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We present two methods, based on regression in reproducing kernel Hilbert spaces, for solving an optimization

problem with uncertain parameters for which we have historical data, including auxiliary data. The first

method approximates the objective function and the second approximates the optimizer. We provide finite

sample guarantees and prove asymptotic optimality for both methods. Computational experiments suggest

that at least the second method overcomes a curse of dimensionality that afflicts existing methods, extrapolates

better to unseen data, and achieves a many-fold decrease in sample complexity even for small dimensions.
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1. Introduction

A fundamental problem in optimization under uncertainty is

minz Ey[c(z;y) |x= x0], (1)

where z is a decision, c(z;y) is a given cost function, y is an uncertain parameter affecting the cost,

and x0 is an observation of auxiliary data that will be used to predict y. The only information we

have is historical data {(xi, yi)}ni=1, where xi ∈Rdx are the historical auxiliary data, and yi ∈Rdy

are the corresponding realizations of y.
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An example of Problem (1) is the newsvendor problem, where z is the number of newspapers to

order, y is the daily demand for newspapers, and x0 is auxiliary data used to predict the demand,

such as the temperature. Assuming that the cost per newspaper is d and the revenue per newspaper

sold is r, the cost function is

c(z, y) = dz− rmin(z, y) .

We want to maximize the expected profit rmin(z, y)− dz, or equivalently minimize the cost c(z;y),

given today’s temperature x0. The only information we have is historical temperature and demand

data {(xi, yi)}ni=1.

A natural approach is to use the data {(xi, yi)}ni=1 to build a machine learning model for predicting

y from x (for example, linearly regress y on x). This produces an estimate of y, ŷ(x), for every x.

We then solve

minz c(z; ŷ(x0))

instead of (1). Since ŷ(x0) is an approximation of E[y |x= x0], this approach solves the problem

minz c(z;E[y |x= x0]) ,

which is different from (1) because it does not take into account uncertainty in y.

Bertsimas and Kallus (2020) propose an approach to solving (1) that does take into account

uncertainty in y. The authors use the fact that for several machine learning methods, the prediction

of y from x0 takes the form

ŷ(x0) =
n∑
i=1

w(xi, x0)yi ,

where w(xi, x) is a measure of closeness between xi and x and depends on the machine learning

method used. For example, in nearest neighbors w(xi, x0) = 1
k

if xi is a k-nearest neighbor of x0,

and w(xi, x0) = 0, otherwise. In CART, w(xi, x0) = 1
d

for the d elements xi in the same leaf as

x0, and w(xi, x0) = 0 for all other xi. Bertsimas and Kallus (2020) also consider random forests,

Nadaraya-Watson kernel regression, and local linear regression.
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Bertsimas and Kallus (2020) take the perspective that these weights can be considered an

approximation of the conditional distribution of y given x= x0. Thus, they take

minz

n∑
i=1

w(xi, x0)c(z;yi) (2)

as an approximation of (1). They show that for w derived for several of the machine learning

methods, the solution of (2) converges asymptotically as n→∞ to the solution of (1). Furthermore,

they present very promising computational results in both synthetic and real world examples.

1.1. Our Approach

In this paper, we propose new methods for solving (1) based on “global” machine learning methods,

as opposed to the “local” machine learning methods considered by Bertsimas and Kallus (2020).

The primary difference between what we call local and global machine learning methods is that local

machine learning methods predict by measuring closeness to existing data, while global machine

learning methods predict by choosing a functional form of the prediction that minimizes some loss

function on existing data. Global machine learning methods tend to be used more in practice for

predicting real valued outputs (i.e., for regression as opposed to classification). For example, the

most ubiquitous machine learning algorithm for predicting real valued outputs is linear regression

by ordinary least squares (finding the best linear function that minimizes a square loss).

There are several reasons why one may prefer global methods over local methods. One is that

local methods in some sense throw away all data that is not near the current observation, and

so they need a lot of data (in particular, a lot of data close to the current observation) to work

well. In contrast, global methods use all the data, so they should be better with less data. For the

same reason, global methods should be better at extrapolating to outliers. Another reason to prefer

global methods is the well-known fact that local methods suffer from a curse of dimensionality,

their performance degrading exponentially as the dimension of the covariate vector x increases.

Hastie et al. (2009, sec 2.5) give a good explanation of this phenomenon, the gist of which is that

points near x0 become much less representative of x0 in higher dimensions. This becomes even
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more problematic in the prescriptive setting because we are using points near x0 not only to find

the mean of y given x= x0, but to describe the entire distribution of y given x= x0. As Hastie

et al. (2009) explain, global methods avoid the curse of dimensionality by not using distance as

a measure of similarity. In our computational results, we provide evidence for all three of these

claims in prescriptive problems: that the new global methods perform better with less data, that

the new methods extrapolate better to outliers, and that the new methods perform better in higher

dimensions.

Now that we have motivated our methods, we give a simple overview of them. We take a

different perspective to that of Bertsimas and Kallus (2020), noticing that instead of estimating the

conditional distribution of y given x= x0, all we need to do is estimate the conditional expectation.

We can do this with linear regression. In particular, if we wanted to estimate E[y |x] using linear

regression, that is, we wanted to find some β such that E[y |x]≈ β′x, we could compute

min
β

1

n

n∑
i=1

‖Y −Xβ‖22 ,

where Y is a vector with elements yi, and X is a matrix with rows xi. The minimizer of this

(assuming XTX is invertible) would take the form

β = (XTX)−1XTY ,

and the prediction of the y corresponding to x0 would be

E[y |x= x0]≈ βTx0 = Y TX(XTX)−1x0 .

If we wanted to predict not y, but c(z;y), we would compute

min
β(z)

1

n

n∑
i=1

‖c(z;Y )−Xβ(z)‖22 .

The minimizer would take the form

β(z) = (XTX)−1XT c(z;Y ) ,
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and the approximation of E[c(z;y) |x= x0] would be

E[c(z;y) |x= x0]≈ βTx0 = c(z;Y )TX(XTX)−1x0 ,

where c(z;Y ) is the vector (c(z;y1), . . . , c(z;yn))T . We see that this approximation is of the form

(2), so we can minimize over z to solve the original problem (1). This is the essence of the first new

method. In Section 4, we derive the method from first principles using the framework of reproducing

kernel Hilbert spaces, which allows us to generalize the approach to nonlinear predictions and prove

asymptotic optimality.

In the second method, we predict the optimum decision z directly instead of finding an approxi-

mation of E[c(z;y) |x= x0] and minimizing over the approximation. Let us use the same example

of linear regression. Suppose we want to approximate the optimum decision z by a linear function

of x. More specifically, we want to find β such that arg minz E[c(z;y) |x]≈ βTx. We can do this by

finding the β that minimizes the cost on the historical data:

min
β

n∑
i=1

c(βTxi;yi) .

In Section 5, we generalize the approach to predictions nonlinear in x and prove asymptotic

optimality by using the framework of reproducing kernel Hilbert spaces.

The rest of the paper is structured as follows. In Section 2, we review the relevant literature

and discuss our contributions to it. In Section 3, we provide a brief overview of reproducing kernel

Hilbert spaces. In Section 4, we present the objective prediction method and associated probabilistic

guarantees. in Section 5, we present the optimizer prediction method and associated probabilistic

guarantees. In Section 6, we explain how to incorporate constraints and give examples of how the

ideas in this paper can be used to solve other problems in operations research. In Section 7, we

present our computational results. In Section 8, we conclude.

2. Literature Review

Two bodies of relevant literature, stochastic programming and robust optimization, develop general

frameworks for modeling and solving optimization problems under uncertainty but do not take
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data as a primitive. Birge and Louveaux (2011) give an overview of stochastic programming, while

Bertsekas (1995) gives an overview of multiperiod stochastic programming. Ben-Tal et al. (2009)

and Bertsimas et al. (2011) give an overview of robust optimization.

A related body of literature does take data as a primitive, but doesn’t consider auxiliary data.

