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Mass transit remains the most efficient way to service a densely-packed commuter population. However,

reliability issues and increasing competition in the transportation space have led to declining ridership across

the United States, and transit agencies must also operate under tight budget constraints. Recent attempts at

using bus network re-design to improve ridership have attracted attention from various transit authorities.

However, the analysis seems to rely on ad hoc methods, for example, considering each line in isolation and

using manual incremental adjustments with backtracking. We provide a holistic approach to designing a

transit network using column generation. Our approach scales to hundreds of stops, and we demonstrate its

usefulness on a case study with real data from Boston.
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1. Introduction

The United Nations (2014) projects that urban populations will increase from 54 percent of the

global population in 2014 to 66 percent in 2050. Together with overall population growth, this

represents an increase of 2.5 billion people. With more of the world’s population living in cities,

it is increasingly important to provide transportation that can efficiently serve a densely-settled

population while also achieving societal goals of sustainability and equity.

Mass transit is critical in achieving these goals; however, in recent years, it has faced challenges

such as restrictive public budgets and significant outside competition from ride-sharing companies

and private bus or shuttle services (Bouton et al. 2015). Many American cities such as Philadelphia

(Laughlin 2018), Los Angeles (Nelson 2018), Washington D.C. (Siddiqui 2018) are seeing declining

bus ridership, prompting transit authorities to consider what can be done to halt this decline.
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A recent bus network re-design in Houston led to a 6.8% increase in ridership across the bus

and light rail networks (Binkovitz 2016), inspiring other cities to also consider re-designing their

bus networks. Examples include Philadelphia (Laughlin 2017), Boston (Vaccaro 2018), St. Louis

(Schlinkmann 2018), and Edmonton (Stolte 2018).

The problem of designing a set of sequences of stops, called lines or routes, in order to service

a commuting population is called the Transit Network Design Problem (TNDP). The TNDP is a

challenging combinatorial optimization problem and has been well-studied in the literature, which

we survey in Section 2. Despite this body of work, advanced techniques are not used to a significant

extent in the planning process for actual network design. For instance, the Service Delivery Policy

outlined by the Massachusetts Bay Transportation Authority (2017) analyzed the network by

evaluating bus lines individually without considering the network as a whole, and improvements to

bus networks were performed as incremental adjustments to individual bus lines. Such a strategy

clearly limits the scope of a potential bus network re-design.

One of the main barriers to leveraging advanced techniques is scalability; many algorithms have

not been proven on the scale that real transit networks require, which can be up to hundreds or

thousands of stops. Due to the combinatorial explosion in the number of possible service routes,

much of the work in this area relies on the use of heuristics and metaheuristics, or limits the scope

to selection of a set of pre-existing transit lines. Our work makes the following contributions:

1. We present an optimization model that generates new transit networks while addressing the

issues of interest to transit authorities, which are principally ridership, connectivity, and bud-

get. Ridership represents serviced demand, and is also the main driver of revenue to a transit

agency. Connectivity ensures that commuters can go from origin to destination in a relatively

direct manner. Budget recognizes the labor and financial constraints that agencies operate

under.

2. We address two crucial interests from the commuter perspective: number of transfers, and

travel time. If either of them are not adequately serviced, then transit ridership will decrease.

Therefore, properly accounting for them is key to generate practical transit network designs

that addresses commuters’ needs.

3. We develop a scalable algorithm based on column generation, and demonstrate its efficacy

and tractability on a real network in Boston with hundreds of stops and thousands of edges.

The rest of the paper is outlined as follows. In Section 2, we provide an overview of the literature

on the TNDP. In Section 3, we describe our model and algorithmic approach. In Section 4, we show

computational results on a variety of case studies involving both synthetic and real data. Finally,

we offer concluding remarks in Section 5.
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2. Literature Review

The TNDP is well-studied; for a review of material until the 1980s, see Magnanti and Wong (1984),

and for more recent reviews, see Guihaire and Hao (2008) and Farahani et al. (2013).

The goal of the TNDP is to design a set of lines for buses or trains to serve transit demand in a

cost-effective way. Auxiliary objectives important to transit operators such as service area coverage

may also be incorporated. Most methods either begin with a pre-specified set of potential lines or

iteratively generate new lines before selecting a final set of lines to operate.

Much of the early work on the TNDP focused on heuristic solution methods. Typically, the

origin-destination demand matrix was sorted from highest to lowest demand, and bus routes were

generated using fast shortest-path computations between high-demand nodes. Mandl (1980) gen-

erate an initial line set by computing the shortest paths between terminal nodes, and then uses

local search to iteratively improve the total travel time on the network. Ceder and Wilson (1986)

and Baaj and Mahmassani (1995) extended this work by including additional lines that are no

longer than a factor of the length of the shortest paths. In addition, Baaj and Mahmassani (1995)

considered criteria for local node insertions to further expand the generated lines. More recently,

Gattermann et al. (2017) generated lines using the minimum spanning tree on the transit network.

Along a similar vein, metaheuristics such as genetic algorithms (Cipriani et al. 2012, Walteros

et al. 2013), simulated annealing (Zhao and Zeng 2006), and tabu search (Lownes and Machemehl

2010) have also been used to iteratively improve upon initial heuristically-generated line sets. Zhao

and Ubaka (2004) introduced the notion of route-directness and network-directness constraints to

capture geometric characteristics of desirable lines, and used a hill-climb search algorithm to make

local improvements to an initial network. Yu et al. (2012) used ant-colony optimization and consid-

ered direct demands and single transfers in route design. Pinelli et al. (2016) combined and made

local improvements to common trajectories gleaned from mobile phone data to propose modified

bus lines.

Another body of work has employed mathematical optimization to solve network design prob-

lems. Benefits of mathematical optimization include modeling flexibility, problem insight, and

certificates of optimality or bounds on solution quality; however, many models have had scalability

issues at practical network sizes. Most approaches split the decision process into multiple phases,

including the optimal selection of a subset of transit stops (Murray 2003), the selection of a subset

of given transit lines Guan et al. (2006), or frequency-setting and passenger routing on a set of

given transit lines (Bussieck et al. 1997, Goossens et al. 2004, Schöbel and Scholl 2006, Cancela

et al. 2015). Even with these decompositions, Guan et al. (2006) scaled to a network of only 49

stops, which was preprocessed to reduce the size to nine stops. Cancela et al. (2015) additionally
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considered the passenger perspective through a lower-level assignment model, and scaled to a larger

network of 84 nodes and 143 edges. Goossens et al. (2004) performed computational experiments

on a network of 141 nodes and 177 edges.

Relatively fewer papers in mathematical optimization have addressed the critical but more com-

plicated step of generating new transit lines. Wan and Lo (2003) used mixed-integer optimization

to create a fixed number of routes between given bus stops that would minimize operating costs

subject to capacity constraints. However, the formulation is not practical, scaling only to a network

of ten stops. Barra et al. (2007) used constraint programming to define service level goals and

budget limits, but it was computationally difficult to find a solution even for a small fifteen-stop

case. Rather than relying purely on branch-and-bound, Maŕın and Jaramillo (2009) used a variant

of Benders decomposition to solve a network design problem on 24 stops and 264 edges.

