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Abstract We develop a general methodology to derive probabilistic guarantees for solutions of
robust optimization problems. Our analysis applies broadly to any convex compact uncertainty
set and to any constraint affected by uncertainty in a concave manner. In particular, we introduce
the notion of robust complexity of an uncertainty set, which is a robust analog of the Rademacher
or Gaussian complexity encountered in high-dimensional statistics, and which drives our results.
For a variety of uncertainty sets of practical interest, we are able to compute it in closed form or
derive valid approximations. To the best of our knowledge, our methodology recovers and extends
all the results available in the literature. We also derive improved a posteriori bounds, i.e., bounds
which depend on the resulting robust solution. Besides being significantly tighter than a priori
bounds, a posteriori bounds can notably be computed for any general convex uncertainty set.
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1 Introduction

Over the past decades, Robust Optimization (RO) has emerged as a tractable framework to
account for uncertainty in optimization problems [see 8, 22, for a review]. Consider a single
linear constraint of the form

a>x ≤ b, (1)
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where the parameter a is subject to uncertainty and b ∈ R is certain, without loss of generality. In
a robust approach, a is described as a deterministic yet unknown vector belonging to a so-called
uncertainty set U and constraint (1) is imposed to hold for all values of a ∈ U , i.e., we consider
its robust counterpart

a>x ≤ b, ∀a ∈ U . (2)

On the other hand, the stochastic approach makes distributional assumptions on the random
variable ã and replaces (1) by some stochastic version, such as

Pã
(
ã>x ≤ b

)
≥ 1− ε. (3)

While the robust constraint (2) is often more tractable from a computational perspective, the
stochastic constraint (3) has undeniable theoretical appeal: it provides explicit control on the risk
of constraint violation ε. In an attempt to bridge the gap between tractability and theoretical
guarantees, a relevant question in the RO literature has been to derive similar probabilistic
guarantees for robust constraints. Namely, given x satisfying (2), provide an upper bound on
Pã
(
ã>x > b

)
. Clearly, Pã

(
ã>x > b

)
≤ Pã (ã /∈ U), yet much tighter bounds can be obtained.

Ben-Tal and Nemirovski [2] proved that

Pã
(
ã>x > b

)
≤ e−ρ

2/2

for their proposed box-ellipsoidal uncertainty set U = {a : ‖a‖∞ ≤ 1, ‖a‖2 ≤ ρ}, under the
assumption that the coordinates of ã are independent bounded random variables with mean 0.
The bound above is notoriously independent of the number of uncertain parameters L, which is
typically not the case for Pã (ã /∈ U). The budget uncertainty set U = {a : ‖a‖∞ ≤ 1, ‖a‖1 ≤ ρ}
Bertsimas and Sim [5], on the other hand, provides a dimension-dependent probabilistic guarantee

Pã
(
ã>x > b

)
≤ e−ρ

2/2L,

under the same distributional assumptions. Since these two seminal works in the field, results for
other classes of uncertainty sets U or more general constraint, f(a,x) ≤ 0, have been derived,
yet in a disparate and unsystematic way. Attempts have been made to report existing bounds in
a unified manner [24, 25, 26, 30] for various uncertainty set. In particular, they provide a catalog
of the known a priori and a posteriori bounds for specific uncertainty sets and linear constraints.
Little if no work, however, provides a disciplined methodology that not only encompasses existing
results as special cases but enables to derive probabilistic guarantees for any uncertainty set U
and any constraint function f . In addition, a clear relationship between the geometry of the
uncertainty set and the resulting uncertainty set is still needed to understand the connection
between robust optimization and its out-of-sample performance on random instances. Such is
the aspiration of the present paper.

1.1 Literature review

Safe approximation of ambiguous chance constraint: To the best of our knowledge, works
on safe approximations of scalar chance constraints are the closest to achieve this methodological
goal. In this setting, the goal is to reformulate a given chance constraint

Pã
(
ã>x ≤ b

)
≤ ε,
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with ε > 0. In most cases, the distribution of ã is not known precisely but rather assumed to
belong to a certain class, and the objective is to reformulate the ambiguous chance constraint

sup
Pã∈P

Pã
(
ã>x ≤ b

)
≤ ε, (4)

where P is a class of allowable probability distributions for ã. Given some assumption on P, the
ambiguous chance constraint (4) can be proven equivalent to a robust constraint of the form

a>x ≤ b, ∀a ∈ Uε,

where the uncertainty set Uε depends on P. Exact reformulations have notably been derived in
cases where ã is normally distributed [18, 41, 42] or has known mean and bounded second-order
moments [41, 42]. Ben-Tal et al. [3, chapter 2] derive such reformulations for a general class of
probability distributions and in a disciplined manner. For example, if the coordinates of ã are
independent random variables in [−1, 1] and unimodal with respect to 0, meaning that 0 is the
only mode of the distribution, then constraint (2) with

Uε =
{
a = a1 + a2 : ‖a1‖∞ ≤ 1/2, ‖a2‖2 ≤

√
ln(1/ε)/6

}
yields (3) [3, Theorem 2.4.4 applied to Example 2.4.7.]. This approach, which takes assumptions
on the distribution of ã as the primitive and provides a corresponding uncertainty set, has
two main shortcomings. First, it cannot provide any probabilistic guarantee for the uncertainty
set Uε whenever ã satisfies different assumptions. Instead, different assumptions on ã would
lead to a different uncertainty set. In this setting, probabilistic assumptions dictate the type of
uncertainty set to use, rather than tractability considerations, and impede modeling. Second,
this approach only justifies the use of uncertainty sets involving the Euclidean norm, which is
closely related with the notion of variance, but excludes more general uncertainty sets, such as
polyhedral or budget uncertainty sets, despite their tractability and wide use in practice. More
recently, Bertsimas et al. [9] propose a data-driven extension of this procedure. Starting from
admittedly loose assumptions on the distribution of ã and given past observations a(1), . . .a(N),
they leverage hypothesis testing to construct an uncertainty set with a probabilistic guarantee
of level ε. Their setting is fully data-driven and applies to a general concave robust constraint.
However, the shape of the uncertainty set is still dictated by the distributional assumptions
made - and the corresponding hypothesis test. Also, their uncertainty sets are calibrated using a
single constraint. If multiple constraints are affected by uncertainty, their method fails to provide
guarantees for the ones that were not used during calibration.