Kleywegt et al. (2002), Shapiro (2003), and Shapiro and Nemirovski (2005) develop the sample-

average approximation, which is the data-driven offspring of stochastic programming. Delage and

Ye (2010) develop data-driven distributionally robust optimization. Bertsimas et al. (2018) develop

a different data-driven robust optimization approach.

Machine learning takes data as a primitive and considers auxiliary data, but it is focused purely

on prediction and not on prescription. We provide only a few basic references. Hastie et al. (2009)

provide a broad overview of different machine learning methods. Vapnik (1998), Cucker and Smale

(2002), Bousquet and Elisseeff (2002), and Poggio and Smale (2005) introduce classical techniques

for proving theoretical properties. Some of these techniques we use in this paper.

The closest body of literature to this paper considers optimization under uncertainty with data

and auxiliary data. However, in contrast to this paper, this body is focused on adapting what we

have termed “local” machine learning methods. Notable references in this body of literature include

Hannah et al. (2010), who use local kernel methods to approximate the objective, Hanasusanto and

Kuhn (2013), who use local kernel methods to approximate a multistage objective, Bertsimas and

Kallus (2020), who adapt several local methods to approximate the objective, and Bertsimas and

McCord (2017) who adapt local methods to approximate the objective in multistage problems.

2.1. Contributions

This paper introduces the first general, asymptotically optimal approaches to prescriptive analytics

based on loss-minimizing (what we have termed “global”) machine learning methods. As discussed

in Section 1.1, global methods have the potential to work better with less data, for extrapolation,

and in high dimensions. Computational results in Section 7 corroborate each of these claims. We

now discuss the novelty of the two approaches introduced in this paper in more detail separately.
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One of the approaches introduced by this paper uses global machine learning to predict the

objective. This has not been done before in the literature. In fact, as mentioned in the introduction,

the previous literature such as Bertsimas and Kallus (2020), although able to be seen as approxi-

mating the objective using local methods, does not take the perspective that it is predicting the

objective, but rather the perspective that it is estimating the conditional distribution of y. This

new perspective, that what really needs to be done is predict the objective, not only leads to a new

method, but also leads to interesting possibilities for extensions that are not possible with the old

perspective, such as tractable prescriptive analytics when the decision affects the parameter (see

Section 6).

The second approach introduced by this paper uses global machine learning to predict the

optimizer. There is work in this vein, but none is both general and asymptotically optimal. For

example, Ban and Rudin (2019) consider an approach to predicting the optimizer, but it only

applies to the newsvendor problem. Bertsimas and Kallus (2020) suggest a more general way to

predict the optimizer, but it is not asymptotically optimal, and they consider it impractical due

to not being able to handle nonlinearities and constraints. We develop a method that can handle

constraints and nonlinearities, and we prove asymptotic optimality. We also provide a reformulation

of our method that scales, and we provide evidence of this by implementing the method on practical

problems.

As a final contribution, we present our methods using a general framework of reproducing kernel

Hilbert spaces that we hope can be applied to other problems in optimization under uncertainty. As

a start, in Section 6, we show how the ideas in this paper can be used to create a potentially tractable

and asymptotically optimal method to solve data-driven multi-stage optimization problems.

3. Overview of Reproducing Kernel Hilbert Spaces

In this section, we provide an overview of reproducing kernel Hilbert spaces to make the paper self

contained. The standard reference is Aronszajn (1950).

A reproducing kernel Hilbert space is a type of Hilbert space (a set of functions) that behaves

well pointwise. The pointwise behavior makes it ideal for working with data. As its name suggests,
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a reproducing kernel Hilbert space is associated with a reproducing kernel. It is possible to define

a reproducing kernel Hilbert space abstractly, by proving that if a Hilbert space satisfies some

condition, then there exists an associated reproducing kernel. Here, we take a constructive approach.

Starting with a positive definite kernel K(·, ·) over a domain X , i.e., a function K : X ×X →R

such that
n∑
i=1

n∑
j=1

aiajK(xi, xj)≥ 0 ∀n∈N, x1, . . . xn ∈X , a1, . . . , an ∈R ,

we define next the Hilbert space generated by the kernel.

Definition 1. A reproducing kernel Hilbert space H generated by a positive definite kernel

K :X ×X →R is the closure of the set of functions{
g :X →R

∣∣∣∣g(x) =
L∑
l=1

alK(vl, x), for v1, . . . , vL ∈X and L∈N

}
with inner product of g1(x) =

∑L1

l=1 a
l
1K(vl1, x) and g2(x) =

∑L2

l=1 a
l
2K(vl2, x) defined as

〈g1, g2〉=
L1∑
l1=1

L2∑
l2=1

al11 a
l2
2 K(vl11 , v

l2
2 ).

In other words, any function in the reproducing kernel Hilbert space generated by a kernel can

be written as limn→∞ g
n
1 , where gn1 is a function of the form

∑L1

l=1 a
l,n
1 K(vl,n1 , ·). The inner product

of any two functions limn→∞ g
n
1 and limn→∞ g

n
2 is limn→∞〈gn1 , gn2 〉.

Several familiar function spaces are in fact reproducing kernel Hilbert spaces. If we choose K to be

the linear kernel, then H is the space of all linear functions. If K is the polynomial kernel of degree

d, then H is the space of all polynomials of degree less than or equal to d. If K is the Gaussian

kernel, then H contains a functions arbitrarily close in sup-norm to any continuous function on a

compact subset of X . Thus, a reproducing kernel Hilbert space can be anything from the set of all

linear functions to almost the set of all continuous functions.

The next result, known as the Representer Theorem, illustrates one of the major reasons why

reproducing kernel Hilbert spaces are useful for working with data. It tells us that we can solve

functional minimization problems over h in a reproducing kernel Hilbert space H, as long as the

objective only involves a term consisting of h evaluated at a finite set of points and a term consisting

of the squared norm of h (the inner product of h with itself).
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Proposition 1 (Representer Theorem). Fix xi ∈X and yi ∈ Y for i= 1, . . . , n. Let H be the

reproducing kernel Hilbert space generated by a kernel K : X ×X →Y. Let V : R×Y → R be an

arbitrary function and let λ≥ 0. There exists a solution to

min
h∈H

1

n

n∑
i=1

V (h(xi), yi) +λ‖h‖2H (3)

that takes the form

h∗(x) =
n∑
i=1

K(xi, x)ai , (4)

where ai ∈R for i= 1, . . . , n. We can represent a as the solution to the finite dimensional optimization

problem

min
a∈Rn

n∑
i=1

V ((K̂a)i, y
i) +λaT K̂a , (5)

where K̂ is the matrix with component K̂ij =K(xi, xj).

The proof of this theorem follows from the fact that any function in H can be written as the

sum of a function of the form (4) and a function orthogonal to every function of the form (4). One

can show that the first term in the objective (5) is independent of the orthogonal part, and the

second term in the objective is increasing in the orthogonal part. Hence, the orthogonal part can

be set to 0. We state and formally prove a multidimensional version of the Representer Theorem in

Proposition EC.2 in Section EC.1 of the electronic companion to this paper.

In the next two sections, we use the concept of a reproducing kernel Hilbert space and the

Representer Theorem in order to develop the two methods for solving (1).

4. Objective Prediction Method

In the introduction, we presented the objective prediction method as using regression to approximate

the objective. Here, we derive the same method naturally starting from (1) using basic probability

theory and the ideas from Section 3.

Conditional expectation is an L2 projection, so for fixed z, the objective of (1) is exactly the

solution to

min
h(z,·)

E[(c(z;y)−h(z,x))2] (6)
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minimized over all measurable functions and then evaluated at x0. Since we do not know the

distribution of (x, y), instead of (6), we consider the empirical version of (6)

min
h(z,·)

1

n

n∑
i=1

(c(z;yi)−h(z,xi))2. (7)

This is still an intractable functional minimization problem, so the next step is to restrict h to be

in a Hilbert space H defined by a positive-definite kernel function K(·, ·) (see Definition 1). If we

restrict h to be in H, (7) becomes tractable, thanks to the Representer Theorem (Proposition 1).