In contrast to these smaller-scale examples, Borndörfer et al. (2007) employed column generation

to scale up their model to a network of 410 stops and 891 edges, a truly large-scale application.

Their model sought to generate a set of lines, choose a subset of lines to operate, and set service

frequencies in order to minimize a combination of total operating costs and travel time. However,

they remained closely tethered to the original network design by only considering already-extant

edges in their computational study, so that the new lines were rearrangements of existing lines.

Furthermore, in their model of commuter behavior, they ignored transfers between lines of the

same mode and allowed for passenger flows of unlimited travel times and transfers in their model.

Borndörfer and Karbstein (2012) expanded on Borndörfer et al. (2007) by modeling passenger

behavior in greater detail; in particular, passenger flows were penalized if they involve a transfer.

However, although the model improved the accounting of passenger flows, it did not consider the

problem of generating new lines, instead taking the initial set of lines as given. In more recent work,

Jin et al. (2016) also used column generation to generate bus lines, although they focused on the

smaller-scale application of responding to disruptions on targeted subsets of the transit network.

Our work is most similar to Borndörfer et al. (2007) and Borndörfer and Karbstein (2012). As

compared to Borndörfer et al. (2007), we explicitly model both direct and indirect passenger routes

while generating new transit lines and also setting frequencies on large-scale networks. In addition,

rather than allowing continuous frequencies, we select from a subset of frequencies, thus avoiding

the issue of generating many lines of unrealistically low frequency. In contrast to Borndörfer and

Karbstein (2012), we do not model distinct commuter paths along the network in as fine detail; we

still account for travel times and transferring, but opt for a less granular approach in favor of gaining

the ability to generate new transit lines. Finally, in contrast to both works, our transit networks

only serve commuters who experience reasonable travel times, rather than allowing arbitrarily high

travel times in passenger flows.
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3. Methods

We consider the problem of designing a transit network, and provide a description of the problem

parameters in Table 1.

Table 1 Summary of the Notation

Symbol Description

N set of all transit stops
D set of all origin-destination pairs (commutes)
Tu,v the set of all viable transfer stops for commute (u, v).
L set of all transit lines
F set of all service frequencies
stops(`) set of all stops on line `
du,v demand for commute (u, v)
c` total travel time along line `
δu,v direct travel time between stops u and v
ρf relative cost at frequency f
γf relative level of direct ridership at frequency f
λf relative level of transferring ridership at frequency f
N number of transit stops, |N |
B budget available for network design

The transit network is built on a set of N transit stops, which is denoted by N and indexed

from 1, . . . ,N . The transit network’s purpose is to service commuting demand; the notation du,v

will be used to refer to the demand for the commute from origin u to destination v. The set of all

commutes with positive demand will be referred to as D. Each commute may be associated with

a number of different route options, each of which is a different sequence of stops that can take a

commuter from origin u to destination v.

Vehicles on the network are set to travel along a fixed sequence of stops, which we call a line.

In practice, transit lines are typically bidirectional, so we take each line to actually represent two

lines traveling in opposite directions between the terminal stops. We assume that the operating

cost of a transit line ` is related to the sum of the travel times δu,v between pairs of consecutive

stops u and v on the line; this summation will be denoted by c`. Each line is also associated with a

frequency chosen from a set of frequencies F . For example, this set could comprise the frequencies of

dispatching vehicles every 15, 30, and 60 minutes (high, medium, and low frequencies, respectively).

We further assume that the operating cost of a transit line should be related to its service frequency

in addition to its total length, and that at a given service frequency f ∈F , the cost of the transit

line is given by c`ρf , where the constant ρf scales the cost appropriately with the frequency. This

simplified cost structure omits fixed costs, but our model can easily be extended to account for

such cost structures. The total budget available is given by B.
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We also introduce the coefficients γf and λf for frequency level f ∈ F to denote relative levels

of direct ridership and transferring ridership, respectively. In our model, these coefficients are set

relative to the highest frequency, which should accrue the highest levels of ridership while also

costing the most. Accordingly, for the highest service frequency, we set the relevant cost coefficient

ρf and direct ridership coefficient γf both to equal 1.0, indicating that the full cost is incurred and all

of the ridership is captured. The transferring coefficient λf might be less than 1.0 even at the highest

level of frequency if commuters are not willing to make transfers. At lower service frequencies, all

three coefficients should decay as the transit service becomes cheaper and less appealing, especially

as commuters are unwilling to make transfers at low service frequencies. This intuition can be used

to set reasonable coefficients, where the cost coefficients are roughly proportional to frequency level,

the direct ridership coefficients might decay more slowly due to inelasticity in commuting demand,

and the transferring ridership coefficients might decay more quickly due to commuter aversion to

transfers. Some illustrative examples are given in the computational experiments; however, in a

practical application, the ridership coefficients should be determined using survey data.

We use boldface letters to denote vectors, and generalized inequalities on them are taken to be

element-wise. The boldface letter e refers to the vector of all ones, and |S| refers to the cardinality

of set S.

3.1. Serving direct passengers

For simplicity, we first consider a network where commuters only take transit if they can get from

origin directly to destination without transfers. We also first assume that there is a set L of all

feasible transit lines; later in this section, we will describe how to efficiently construct this set. This

initial model uses the following variables:

� x`,f : 1 if line `∈L is operated at frequency level f , 0 otherwise, and

� θu,v: the fraction of demand for commute (u, v)∈D that is served by the network.

To design a network that has high ridership, we solve the following integer optimization problem:

TNDP(L) = max
x,θ

∑
(u,v)∈D

du,vθu,v (1a)

s.t. θu,v ≤
∑
`∈L:

u∈stops(`),
v∈stops(`)

∑
f∈F

γfx`,f ∀(u, v)∈D, (1b)

∑
`∈L

∑
f∈F

c`ρfx`,f ≤B (1c)∑
f∈F

x`,f ≤ 1 ∀`∈L, (1d)

θ≤ e (1e)

x∈ {0,1}L×F . (1f)
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The objective (1a) maximizes the total demand that is served by the transit network. Constraint

(1b) requires that some line that connects both u and v should be operated in order for those

commuters to be serviced, and also scales the ridership according to the frequency coefficients γf .

Constraint (1c) is the budget constraint on the lines to be operated. Constraint (1d) requires that

each line can only be operated at one frequency. Constraint (1e) enforces that the fraction of demand

served should be at most one, which is important in case a particular commute can be served by

multiple appealing lines in constraint (1b). Note that since D only includes commutes (u, v) with

positive demand du,v and since the objective maximizes the total demand served, nonnegativity

constraints on θ are not necessary. Capacity constraints are omitted here for ease of notation, but

can easily be incorporated.

Our model focuses on the operator perspective and seeks to maximize ridership, which a common

metric used by transit authorities to measure operating performance (Binkovitz 2016). In maxi-

mizing ridership, we allow for the case that a transit network is unable to service all demand. This

is important because when budgets are tight, or when a transit agency is considering expansion

into new areas, the requirement that all demand is served may be onerous.

Our model considers a discrete set of frequencies to choose from, which follows the convention

of Goossens et al. (2004) and Borndörfer and Karbstein (2012). A possible simplification might

be instead to use continuous x variables to model frequencies, as in Borndörfer et al. (2007).