Distributionally robust optimization: Probabilistic guarantees and concentration results
have been the fundamental building blocks in the distributionally robust optimization (DRO)
literature. In the DRO setting, reformulations of ambiguous chance constraints (4) have been
derived in cases where the ambiguity set P is constructed from bounds on moments of the dis-
tribution [19, 23, 42, 45], or is defined as a ball around the empirical distribution according to
phi-divergence [43], the Wasserstein distance [16, 21, 29, 39], or the relative entropy [37]. We
refer to Hanasusanto et al. [27] and references therein for a comprehensive review. Despite pow-
erful out-of-sample performance guarantees and moderate conservatism, DRO approaches do not
display the same favorable tractability properties as simple robust approaches, especially in the
data-driven settings. For instance, computing the Wasserstein distance between two distributions
is #P-hard in general [29, Theorem 3].

Scenario approach: A general way to deal with chance constraints is the scenario ap-
proach, i.e., generate N samples a(i), i = 1, . . . , N of ã and replace the chance constraint by N
deterministic constraints f(a(i),x) ≤ 0. Assuming that the function f is convex in x, Calafiore
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and Campi [12, 13] prove that this approach yields a feasible solution to (3) with probability
1− δ if

N ≥ 2L+ 2L
ε log( 2

ε ) + 2
ε log( 1

δ ).

This approach has been later refined [14, 31, 33] and extended to ambiguous chance constraints
[17, 20]. The scenario approach, yet, suffers from two limitations. First, the number of constraints
to be sampled,N , grows linearly in the dimension of the uncertainty, L, which makes the approach
difficult to apply to medium-size problems. Second, it assumes that one can sample from the
“true” distribution of ã, which might not be the case in practice.

1.2 Contributions and structure

In this paper, we start from a general robust constraint

f(a,x) ≤ 0, ∀a ∈ U ,

which is equivalent to

max
a∈U

f(a,x) ≤ 0,

and derive valid probabilistic guarantees for any solution x satisfying the robust constraint. We
will assume that U is convex and f(a,x) is concave in a for any x. Under this assumption,
the maximization problem above is well-defined and the robust constraint can be reformulated
in a tractable way [4]. These tractable reformulations, which we recall in Section 2, have been
instrumental in the adoption of robust optimization in practice. They are also crucial to derive
bounds on the probability of constraint violation, as we demonstrate in this paper. When f(a,x)
is convex in a however, an equivalent tractable reformulation of the robust constraint is out of
reach. Safe approximations based on scenario sampling [13] or linear approximation [6] have been
proposed, but remain significantly less tractable. Correspondingly, the probabilistic guarantees
obtained in the convex case require more stringent assumptions on the underlying distribution;
see Conjecture 10.1 in [3] for instance. We restrict our attention to uncertainty sets U of the form

U = {a : ∃z ∈ Z s.t. a = ā+ Pz} ,

where ā is the nominal value of a, Z is a given nonempty, fully-dimensional convex and compact
set, with 0 ∈ ri(Z), as in Ben-Tal et al. [4], which are not overly restrictive assumptions given
the general form of the constraint. In particular, the fully dimensional assumption is without
loss of generality given an appropriate matrix P . Our main contribution is a general and simple
methodology for deriving probabilistic guarantees for solutions of robust optimization problems,
which in turn leads to the following results, summarized in Table 1:

– For constraints of the form f(a(z),x) ≤ 0, ∀z ∈ Z, where f is concave in a, we show that
an uncertainty set Z yields a probabilistic guarantee of

P (f(ã,x) > 0) ≤ exp
(
− 1

2ρ(Z)2
)
,

where we define the robust complexity of Z, denoted ρ(Z), as

ρ(Z) := min
y:‖y‖2=1

max
z∈Z

y>z.
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Table 1: Summary of our main findings. Here, δ?(·|Z) and ρ(Z) denote respectively the support
function and the robust complexity of the uncertainty set Z, defined as δ?(y|Z) = maxz∈Z z

>y
and ρ(Z) = miny:‖y‖2=1 δ

?(y|Z). For the concave case, f?(v,x) := infa a
>v − f(a,x) is often

referred to as the concave conjugate of f(·,x).

Constraint type Linear Concave in a

Nominal constraint a>x ≤ b f(a,x) ≤ 0
Robust counterpart ā>x+ δ?(P>x|Z) ≤ b ∃v, ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0
A priori probabilistic guarantee

exp
(
− 1

2
ρ(Z)2

)
exp

(
− 1

2
ρ(Z)2

)
(Corollary 1, 2)
A posteriori probabilistic guarantee

exp

(
− (b−ā>x)2

2‖P>x‖22

)
exp

(
− (f?(v,x)−ā>v)2

2‖P>v‖22

)
(Theorem 1, 2)

Table 2: Valid lower bound on robust complexity of Z, defined as ρ(Z) :=
miny:‖y‖2=1 maxz∈Z y

>z, for some common uncertainty sets. Instances denoted by a * are valid
under the assumption that the true uncertain parameter z̃ satisfies ‖z̃‖∞ ≤ 1.

Uncertainty set Definition Safe approximation of ρ(Z)

Norm-set {z : ‖z‖p ≤ Γ}
{
Γ, if p ≥ 2,

ΓL1/2−1/p, if p ≤ 2.

Budget set* {z : ‖z‖∞ ≤ 1, ‖z‖1 ≤ Γ} Γ/
√
L

Box-Ellipsoidal set* {z : ‖z‖∞ ≤ 1, ‖z‖2 ≤ Γ} Γ

`∞+`1 set {z = z1 + z2 : ‖z1‖∞ ≤ ρ1, ‖z2‖1 ≤ ρ2} ρ1 + ρ2/
√
L

`∞+`2 set {z = z1 + z2 : ‖z1‖∞ ≤ ρ1, ‖z2‖2 ≤ ρ2} ρ1 + ρ2

Polyhedral set {z : Dz ≤ d} min
i

di
‖D>ei‖2

This simple statement recovers all a priori bounds available in the literature for simple uncer-
tainty sets and linear constraints, and extends them to the more general case where f(a,x)
is any function concave in a. In particular, we recover known probabilistic guarantees for the
box-ellipsoidal set of Ben-Tal and Nemirovski [2] and the budget uncertainty set of Bertsimas
and Sim [5] in the linear case, with weaker assumptions on the underlying distribution of the
uncertain parameter.