In fact, we can also add a regularization term to prevent overfitting:

min
h(z,·)∈H

1

n

n∑
i=1

(c(z;yi)−h(z,xi))2 +λ‖h‖2H. (8)

The Representer Theorem tells us that any minimizer to (8) must take the form

h(z, ·) =
n∑
j=1

aj(z)K(xj, ·)

for some scalars aj(z)∈R. We can plug this expression back into (8) and solve for the minimizing

aj(z) in closed form by setting the gradient with respect to a equal to zero. This solution, the

minimizer of (8), is (assuming λ> 0)

h(z,x) =K(X,x)T (K̂ +λnI)−1c(z;Y ) ,

where K(X,x) is the vector (K(x1, x), . . . ,K(xn, x))T , c(z;Y ) is the vector (c(z;y1), . . . , c(z;yn))T ,

and K̂ is the kernel matrix, i.e., the n×n matrix with components K̂ij =K(xi, xj). We have that

E[c(z;y) |x]≈ h(z,x) =K(X,x)T (K̂ +λnI)−1c(z;Y ) ,

and so the objective of (1) can be approximated by

h(z,x0) =K(X,x0)T (K̂ +λnI)−1c(z;Y ) . (9)
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4.1. Tractability

Notice that if c(z;y) is convex for fixed y, and (K̂ +λnI)−1K(X,x0) is non-negative for fixed x0,

then (9) is convex for fixed x0, and it is tractable to solve (1) using (9) as an approximation for the

objective function. We observe empirically in the computational experiments in Section 7 that (K̂+

λnI)−1K(X,x0) is effectively non-negative, with the negative coefficients being around six orders

of magnitude smaller than the non-negative ones. Nevertheless, to complete the theory, we provide

a generalization of the objective prediction method in Section EC.3 of the electronic companion

to this paper, which produces an objective approximation of the form h(z,x) =K(X,x)TMc(z;Y )

for some matrix M , where K(X,x)TM ≥ 0, after solving a convex optimization problem with n2

variables. This approach can be thought of as finding the best approximation of the objective of (1)

that is in H for fixed z and is a non-negative combination of c(z;yi) for fixed x0.

The simpler approach, and the one we use in the computational experiments, is just to take

h(z,x) = max
(
K(X,x0)T (K̂ +λnI)−1,0

)
c(z;Y ) .

In any case, whether we use the approximation from Section EC.3 or the simpler approach, problem

(1) is reduced to the convex optimization problem

min
z∈Z

h(z,x0) . (10)

In (10), we are allowing the additional possibility of z needing to be restricted to some feasible set

Z, which we did not explicitly allow for in (1).

For a rough Big-O analysis, assume that a problem of the form minz∈Z
∑n

i=1wic(z;y
i) can

be reformulated as a linear optimization problem (LOP) with D(n,d) variables, where d is the

dimension of z, and assume that it takes O(k3 log(1/ε)) time to find an ε-optimal solution for an

LOP with k variables. Also suppose that along with the training set of size n, we have a test set of

size ntest. The objective prediction method takes O(n2d) time to compute the kernel matrix, O(n3)

time to factor the matrix, O((n2 + nd)ntest) to compute the weights wi for each test point, and
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O(D(n,d)3ntest log(1/ε)) time to find an ε-optimal solution for each test point. Assuming d is at

most O(n), this results in a total time of O(n3 +n2ntest +D(n,d)3ntest log(1/ε)).

This compares to, for example, the k-nearest neighbors method from Bertsimas and Kallus (2020),

which takes O(ndntest) time to compute the weights for each test point and O(D(n,d)3ntest log(1/ε))

time to find ε-optimal solutions for each test point, resulting in a total time of O(ndntest +

D(n,d)3ntest log(1/ε)). So if ntest is O(n) (as it is in the standard 70%-30% train-test split), the

objective prediction method takes about a factor of n times longer than the k-nearest neighbors

method from Bertsimas and Kallus (2020), unless D(n,d) is at least O(n) or d is O(n), in which

case both the methods take about the same amount of time. Note also that k-nearest neighbors is

the least computationally demanding method from Bertsimas and Kallus (2020).

4.2. Theoretical Guarantees

We now derive finite sample error bounds for the objective prediction method and use the finite

sample error bounds to prove asymptotic convergence. There is a large literature on generalization

bounds in machine learning. This literature can be seen as focused on showing that the prediction

obtained by regressing y on x is close to E[y |x]. Here we are regressing c(z;y) on x, and then

minimizing over z. We need to show not only that the prediction is close to E[c(z;y) |x], but also

that it is uniformly close across z. We do this by leveraging the fact that Rademacher complexity

theory gives us uniform bounds across classes of functions.

Assume {(xi, yi)}ni=1 ∈ X × Y are independent and identically distributed according to some

unknown distribution. Let (x, y) be a representative vector from that distribution. Let S denote the

entire sample set {(xi, yi)}ni=1. Let Z be the set of possible decisions. Let K(·, ·) be a positive-definite

kernel and let H be the associated reproducing kernel Hilbert space.

The goal is to show that the approximation produced by the objective prediction method is close

to E[c(z;y) |x]. The approximation produced by the objective prediction method is the solution to

(8). It is well-known that because of Lagrangean duality,

min
h(z,·)∈H

1

n

n∑
i=1

(h(z,xi)− c(z;yi))2 +λ‖h(z, ·)‖2H ,
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is equivalent to

min
h(z,·)∈H

1

n

n∑
i=1

(h(z,xi)− c(z;yi))2

s.t. ‖h(z, ·)‖2H ≤ η.

(11)

for some mapping between λ and η (for a proof, see Oneto et al. 2016). Let hS,η be the solution of

Problem (11). The next proposition shows that hS,η is close to E[c(z;y) |x] uniformly over z, in the

sense that its distance from E[c(z;y) |x] is almost as small as the function in H with the smallest

distance from E[c(z;y) |x] that satisfies ‖h‖ ≤ η, which we call h∗η. In other words, the proposition

shows that the approximation produced by the objective prediction method, hS,η, is almost as close

to E[c(z;y) |x] as the best possible approximation h∗η, uniformly over z.

Proposition 2 (Finite sample error bound for objective prediction method). Let

hS,η(z, ·) = arg min
h(z,·)∈H

1

n

n∑
i=1

(h(z,xi)− c(z;yi))2

s.t. ‖h(z, ·)‖2H ≤ η.

and let

h∗η(z, ·) = arg min
h(z,·)∈H

Ex,y
[
(h(z,x)−E[c(z, y) |x])

2
]

s.t. ‖h(z, ·)‖2H ≤ η.

Assume the following.

1. For some κ, supx∈X K(x,x) = κ2 <∞.

2. For some C, supy∈Y,z∈Z |c(z;y)|=C <∞.

Then, with probability 1− δ, for all z ∈Z simultaneously,

Ex
[
(hS,η(z,x)−E[c(z, y) |x])2

]
−Ex

[(
h∗η(z,x)−E[c(z, y) |x]

)2]≤M1

1√
n

+M2

√
log 2/δ

2n
,

where M1 = 4(κ
√
η+C)κ

√
η and M2 = 2(κ

√
η+C)2.

Proposition 2 is proved in Section EC.2 of the electronic companion to this paper. It is an application

of existing results about Rademacher complexity combined with a rewriting of the square loss

Ex,y
[
(h(z,x)− c(z;y))

2
]

as a distance from the true conditional expectation.
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Both assumptions of Proposition 2 are boundedness conditions. The first assumption would

be satisfied if X was compact and K was continuous or if K was a bounded kernel such as the

Gaussian kernel. The second assumption would be satisfied if Y and Z were compact and c was

continuous or if c was bounded. Philosophically, these boundedness conditions are not restrictive

because arbitrarily large quantities do not exist in the real world applications. Nevertheless, they do

create large constants that preclude the usefulness of Proposition 2 in any real finite sample setting.

Proposition 2 is, however, useful for telling us the rate at which the distance between the objective

approximation and the true objective goes to zero, which is the standard statistical learning rate of√
log(1/δ)

n
.