However, in practice, the frequencies are actually determined from a discrete set; this set is often

small, sometimes even just at the granularity of “high” versus “low” frequency. In addition to more

closely reflecting true operator decision-making, using a discrete set of frequencies also allows for

the modeling of effects such as diminishing marginal returns through appropriate setting of the

ρf and γf variables. Finally, choosing frequencies from a discrete set makes for more interpretable

networks, rather than encouraging many lines of very low frequency.

Problem (1) is in general difficult to solve, as the set L of all feasible transit lines will be extremely

large. However, it can be solved efficiently using column generation. For a comprehensive overview

of column generation, see Barnhart et al. (1998). We begin with the linear relaxation, following

examples such as Borndörfer et al. (2007) and Jin et al. (2016):

MP(L) = max
x,θ

∑
(u,v)∈D

du,vθu,v (2a)

s.t. θu,v ≤
∑
`∈L:

u∈stops(`),
v∈stops(`)

∑
f∈F

γfx`,f ∀(u, v)∈D, (2b)

∑
`∈L

∑
f∈F

c`ρfx`,f ≤B (2c)
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f∈F

x`,f ≤ 1 ∀`∈L, (2d)

θ≤ e (2e)

x≥ 0. (2f)

which we call MP(L) to stand for the master problem. We have not written out the constraint

x≤ e, since constraint (2d) combined with the nonnegativity constraint on x will naturally enforce

the elementwise upper bound on x.

The dual of MP(L) is as follows:

D(L) = min
p,q,r,s

Bq+
∑
`∈L

r` +
∑

(u,v)∈D

su,v (3a)

s.t. −
∑

(u,v)∈D:
u∈stops(`),
v∈stops(`)

γfpu,v + c`ρfq+ r` ≥ 0 ∀(u, v)∈D,∀f ∈F ; (3b)

pu,v + su,v = du,v ∀(u, v)∈D, (3c)

p, q,r, s≥ 0. (3d)

Evidently, by solving the dual (3), we also solve the primal (2).

Our column generation algorithm proceeds iteratively as follows. First, we begin with a restricted

set of transit lines L̄ ⊂ L and the corresponding subset of variables (x`,f )`∈L̄,f∈F . We solve the

restricted master problem, which is the primal (2) on this restricted set to get a primal solution x̄

and corresponding dual solution (p̄, q̄, r̄, s̄). To see if the solution x̄ is optimal for the full problem,

we check whether there exists some line ` ∈ L \ L̄ at frequency f ∈ F that violates the constraint

(3b), i.e.,

c`ρf q̄ <
∑

(u,v)∈D:
u∈stops(`),
v∈stops(`)

γf p̄u,v. (4)

The right-hand-side of the violated constraint (4) is interpreted as the increase in the primal rid-

ership objective due to servicing commutes (u, v) on line `. For example, a dual variable pu,v might

represent increased ridership from commutes (u, v) that are not already served by the network,

either because no line exists connecting stops u and v, or because any connecting lines were not

included in the network due to the budget constraint. The left-hand-side of the violated constraint

(4) contains dual variable q, which represents the increase in ridership associated with a unit

increase in budget, and is in the appropriate units converting budget to ridership. Condition (4)

therefore requires that, for a new line to be profitable, the ridership increase should outweigh the
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associated costs of the line. For example, if the budget constraint is not tight, then q̄= 0 by com-

plementary slackness, and the algorithm searches for any lines with positive ridership. Note that

for the newly generated line `, complementary slackness implies that r` = 0, and so is omitted from

(4).

New profitable lines ` can be generated by solving the subproblem, which is formulated as an

integer optimization problem. When only considering the cost of connecting adjacent stops, the

subproblem is a shortest path problem. However, the problem is more complicated with the addi-

tional ridership computation. To solve the subproblem, we first define a directed graph G(V,E) on

nodes V and directed edges E . The node set V consists of the transit stops N (labeled 1, . . . ,N),

the source (labeled 0), and the sink (labeled N + 1). The edge set E consists of the following types

of directed edges:

� edges from the source (0) to all stop nodes u∈N ,

� edges between the stop nodes, and

� edges from the stop nodes u∈N to the sink (N + 1).

The subproblem uses the following decision variables:

� hi,j: 1 if edge (i, j)∈ E is used, 0 otherwise, and

� gu,v: 1 if commute (u, v)∈D can be served, 0 otherwise.

A transit line corresponds to a simple path from source to sink in G(V,E). In practice, transit

lines are typically bidirectional, so we take each transit line to actually represent two transit lines

traveling in opposite directions between the terminal stops. Therefore, a transit line can serve any

commuters whose origin and destination are both on the path from source to sink regardless of

ordering, and the relationship between the h and g variables is enforced by the following constraints:

gu,v ≤
∑

v′∈In(u)

hv′,u ∀(u, v)∈D, (5a)

gu,v ≤
∑

u′∈In(v)

hu′,v ∀(u, v)∈D, (5b)

where the right-hand sides of constraints (5) indicate that nodes u and v respectively are present in

the generated line. We use In(u) (Out(u)) to refer to the set of nodes, including the source (sink),

that have edges incoming to (outgoing from) node u. Constraints (5) are needed because the g

variables will be maximized in the objective function.

Recalling that the general cost c` of a transit line can be computed by summing the travel times

between consecutive stops on the line, we search for a profitable line at frequency f ∈F by solving

the following integer optimization problem:

SPf (p̄, q̄; G(V,E)) = max
h,g

∑
(u,v)∈D

γf p̄u,vgu,v −
∑

(u,v)∈E

ρf q̄δu,vhu,v (6a)
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s.t.
∑
u∈N

h0,u = 1 (6b)∑
u∈N

hN+1,u = 1 (6c)∑
v∈Out(u)

hu,v −
∑

v∈In(u)

hv,u = 0 ∀u∈N , (6d)

gu,v ≤
∑

v′∈In(u)

hv′,u ∀(u, v)∈D, (6e)

gu,v ≤
∑

u′∈In(v)

hu′,v ∀(u, v)∈D, (6f)∑
(u,v)∈E:
u∈S,v∈S

hu,v ≤ |S|− 1 ∀S ⊂ V, (6g)

h∈ {0,1}E ,g ∈ {0,1}D. (6h)

In Problem (6), the objective (6a) checks for the profitability condition (4). Constraints (6b)

through (6d) are network flow constraints, and constraints (6e) and (6f) correspond to (5). Con-

straints (6g) are subtour elimination constraints that are required to prevent the formation of

edge-disjoint cycles; otherwise the objective could gain credit for connecting stops belonging to

separate cycles. Since the number of potential cycles in the graph is large, these constraints are

added lazily using branch-and-cut: violated constraints are identified and added to the problem at

incumbent integral solutions.

Although the subproblem has been formulated in a basic way, a variety of conditions of interest

to transit planners can be modeled using additional constraints. We provide some illustrative

examples here.

� Depots: In some cities, transit lines must begin and end at certain predesignated depot stops.

This can be modeled in the subproblem by eliminating all edges between the source and

non-depot nodes, and similarly for the sink.

� Edge Lengths: It may not be desirable for buses to make stops that are too close or far

apart. This can be modeled in the subproblem by eliminating all edges between stops that are

either too short or too long, which has the additional benefit of significantly sparsifying the

graph G(V,E).

