) 1.9 (0.6) 0.0168 (0.0011) 7.3 (0.8)
104 101 0.0106 (0.0002) 25.2 (10.8) 0.0099 (0.0002) 411.7 (26.6)
104 102 0.0107 (0.0002) 153.5 (20.3) 0.0097 (0.0003) 4785.7( 363.7)
105 101 0.0054 (0.0001) 1841.8 (230.9) 0.0050 (0.0001) 36842.7 (1391.03)

Table 4: Comparison for `2 convex regression between Algorithm 1 and ACP for Tol = 0.1.

In Table 5, we present a comparison between ADMM and Algorithm 1 for instances with
n = 103 and d = 10. For larger sizes of n = 104, the ADMM method ran into memory issues
and hence we do not report the performance for those cases. We set both the primal error
and gradient error tolerance to be 0.1 in the ADMM algorithm. We observe that the ADMM
algorithm has an edge on Algorithm 1 in terms of infeasibility, where as Algorithm 1 has the
edge in terms of maximum violation. Algorithm 1 improves when the tolerance is reduced to
0.05 with similar primal infeasibility to the ADMM solution. However, the maximum violation
is guaranteed to be at most 0.05 for Algorithm 1, while it is not satisfied by the ADMM method.
The ADMM solution can be improved by reducing the primal and gradient error tolerances, but
the point we emphasize is that Algorithm 1 gives a direct control on the maximum constraint
violation.
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n d Tol (Alg. 1) Inf. (Alg. 1) time ADMM Inf. ADMM time ADMM Max viol.
103 10 0.1 0.0150 8.3 0.0059 47.8 0.0840
103 10 0.05 0.0029 142.7 0.0059 46.8 0.0885

Table 5: Comparison for `2 convex regression with ADMM.

4.6. Run times for `1 convex regression

In this section, we solve Problem (10), where we minimize the `1 loss rather than the usual least
squares loss, and demonstrate how the algorithm scales in this context. Table 6 shows the run
times and cuts added for a few instance sizes with tolerance set as 0.1.

n d Cuts (Blocks) Infeasibility Run time (seconds)
103 101 24 (3) 0.0158 (0.0012) 2.9 (3.7)
104 101 10 (1) 0.0118 (0.0001) 25.3 (2.4)
104 102 168 (10) 0.0119 (0.0001) 2437.7 (470.3)
105 101 9 (1) 0.0056 (0.0001) 2501.9 (416.3)

Table 6: `1 convex regression - Run times for Tol = 0.1.

We observe that for the same 0.1 tolerance, the run times are higher than the ones obtained
for `2 regression (Table 2). Also, as d increases for a given n, the run times increase as compared
to the `2 case.

4.7. Experiments on real data

In this section, we apply some of our methods on a real world data set. This data set, which
was considered in Mekaroonreung and Johnson [2012], was downloaded from https://ampd.
epa.gov/ampd/. The data consists of the amount of heat input (in MMBtu) and the following
four covariates – the NOx emission rate, and emissions of SO2, CO2 and NOx in tons. We
consider nine years worth of data of electric utility units from 2000-2008, and after removing
some rows with missing entries, we obtain a dataset with n = 28, 063 and d = 4. We took a
logarithmic transformation of the covariates, centered and scaled them so that they had mean
zero and standard deviation of one. We ran the cutting plane algorithm for solving the least
squares convex regression problem on this dataset, and present the results below.
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Figure 3: Progress of Algorithm 1 for Tol = 0.01.
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Figure 4: Progress of Algorithm 1 for Tol = 0.05.

We make the following observations.

• Figures 3-4 suggest that Algorithm 1 makes rapid progress to decrease infeasibility. For
tolerance value of 0.05, it reaches optimality fairly quickly in around ten iterations, while
it takes around twenty iterations for a smaller value of tolerance 0.01.

• Similar to the experiments on synthetic data, the number of cuts added decreases sub-
stantially as Algorithm 1 progresses. The final few iterations involve adding a very small
number of cuts at each iteration.

• Finally, we include a note on the running times of the algorithm for this data. We observe
a run time of 20− 30 minutes for a tolerance of 0.05, which is along the lines of what we
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observe in Table 3 for synthetic data. On reducing the tolerance to 0.01, the run time
increases to 60−70 minutes, which is expected as the number of iterations doubles in this
case.

4.8. Sparse convex regression

In this section, we present the computational results for Algorithms 2 and 3 applied to the
problem of optimal subset selection in this setting. As for the continuous case, we generate X
from a Gaussian distribution, and randomly sample the support set of size k from {1, . . . , d}.
We generate n d-dimensional vectors xi, each of which is generated from a Gaussian distribution
with zero mean and correlation matrix Σ, where Σij = ρ|i−j|, 1 ≤ i, j ≤ d for some correlation
0 ≤ ρ ≤ 1. Note that when ρ = 0, the features are i.i.d, and higher ρ indicates that the
correlation among the features is larger.