Next, we show asymptotic optimality. Proposition 3 formalizes that the approximation produced

by the objective prediction method converges to E[c(z;y) |x] when the space H is large enough and

we have enough sample points. Recall that the approximation produced by the objective prediction

method is

min
h(z,·)∈H

1

n

n∑
i=1

(h(z,xi)− c(z;yi))2

s.t. ‖h‖2H ≤ η ,

given the appropriate conversion between λ and η. To prove asymptotic optimality, we specialize to

the case that H is generated by a polynomial kernel, so that H is the set of all polynomials up to a

certain degree.

Proposition 3 (Asymptotic optimality of objective prediction method). Let Hd be the

space of polynomials of degree d and Kd be the polynomial kernel, Kd(x,x
′) = (xTx′+α)d with α> 1.

Let

hS,d,η(z, ·) = arg min
h(z,·)∈Hd

1

n

n∑
i=1

(h(z,xi)− c(z;yi))2

s.t. ‖h‖2Hd
≤ η ,

let

zS,d,η(x) = arg min
z∈Z

hS,d,η(z,x) ,
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and let

z∗(x) = arg min
z∈Z

E[c(z;y) |x] .

We assume the following.

1. For some C, supy∈Y,z∈Z |c(z;y)|=C <∞.

2. The function E[c(z;y) |x] is differentiable over x∈X , and its partial derivative with respect to

x is continuous over x∈X and z ∈Z.

3. The sets X and Z are closed and bounded.

4. The variable η is strictly increasing in d.

5. For every x0 ∈X and γ > 0, Px(|x−x0|<γ)> 0.

Then for any x0 ∈ X , the cost of zS,d,η(x
0) converges to the cost of z∗(x0) in probability. More

specifically, for any x0 ∈X and for every ε > 0 and δ > 0, there is some D and N such that for all

d≥D and n≥N(d), PS
(∣∣E[c(zS,d,η(x

0);y) |x= x0]−E[c(z∗(x0);y) |x= x0]
∣∣> δ)< ε.

We relegate the proof to Section EC.2 of the electronic companion to this paper. It involves using

the Weierstrass Approximation Theorem to approximate E[c(z;y) |x] by a polynomial and then

using Proposition 2 to show convergence to the approximation.

The assumptions of Proposition 3 are stronger than that of Proposition 2. Proposition 3 requires

X and Z to be compact and E[c(z;y) |x] to be continuous. This is in order to use the Weierstrass

Approximation Theorem. Additional regularity conditions on E[c(z;y) |x] and the distribution of

x enable the conversion of the bound in Proposition 2, which is an average over x, to a bound

that holds for each x. Proposition 3 says that under these assumptions, and as the degree of the

polynomial kernel, η, and n increase, the decision produced by the objective prediction method

converges to the true optimal decision.

5. Optimizer Prediction Method

In this section, we develop the optimizer predictor method starting from (1) using basic probability

theory and the concepts from Section 3. We recognize that solving

min
z∈Rd

E[c(z;y) |x= x0]



Bertsimas and Koduri: Data-Driven Optimization: A Reproducing Kernel Hilbert Space Approach
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

is equivalent to finding the vector-valued function ẑ(·) that solves

min
z(·)

E[c(z(x);y)] (12)

and evaluating ẑ at x0. Now the original problem has been reduced to the standard machine learning

framework of finding a function that minimizes some loss functional. Similarly to the previous

method, we can find a good approximation of the minimizer of (12) by solving the empirical

regularized version of (12) and restricting each component of z(·) to be in a reproducing kernel

Hilbert space (associated with, say, a kernel K):

min
z1(·),...,zd(·)∈H

1

n

n∑
i=1

c(z1(xi), . . . , zd(xi);yi) +λ
d∑
t=1

‖zt‖2H . (13)

We solve the regularized empirical problem (13) by using a multidimensional version of the

Representer Theorem (Proposition EC.2 in the electronic companion), which implies that the

solution to (13) takes the form

ẑt(x) =
n∑
i=1

K(xi, x)ati .

for some scalars ati. By plugging this form back into (13), we obtain that the optimal solution to

(13) is the above ẑ(·), where a is the solution to

min
a1,...,ad∈Rn

1

n

n∑
i=1

c((K̂a1)i, . . . , (K̂a
d)i;y

i) +λ
d∑
t=1

(at)T K̂at . (14)

and where K̂ij is K(xi, xj).

Note that if K is the linear kernel and λ= 0, then the optimizer prediction method is equivalent

to a linear decision rule approach that is used by Ban and Rudin (2019) and Bertsimas and Kallus

(2020, Electronic Companion). Similarly if K was the polynomial kernel, it would be equivalent

to a polynomial decision rule approach. However, both the generality of K and the inclusion of a

regularization term are crucial for the reformulation in Section 5.2 and the theoretical results in

Section 5.3, including asymptotic optimality.
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5.1. Tractability

We obtain an optimal decision by solving (14). Assuming c is convex, c((K̂a1)i, . . . , (K̂a
d)i;y

i) is

convex in a1, . . . , ad because the composition of a convex function with an affine function is convex.

Since K̂ is positive semi-definite, λ
∑d

t=1(a
t)T K̂at is convex quadratic in a1, . . . , ad, and therefore

(14) is a convex optimization problem in a1, . . . , ad. In other words, we solve (1) by solving a convex

optimization problem, (14), in nd variables.

As we did in Section 4, we provide a rough Big-O analysis of running time. Assume

that minz
∑n

i=1w
ic(z;yi) can be reformulated into an LOP with D(n,d) variables, and that

mina1,...,ad
1
n

∑n

i=1 c((K̂a
1)i, . . . , (K̂a

d)i;y
i) can be reformulated as an LOP with D(n,nd) variables.

Assume that it takes O(k3 log(1/ε)) time to find ε-optimal solutions for linear and quadratic opti-

mization problems with k variables. Then the kernel optimizer prediction method takes O(n2d)

time to compute the kernel matrix, O(D(n,nd)3 log(1/ε)) time to find an ε-optimal solution to

the resulting LOP and O(ndntest) time to find the final decisions. So the entire procedure takes

a total of O(n2d+D(n,nd)3 log(1/ε) +ndntest) time. Again, for comparison, k-nearest neighbors

from Bertsimas and Kallus (2020) takes O(ndntest +D(n,d)3ntest log(1/ε)) time. If D(n,d) is O(1)

in n and O(d) in d, then the kernel optimizer method takes around a factor of n times longer than

k-nearest neighbors. However, if D(n,d) is O(n) in n (which is the case for a two-stage linear cost

function, as we see in Section 7), then the kernel optimizer method is actually a factor of ntest times

faster than k-nearest neighbors.

5.2. Alternative Formulation to Improve Numerical Performance

We find that (14), while convex, has subpar scaling in n and gives solvers such as Gurobi numerical

trouble. The following is an alternative formulation that has excellent scaling and seemingly no

numerical issues. Let zt = K̂−1at for t= 1, . . . , d. Then problem (14) becomes

min
z1,...,zd

1

n

n∑
i=1

c(z1i , . . . , z
d
i ;yi) +λ

d∑
t=1

(zt)T K̂−1zt . (15)
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Compute the eigenvalue decomposition of K̂, V ΣV T , choose a small quantity λspec, and approximate

(15) as

min
z1,...,zd

1

n

n∑
i=1

c(z1i , . . . , z
d
i ;yi) +λ

d∑
t=1

(θt)T θt

s.t. (Σ +λspecI)−1/2V T zt = θt, t= 1, . . . , d

(16)

In the largest computational example we considered in Section 7, formulation (16) solves in 40

seconds with n = 800 (around 90,000 decision variables), and formulation (14) does not finish

solving in 2 hours with n= 300 (around 35,000 decision variables). One might wonder whether this

improvement is due to the change of variables or due to the spectral regularization, i.e., the process

of going from (15) to (16). Empirically, spectral regularization without the change of variables does

not help.