� Line Length: It may not be desirable for a transit line to contain too many or too few stops.

This can be modeled in the subproblem by restricting the number of edges that are used.

� Obstacles: If it is impossible to travel from stop u to stop v, then that edge can be eliminated.

Algorithm 1 describes the full column generation scheme.

Note that the subproblem SPf (p̄, q̄; G(V,E)) has been defined for a particular frequency f ∈F .

In order for the master problem to be solved to optimality, there should not be any frequency for
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Algorithm 1 Column generation algorithm for TNDP (1)

Require: Initial set of transit lines L̄, tolerance ε > 0

1: Solve MP(L̄), get primal solution (x̄, θ̄) and dual solution (p̄, q̄, s̄)

2: Jf ← objective value of SPf (p̄, q̄; G(V,E)) for all f ∈F

3: `f ← transit line solution to SPf (p̄, q̄; G(V,E)) for all f ∈F

4: while maxf∈F Jf > ε do

5: f∗← arg maxf∈F Jf

6: L̄← L̄∪ `f∗

7: Solve MP(L̄), get primal solution (x̄, θ̄) and dual solution (p̄, q̄, s̄)

8: Jf ← objective value of SPf (p̄, q̄; G(V,E)) for all f ∈F

9: `f ← transit line solution to SPf (p̄, q̄; G(V,E)) for all f ∈F

10: Solve TNDP(L̄) (a mixed-integer optimization problem), get solution (x∗,θ∗)

11: return x∗

which a transit line of positive reduced cost can be found, which means that the subproblem would

need to be solved at all frequencies. To save computation time, we can modify Algorithm 1 so that

early iterations solve the subproblem at just one frequency, and only check the other frequencies

if no transit line of positive reduced cost can be found. Other column management strategies can

be found in Barnhart et al. (1998).

3.2. Serving passengers with transfers

The assumption of Problem (1) that commuters will only take transit if it can get them directly

from origin to destination is a restrictive one. In ignoring transferring commuters, transit networks

are forced to be excessively connected to gain ridership. However, this could lead to significant

redundancies and therefore cost inefficiencies in the transit network. We therefore generalize to the

case with two lines, where commuters are willing to make a single transfer. We call the model in

Section 3.1 the direct-route model, and we call the model in this section the single-transfer model.

It is possible to generalize our approach to an arbitrary number of transfers, but we restrict our

attention to a single transfer for two reasons. The main reason is that more than one transfer

tends to deter most of the population from taking transit, with the exception of lower-income,

transit-dependent riders. The time lost due to an inefficient sequence of transfers tends to fall

disproportionately on these passengers who cannot afford alternatives, so we focus on allowing only

one transfer in the interest of equity. In focusing on only a single transfer, we follow the example

of papers such as Baaj and Mahmassani (1995) and Borndörfer and Karbstein (2012).
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Problem (1) can be extended to incorporate single transfers by adding variables z(u,v),w ∈ [0,1]

for (u, v)∈D and w ∈ Tu,v, where Tu,v is defined as a set of stops that could serve as viable transfer

stops between stops u and v; these variables denote the fraction of commuters for (u, v) who make

a transfer through intermediate station w ∈ Tu,v. We further discuss Tu,v at the end of this section;

for now, it suffices to say that Tu,v can be precomputed outside of the master problem. With the

addition of these new variables, constraint (1b) is replaced with the following:

θu,v ≤
∑
`∈L:

u∈stops(`),
v∈stops(`)

∑
f∈F

γfx`,f +
∑

w∈Tu,v

z(u,v),w ∀(u, v)∈D, (7a)

z(u,v),w ≤
∑
f∈F

∑
`∈L:

u∈stops(`),
v 6∈stops(`),
w∈stops(`)

λfx`,f ∀(u, v)∈D,∀w ∈ Tu,v; (7b)

z(u,v),w ≤
∑
f∈F

∑
`∈L:

u 6∈stops(`),
v∈stops(`),
w∈stops(`)

λfx`,f ∀(u, v)∈D,∀w ∈ Tu,v. (7c)

The first summation in constraint (7a) is as before and represents the direct-route commute options;

the second summation represents the single-transfer commute options. Although the z variables

might appear quite numerous at first glance, the set Tu,v may be substantially smaller than the total

number of stops for a variety of reasons. For example, there may be only a limited number of stops

that are large enough to sustain multiple higher-frequency transit lines, and of those stops, some

may be too out-of-the-way to expect commuters to willingly use them as a mid-commute transfer.

Constraints (7b) and (7c) together indicate that the ridership of a particular (u, v) commute via

a transfer through w would depend on the minimum service level between the two stages of the

commute. The λf coefficients are intended to model the fact that commuters will be less likely to

make transfers at lower frequency levels, and the original formulation (2) is recovered when λf = 0

for all f ∈F . We will refer to the single-transfer master problem with constraints (7) as MP2(L).

The dual for the new master problem, with dual variables π(1) and π(2) corresponding to con-

straints (7b) and (7c), is as follows:

D2(L) = min
p,q,r,s,

π(1),π(2)

Bq+
∑
`∈L

r` +
∑

(u,v)∈D

su,v (8a)

s.t.
∑

(u,v)∈D:
u∈stops(`),
v∈stops(`)

γfpu,v +
∑

(u,v)∈D:
u∈stops(`),
v 6∈stops(`)

∑
w∈Tu,v∩stops(`)

λfπ
(1)

(u,v),w

+
∑

(u,v)∈D:
u6∈stops(`),
v∈stops(`)

∑
w∈Tu,v∩stops(`)

λfπ
(2)

(u,v),w ≥ c`ρfq+ r`
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∀`∈L,∀f ∈F ; (8b)

pu,v + su,v = du,v ∀(u, v)∈D, (8c)

−pu,v +π
(1)

(u,v),w +π
(2)

(u,v),w = 0 ∀(u, v)∈D,∀w ∈ Tu,v; (8d)

p, q,r, s,π(1),π(2) ≥ 0 (8e)

As the only source of infeasibility in the dual comes from constraint (8b), we have a natural

extension of the condition for the direct-route model in equation (4) that now accounts for single-

transfer commuters. A new transit line ` ∈ L \ L̄ may be added to L̄ if the following condition is

met:

c`ρf q̂ <
∑

(u,v)∈D:
u∈stops(`),
v∈stops(`)

γfpu,v +
∑

(u,v)∈D:
u∈stops(`),
v 6∈stops(`)

∑
w∈Tu,v∩stops(`)

λfπ
(1)

(u,v),w +
∑

(u,v)∈D:
u 6∈stops(`),
v∈stops(`)

∑
w∈Tu,v∩stops(`)

λfπ
(2)

(u,v),w. (9)

The dual variables pu,v, π
(1)

(u,v),w, and π
(2)

(u,v),w all correspond to the ridership that stands to be gained

by servicing commute (u, v): either by servicing the commuters directly, or indirectly via a transfer

through w.