– For a variety of uncertainty sets of practical interest, we are able to compute in closed form
or derive valid approximations of the robust complexity Z, as summarized in Table 2. In
particular, we provide the first results regarding polyhedra defined with a finite number of
linear inequalities and the Minkowski sum of norm balls. From a geometric perspective, sum
sets are very similar to intersection sets, while being computationally more tractable and
leading to competitive probabilistic guarantees when properly scaled.

– We further improve those bounds a posteriori, i.e., given the resulting robust solution x. In
particular, in the linear case, we prove an a posteriori bound of the form

P
(
ã>x > b

)
≤ exp

(
−1

2

[
b− ā>x
‖P>x‖2

]2)
,

and an analogous result in the case where the constraint is concave in the uncertainty, as
summarized in Table 1. Besides being tighter, a posteriori bounds can notably be computed
for any general convex uncertainty set.

The rest of the paper is structured as follows: Section 2 recalls equivalent reformulations
for general uncertain constraints [4]. We formally state and prove the a posteriori and a priori
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bounds for general constraints and uncertainty sets in Section 3. Section 4 provides some closed
form expressions or valid approximations for the robust complexity of a set, which drives a priori
guarantees. Finally, we illustrate how our results can be applied in practice on a facility location
and a portfolio optimization problem in Section 5.

Notations In the remainder of the paper, we use nonbold (x), lowercase bold (x) and uppercase
bold (X) characters to denote scalars, vectors and matrices, respectively. Calligraphic characters
such as X denote sets. We use a tilde symbol (e.g., x̃) to indicate a random variable. We let e
denote the vector of all 1’s, 0 denote the vector of all 0’s and ei the ith vector of the canonical
basis, with dimension implied by the context. For any p ∈ N, we define the `p-norm of x ∈ Rn as
‖x‖p := (

∑n
i=1 |xi|p)1/p. For p =∞, ‖x‖∞ := maxi |xi|. Any function f : Rn → R can be defined

on a subset of Rn only, called its domain and denoted dom(f). Similarly, f can be extended to
the whole space Rn by setting f(x) = ∞ if x /∈ dom(f). For any convex nonempty set Z, its
relative interior is defined and denoted ri(Z) := {x ∈ Z : ∀y ∈ Z ∃λ > 1,y + λ(x − y) ∈ Z}.
We denote Sn+ the cone of n× n positive semi-definite matrices, Sn+ := {A ∈ Rn×n : A � 0}.

2 Robust counterparts of general uncertain constraint

In this section, we recall useful results from Ben-Tal et al. [4] about tractable reformulations of
the robust constraint

f(ā+ Pz,x) ≤ 0, ∀z ∈ Z, (5)

when the function f(a,x) is concave in the uncertain parameter a.

2.1 Case when the constraint is linear

We first consider the case where f is linear, f(a,x) = a>x−b, and consider the robust constraint

ā>x+ z>P>x ≤ b, ∀z ∈ Z.

Proposition 1 The decision variable x satisfies

ā>x+ z>P>x ≤ b, ∀z ∈ Z,

if and only if it satisfies

ā>x+ δ?
(
P>x|Z

)
≤ b,

where δ?(y|Z) := supz∈Z y
>z is the so-called support function of Z [35, chapter 13].

Proposition 1 uncovers the role played by the uncertainty set Z through its support function
δ?(·|Z). Though general, Proposition 1 is also a practical statement, for the support function
can be computed for a wide range of uncertainty sets [see 4, Section 3]. We report some of these
results in Table 3. Observe that whenever the support function is expressed as a minimization
problem, the “min” operator can be omitted in the robust counterpart of Proposition 1, given
the sense of the inequality.
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Table 3: Examples of uncertainty sets and their associated support function.

Uncertainty region Definition Support function δ?(y|Z)

Box ‖z‖∞ ≤ ρ ρ‖y‖1
Ball ‖z‖2 ≤ ρ ρ‖y‖2
Norm ‖z‖ ≤ ρ ρ‖y‖?

Budget
‖z‖∞ ≤ 1 min

v
‖v‖1 + ρ‖y − v‖∞‖z‖1 ≤ ρ

Polyhedral Dz ≤ d min
v≥0:D>v=y

d>v

Intersection Z1 ∩ Z2 min
v

δ?(v|Z1) + δ?(y − v|Z2)

Minkowski sum Z1 + Z2 δ?(y|Z1) + δ?(y|Z2)

Example 1 If Z = {z : Dz ≤ d} is a polyhedron, then the support function of Z is given by

δ?(y|Z) = min
v≥0:D>v=y

d>v.

According to Proposition 1, the robust linear constraint is hence equivalent to

ā>x+ min
v≥0:D>v=y

d>v ≤ b,

which in turn is equivalent to the existence of a feasible vector v, v ≥ 0 and D>v = y, satisfying
ā>x+ d>v ≤ b. Indeed, the inequality holds for some v if and only if it holds for the minimum.

2.2 Case when the constraint is concave in the uncertainty

We now consider the case where f(a,x) is a concave function in a. Indeed, constraint (5) is
equivalent to

max
z∈Z

f(ā+ Pz,x) ≤ 0,

and the inner maximization problem is well posed. In this case, Ben-Tal et al. [4] provide an
equivalent reformulation under the technical assumption that ā is regular, that is when ā is
within the relative interior of the domain of f , ā ∈ ri(dom(f(·,x))) in short. From a high-level
perspective, they require f to be properly defined in the vicinity of the nominal value ā. So ā
should not lie at the boundary of the domain of f . For the rest of the paper, we will make this
assumption, when needed.

Proposition 2 If ā ∈ ri(dom(f(·,x))) and f(a,x) is concave in a, then x satisfies

f(ā+ Pz,x) ≤ 0, ∀z ∈ Z,

if and only if there exists some vector v such that (x,v) satisfies

ā>v + δ?
(
P>v|Z

)
− f?(v,x) ≤ 0,

where δ?(·|Z) is the support function of Z and f?(v,x) := infa a
>v − f(a,x).
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Remarkably, Proposition 2 provides a robust reformulation of the nonlinear constraints (5) where
the terms involving Z are independent from those involving f . In this regard, the auxiliary
variable v plays a critical role: v is linearly impacted by the uncertainty on z while being
coupled with x through the conjugate function f?. In the special case where f(a,x) = a>x− b
is linear in a, then

f?(v,x) =

{
b, if v = x,

∞, otherwise,

and we recover Proposition 1.