The alternative formulation also leads to an interesting perspective on the optimizer prediction

method. Take the case when z is univariate for simplicity. The alternative formulation tells us that

min
z

E[c(z;y) |x= x0]

can be solved by instead solving

min
z1,...,zn∈R

1

n

n∑
i=1

c(zi;y
i) +λzT K̂−1z

and taking the decision z0 = zT K̂−1K(X,x0). If we took λ = 0, the decision at point x0 would

be found by finding the optimal decisions zi for the observed values of yi, and weighting them

according to K̂−1K(X,x0). This is the same as regressing arg minz c(z;yi) onto xi. But when λ> 0,

the penalty term λzT K̂−1z binds the zi together and prevents them from being strictly optimal for

the respective yi.

5.3. Theoretical Guarantees

We now derive a finite sample error bound for the optimizer prediction method. We do this by

viewing the problem solved by the optimizer prediction method, (13), as a regression problem with
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an arbitrary convex loss function. Existing machine learning results can bound the error of the

optimizer prediction method when the dimension of z is 1. We extend these results to bound the

error in the multidimensional case. After we derive the finite sample error bound, we use it to prove

asymptotic optimality.

Assume (xi, yi)ni=1 ∈X ×Y are independent and identically distributed according to some unknown

distribution. Let (x, y) be a representative random vector from the same distribution. Let S denote

the entire sample set (xi, yi)ni=1. Let K(·, ·) be a positive-definite kernel and let H be the associated

reproducing kernel Hilbert space. Let Hd be Hilbert space that is the Cartesian product of d copies

of H, with inner product defined as

〈(z1, . . . , zd), (z̃1, . . . , z̃d)〉Hd = 〈z1, z̃1〉H+ . . .+ 〈zd, z̃d〉H .

Proposition 4 (Finite sample error bound for optimizer prediction method). Let zλS be

the solution to

min
z(·)∈Hd

1

n

n∑
i=1

c(z(xi);yi) +λ‖z‖2Hd .

Assume the following.

1. For some L and any y ∈Y, c(·;y) is Lipschitz with constant L.

2. For any y ∈Y, c(·;y) is convex.

3. For some κ, supx∈X K(x,x)≤ κ2.

4. For some C0 ≥ 0 and any y ∈Y, c(0;y)≤C0.

Then with probability 1− δ, if λ> 0,

E[c(zλS(x);y)]≤ 1

n

n∑
i=1

c(zλS(xi);yi) +
L2κ2

λn
+

(
2L2κ2

λ
+C0 +κL

√
C0

λ

)√
2 log(2/δ)

n

The proof is in Section EC.2 of the electronic companion to this paper. The idea is to show that

when λ> 0, zλS is stable, meaning that it does not change too much if the data changes a little bit.

Then we can use the stability property to bound the expected cost through McDiarmid’s inequality.

Proposition 4 assumes a regularity condition on c (Conditions 1, 2, and 4) and a boundedness

condition on X and Y (Conditions 3 and 4) and shows that this implies a bound on the expected cost
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of the decision rule produced by the optimizer prediction method. Condition 2, the assumption that

c(·;y) is convex for each y, is crucial because it allows us to characterize the minimizer. However, it

is necessary anyway for tractability. Condition 1, Lipschitz continuity, is also reasonable. It would

be satisfied if, for example, c(·;y) was piecewise linear and convex with bounded slopes. Condition

3 would be satisfied if X was compact. It would also always be satisfied for the Gaussian kernel.

Condition 4 would be satisfied if c was continuous and Y was bounded, if c was bounded, or simply

if taking the decision z = 0 meant that nothing happened, like in the newsvendor problem. Just

like the last section, the rate at which the error decreases is the standard machine learning rate of√
log(1/δ)

n
.

We now use Proposition 4 to prove asymptotic optimality. Proposition 4 suggests that making

the empirical cost small should also make the expected cost small. So we expect that if the objective

prediction method asymptotically minimizes the empirical cost, it should asymptotically minimize

the expected cost. In the next proposition we formalize this intuition, showing that the decision rule

produced by the optimizer prediction method, zλS, converges to the true optimal decision rule under

the additional assumptions that X is compact, arg minz E[c(z;y) |x] is continuous, K is a universal

kernel like the Gaussian kernel, and that λ goes to 0 at the appropriate rate. (See Micchelli et al.

(2006) for more information on universal kernels, but for our purposes it suffices to know that when

X is compact, K being a universal kernel means that H is dense in the set of continuous functions.)

Proposition 5 (Asymptotic optimality of optimizer prediction method). Let zλS be the

solution to

min
z(·)∈Hd

1

n

n∑
i=1

c(z(xi);yi) +λ‖z‖2Hd .

Assume the conditions of Proposition 4 are satisfied. Also assume the following.

1. X is closed and bounded.

2. There is a continuous function z∗(x) such that for all x∈X , z∗(x) = arg minz E[c(z;y) |x].

3. The kernel K is a universal kernel such as the Gaussian kernel or the exponential kernel.

4. As n→∞, λ→ 0 and λ2n
log(1/λ)

→∞.
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then E[c(zλS(x);y) |x]→minz∈Rd E[c(z;y) |x] in probability except on a subset of X of zero measure.

The proof is in Section EC.2 of the electronic companion to this paper. The condition that as

n→∞, λ→ 0 and λ2n
log(1/λ)

→∞ is satisfied, for example, if λ= 1
3√n .

6. Extensions

In this section, we present several extensions of the basic methodology we presented in earlier

sections.

6.1. Objective Prediction with Constraints

Suppose that in Problem (1), we need z to satisfy the convex constraints

fj(z)≤ 0, j ∈ J .

Because the objective prediction was developed with the requirement that z was restricted to be in

Z, this is simply a special case of the objective prediction section where Z = {z |fj(z)≤ 0, j ∈ J}.

6.2. Optimizer Prediction with Constraints

Suppose that in Problem (1), we need z to satisfy the convex constraints

fj(z)≤ 0, j ∈ J .

One approach is to take the reformulation of the kernel optimizer method (16), and simply add

the constraints fj(zi)≤ 0, ∀j ∈ J :

min
z1,...,zd

1

n

n∑
i=1

c(z1i , . . . , z
d
i ;yi) +λ

d∑
t=1

(θt)′θt

s.t. F T zt = θt, t= 1, . . . , d

fj(zi)≤ 0, j ∈ J .

Find a= K̂−1z and z0 = aTK(X,x0) as usual. If z0 is not feasible, then project it onto the feasible

region by solving the convex optimization problem

min
z∈Rd

‖z− z0‖2

s.t. fj(z)≤ 0 j ∈ J .
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Although this approach is intuitively appealing, it does not come with theoretical guarantees.

The following approach does. Relax the constraints into the objective by letting

Φ(z;y) = c(z;y) +ψ
∑
j∈J

max(0, fj(z))
2 .

Instead of solving (1), we solve

min
z∈Rd

Ey
[
Φ(z;y) |x= x0

]
,

which converges to (1) as ψ goes to infinity.

All of the results from Section 5 go through when c is replaced by Φ. In particular, if c(z;y) is

convex in z for all y, then Φ(z;y) is convex in z for all y, and we obtain the decision z0 by solving

a convex optimization problem. The error bounds and convergence results also go through with c

replaced by Φ. We rewrite the result for asymptotic convergence here for clarity.

Corollary 1 (Corollary of Proposition 5). Let zλ,ψS be the solution to

min
z(·)∈Hd

1

n

n∑
i=1

(
c(z(xi);yi) +ψ

∑
j∈J

max(0, fj(z(x
i)))2

)
+λ‖z‖2Hd .

Assume the following.

1. For some L and for any y ∈Y, c(·;y) is Lipschitz with constant L.

2. For any y ∈Y, c(·;y) is convex.

3. For some κ, supx∈X K(x,x)≤ κ2.

4. For some C0 and any y ∈Y, c(0;y)≤C0.

5. X is closed and bounded.

6. For any ψ, there is a continuous function z∗(x) such that for all x ∈ X , z∗(x) =

arg minz E[c(z;y) |x] +ψ
∑

j∈J max(0, fj(z))
2.

7. The kernel K is a universal kernel such as the Gaussian kernel or the exponential kernel.

8. As n→∞, λ→ 0 and λ2n
log(1/λ)

→∞.