Modifying the subproblem to accommodate the new condition (9) is straightforward, but requires

more variables to model the various cases of servicing demand. For the first case where the com-

mutes are connected directly, we can use the same g variables as before. For the second case,

where the commute is serviced indirectly by transferring to or from another line, we introduce the

variables g(1) ∈ {0,1}D and g(2) ∈ {0,1}D, and add the following constraints for all commutes (u, v):

g(1)
u,v ≤

∑
v′∈In(u)

hv′,u, (10a)

g(1)
u,v ≤

∑
w∈Tu,v

∑
v′∈In(w)

hv′,w, (10b)

g(1)
u,v ≤ 1−

∑
u′∈In(v)

hu′,v, (10c)

g(2)
u,v ≤

∑
u′∈In(v)

hu′,v, (10d)

g(2)
u,v ≤

∑
w∈Tu,v

∑
v′∈In(w)

hv′,w, (10e)

g(2)
u,v ≤ 1−

∑
v′∈In(u)

hv′,u. (10f)

Finally, we modify the subproblem objective as follows:

max
h,g

∑
(u,v)∈D

γf p̄u,vgu,v +
∑

w∈Tu,v

λf

(
π

(1)

(u,v),wg
(1)
u,v +π

(2)

(u,v),wg
(2)
u,v

)− ∑
(u,v)∈E

ρf q̄δu,vhu,v. (11)
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The coefficients γf and λf present a model of commuter behavior that is admittedly a sim-

plification, as it separates dependence on service frequency from other factors such as in-vehicle

travel time (which will be discussed in Section 3.3) and any idiosyncratic features of individual

lines. However, it is a useful simplification that allows for consideration of service frequency while

generating new transit lines. Further dependence of these coefficients on individual lines can be

incorporated at the expense of substantial additional complexity in the subproblem. An alternative

heuristic approach might be to use the γf and λf coefficients to generate new lines, but use a

more detailed model of commuter behavior when selecting the set of lines to operate in the master

problem.

3.3. Considering travel times

The task of computing travel times and the resulting route choices directly within the line-

generation subproblem is a complex one. Prior works such as Baaj and Mahmassani (1995) and

Borndörfer et al. (2007) have avoided this complexity by alternating between route generation and

assignment models. Although Borndörfer et al. (2007) present an exact formulation, they allow for

arbitrarily long travel times and ignore transfers. This is not entirely realistic, since if the com-

muters’ only options are routes of long travel time and many transfers, they will likely leave the

transit system for other alternatives. By contrast, the assignment model of Baaj and Mahmassani

(1995) is detailed, but the route generation is heuristic.

We now turn to the problem of travel time in our own framework, and first address commutes

that are confined to a single line. Recalling that the direct-route model assumes that commuters

are willing to take transit as long as there is a route connecting its origin and destination, this

implies that a Hamiltonian path through all of the stops would adequately service all demand, so

long as it is feasible for the budget constraint. However, such a path will likely be inefficient for

many commuters, particularly for commuters whose origins and destinations lie close to opposing

terminals. Such commuters may likely seek alternative transit options. In our model, we will assume

that commuters for commute (u, v) where u and v are on the same line, will only take transit if

they are able to follow some sequence of edges ω= {(u,w2), (w2,w3), . . . , (wk, v)} that satisfies the

following condition: ∑
(wi,wj)∈ω

δwi,wj
≤ Γδu,v, (12)

for some Γ > 1. Namely, commuters will only take transit if the travel time experienced on the

transit network is not much greater than the direct travel time between origin and destination.

Incorporating travel time restrictions in the master problem is straightforward. In the direct-

route model, we could modify constraint (2b) so that the right-hand-side omits any x`,f terms
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that correspond to lines where the travel time from origin u to destination v on line ` is excessive,

and the necessary modifications to the single-transfer model are similar. However, the subprob-

lem poses a greater challenge. The most natural approach is to ensure that ridership is only

accrued along paths that are sufficiently short using cutting planes. At every intermediate solu-

tion in the branch-and-bound tree, we check whether the transit line contains some path ω =

{(w1,w2), (w2,w3), . . . , (wk−1,wk)} with length exceeding Γδw1,wk
. If so, we could introduce the

following constraint:

gw1,wk
≤

k−1∑
i=1

(1−hwi,wi+1
). (13)

Although the approach (13) achieves the goal of counting only those commuters whose travel times

are not excessive, this quickly becomes intractable even on small networks. The key difficulty is

that many paths may exist that connect each pair of stops, requiring the addition of many weak

cuts.

We propose a solution that achieves tractability by enforcing stricter constraints on the transit

lines produced by the subproblem. Instead of using condition (12) only to calculate the reduced

cost of the line, we enforce the condition for every pair of stops on the line. Although this may be

a little excessive, it seems to hold in practice; on the MBTA’s key network, which are defined by

the agency as the high-ridership and high-frequency lines, we found that 97.8% of the stop pairs

within the lines satisfied condition (12) for Γ = 1.5, and 99.8% of the stop pairs satisfied it for

Γ = 2.0.

Our approach is implemented as follows. At intermediate solutions in the branch-and-bound tree,

we check whether the transit line contains some path ω= {(w1,w2), . . . , (wk−1,wk)} with end-to-end

travel time exceeding Γδw1,wk
. If such a ω is found, we introduce the following constraint:

k−1∑
i=1

hwi,wi+1
≤ k− 2. (14)

Constraint (14) suffers from the same issue as (13) where cutting a single path at a time will be

intractable on large networks, although it can be strengthened by using a tournament constraint.

However, if ω is also the shortest path on all of the stops σ = {w1, . . . ,wk}, we instead use the

following, stronger constraint: ∑
w∈σ

∑
w′∈Out(w)

hw,w′ ≤ k− 2, (15)

which cuts not just the path ω corresponding to the current solution, but also all other paths

connecting all of the stops in σ. Constraint (15) is valid because if the shortest path connecting
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Figure 1 An illustration of excessive travel times due to transfers.

(a) A Boston example. The transfer at Park
Street makes the travel time from Central Square
to Hynes Convention Center significantly longer
than the direct path, which is unappealing for
commuters.

(b) A cartoon of the Central Square
(u) to Hynes Convention Center (v) via
Park Street (w) example.

all stops σ does not satisfy condition (12), then no other paths connecting all stops σ will satisfy

that condition either. Checking whether ω is the shortest path connecting all of the stops σ could

potentially be costly; in the worst case, such an operation would need to be performed on all

subpaths of all visited solutions in the branch-and-bound tree. Rather than verifying this exactly,

we use a fast nearest-insertion heuristic to compute the shortest path on σ and compare the cost

of that path to that of ω. The heuristic begins with the first node in the path, considers each of

the remaining nodes, and inserts whichever node is closest at the end of the path; this is repeated

until no nodes are remaining, and can also be repeated for different starting nodes in the path.

We now turn to travel time for single-transfer commuters who are forced to make a transfer

through less direct routes. An illustrative example from the Boston-area subway and bus network

is shown in Figure 1. To get from Central Square to Hynes Convention Center via the subway,

a commuter must take the Red Line (dashed red) from Central Square to Park Street before

transferring to the Green Line (dot-dashed green). This is a significant increase in travel time

relative to the direct bus route (solid gray), making the subway unappealing to commuters.