Example 2 We consider a case where f is quadratic in a and linear in x, that is f(a,x) =
− 1

2

∑
i(a
>Qia)xi for some positive semi-definite matrices Qi’s. Denoting Q(x) :=

∑
i xiQi,

f?(v,x) = inf
a
a>v +

1

2
a>Q(x)a = −1

2
vQ(x)−1v.

Hence, the robust constraint becomes

∃v, ā>v + δ?
(
P>v|Z

)
+

1

2
vQ(x)−1v ≤ 0.

For tractability, it might be useful to observe that f?(v,x) can also be written [4, Lemma 6.2]

f?(v,x) = sup
si:

∑
i s
i=v

−
∑
i

1

2xi
siQ−1i s

i,

and consider the equivalent reformulation

∃v, si,
∑
i

si = v, and ā>v + δ?
(
P>v|Z

)
+
∑
i

1

2xi
siQ−1i s

i ≤ 0,

which is conic quadratic representable.

Example 3 We consider the mean-variance portfolio problem with n assets

min
x≥0:e>x=1

−µ>x+ λx>Σx,

where λ > 0 is a risk-aversion coefficient. In practice, the mean µ and covariance matrix Σ of the
returns are estimated empirically, hence inherently noisy. To account for uncertainty, we write
the nominal problem in epigraph formulation,

min
t,x≥0:e>x=1

t s.t. t ≥ −µ>x+ λx>Σx,

and consider the robust counterpart of the constraint f(a,x) ≤ 0 with a = (µ,Σ) ∈ Rn × Sn+
and

f(a,x) = −t− µ>x+ λx>Σx.

Observe that f is quadratic in x and linear in a.
Any element a = (µ,Σ) ∈ Rn × Sn+ can be associated with a (n + n2)-dimensional vector

obtained by concatenating µ and the columns of Σ, denoted vec(a). As in Marandi et al. [32],
we consider the uncertainty set

(Rn × Sn+) ∩ {a : vec(a) ∈ U} ,
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where U ⊂ Rn+n2

is of the desired form. For concision, we omit the vec(·) operator in the rest of
the paper whenever the context is clear. In a similar vein, we will concisely refer to the uncertainty
set above as (Rn × Sn+) ∩ U .

Proposition 2 applies to functions defined over a ∈ Rm. The dual variable v belongs to the
same space. However, here, a ∈ Rn × Sn+. Yet, Proposition 2 is still valid, provided that the
additional variables v are taken in Rn × Sn+ as well. This generalization from Rm to Rn × Sn+ is
justified by duality results for general inequalities [11, Chapter 5.9].

Consequently, we decompose the auxiliary variable v into v = (w,W ) ∈ Rn × Sn+. Denoting
〈·, ·〉 the Euclidean inner-product of matrices, we have:

ā>v = µ̄>w + 〈Σ̄,W 〉,
f?(v,x) = inf

µ,Σ�0
µ>w + 〈Σ,W 〉+ t+ µ>x− λx>Σx,

= t+ inf
µ
µ>(w + x) + inf

Σ�0
〈Σ,W − λxx>〉,

=

{
t, if w = −x and W − λxx> � 0,

∞, otherwise.

So, according to Proposition 2, the robust constraint is equivalent to

∃W � 0 s.t. W � λxx> and t ≥ −µ̄>x+ 〈Σ̄,W 〉+ δ?(P>vec(−x,W )|Z).

All in all, we can solve the robust mean-variance portfolio problem as the following semi-definite
optimization problem

min
t,x≥0:e>x=1,W�0

t s.t.

(
W x
x> 1/λ

)
� 0,

t ≥ −µ̄>x+ 〈Σ̄,W 〉+ δ?(P>vec(−x,W )|Z).

We refer the reader to Ben-Tal et al. [4] Section 4, Table 2 for more examples.

3 A priori and a posteriori probabilistic guarantees

Most of the comparable results in the literature are valid under some light-tail assumption on the
random vector z̃, in particular that z̃ is bounded almost surely or follows a Gaussian distribution.
All our results in this section hold under the weaker assumption that the random vector z̃ is
sub-Gaussian.

Definition 1 [Definition 1.2 in 34] A random variable z̃ ∈ R is said to be sub-Gaussian with
parameter σ2, denoted z̃ ∼ subG

(
σ2
)
, if z̃ is centered, i.e., E[z̃] = 0, and for all s ∈ R,

E
[
esz̃
]
≤ e

s2σ2

2 .

Naturally, centered Gaussian random variables are also sub-Gaussian. Bounded random variables
are also a special case of sub-Gaussian random variables, as a consequence of Hoeffding’s inequal-
ity (see Appendix A, Lemma 1). The parameter σ2 is usually referred to as a variance proxy, for
in the case where z̃ is normally distributed, the inequality above holds with σ2 = Var(z̃).

For the rest of the paper, we will make the following assumption on the randomness z̃:

Assumption 1 We assume that the coordinates of the uncertain parameter z̃ ∈ RL are L inde-
pendent sub-Gaussian random variables with variance proxy 1.
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Assumption 1 holds in particular if the coordinates of z̃ are (a) L independent Gaussian ran-
dom variables with mean 0 and variance 1, or (b) L independent centered random variables in
[−1, 1], which is a commonly made assumption in the RO literature [2, 5]. We discuss alternative
assumptions in Section 3.3 and report some useful properties of sub-Gaussian random variables
in Appendix A.

3.1 Case when the constraint is linear

In this section, we consider the linear case where f(a,x) = a>x − b. We first prove a solution-
specific probabilistic guarantee:

Theorem 1 Under Assumption 1, for any x ∈ X satisfying

ā>x+ δ?(P>x|Z) ≤ b,

we have

P
(
ā>x+ z̃>P>x > b

)
≤ exp

(
− (b− ā>x)2

2‖P>x‖22

)
≤ exp

(
−δ

?(P>x|Z)2

2‖P>x‖22

)
.

Proof Consider a robust solution x ∈ X . We have

P
(
ā>x+ z̃>P>x > b

)
= P

(
z̃>P>x > b− ā>x

)
.