9. The functions fj for j ∈ J are convex, Lipschitz, and bounded.
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Then, for any ψ,

E[c(zλ,ψS (x);y) |x] +ψ
∑
j∈J

max(0, fj(z
λ,ψ
S (x)))2

converges to

min
z∈Rd

E[c(z;y) |x] +ψ
∑
j∈J

max(0, fj(z))
2

in probability except on a subset of X of zero measure.

Proof of Corollary 1. We apply Proposition 5 with c(z;y) in Proposition 5 replaced by c(z;y) +

ψ
∑

j∈J max(0, fj(z))
2 in Corollary 1. One can check that Condition 9 guarantees that c(z;y) +

ψ
∑

j∈J max(0, fj(z))
2 is Lipschitz continuous with bounded constant across y. �

Even though the approximation ẑ(x) converges to the true feasible minimizer of (1) for all x

asymptotically, for a finite sample, ẑ(x0) may not be feasible, in which case we can select the

decision to be the projection of ẑ(x0) onto the feasible region as described above.

6.3. Objective Prediction when Decision Affects Parameter

In this section, we assume that the cost parameter y is actually a function of z. Moreover, in

addition to the data (x1, y1), . . . , (xn, yn), we have data on past decisions taken z1, . . . , zn.

In this case, the problem can be solved by considering z1, . . . , zn as part of the data. We replace

the matrix of historical auxiliary data, X, by [X,Z], the historical auxiliary data concatenated with

the historical decisions. The objective of (1) is then approximated as

h(z,x) = c(z;Y )T (K̂ +λnI)−1K([X,Z], [x, z]) (17)

where now x and z are used to compute the kernel matrix, i.e.,

K̂ij =K([xi, zi], [xj, zj]) .

Minimizing over z in (17) is a smooth nonlinear optimization problem in z. A local minimum

can be found efficiently with gradient descent or, if there are constraints, the conditional gradient

method. This is a potential improvement over Bertsimas and Kallus (2020) who approach the case

where the decision affects the parameter by discretization.
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6.4. Multistage Data-Driven Optimization

We briefly describe how we can apply the framework of this paper to the m-stage optimization

problem

min
z1,z2(·),...,zm(·,...,·)

Ey [Q (z1, z2(y1), . . . , zm(y1, . . . , ym−1), y1, . . . , yT )] , (18)

where Q is a cost function, z1 is our decision to be made now, and z2, . . . , zm are decisions to be made

at future times that depend on future uncertainty. We assume that we have data {yi1, . . . , yiT}ni=1.

For simplicity of presentation, we assume that the decisions are univariate and there is no auxiliary

data, but the extension to the multivariate case with auxiliary data should be apparent.

Let Kt be a positive-definite kernel Yt−1×Yt−1→R. Let Ht be the reproducing kernel Hilbert

space generated by the kernel Kt. We consider the empirical regularized version of the problem

(18):

min
z1∈R,z2∈H2,...,zm∈HT

1

n

n∑
i=1

Q
(
z1, z2(y

i
1), . . . , zm(yi1, . . . , y

i
m−1), y

i
1, . . . , y

i
m

)
+

m∑
t=1

λt‖zt‖2Ht (19)

This is a functional minimization problem, but using the Representer Theorem, we know that there

exists a solution to it of the form

zt(·) =
n∑
i=1

aitK
t(yi, ·) , (20)

for some scalars ait with i= 1, . . . , n and t= 1, . . . ,m. Plugging this form of zt back into (19), we

obtain the finite-dimensional optimization problem

min
z1,a2,...,am

1

n

n∑
i=1

Q
(
z1, (v

i
1)
Ta1, . . . , (v

i
T )Tam, y

i
1, . . . , y

i
m

)
+

m∑
t=1

λta
T
t K̂

tat (21)

where K̂t is the n×n matrix with K̂t
ij =Kt(yi0,t−1, y

j
0,t−1), and vti is the vector given by the ith row

of this matrix. If Q is convex for fixed y, then this a convex optimization problem. The asymptotic

optimality of this approach follows by a similar logic to the proof of asymptotic optimality in

Section 5.
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Table 1 Methods Implemented for Computational Results

abbreviation explanation of method
cart CART from Bertsimas and Kallus (2020)

kerobj kernel objective prediction from Section 4
keropt kernel optimizer prediction from Section 5

nn k-nearest neighbors from Bertsimas and Kallus (2020)
pp point prediction (predict y then optimize) using linear regression
ppnn point prediction (predict y then optimize) using k-nearest neighbors
rf random forest from Bertsimas and Kallus (2020)
saa sample average approximation

simopt simulated optimal decision using true conditional distribution

7. Computational Results

In this section, we compare the performance of the kernel objective prediction method from Section

4 and the kernel optimizer prediction method from Section 5 against several benchmarks (Table

1), including the strongest prescriptive methods from Bertsimas and Kallus (2020). We use two

different problems of the form

min
z∈Z

E[c(z;y) |x]

with simulated training and test data. For each problem we report the performance of the methods

listed in Table 1 using the abbreviations listed in the same table. For each method, instead of

the mean cost of its decisions averaged over a test set C, we report the relative cost Csaa−C
Csaa−Csimopt

,

where Csaa is the mean cost of the decisions produced by saa, and Csimopt is the mean cost of the

decisions produced by simopt. The relative cost is easier to interpret. SAA has a relative cost of

0, the true optimum decision has a relative cost of 1, and if a method has a relative cost of p, it

has closed proportion p of the gap between SAA and the true optimum. For each figure, we also

report for each instance the signal-to-noise ratio, as measured by the R2 of the true conditional

expectation E[y |x], and the prescriptive analog of the signal-to-noise ratio, defined as
Csaa−Csimopt

Csaa−Cpostopt
,

where Cpostopt is the mean cost of the optimal decisions made when knowing the true realization of

each y in the test set.

In the interest of keeping the simulations as fair as possible to all methods, we implement a

systematic way of choosing hyperparameters. For each training set, we generate a validation set of

the same size as the training set (with the size of the validation set capped at 100 samples), and
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Table 2 Method Hyperparameters

abbreviation hyperparameters
cart depth, minimum samples to split, minimum samples per leaf

kerobj γ of Gaussian kernel, regularization weight λ
keropt γ, λ, ψ (see Section 6.2), λspec (see Section 5.2)
nn number of nearest neighbors k
pp None
ppnn number of nearest neighbors k
rf depth, minimum samples to split, minimum samples per leaf
saa None

simopt None

for each method we choose the hyperparameters that minimizes decision cost on the validation

set. In Table 2, we list all of the hyperparameters we tune for each method. For cart, nn, ppnn,

and rf, we attempt to do a comprehensive search over all reasonable hyperparameter choices. For

nn and ppnn, we search over 50 values of k from 1 to n/2. For cart and rf, we search over 72 to

192 combinations of the depth from 1 to log2(n)− 1, minimum samples to split from 1 to n, and

minimum samples per leaf from 1 to n/2. For kerobj and keropt, there are no natural bounds

on the hyperparameter search space, so we need to find them manually. We do this by trying a

wide range of parameters on a log scale on a small instance each of the newsvendor and product

placement problems (described below), and expanding or reducing the range as necessary. We end

up with two ranges for all of the computational instances in the paper, one range for all of the

newsvendor problem instances and one range for all of the product placement problem instances.

We search over no more than 100 combinations of parameters within these ranges.

In order to implement cart, pp, ppnn, and rf, we rely on the popular Python package scikit-learn

version 0.21.2. To model all optimization problems, we use JuMP version 0.19.2. To solve all

optimization problems, we use Gurobi version 8.1.1. For kerobj and keropt, we have a choice of

kernel to use. We use the Gaussian kernel. For kerobj, we use the method described in Section

4 and not the more complex generalization in the electronic companion. For keropt, we use the

reformulation in Section 5.2 and the relaxation approach of dealing with constraints in Section 6.2.

All test sets contain 100 points. Each point in each figure is the average over 30 different training

and test sets.
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7.1. Newsvendor Problem

In the newsvendor problem, we need to decide each day how many newspapers to order. The

amount of profit we make depends on the number of newspapers we order, but it also depends on

the number of people who buy newspapers from us, a quantity which we will call y. In particular,

we have a unit cost d of buying a newspaper and a unit revenue r of selling a newspaper.