To limit the travel time experienced by single-transfer commuters, we precompute transfer stops

for each commute that would not take commuters too far out of their way. In particular, we define
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a set of transfer stops for commute (u, v) as follows:

Tu,v := {w ∈N | δu,w + δw,v ≤Λδu,v}, (16)

where Λ is a constant greater than one. In Figure 1b, the displayed transfer stop w would be dis-

qualified from being in Tu,v based on definition (16). The restriction of the transfer stops, combined

with the travel time restriction of (12), has the effect of preventing a commuter’s total travel time

for commute (u, v) from being more than ΓΛ times the direct travel time δu,v.

Restricting the set of transfers for a commute (u, v) to only occur through a stop w ∈ Tu,v
keeps travel times on the network reasonable and prevents generation of excessively long commuter

routes. Furthermore, this modeling approach makes the underlying network of edges significantly

sparser, reducing the size of the subproblem.

3.4. Speeding up the subproblem

Much of the computational expense in the subproblem comes from the addition of the subtour

elimination constraints (6g) and the travel time constraints (15), particularly in dense graphs. We

propose a fast preprocessing step that significantly reduces the running time of the subproblem.

The intent is to preprocess the edge set E so that cycles will not appear in the subproblem graph,

thus removing the need for subtour elimination constraints. As an auxiliary effect, the preprocessing

tends to limit travel times on the network, so fewer travel time constraints will be needed as well.

For the remainder of the paper, we will call the subproblem on the full edge set with subtour

elimination constraints the full subproblem, and the subproblem on the preprocessed edge set the

preprocessed subproblem.

The preprocessing is done by choosing a particular geographic direction and removing all edges

that are not aligned with that geographic direction, within a certain range of tolerance. For a

direction z and a parameter ∆∈ [0,1], the preprocessed edge set E(z,∆)∈ E is defined as follows:

E(z,∆) =

{
(u, v)∈ E

∣∣∣ vec(u, v) · z
‖vec(u, v)‖‖z‖

≥∆

}
, (17)

where we use the notation vec(u, v) to indicate the vector pointing from stop u to stop v. For

∆≥ 0, cycles will not appear in the graph, and larger values of ∆ will tend to make the transit

lines more oriented along the direction z. Orienting the transit line along the direction z will also

keep travel times short, which will reduce the number of travel time constraints that need to be

added. In the computations, we must choose a set of directions z that is exhaustive enough to

provide a variety of high-quality solutions; such a set could for example comprise the cardinal and

intercardinal directions. We must also set ∆ to a value that eliminates cycles while also not overly

restricting the edge set so as to eliminate the optimal solution.
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Algorithm 1 is modified to accommodate the edge-preprocessing as follows. The subproblem

is solved over an exhaustive set of directions, producing a set of different transit lines. If the

subproblem terminates with positive objective value for any direction z, then the most profitable

of these lines are added to L̄. If all versions of the subproblem terminate with objective value zero,

then there are no profitable lines that can be added, and the algorithm terminates with the optimal

network design for the linear relaxation (2). This process is described in full detail in Algorithm

2. The loop in line 2 is easily parallelizable over all directions, allowing for further computational

speedup.

Algorithm 2 Column generation algorithm for solving TNDP (1), with edge preprocessing

Require: Initial set of transit lines L̄, tolerance ε > 0, line directedness parameter ∆∈ [0,1]

1: Solve MP(L̄), get primal solution (x̄, θ̄) and dual solution (p̄, q̄, s̄)

2: for all directions z do

3: Jz← SP(p̄, q̄; G(V,E(z,∆)))

4: `z← transit line solution to SP(p̄, q̄; G(V,E(z,∆)))

5: while maxz Jz > ε do

6: L̄← L̄∪ `arg maxz
πz

7: Solve MP(L̄), get primal solution (x̄, θ̄) and dual solution (p̄, q̄, s̄)

8: for all directions z do

9: Jz← SP(p̄, q̄; G(V,E(z,∆)))

10: `z← transit line solution to SP(p̄, q̄; G(V,E(z,∆)))

11: Solve TNDP(L̄), get integral solution (x∗,θ∗)

12: return x∗

In the next section, we demonstrate the benefit and tractability of Algorithms 1 and 2.

4. Computational Results

In this section, we evaluate the performance of our column generation algorithm on synthetic and

real-world data. All methods were implemented using the Julia language (Bezanson et al. 2014)

and the optimization package JuMP (Lubin and Dunning 2015) using the Gurobi solver v8.1 (Gurobi

Optimization, Inc. 2016). Computational experiments were run on a laptop with an Intel i7-6500U

processor and 16GB of RAM.

In Section 4.1, we show that Algorithm 1 produces intuitive results for a small synthetic grid

network. In Section 4.2, we move to a large-scale example in Boston with hundreds of stops. We

compare the performance of the preprocessed subproblem to the full subproblem, and show that
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preprocessing improves the solution time while also preserving competitive objective values. We

also demonstrate that Algorithm 2 can be solved efficiently for our Boston example and examine

the solution bus networks.

4.1. A small synthetic network

Our first computational experiment was inspired by the Houston network re-design (Binkovitz

2016), which dramatically simplified its bus routing from a hub-and-spoke framework to a pure

grid network. The appeal of a grid network is that due to its relative simplicity, a commuter can

get from any origin to any destination on the grid with at most one transfer. Our computational

experiments on the synthetic dataset aim to illustrate the intuitive appeal of the grid and to

illuminate the differences between the various models of Section 3.

We created a toy sixteen-stop network with coordinates on the integer lattice {1,2,3,4}2, repre-

senting the intersections of cross streets that we label A-D (directed vertically) and W-Z (directed

horizontally). To avoid degeneracy and thereby improve computation time, a small amount of

noise uniformly distributed between 0 and 0.01 was added to the coordinates of each stop. Edges

were allowed between every stop and its horizontal, vertical, and diagonal immediate neighbors.

Demand between every pair of stops (u, v) was set to du,v = 100, for a total of
∑

u,v du,v = 24,000.

The budget was set to B = 12, 18, and 24, the last of which is exactly the budget needed to

sustain a high-frequency grid network. We allowed for two frequency levels, high and low, where

the low level operates at half the frequency of the high level (for example, every 10 minutes versus

every 20 minutes). The cost coefficients ρf and frequency coefficients γf were set that so that the

low-frequency lines were half the cost of the high-frequency lines but could get three quarters of

the direct ridership relative to the high-frequency lines; this was intended to model diminishing

marginal returns, as well as the fact that some of the population might be inelastic in their use

of transit, accommodating the lower frequency rather than switching to alternatives. The λf coef-

ficients were set so that only one quarter of riders would be willing to make transfers between

low-frequency lines, but that all riders are willing to make transfers between high-frequency lines.

Concretely, the vectors of parameters were set at ρ = [1.0,0.5], γ = [1.0,0.75], and λ = [1.0,0.25].

Note that these are toy values that are only meant to be illustrative; in practical application,

surveys would need to be conducted to estimate actual values. We set Γ = Λ = 1.5, meaning that

commuters along a single line experience travel times no longer than 50% more than the direct

travel time between their origin and destination, and commuters who transfer experience travel

times no more than 125% more than the direct travel time between their origin and destination.