Let us denote t := b−ā>x ≥ δ?(P>x|Z). If P>x 6= 0, δ?(P>x|Z) > 0 since Z is full dimensional.
Under Assumption 1, z̃>P>x is sub-Gaussian with variance proxy ‖P>x‖22 (see Appendix A,
Proposition 11). Hence, we have the following tail bound (Appendix A, Proposition 10)

P
(
z̃>P>x > t

)
≤ exp

(
− t2

2‖P>x‖22

)
.

In the case where P>x = 0, we have ā>x+ z̃>P>x = ā>x ≤ b for all z̃, so that the probability
of constraint violation is 0 and our bound holds with the convention 0

0 =∞. ut

The probabilistic guarantee of constraint violation in Theorem 1 depends on the specific
solution x. As a result, this bound cannot be used a priori to scale the size of the uncertainty set
Z according to some target probabilistic guarantee. Yet, given a robust solution x, the bound
only involves quantities which can be easily computed and can provide a useful a posteriori
guarantee, as we discuss in Section 5. From a practical standpoint, the bound involving the slack
term b− ā>x is systematically tighter, hence preferable. Yet, from a theoretical perspective, it is
very satisfying to elicit how the uncertainty set impacts the probabilistic guarantee, through its
support function at P>x, which also appears in the reformulation of the robust constraint. The
latter bound will be instrumental in deriving set-specific but solution-independent a posteriori
bound.

Remark 1 Theorem 1 can be used to obtain a robust solution x which would violate the uncertain
constraint with probability at most ε by adding the second-order cone constraint

b− ā>x ≥

√
2 ln

(
1

ε

)
‖P>x‖2,

to the original optimization problem. This corresponds to the robust counterpart of the robust

constraint with the ball uncertainty set, Z =
{
z : ‖z‖2 ≤

√
2 ln

(
1
ε

)}
.
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Remark 2 The first inequality

P
(
ā>x+ z̃>P>x > b

)
≤ exp

(
− (b− ā>x)2

2‖P>x‖22

)
is valid as long as x satisfies ā>x < b.

Theorem 1 can be extended to give a priori probabilistic guarantee which does not depend
on a specific solution x. To do so, we first define the robust complexity of a set Z.

Definition 2 For any set Z ⊆ RL, we define the robust complexity of Z, and denote ρ(Z), the
quantity

ρ(Z) := min
y:‖y‖2=1

δ?(y|Z) = min
y:‖y‖2=1

max
z∈Z

z>y.

In statistics, the Rademacher complexity of a set Z is defined as R(Z) := Eỹ
[
supz∈Z z

>ỹ
]
,

where the coordinates of ỹ are independently drawn from a Rademacher distribution, i.e., P(ỹj =
±1) = 1/2 [see 38, Example 2.25]. This quantity describes the size of the set Z and drives the
so-called uniform law of large numbers [see 38, Chapters 4 and 5]. In this regard, our proposed
complexity metric ρ(Z) is a robust analog to the Rademacher complexity, replacing expectation
by worst-case value. Indeed, for any Rademacher vector ỹ, we have ‖ỹ‖2 =

√
L so that

√
Lρ(Z) ≤

R(Z).
Another measure of complexity studied in high-dimensional statistics is the Gaussian com-

plexity, defined as G(Z) := Eỹ
[
supz∈Z z

>ỹ
]
, where the coordinates of ỹ are independent Gaus-

sian random variables with mean 0 and variance 1 [see 38, Example 2.30 and Chapter 5]. Since
R(Z) ≤

√
π
2G(Z) [see 38, Exercise 5.5], we have ρ(Z) ≤

√
π
2LG(Z). Alternatively, by decom-

posing ỹ into r̃ũ where ũ is a unit vector uniformely distributed over the unit sphere and r̃ an
independent scaling factor, we obtain G(Z) ≥ ρ(Z)E[r̃], where E[r̃] is the expectation of a chi
distribution with parameter L, i.e., E[r̃] =

√
2Γ ((L + 1)/2)/Γ (L/2) with Γ (·) denoting Euler’s

Gamma function. For large L, Stirling’s approximation yields E[r̃] ∼
√
L, which is tighter than

the previous bound.
As for the Rademacher or Gaussian complexity, the robust complexity is homogeneous with

respect to set inflation.

Proposition 3 For any set Z and α > 0, ρ(αZ) = αρ(Z).

Proof For any α > 0, ρ(αZ) = min
y:‖y‖2=1

max
z∈αZ

y>z = min
y:‖y‖2=1

max
z′∈Z

αy>z′ = αρ(z). ut

In addition, the robust complexity is invariant by orthogonal scaling, namely the following equal-
ity holds:

Proposition 4 For any orthogonal matrix U and any set Z, ρ(UZ) = ρ(Z), with UZ :=
{Uz : z ∈ Z}.

Proof The matrixU being orthogonal, the change of variable y = Uy′ satisfies ‖y‖22 = y′>U>Uy′ =
‖y′‖22, and ρ(Z) = min

y:‖y‖2=1
max
z∈Z

z>y = min
y′:‖y′‖2=1

max
z∈Z

z>U>y′ = min
y′:‖y′‖2=1

max
z′∈UZ

z′>y′ =

ρ(UZ). ut

Note that this property is not satisfied by the Rademacher complexity since the transformed
random variable ỹ′ = U−1ỹ is not a Rademacher random variable. The Gaussian complexity, for
which ỹ is a normal random vector with independent standard coordinates, on the other hand,
is also invariant by orthogonal scaling.

Finally, the robust complexity is the key quantity controlling a priori probabilistic guarantees.
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Corollary 1 Under Assumption 1, for any x ∈ X satisfying

ā>x+ δ?(P>x|Z) ≤ b,

we have

P
(
ā>x+ z̃>P>x > b

)
≤ exp

(
− 1

2ρ (Z)
2
)
.

In Section 4, we provide explicit analytic expressions and valid lower bounds on ρ(Z) for uncer-
tainty sets found in the literature such as the budget [5] and the box-ellipsoidal [2] uncertainty
sets.

Proof Taking the worst over all feasible x in the right hand-side of Theorem 1 yields

P
(
ā>x+ z̃>P>x > b

)
≤ exp

(
−1

2
min
x∈X

δ?(P>x|Z)2

‖P>x‖22

)
.

Then,

min
x∈X

δ?(P>x|Z)2

‖P>x‖22
=

[
min
x∈X

δ?
(

P>x

‖P>x‖2

∣∣∣∣Z)]2 ≥
[

min
y:‖y‖2=1

δ? (y| Z)

]2
. ut

3.2 Case when the constraint is concave in the uncertainty

We now state the analogue of Theorem 1 for the case where the constraint depends on the
uncertainty in a concave manner as in Eq. (5).