We use the convex function Φ(x) =
∑

i∈S∗ x2i , and the response data yi = Φ(xi)+εi, 1 ≤ i ≤
n. The errors εi are i.i.d. N(0, σ2), for all i = 1, . . . , n. We scale the data appropriately so that
the Signal to Noise ratio (SNR) is 3. Again, we mean-center and normalize the features and
response vectors to have unit `2 norm before providing the data as an input into Algorithms 2
and 3.

First, we demonstrate the value of using an MIO solver, by iteratively adding constraints to
the primal problem according to Algorithm 2, and show the computational results in Tables 7
and 8. Next, we present the results for Algorithm 3 in Table 9, where we reformulate the sparse
problem as minimizing a convex piecewise linear function over pure binary variables. If Ŝ is the
optimal set obtained by our algorithms, we define accuracy as

Accuracy =
|S∗ ∩ Ŝ|

k
, (37)

where S∗ is the true support. Next, we define the false positive rate, which is the fraction of
features from the recovered support that are outside the true support S∗, i.e.,

False Positive Rate =
|Ŝ \ S∗|
|Ŝ|

. (38)

A. Primal approach (Algorithm 2)

We present the results for the primal approach, as defined in Algorithm 2, in Tables 7 and
8 for n = 50k and 100k respectively. First, we discuss how the value of M is selected in
Problem (12) in the execution of Algorithm 2. In this primal approach, we solve the sparse
convex regression problem with `∞ norm bounds on the subgradients. Mazumder et al. [2015]
argue that the subgradients of the points near the boundary of Conv(x1, . . . ,xn) grow large
resulting in overfitting, and thus a bound on the subgradients is needed. Consequently, we vary
the value of M , and select it via cross-validation. Using M∗, the maximum of the absolute
of optimal solutions of Problem (14) and 15, we vary the value M as ηM∗ by varying η, and
calculate the validation error for each of these choices of M . For smaller values of M , the
solution is too constrained, and for larger values, overfitting tends to occur.

We use the one standard error rule for cross validation [Hastie et al., 2009] while selecting
the value of the parameter M . While performing cross validation to find the best hyperparam-
eter, we typically select various values of the parameter M1, . . . ,Ms, with corresponding mean
errors and standard deviations of the mean error on the validation set given by E1, . . . , Es and
σ1, . . . , σs respectively. Typically, these values are obtained by K−fold cross validation. The
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one standard error rule selects the parameter M̂ = Mj where j is the smallest index in the set
{i|Ei ≤ Ei∗ + σi∗}, and i∗ = argmini=1,...,sEi.

For n ≤ 10, 000 the thresholding heuristic described in Section 3.3 was used to provide warm-
starts to Algorithm 2. For n > 104, we ran the same thresholding heuristic on a sample of the
points, and used the resulting support as a warm start. For n ≤ 104, we solve Problems (14)
and 15 to find the value M∗ and set the value of M = ηM∗. We choose η via cross validation
from the set

{
10−3, 10−2, 10−1, 0.5

}
. For n > 104, we avoid solving Problems (14) and (15) due

to high solve times and select M from the set
{
10−3, 10−2, 10−1, 0.5

}
via cross validation. In

this case, we set the ridge regularization parameter λ to be zero.
For every row in all the following tables, we report the median run times and mean accuracies

over ten independently generated samples for the case when n = 50k, d = 100, and five samples
for instances where d = 500 or n = 100k with the standard deviation across these samples in
the parentheses. The key finding is that by comparing Tables 2 and 8, we see that the sparse
convex regression in fact solves faster than convex regression at least for k = 10. Moreover, the
resulting accuracy is at least 95%. Furthermore, as n increases the accuracy of Algorithm 2
increases to near perfect value of 100%.

Tables 7 and 8 indicate that as n increases the accuracy increases and beyond a certain n
the accuracy becomes 100%.

n = 50k
Accuracy % Run time

ρ = 0.0
k = 10

d = 100 100.0 (0.0) 1691.16 (284.8)
d = 500 100.0 (0.0) 6522.37 (281.1)

k = 20
d = 100 98.0(2.7) 2411.76(323.0)
d = 500 92.0(2.3) 15276.47(5862.6)

ρ = 0.1
k = 10

d = 100 100.0 (0.0) 2778.83 (6369.8)
d = 500 100.0 (0.0) 6326.79 (613.4)

k = 20
d = 100 99.0 (2.2 2109.42 (292.8)
d = 500 94.4(2.2) 11589.47(6883.6)

ρ = 0.5
k = 10

d = 100 100.0 (0.0) 2062.20 (508.0)
d = 500 98.0 (4.5) 6083.46 (441.1)

k = 20
d = 100 95.0 (3.5) 3158.10 (868.4)
d = 500 93.3∗ (4.1) 25596.20 (3310.3)

Table 7: Accuracy% and Run times for Algorithm 2 for n = 50k.