On this small network, we were able to solve the full subproblem with subtour elimination

constraints (6g), using Algorithm 1. In each iteration of the column generation algorithm, we also
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added all possible subsequences of consecutive stops from the lines that were generated, which

produced greater variety among the columns while also reducing the number of iterations required

to converge.

Figure 2 Synthetic bus networks generated on a grid network at varying budgets.

Budget =  12 Budget =  18 Budget =  24

A B C D A B C D A B C D

W

X

Y

Z

Note. Solid lines represent high-frequency bus lines; dashed lines represent low-frequency bus lines.

Table 2 Running time and objective values on a toy network.

Budget Iterations Run. Time (min) Ridership

12 12 1.8 16,100
18 21 2.9 19,900
24 9 0.7 24,000

The networks produced at each budget level are shown in Figure 2, and the running times are

shown in Table 2. Each of the problem instances converged quickly, with the longest running time

still under three minutes. Figure 2 illustrates the intuitive appeal of a grid network; at the highest

budget of B = 24, the high-frequency grid can serve all of the demand with reasonable travel

times and at most one transfer. The core of the high-frequency grid is maintained even at budget

B = 18, with the perimeter of the grid split into two low-frequency bus lines that traverse streets

A to Z and W to D, which service many direct passengers while also allowing for transfers to

the high-frequency grid. Finally, at budget B = 12, coverage on the grid is maintained in order to

service the spread-out demand, albeit all at low frequency. This reflects the relative inelasticity of

the travel demand according to the λf coefficients we set; a choice of λf where more commuters

abandon transit at low frequencies would lead to transit networks of lower coverage but higher

service frequencies.

These computational results are not surprising; from a grid-type network of stops, one would

expect an efficient solution to have a grid structure. However, they provide a useful validation

that our algorithm produces intuitive results for a simple test case, which is a key step towards

implementability.
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4.2. A large-scale case study from Boston

Our last set of computational experiments focus on the bus network in the greater Boston area,

operated by the Massachusetts Bay Transportation Authority (MBTA). We show that our method

is practical for a real-world network of hundreds of stops, and that real benefits can be realized

from taking an optimization-based approach to transit network design.

We obtained bus stop and line information from the General Transit Feed Specification (GTFS)

provided by the Massachusetts Bay Transit Authority (2014). Although our approach might be

applied to a generic multimodal transit network, we use buses for our case study because of the

flexibility of re-designing bus networks relative to rail or other more resource-intensive modes of

transportation. We focused on stops in the central business district as well as densely-populated

surrounding areas such as Cambridge and Somerville. The data contained many clusters of duplicate

bus stops; in order to reduce the problem size while retaining detailed information about the

network, we rounded all coordinates to the nearest 0.005 in latitude and longitude, leading to

a rough grid of 233 stops spaced about 0.4 miles apart. We obtained driving distances between

stops from the Google Distance Matrix API. In considering new edges to add to the network, we

considered edges of length 1.0 miles or less, which gave us 2,042 edges to consider. We restricted

ourselves to consider bus lines containing at most 20 stops. The restricted master problem was

seeded with the 1, 15, 22, 23, 28, 39, 57, 66, and 77 bus lines from the MBTA key bus network,

which generally covered our geographic region of interest. The lines in this initial set were altered

slightly due to the rounding of the stop coordinates, but still followed the general trajectory of the

original bus lines.

We also obtained automated passenger count data for 2017 from the MBTA, which detailed

the average number of passengers boarding and alighting buses at each stop for each hour. Using

techniques from Bertsimas and Yan (2018), we estimated the hourly origin-destination demand

matrices, and aggregated them to produce a daily demand matrix. For computational tractability,

we ignored origin-destination pairs that saw fewer than 50 passengers over the course of the entire

day. We also removed a few origin-destination pairs where the origin and destination were discon-

nected in the network. The resulting demand matrix had a total demand of 93,826 trips, with 597

origin-destination pairs seeing activity.

Since the counts provided by the MBTA are taken entirely from passengers who are already

using MBTA services, we expect the existing network to be adequate, and were interested in seeing

what the performance gains might be using a demand matrix that did not come from the MBTA.

Furthermore, with significant concerns about how the rise of alternatives such as ride-sharing

services might impact ridership for public transit (Bouton et al. 2015), it is useful to examine
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the demand from alternative modes of transport to see how the bus network might better service

those who have chosen those who did not elect to take the bus. Blue Bikes (formerly Hubway), a

bike-sharing company in the Boston area, made its 2011-13 trip data publicly available through

a data challenge (Metropolitan Area Planning Council 2013); by mapping each Blue Bikes dock

to the closest MBTA stop, we obtained an alternative origin-destination matrix. For maximal

impact, we focused on the trips from August 2013, which had the highest monthly trip volume.

After eliminating disconnected origin-destination pairs as well as those that saw fewer than 50

passengers over the course of the month, we were left with a total demand of 50,621 trips, with

534 origin-destination pairs seeing activity.

Our decision variables included two settings of high versus low frequencies, which were moti-

vated by the distinction that the MBTA draws between its key (high frequency) and non-key (low

frequency) network. Service is offered once every 30 minutes during peak hours on the non-key

network, versus once every 10 minutes during peak hours on the key network; accordingly, the cost

parameter ρf is set so that low frequencies cost about one-third relative to high frequencies. We

set the direct ridership parameter γf so that the low-frequency lines would see 45% of the direct

ridership of high-frequency lines; like in Section 4.1, this was intended to illustrate some inelasticity

in commuter transit choices. We set the transferring ridership parameter λf so that commuters

would be fully willing to transfer between high-frequency lines, but unwilling to transfer between

low-frequency lines. Concretely, the vectors of parameters were set at ρ= [1.0,0.3], γ = [1.0,0.45],

and λ = [1.0,0.0]. As in the previous section, we set Γ = Λ = 1.5, unless otherwise specified. We

do not claim that these are the right values for the Boston network; the intention is merely to set

these parameters to reasonable values on which to test our approach. In a practical setting, surveys

should be conducted to determine true parameter values.

4.2.1. Solving the subproblem at scale We first compare the performance of the pre-

processed subproblem proposed in Section 3.4 to the full subproblem with subtour elimination

constraints (6g) and illustrate how the various parameters may be set. We solved a single iteration

of the direct-route subproblem on the MBTA data, both with and without preprocessing. The

preprocessing was run on a range of parameter settings between ∆ = 0.2 (most restricted, fewest

edges) to ∆ = 0.0 (least restrictive, most edges) over a range of four directions z evenly spaced

45 degrees apart. Although a more granular set of directions does produce different subsets of the

edge set, we did not see material difference in the final results with larger edge sets.

To show the effect of preprocessing on the subproblem, we also include results for Γ = 1.4 as well

as Γ = 1.5, the lower Γ value meaning that travel times on the network are more constrained.

Since the preprocessed subproblem must be solved once for each z, we warm-started each instance

using a partial solution from the previous instance. As the previous instance was solved using
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Table 3 Performance of preprocessed and full subproblems.