Theorem 2 Under Assumption 1, for any x ∈ X and v satisfying

ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0,

we have

P (f(ā+ P z̃,x) > 0) ≤ exp

(
− (f?(v,x)− ā>v)2

2‖P>v‖22

)
≤ exp

(
−δ

?(P>v|Z)2

2‖P>v‖22

)
.

Before deriving a formal proof of Theorem 2, we graphically explain the intuition behind the
result in dimension L = 2, in Figure 1. Assume (z̃1, z̃2) ∈ [−1, 1]2 (black squared box), which is
a special case of Assumption 1. The shaded blue region corresponds to the uncertainty set Z.
Let x be a robust solution. It induces a constraint on z, f(ā + Pz,x) ≤ 0 which is satisfied
by all z ∈ Z. By concavity, the region {z : f(ā + Pz,x) > 0} admits a supporting hyperplane
(in red) and is contained within a half-space. Theorem 2 provides an explicit description of this
halfspace, {z : ā>x+ v>Pz − f?(v,x) > 0}.

Proof Since

ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0,

we can apply Theorem 1 (with b = f?(v,x)) and get

P
(
ā>v + z̃>P>v − f?(v,x) > 0

)
≤ exp

(
− (f?(v,x)− ā>v)2

2‖P>v‖22

)
.

By definition of the conjugate,

∀a, f?(v,x) + f(a,x) ≤ a>v,
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z1

z2

Z ā>x+ v>Pz − f?(v,x) = 0

f(ā+ Pz,x) = 0

Fig. 1: Geometrical proof of Theorem 2 in dimension L = 2.

which in turns leads to

f(ā+ P z̃,x) > 0 =⇒ (ā+ P z̃)>v − f?(v,x) ≥ f(ā+ P z̃,x) > 0.

All in all, we have

P (f(ā+ P z̃,x) > 0) ≤ P
(
(ā+ P z̃)>v − f?(v,x) > 0

)
≤ exp

(
− (f?(v,x)− ā>v)2

2‖P>v‖22

)
,

which concludes the proof. ut

Theorem 2 displays the exact same probabilistic guarantee as in the linear case except that the
bound now involves the extra variable v instead of x. Recall that in the special case where f
is linear, the conjugate f? enforces v = x and we recover Theorem 1. In the general case, the
variable v is introduced to express the robust constraint in a tractable manner, so solving the
robust optimization problem provides a vector v alongside a vector x, and our bound can be
computed a posteriori. Taking the worst-case over all potential vectors v, we get the exact same
a priori bounds as in the linear case.

Corollary 2 Under Assumption 1, for any x ∈ X and v satisfying

ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0,

we have

P (f(ā+ P z̃,x) > 0) ≤ exp
(
− 1

2ρ(Z)2
)
.

3.3 Alternative assumptions on the uncertain parameter z̃

So far, we assumed that the coordinates of z̃ were independent sub-Gaussian random variables
with variance proxy 1, leading to the tail bound

P (z̃j > t) ≤ e−
t2

2σ2 ,
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Table 4: Summary of relevant assumptions on z̃ found in the literature and the corresponding
variance proxy. Proofs for the last three lines can be found in Ben-Tal et al. [3, Chapter 2.4.]. If
z̃ has variance proxy σ2 then the rate 1/2 in the probabilistic guarantee should be replaced by
1/2σ2.

Assumption on z̃ Variance proxy

E[z̃] = 0
|z̃| ≤ 1, a.s.

1

z̃ ∼ N (0, 1) 1

E[z̃] symmetric w.r.t. 0
E[z̃] unimodal w.r.t. 0
|z̃| ≤ 1, a.s.

1/3

E[z̃] symmetric w.r.t. 0
|z̃| ≤ 1, a.s.
Var(z̃) ≤ ν2

minc≥0

{
c : ∀t, c2t2 ≥ 2 ln(ν2 cosh(t) + 1− ν2)

}
≤ 1

E[z̃] symmetric w.r.t. 0
E[z̃] unimodal w.r.t. 0
|z̃| ≤ 1, a.s.
Var(z̃) ≤ ν2 ≤ 1/3

minc≥0

{
c : ∀t, c2t2 ≥ 2 ln(3ν2 sinh(t)/t+ 1− 3ν2)

}
≤ 1

with σ2 = 1. We recall main properties and useful concentration inequalities for sub-Gaussian
random variables in Appendix A. More generally, if the coordinates of z̃ are independent sub-
Gaussian random variables with variance proxy σ2, then our results hold after properly dividing
the exponential rate by a factor σ2. As summarized in Table 4, common assumptions on the
uncertainty parameter z̃ found in the literature can be all seen as assuming sub-Gaussian random
variables for some well-chosen variance proxy. For instance,

– Normal random variables with mean 0 and variance 1 are sub-Gaussian random variables
with variance proxy 1,

– Bounded random variables in [−1, 1] with mean 0 are sub-Gaussian random variables with
variance proxy 1,

– Bounded random variables in [−1, 1] which are symmetric and unimodal with respect to 0
are sub-Gaussian random variables with variance proxy 1/3.

We now discuss how additional assumptions on the true distribution of z̃ can be incorporated
into our proof techniques to derive valid bounds. From a high-level perspective, the proofs of
Theorems 1 and 2 are essentially a tail-bound P

(
z̃>P>x > t

)
for some t ≥ δ?(P>x|Z) > 0.

Independence: A key assumption is the independence of the coordinates of z̃. Under this as-
sumption, a standard Chernoff’s bound technique leads to

P
(
z̃>P>x > t

)
≤ min

θ>0
exp

(
−θt+

L∑
k=1

logE[eθx
>Pej z̃j ]

)
.