We do not observe y before we order the newspapers, but we do observe some quantities that y

may be correlated with, such as the weather. We summarize the quantities we can observe before

ordering as x. The problem we address is then

min
z≥0

E[dz− rmin(z, y) |x].

We assume we have data x1, . . . , xn and y1, . . . , yn.

Since we use simulated data, we have to make modeling decisions for x and y. We assume x1 is

log-normal and is supposed to represent the “newsworthiness” of the day. We assume x2 is normal

and is supposed to represent the temperature. We assume y = max(β1x1 + β2x2 + ε,0), where ε

is exponentially distributed noise. We choose β1 and β2 so that y hovers around 100. Finally, we

choose the unit cost as d= 0.5 and unit revenue as r= 1.

To compare the performance of the methods listed in Table 1, we will take Figure 1 as the

baseline (with Figure 2 showing standard deviations). We will note how all other figures differ

from the baseline. In the baseline, the kernel optimizer prediction method keropt with n = 50

performs better than the best method from Bertsimas and Kallus (2020) with n= 800. The kernel

objective prediction method kerobj performs worse than rf but better than nn. The method

keropt converges to the optimum, and kerobj appears on track to converge. Point prediction using

linear regression pp works quite well, but this can be attributed to the true model being linear,

as point prediction using nearest neighbors ppnn does much worse. These facts remain true if we

increase the signal-to-noise ratio (Figure 3) or decrease it (Figure 4). The results are also stable

when increasing the nonlinearity in the cost function by making r= 4 instead of r= 1 (Figure 5).
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Figure 1 Newsvendor Problem (Baseline): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.84. Prescriptive signal-to-noise ratio is 0.55.

Figure 2 Newsvendor Problem (Baseline): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.84. Prescriptive signal-to-noise ratio is 0.55.

Note that while absolute signal-to-noise ratios may seem high for the newsvendor problem, the

newsvendor objective function amplifies the effect of noise, and the prescriptive signal-to-noise

ratios are more reasonable.

7.1.1. Running Time In Figure 6, we plot the mean running times for each method in the

baseline setting. The running time is calculated as the sum of the training and test times after

cross-validation has chosen hyperparameters. The test set size is fixed at 100 while the training set

size varies. We also exclude running times for n= 25 because they are distorted by startup costs. We

see that keropt consistently takes around 10 times longer to run than nn, and kerobj consistently
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Figure 3 Newsvendor Problem (Increased Signal-to-Noise Ratio): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.93. Prescriptive signal-to-noise ratio is 0.67.

Figure 4 Newsvendor Problem (Decreased Signal-to-Noise Ratio): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.75. Prescriptive signal-to-noise ratio is 0.46.

has the same running time as rf, which seems to asymptotically be the same as the running time of

nn. Thus, the Big-O analyses from Sections 4 and 5, which implied that both kerobj and keropt

would take a factor of n times as long as nn, are too conservative here. Note also that the choice to

make the test set fixed instead of scaling with n (as it would with a standard 70%-30% train-test

split) disadvantages keropt, which requires very little time to test relative to the other methods.

7.1.2. Extrapolation Next, we study how well the different methods extrapolate to unseen

data. In order to do this, we draw from the 0% to 40% and 60% to 100% quantiles of the distribution

of x1 and x2 to form the training set, and we draw from the 40% to 60% quantile of the distribution



Bertsimas and Koduri: Data-Driven Optimization: A Reproducing Kernel Hilbert Space Approach
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Figure 5 Newsvendor Problem (Increased Nonlinearity in Cost Function): Relative Cost vs. Samples

25 50 100 200 400 800
Samples

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
C

os
t

Method
cart
kerobj
keropt
nn
pp
rf
saa
simopt

Note. Signal-to-noise ratio is 0.85. Prescriptive signal-to-noise ratio is 0.57. The method ppnn (average relative cost

of 0.06) is excluded for readability.

Figure 6 Newsvendor Problem (Baseline): Running Time vs. Samples
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Note. Test set size is fixed at 100.

to form the test set. The relation of y and x remains the same as before. We call this procedure

truncating the inner 20% of the training set distribution. We keep everything else, including all

parameters and the training procedures for all of the methods, the same as in the baseline Figure

1. Figure 7 displays the results of this experiment. The methods kerobj and keropt are the only

ones that perform better than pp and appear on track to recover the optimal decision.

Figure 8 displays the results of an analogous experiment where the outer 20% of the training

set distribution is truncated, and the test set is formed with the outer 20%. Here, keropt and pp

recover the optimal decision while the other methods fail.
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Figure 7 Newsvendor Problem (Inner 20% of Training Set Distribution Truncated): Relative Cost vs. Dimension

with Truncation
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Note. Signal-to-noise ratio for test set is 0.02. Prescriptive signal-to-noise ratio for test set is 0.10. The relative cost

on each test set is cut off at 0.0 and 1.0 because of high variance in relative cost of methods cart, nn, ppnn, and rf.

Figure 8 Newsvendor Problem (Outer 20% of Training Set Distribution Truncated): Relative Cost vs. Dimension

with Truncation
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Note. Signal-to-noise ratio for test set is 0.95. Prescriptive signal-to-noise ratio for test set is 0.81.

7.1.3. Effect of Covariate Dimension Since we partly motivated the development of kerobj

and keropt by the curse of dimensionality for local methods in predictive machine learning, we

lastly study the effect of increasing the dimension of x on performance in the prescriptive setting.

In Figure 9, we increase the dimension of x1, x2, β1, and β2, while decreasing the magnitude of

the components of β1 and β2 accordingly in order to maintain a stable signal-to-noise ratio. In

Figure 9, we take n= 800 and report how the relative cost of the different methods changes with
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Figure 9 Newsvendor Problem (High-Dimensional Dense β): Relative Cost vs. Dimension
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Note. Signal-to-noise ratio is 0.85. Prescriptive signal-to-noise ratio is 0.62. Number of samples is 800.

the combined dimension of β1 and β2. We can see that the curse of dimensionality in the predictive

setting translates to the prescriptive setting. The local methods from Bertsimas and Kallus (2020)

appear to have an exponential decrease in relative cost with an increase in covariate dimension.

The method keropt overcomes the curse and has stable relative cost with increasing covariate

dimension. The method kerobj does markedly better than the other methods from Bertsimas and

Kallus (2020) but still is plagued by the curse of dimensionality.

Instead of x being high-dimensional and every component of x telling us a little bit about y, we

can also have x being high-dimensional and only a few of the components tell us something about

y. In Figure 10, we look at the extreme case when only one component of x1 and one component of

x2 tell us something about y, i.e., only one component of β1 and one component of β2 is positive.

Under this sparsity assumption, keropt does about the same as in the dense case. But in contrast

to the dense case, the performance of rf and cart remains about stable.

7.2. Product Placement Problem

In the product placement problem, we need to decide how much inventory z1, . . . , zl of a product to

place in each of l nodes of a graph G = (N ,A). After we place the product, we observe a demand

in each node y1, . . . , yl, and we have to ship units of the product across arcs A so the inventory

satisfies the demand. We pay some penalty for each unit of demand not satisfied. We let the cost of
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Figure 10 Newsvendor Problem (High-Dimensional Sparse β): Relative Cost vs. Dimension
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Note. Signal-to-noise ratio is 0.85. Prescriptive signal-to-noise ratio is 0.55. Number of samples is 800.

initial product placement be h ∈R|N |, the cost of shipping products along the edges be g ∈R|A|,

and the penalty for not satisfying demand be r ∈R|N |.