Γ Model Run. Time (s) Objective

1.4 ∆ = 0.2; 4 instances 7 8,591
1.4 ∆ = 0.1; 4 instances 57 8,591
1.4 ∆ = 0.0; 4 instances 51 8,591
1.4 Full 411 8,591

1.5 ∆ = 0.2; 4 instances 5 8,591
1.5 ∆ = 0.1; 4 instances 7 9,150
1.5 ∆ = 0.0; 4 instances 12 10,028
1.5 Full 141 10,256

Higher values of ∆ mean that more edges were removed from the graph.

a different value of z, it was not necessarily feasible for the current instance; in order to create

a feasible warm start, we chose whatever sub-path of the previously generated line was feasible,

breaking ties by objective value if there were multiple such sub-paths. The full (no preprocessing)

subproblem was warm-started with the solution from the preprocessed subproblem with ∆ = 0.0.

The running times and objective values for each model are shown in Table 3. The full subproblem

is substantially harder to solve than the preprocessed subproblems, all of which terminate in an

order of magnitude less time, with running times generally decreasing further as more edges are

removed. In addition to these substantially lower running times, the preprocessed subproblems

also achieve roughly comparable solution quality as the full subproblem, especially at at the lowest

∆ = 0.0 setting; for example, at Γ = 1.5, the ∆ = 0.0 instances find a solution that is only 2.2%

lower in objective value than the full subproblem. At Γ = 1.4, all models achieve identical objective

values, reflecting the fact that removing edges may still preserve the optimal solution if travel times

are more restricted.

These results illustrate the usefulness of preprocessing the edge set in the subproblem on large

networks. A flexible enough ∆ parameter keeps enough edges to find high-quality or even optimal

solutions. The most flexible ∆ = 0.0 seems to be the best choice to give high-quality solutions;

however, if shorter travel times are desired, a more restrictive ∆ may still provide good results. In

the experiments that follow, we solve only the pre-processed subproblems and set ∆ = 0.0; in this

way, we accept a small decrease in solution quality over each iteration as a tradeoff for substantially

increasing the speed at which columns are generated.

4.2.2. Designing the Boston network We now turn to the problem of designing a network

for Boston based on our MBTA and Blue Bikes demand matrices.

For ease of plotting and interpreting the networks, we added constraints to the master problem

that ensured that each edge chosen in the final network would be covered by at most one line;

the subproblem was also modified accordingly. An exception was made for the lines belonged to
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the original MBTA network, so that it would remain feasible. These constraints are likely more

restrictive than what happens in practice, as real-world transit networks generally show some

redundancy in order to provide more direct-route options and also share resources. However, these

constraints might be easily modified to accommodate capacity restrictions on various edges in

the network. A further constraint was motivated by the prevalence of relatively short-distance

commutes in the Blue Bikes dataset, which led to the generation of many short bus lines that could

involve as few as two edges. As a result, for the Blue Bikes dataset we imposed the additional

constraint that bus lines should comprise at least seven edges.

The algorithm was capped at a maximum of 20 iterations; each iteration involved adding both

a high-frequency and a low-frequency line to the restricted master problem, so that at the end 40

lines were generated in addition to the original lines from the key bus network.

The results of Algorithm 2 over a range of budgets is shown in Table 4 for both the MBTA and

Blue Bikes datasets. We began with a subset of the MBTA key network (“Original”) as the initial

set of lines L̄ for the restricted master problem, before generating additional lines using Algorithm

2 (“New”). The “ridership” column is computed using the objective values in the restricted master

problem for both the “Original” and “New” networks. On the demand matrix estimated from

the MBTA data, our column generation procedure found networks that serviced 27 to 35% more

ridership than the original network. The improvement was even more pronounced on the Blue

Bikes demand. As expected, given that Blue Bikes users are opting for an alternate mode of

transportation, the original network does not effectively service the demand, while the new network

is able to achieve triple the ridership of the old.

In addition to enabling substantial ridership gains, Algorithm 2 can also be solved efficiently.

The running times for each of the budgets and demand scenarios are shown in Table 4, and range

from a quarter to half of an hour. Since network design is an offline problem and cities rarely

redesign their transit networks, this an appropriate level of computational effort to be practically

useful, and could even scale to larger problem sizes.

Maps on the Boston network under various demand scenarios are shown in Figure 3. Figure 3a

shows the original set of lines that begin the restricted master problem, which were taken from the

MBTA key network. Figures 3b and 3b then show the lines that were generated and then chosen

in the final networks for the MBTA and Blue Bikes demand data at, respectively, at a budget of

B = 40. Lines from the original set are shown in gray, while generated lines are shown in color.

Low frequency is indicated by dashed lines, and high frequency is indicated by solid lines.

From Figure 3b, we see that the new network stays somewhat close to the original network; for

example, it preserves the 1 bus crossing the river from Cambridge into Boston at high frequency,

and maintains other bus lines from the original network that cover the service region at a lower
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Figure 3 (Color online) A subset of the key MBTA bus network, as well as bus networks produced by column

generation on the MBTA and Blue Bikes demand matrices for B = 40.

(a) Original network used to
start the restricted master
problem

(b) New network generated
on MBTA demand

(c) New network generated on
Blue Bikes demand

Note. Lines from the existing MBTA network are shown in gray; generated lines are shown in color. Dashes indicate

low-frequency lines. The light gray region between Cambridge and Boston is the Charles River.

frequency. The new lines generated comprise (i) a high-frequency hub-and-spoke geometry emanat-

ing from Dudley Square, which is marked with a black circle, and (ii) high-frequency coverage in

the northeast corner of the map. In both cases, the generated lines unsurprisingly mirror existing

MBTA service that were included in the demand data but not our original set of bus lines.

None of the exact lines from the original network appear in the new network in Figure 3c,

although there are some similarities; for example, the purple and green lines in Figure 3c are

variants of lines that do appear in the original network. Sections of the orange and brown lines

in Figure 3c also cover similar areas as the red, blue, and green lines in Figure 3b. In contrast to

the other maps, Figure 3c shows more support around the northern half of the map. Moreover,

while the original network is largely oriented from north to south, Figure 3c shows that much of

the network generated on the Blue Bikes demand is oriented roughly from east to west, suggesting

that more resources could be devoted to supporting these cross-town trajectories.

5. Conclusion

In this work, we address the problem of designing lines for urban transit networks. In particular,

we seek to maximize ridership on a transit network, accounting for the fact that passengers will
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Table 4 Running time and objective values on the Boston network

Demand Matrix Budget Run. Time (min) Ridership

Original New

MBTA 30 22.1 33,683 42,648
MBTA 40 30.1 38,035 50,154
MBTA 50 33.4 40,154 54,102
Blue Bikes 30 14.4 8,921 26,509
Blue Bikes 40 17.6 9,332 28,726
Blue Bikes 50 19.6 9,396 32,719

choose to take transit if one of the possible routes was appealing in travel time and number of

transfers. We discuss how to incorporate a variety of physical and operational constraints on lines,

and present computational experiments to show our method’s tractability and usefulness. In the

first experiment, we show that our method produces a simple grid network from a synthetic dataset,

which mirrors real-life observations in cities such as Houston on the appeal of grid networks. In

the second experiment, we propose a preprocessing step that greatly improves the tractability of

our algorithm, and then demonstrate substantial ridership gains for a real bus network in Boston.

These ideas present opportunities for transit authorities to perform holistic re-design of their transit

networks in order to offer a service that is both cost-efficient and appealing to commuters.
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