Then, further assumptions on z̃ enables to bound the logarithm of the moment generating func-
tion and derive computable bounds. This is the approach taken in Ben-Tal et al. [3, chapter 2]
for safe approximation of general scalar chance constraint. Again, we emphasize that while we
assume independence of the coordinates of z̃, we do not assume the coordinates of the uncertain
vector ã to be independent.
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Bounded symmetric distribution: Under the assumption that the coordinates of z̃ are L in-
dependent, symmetrically distributed random variables in [−1, 1], Bertsimas and Sim [5] prove
that

P
(
z̃>P>x > t

)
≤ 1

2L

(1− µ)

L∑
`=bνc

(
L
`

)
+ µ

L∑
`=bνc+1

(
L
`

) ,
with ν =

(
t

‖P>x‖2 + L
)
/2, µ = ν − bνc. In particular, they show that this bound is tight for

some particular distribution on z̃. However, this bound might be hard to compute numerically
and that provide tractable safe approximations of the upper-bound that match our results.

Bound on the covariance matrix E[z̃z̃>]: If we assume as in Bertsimas et al. [7] that the co-
ordinates of z̃ are L random variables with zero mean and covariance matrix bounded by some
positive semi-definite matrix Σ � 0, i.e., E[z̃z̃>] � Σ, then Chebyshev’s inequality yields

P
(
z̃>P>x > t

)
≤ Var(z̃>P>x)

t2
≤ ‖Σ

1/2P>x‖2

t2
.

This tail bound could be used to provide both a priori and a posteriori probabilistic guarantees
under this more general set of assumptions. The dependency in the robust complexity of the
uncertainty set Z, however, would be polynomial instead of exponential. We provide such bounds
in Appendix B.

4 The robust complexity of a set

In this section, we derive explicit lower bounds for the robust complexity ρ(Z) for particular
uncertainty sets Z and recover existing results in the literature. We also discuss how those
bounds should guide modeling in practice.

4.1 Norm-ball uncertainty sets

In practice, Z is often chosen as an `p ball for which one can compute its robust complexity
explicitly.

Proposition 5 Z =
{
z ∈ RL : ‖z‖p ≤ Γ

}
has a robust complexity of

ρ(Z) = Γκ(p), with κ(p) :=

{
1, if p ≥ 2,

L
1/2−1/p, if p ≤ 2.

Proof Since the support function for an `p-norm ball is given by its dual norm, the `q-norm with
q ∈ [1,∞] satisfying 1/p + 1/q = 1, we derive

min
y:‖y‖2=1

δ?(y|Z) = Γ min
y:‖y‖2=1

‖y‖q.

If q ≤ 2, 1 = ‖y‖2 ≤ ‖y‖q, which is tight for y = ei for some i ∈ {1, . . . , L}. If q ≥ 2, Hölder’s

inequality yields 1 = ‖y‖2 ≤ L1/2−1/q ‖y‖q, which is tight for y =
√
Le. Hence, the result. ut
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This result generalizes results obtained in the literature. In particular, if the 2-norm is used, the
bound is notably independent of the dimension L, and a priori and a posteriori bounds match. As
intuition suggests, the bound monotonically decreases with Γ , that is, the bigger the uncertainty
set, the smaller the probability of constraint violation. Equivalently, in order for the constraint
to be violated with probability at most ε, it suffices to take Γ ≥ 1

κ(p)

√
2 ln(1/ε).

Although its generality can be appealing, Proposition 5 might be quite weak in presence of
specific problem structure. For instance, for p =∞ and Γ = 1, the upper-bound is e−1/2 ≈ 61%,
while constraint violation happens with probability zero given Assumption 1.

Proposition 5 applies to norm balls which are isotropic, i.e., which are invariant by permuta-
tion of the coordinates. For uncertainty sets which weight each coordinate zi by a specific weight
λi > 0, we can prove the following extension.

Proposition 6 Let Λ = Diag(λ) be a diagonal matrix with λ > 0 and let p ∈ [1,∞]. Then the

set Z =
{
z ∈ RL : ‖Λz‖p = (

∑
i |λizi|p)

1/p ≤ 1
}

has a robust complexity of

ρ(Z) = 1/‖λ‖∞, if p ≥ 2,

ρ(Z) ≥

(
L∑
i=1

λ
1/(1/p−1/2)
i

)1/2−1/p

, if p ≤ 2.

In particular, if λi = 1/Γ , we recover Proposition 5.

Proof By a change of variable, we have

δ?(y|Z) = max
z′:‖z′‖p≤1

y>Λ−1z′ = ‖Λ−1y‖q,

with 1/p + 1/q = 1. If q ≤ 2 (i.e., p ≥ 2),

1 = ‖y‖2 =

√√√√ L∑
i=1

λ2i

(
yi
λi

)2

≤ ‖λ‖∞‖Λ−1y‖2 ≤ ‖λ‖∞‖Λ−1y‖q,

which is tight for y = ei with i ∈ arg maxi λi. If q > 2 (i.e., p < 2), , Hölder’s inequality yields

1 = ‖y‖2 =

√√√√ L∑
i=1

λ2i

(
yi
λi

)2

≤

(
L∑
i=1

λ
1/α
i

)α
‖Λ−1y‖q,

with α = 1
2

(
1− 2

q

)
= 1

p −
1
2 . ut

4.2 Intersection of norm balls

Uncertainty sets defined as the intersection of norm-balls have attracted a lot of attention, because
of their tractability and reduced conservatism. For such sets, one can compute an explicit a priori
probabilistic guarantee.

Proposition 7 Let Zi, i = 1, 2, be two uncertainty sets such that ri(Z1) ∩ ri(Z2) 6= ∅.

(a) The robust complexity of Z1 ∩ Z2 satisfies ρ(Z1 ∩ Z2) ≥ mini=1,2 ρ(Zi).
(b) If, in addition to Assumption 1, z̃ ∈ Z1 almost surely, then the probabilistic guarantee is

driven by ρ(Z2).
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Proposition 7(a) is non trivial. Since Z1 ∩ Z2 ⊆ Zi, i = 1, 2, the constraint violation probability
induced by Z1∩Z2 can only be worse than the ones induced by Z1 and Z2 alone. Yet, Proposition
7(a) states that, as far as upper-bounds are concerned, Z1 ∩ Z2 is no worse than Z1 and Z2

separately. Proposition 7(b) improves upon Proposition 7(a) under the additional assumption
that z̃ ∈ Z1 almost surely, stating that Z2 alone controls the upper bound for constraint violation.