23



n = 100k, d = 100

k Accuracy % Run time

ρ = 0.0
10 95.0 (12.2) 7665.68 (38.23)

20 100.0(0.0) 6605.0 (357.8)

ρ = 0.1
10 100.0 (0.0) 8939.83 (3575.0)

20 100.0 (0.0) 11638.24 (1950.7)

ρ = 0.5
10 100.0 (0.0) 6823.41 (777.0)

20 96.0 (2.2) 11937.81 (2120.6)

Table 8: Accuracy% and Run times for Algorithm 2 for n = 100k, d = 100.

We make the following observations:

• For n = 50k, increasing d from hundred to five hundred increases the run time by almost
four times. The accuracy however, remains close to 100%. When we raised d to a thousand,
the machines ran out of memory.

• The median run times and accuracies for ρ = 0.1 remain comparable in magnitude with
the results for ρ = 0. For (50k, 100, 10) the run times were highly skewed with values
ranging from 2000 to a maximum of 15, 000 seconds. Excluding the three values with run
times of over 10, 000 seconds, the median run time of the remaining seven instances was
2, 509.64 seconds with a standard deviation of 413.9 seconds.

• For ρ = 0.5, the solver could not solve one instance out of the five samples for (50k, 500, 20).
We report the median over the remaining four instances. The median run times, on
average, increase with a corresponding increase in ρ.

B. Dual approach (Algorithm 3)

We present the results of the dual approach in Table 9 where we report the average accuracy
(in %) and the average run times (in seconds) to provable optimality (MIO optimality gap of
1%). Each row for d = 100 is averaged over ten independently generated random instances
of that size, with five such samples for problems where d = 500. As before, we use the one-
standard error rule while using cross validation [Hastie et al., 2009] to select the final value of
the parameter λ by varying it from 10−3 to 10−1. The tolerance parameter ε in Algorithm 3 is
set to 10−3 in all the experiments that follow.
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n = 50k
Accuracy % Run time (seconds)

ρ = 0.0
k = 10

d = 100 97.0 (4.8) 2072.23 (236.5)
d = 500 96.0 (5.5) 1785.43 (239.3)

k = 20
d = 100 94.0 (3.9) 2356.16 (318.7)
d = 500 91.1 (4.9) 1633.81 (523.8)

ρ = 0.1
k = 10

d = 100 97.0 (4.8) 2073.42 (434.3)
d = 500 96.7 (5.8) 2178.06 (358.9)

k = 20
d = 100 91.0 (4.6) 2055.16 (608.3)
d = 500 90.0 (0.0) 1493.74 (169.9)

ρ = 0.5
k = 10

d = 100 92.0 (6.3) 1210.07 (171.4)
d = 500 98.0 (4.5) 1858.62 (522.8)

k = 20
d = 100 91.0 (4.2) 1122.74 (149.8)
d = 500 89.0 (5.5) 1685.85 (340.2)

Table 9: Accuracy% and Run times for Algorithm 3 for n = 50k.

A key takeaway from Table 9 is that the dual algorithm 3 is able to solve instances with
50, 000 sample points in a few minutes for various values of correlation with high support recov-
ery rates. For n > 50, 000 the key bottleneck is computing the objective g and its subgradients.
Recall that while evaluating g, Algorithm 3 requires the solution of a continuous ridge regu-
larized convex regression problem on a restricted support set (Problem (18)) which has O(nk)
terms in its objective. The relaxation problem (24), which provides good quality warm starts,
also becomes computationally expensive to solve due to the presence of dense semi-infinite
constraints.

To summarize, both the primal and dual methods achieve exact or near-exact recovery on
fairly noisy data (as evidenced by the fairly low Signal-to-Noise ratio of 3 of the data). While
the primal approach seems to have an edge in terms of scalability over the dual approach, the
dual approach is faster than the primal approach when (n, d, k) = (5× 104, 500, 10).

C. Accuracy

In this section, we report on the accuracy of the solutions obtained by Algorithm 3 as function of
the parameters d, k, ρ, and SNR. We generate synthetic data for various values of each of these
parameters and vary one of these parameters at a time while keeping the remaining constant.
We present the mean accuracy and run times averaged over fifteen independently generated
samples, along with their one standard deviation error bars.
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(a)
√

SNR = 3 (b)
√

SNR = 7 (c)
√

SNR = 20

Figure 5: Accuracy and run times for varying SNR.