We do not observe y before placing the products but we do observe some other related quantities

x. Thus, the problem we address is

min
z≥0

E[c(z;y) |x]

where

c(z;y) = h′z+ min
f,p

g′f + r′p

s.t. Nf ≥ z− y+ p

f ≥ 0

(22)

and N is the node-arc matrix of G. As usual, we don’t know the distribution of x and y, but we

have data {xi}ni=1 and {yi}ni=1. The cost function (22) is convex, but it also has a two-stage linear

structure. It turns out that for a two-stage linear cost function, the problem solved to obtain a

decision for kerobj, the probrlem solved to obtain a decision for keropt, as well as the problems

solved to obtain a decision for the methods from Bertsimas and Kallus (2020), can all be recast as

LOPs using the standard technique of creating new decision variables for each data point (see, for

example, Bertsimas and Tsitsiklis 1997, Section 6.5).

The following are further details for the structure of the cost function and the simulated data.

The graph G has d nodes and 2d arcs. The first d arcs connect the nodes circularly. The last d arcs
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are generated randomly once for each trial (i.e., 30 different sets of arcs are generated for each point

plotted). We also provide results for a dense graph, which turn out to be similar. We use that x is

log-normal with dimension d, and y is generated as max(βx+ ε,0), where β is some d× d matrix

(generated once randomly for each trial), and ε is exponentially distributed noise. The costs are

h= (2, . . . ,2), g= (1, . . . ,1), and r= (10, . . . ,10).

Moving on to the results, Figure 11 is the baseline for the product placement problem with

d= 5. Like in the newsvendor problem, keropt performs better with n= 50 data points than the

strongest method from Bertsimas and Kallus (2020) does with n= 800 data points. Unlike in the

newsvendor problem, kerobj clearly outperforms rf and nn. Again, pp performs well but has the

unfair advantage of knowing the model is linear, as illustrated by the performance of ppnn. It is

also apparent that, as we would expect from a point prediction algorithm, pp does not converge to

optimality. When changing the signal-to-noise ratio (Figure 13 and Figure 14), the performance of

keropt remains about the same. But the performance of kerobj relative to nn gets better with

increased noise. In Figure 15, we go back to the baseline noise and increase the dimension (of x,

y, and z, which all have the same dimension in this problem) to d= 10. The gulf between keropt

and the other methods becomes even more dramatic, with keropt doing better with n= 25 than

method other than pp does with n= 800. In Figure 16, we change the cost function by making the

graph G dense, and the results are very similar.

7.2.1. Running Time Figure 17 shows running times for the most computationally demanding

setting, with dimension d= 10 and the dense graph G. Running time is calculated as the sum of

training time and test time after cross-validation, with the test set size fixed to 100 points. Since this

is a two-stage problem, the number of variables in the linear or quadratic optimization formulations

for each of the methods scales linearly with the number of data points for kerobj, keropt, and

all methods from Bertsimas and Kallus (2020). As predicted in Sections 4 and 5, with the test

size constant, this results on all of these methods scaling identically with n. If the test set size

instead of being constant scaled linearly with n, we would expect keropt to scale better than the

other methods, which we see in Figure 18 with keropt around 10 times faster than all of the other

methods when n= 800.
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Figure 11 Product Placement Problem (Baseline): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.59. Prescriptive signal-to-noise ratio is 0.54. The method ppnn (average relative cost

of -0.03) is excluded for readability.

Figure 12 Product Placement Problem (Baseline): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.59. Prescriptive signal-to-noise ratio is 0.54. The method ppnn (average relative cost

of -0.03) is excluded for readability.

7.2.2. Extrapolation To assess how well the methods perform with extrapolating to unseen

data, in Figure 19, we truncate the inner 20% of the distribution of x for the training data, and

only use this inner 20% for the test data. Nothing else changes from the baseline Figure 11. Unlike

in the newsvendor problem, this truncation seems to make the prescriptive problem easier. All

methods outperform their baseline in Figure 11, but keropt still performs the best. In Figure 20,

we truncate the outer 20% of the distribution of x for the training data, and use only the outer
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Figure 13 Product Placement Problem (Increased Signal-to-Noise Ratio): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.93. Prescriptive signal-to-noise ratio is 0.84.

Figure 14 Product Placement Problem (Decreased Signal-to-Noise Ratio): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.34. Prescriptive signal-to-noise ratio is 0.36. The method ppnn (average relative cost

of -0.57) is excluded for readability.

20% for the test data. Like in the newsvendor problem, keropt and pp recover the optimal decision

while the other methods fail.

7.2.3. Effect of Dimension To close, we further explore the effect of varying dimension.

Earlier in the section we increased the dimension of x and z at the same time. Here, we separate

the effect of increasing x and z. In Figure 21, we fix the dimension of z and vary the dimension

of x, keeping the signal-to-noise ratio constant. This leads to a curse of dimensionality like in the

newsvendor problem, although less pronounced. The method keropt overcomes the curse. The

method kerobj doesn’t but still does better than the local methods. In Figure 22, we fix the
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Figure 15 Product Placement Problem (Increased Dimension): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.61. Prescriptive signal-to-noise ratio is 0.63. The method ppnn (average relative cost

of -0.34) is excluded for readability.

Figure 16 Product Placement Problem (Increased Dimension and Dense Graph): Relative Cost vs. Samples
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Note. Signal-to-noise ratio is 0.60. Prescriptive signal-to-noise ratio is 0.67. The methods ppnn (average relative cost

of -0.31) is excluded for readability.

dimension of x and vary the dimension of z. We see that changing the dimension of z by itself does

not hurt or help any of the methods.

8. Conclusion

We started in Sections 3 by providing an overview of the framework of reproducing kernel Hilbert

spaces. In Section 4 and Section 5, we used the framework to develop two new methods for solving
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Figure 17 Product Placement Problem (Increased Dimension and Dense Graph): Running Time vs. Samples
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Note. Test set size is fixed at 100.

Figure 18 Product Placement Problem (Increased Dimension and Dense Graph): Running Time vs. Samples
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Note. Test set size is same as training set size.

the problem

minz Ey[c(z;y) |x= x0],

given historical data of x and y. We proved the asymptotic optimality of both methods and showed

that their rates of convergence match standard rates from the machine learning literature. We

provided tractable and scalable reformulations of both methods when the naive formulation was not

tractable or scalable. In Section 6, we showed how to incorporate constraints and demonstrated a

tractable way to handle the causal inference setting when the decision z affects y. To demonstrate

the applicability of the ideas in this paper to other data-driven problems in operations research, we

provided a preliminary proposal of a method to solve multistage optimization problems.
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Figure 19 Product Placement Problem (Inner 20% of Training Set Distribution Truncated): Relative Cost vs.

Samples
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Note. Signal-to-noise ratio for test set is 0.00. Prescriptive signal-to-noise ratio for test set is 0.53.

Figure 20 Product Placement Problem (Outer 20% of Training Set Distribution Truncated): Relative Cost vs.

Samples
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Note. Signal-to-noise ratio for test set is 0.85. Prescriptive signal-to-noise ratio for test set is 0.90.

In Section 7, we examined the performance of the two new methods on two different problems

compared to a variety of existing methods. One of the methods, the kernel objective prediction

method, offered a moderate improvement over existing methods in certain situations. However,

the other method, the kernel optimizer prediction method, performed substantially better than

all existing methods in every condition tested. (We are disregarding point prediction with linear

regression, which was sometimes comparable, but had the unfair advantage of knowing the form of

the data-generation model.) The magnitude of improvement was such that in most conditions, the
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Figure 21 Product Placement Problem (Varying Covariate Dimension): Relative Cost vs. Dimension
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Note. Signal-to-noise ratio is 0.60. Prescriptive signal-to-noise ratio is 0.54. The method ppnn (average relative cost

of -0.18) is excluded for readability. Number of samples is 100.

Figure 22 Product Placement Problem (Varying Decision Dimension): Relative Cost vs. Dimension
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Note. Signal-to-noise ratio is 0.60. Prescriptive signal-to-noise ratio is 0.53. The method ppnn (average relative cost

of -0.09) is excluded for readability. Number of samples is 100.

kernel optimizer prediction method achieved lower cost with n= 50 than any existing method did

with n= 800. Moreover, when the training set distribution was truncated, it was the only one able

to recover the optimal decision, and when the covariate dimension increased, it largely maintained

its performance while the others’ degraded exponentially. These improvements did not come at the

expense of running time, as its running time scaled similarly to or better than the existing methods.
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