In Figures 5a–5c, we fix (d, k, ρ) = (100, 10, 0.1), and vary
√

SNR ∈ {3, 7, 20}.

(a) ρ = 0.0 (b) ρ = 0.1 (c) ρ = 0.5

Figure 6: Accuracy and run times for varying correlation ρ.

In Figures 6a–6c, we fix (d, k,
√

SNR) = (100, 10, 20), and vary ρ in the set {0, 0.1, 0.5}.

(a) d = 50 (b) d = 100 (c) d = 150

Figure 7: Accuracy and run times for varying dimension d.

In Figures 7a–7c, we fix (k, ρ,
√

SNR) = (5, 0.1, 20) and vary d in the set {50, 100, 150}.
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(a) k = 5 (b) k = 10 (c) k = 15

Figure 8: Accuracy and run times for varying sparsity parameter k.

Finally, in Figures 8a–8c, we fix (d, ρ,
√

SNR) = (100, 0.1, 20) and vary the sparsity level k
in the set {5, 10, 15}. We solve the problems with a time cutoff of two, five, and ten minutes
for k = 5, 10, 15 respectively, and take the best solution obtained until that time in case the
incumbent solution has not been guaranteed to be optimal by that time.

We make the following observations:

(a) As n increases, the accuracy of Algorithm 3 increases and the running time decreases.
These observations are consistent with the findings of Bertsimas and Van Parys [2016] in
the context of sparse linear regression.

(b) As SNR increases, we reach higher accuracy for smaller values of n, that is the problem
becomes easier (see Figures 5a–5c).

(c) To reach accuracy of 95% we need n equal to 10, 000, 12, 000 and 15, 000 for ρ being 0,
0.1 and 0.5, respectively (see Figures 6a–6c).

(d) To reach accuracy of 95% we need n equal to 3, 000, 4, 000 and 5, 000 for d being 50, 100
and 150, respectively (see Figures 7a–7c).

(e) To reach accuracy of 90% we need n equal to 2, 500, 8, 000 and 10, 000 for k being 5, 10
and 15, respectively (Figures 8a–8c).

D. False Positive rates

In this section, we investigate the false discovery rate for the estimator resulting from this
algorithm. So far we have taken k, the sparsity parameter as a given in all of our experiments.
In reality however, this value needs to be inferred from the data, and is usually done by cross
validation. Thus, it is imperative that the algorithm not only choose the relevant features, but
also that it picks no extra spurious ones and mark them as relevant.

To check this, we performed an experiment with simulated data for (n, d) = (10000, 100)
with five features chosen randomly. We vary k in the set {3, . . . , 10}, and choose the best k
by five fold cross validation. We then run our algorithms for that value of k, and report the
median false positive rate over ten independently generated samples. We present our results for
both the primal and dual algorithms in Tables 10 and 11 respectively.

For the dual approach, we impose a time limit of 120 seconds, and take the best solution
obtained by that point of time and for the primal method, we do not impose any such time limit.
We report the median false positive rate over ten independently chosen samples for different
values of ρ and SNR. This suggests that our algorithms not only pick the relevant features, but
are also able to control for spurious discoveries.
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√
SNR ρ = 0.0 ρ = 0.1 ρ = 0.5

3 0% 0% 0%
7 0% 0% 0%
20 0% 0% 0%

Table 10: False Positive rate for Algorithm 3.

√
SNR ρ = 0.0 ρ = 0.1 ρ = 0.5

3 0% 0% 0%
7 0% 0% 0%
20 0% 0% 0%

Table 11: False Positive rate for Algorithm 2.

4.9. Discussion

(a) For the problem of convex regression, we see that Algorithm 1 has a significant edge over
other state of the art methods in terms of run time and accuracy. Our approach allows
us to solve problems of n = 100, 000 and d = 100 in hours. Also, it is flexible enough to
accommodate other constraints such as coordinate-wise monotonicity and norm bounded
subgradients.

(b) For the sparse convex regression problem, the dual approach (Algorithm 3) has an edge
over the primal method (Algorithm 2) in run times and scalability. Surprisingly, Algo-
rithm 3 solves the sparse convex regression problem in times comparable to the continuous
case, implying that the price of sparsity is small. Since we break new ground in this area,
we are unable to include any comparisons to other methods.

(c) For the sparse convex regression problem, the primal approach scales to problems of
the size (n, d, k) = (105, 100, 10) in hours, while the dual approach scales to (n, d, k) =
(5 × 104, 500, 10) in minutes. We perform various experiments by varying the degree
of correlation among the covariates ρ, signal to noise ratio (SNR), number of features d,
sparsity level k, and demonstrate that our algorithms achieve near perfect support recovery
as n increases. Also, we note that both Algorithms 2 and 3 limit the false discovery rate.
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