Proof (a) If Z = Z1 ∩ Z2 with ri(Z1) ∩ ri(Z2) 6= ∅, we have [4, Lemma 6.4] δ?(y|Z) =
minv δ?(v|Z1) + δ?(y − v|Z2). In addition, by definition of the robust complexity δ?(·|Zi) ≥
ρ(Zi)‖ · ‖2 so that

δ?(y|Z) ≥ min
v

ρ(Z1)‖v‖2 + ρ(Z2)‖y − v‖2

≥ min
i=1,2

ρ(Zi) min
v

[‖v‖2 + ‖y − v‖2] ,

≥ min
i=1,2

ρ(Zi) ‖y‖2,

where the last inequality follows from the triangle inequality.
(b) We sketch the proof for the linear case only, the concave case being similar. Let x be a

robust solution, and v ∈ RL so that δ?(P>x|Z) = δ?(v|Z1) + δ?(P>x− v|Z2).

P
(
ā>x+ z̃>P>x > b

)
≤ P

(
z̃>P>x > δ?(P>x|Z1 ∩ Z2)

)
≤ P

(
z̃>v + z̃>(P>x− v) > δ?(v|Z1) + δ?(P>x− v|Z2)

)
= P

z̃>(P>x− v) > δ?(v|Z1)− z̃>v︸ ︷︷ ︸
>0 for z̃∈Z1

+δ?(P>x− v|Z2)


≤ P

(
z̃>(P>x− v) > δ?(P>x− v|Z2)

)
.

Applying a Chernoff bound and uniformly bounding the right hand side concludes the proof. ut

Remark 3 The proof of Proposition 7(b) is informative for a posteriori bound as well. Indeed,
we have

P
(
ā>x+ z̃>P>x > b

)
≤ exp

(
−δ

?(P>x− v|Z)2

2‖P>x− v‖22

)
,

which might be tighter than the bound from Theorem 1.

Example 4 The budget uncertainty set. The budget uncertainty set defined as

Z`∞∩`1 :=
{
z ∈ RL : ‖z‖∞ ≤ 1, ‖z‖1 ≤ ρ

}
,

with 1 ≤ ρ ≤ L and introduced by Bertsimas and Sim [5] is the intersection of the `∞ unit-ball
with an `1-ball. The robust constraint

ā>x+ z>P>x ≤ b,∀z ∈ Z`∞∩`1

is then equivalent to

∃v, ā>x+ ‖v‖1 + Γ‖P>x− v‖∞ ≤ b,

requiring the introduction of the L new variables v, in addition to L+ 1 auxiliary variables and
4L constraints to linearize the `1 and `∞ norms. With m constraints involving the same uncertain
vector a, there is a total of (2L+1)m new variables and 4Lm new constraints needed. According to



18 Bertsimas, den Hertog, Pauphilet

Proposition 7(b), Z`∞∩`1 induces a probabilistic guarantee of exp (−ρ2/2L), recovering the original
result from Bertsimas and Sim [5]. Our result holds whenever z̃ is sub-Gaussian with variance
proxy 1 (Assumption 1) and ‖z̃‖∞ ≤ 1, but does not require z̃ to be symmetrically distributed.
Similarly, for the so-called box-ellipsoidal uncertainty set from Ben-Tal and Nemirovski [2]

Z`∞∩`2 :=
{
z ∈ RL : ‖z‖∞ ≤ 1, ‖z‖2 ≤ ρ

}
,

we recover their e−ρ
2/2 guarantee.

4.3 Minkowski sumof norm balls

We now provide explicit a priori probabilistic guarantees for sets defined as the Minkowski sum
of norm balls, later referred to as sum sets. Compared to intersection sets, sum sets have not
received the attention they deserve, despite their improved tractability.

Proposition 8 Let Zi, for i = 1, 2, be two uncertainty sets. Then

ρ(Z1 + Z2) ≥ ρ(Z1) + ρ(Z2).

Proof If Z = Z1 + Z2, then δ?(y|Z) = δ?(y|Z1) + δ?(y|Z2) [4, Lemma 6.3]. Hence,

δ?(y|Z) ≥ ρ(Z1)‖y‖2 + ρ(Z2)‖y‖2.

Taking the minimum over all y such that ‖y‖2 = 1 concludes the proof. ut

Example 5 Alternative to the budget uncertainty set. From a modeling perspective, the budget
uncertainty Z`∞∩`1 set is geometrically very similar to the `∞ + `1 set, defined as

Z`∞+`1 :=
{
z ∈ RL : z = z1 + z2, with ‖z1‖∞ ≤ ρ1, ‖z2‖1 ≤ ρ2

}
.

In dimension L = 2, with proper scaling, those two sets are indeed identical as shown on Figure
2, while this is no longer the case in higher dimension (see Figure 3 for L = 3).

In terms of tractability, however, the sum is preferable over the intersection for it does not
require additional variables v. The constraint

ā>x+ z>P>x ≤ b, ∀z ∈ Z`∞+`1

is equivalent to

ā>x+ ρ1‖P>x‖1 + ρ2‖P>x‖∞ ≤ b,

which requires L+ 1 extra variables and 3L extra constraints to linearize the `1 and `∞ norm of
P>x. This gain is particularly sizable when the uncertainty affects multiple constraints since the
extra variables and constraints can be shared across constraints: With m uncertain constraints
involving the same uncertain vector a, there is a total of (L + 1) new variables and 3L new
constraints needed only. Applying Proposition 8, we can show that the Z`∞+`1 set yields a
probabilistic guarantee of

exp

(
−1

2

{
ρ1 + ρ2L

−1/2
}2
)
.

Consequently, in the case of the `∞ and `1 norms, the sum set dominates the intersection set in
terms of tractability and can still provide probabilistic guarantees. The intersection set, however,
could be used for intuition and scaling of ρ1 and ρ2. We will concretize this comparison on a
numerical example in Section 5.1.2.
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(a) Intersection set with ρ = 1.5 (b) Sum set with ρ1 = ρ− 1, ρ2 = 2− ρ.

Fig. 2: Comparison of the intersection and sum set in dimension L = 2.

(a) Intersection set with ρ = 2.5 (b) Sum set with ρ1 = (ρ− 1)/2, ρ2 = (3− ρ)/2

Fig. 3: Comparison of the intersection and sum set in dimension L = 3.

Example 6 Alternative to the box-ellipsoidal uncertainty set. Similarly, we propose an analogous
sum set for the box-ellipsoidal uncertainty set Z`∞∩`2 , namely we consider

Z`∞+`2 :=
{
z ∈ RL : z = z1 + z2, with ‖z1‖∞ ≤ ρ1, ‖z2‖2 ≤ ρ2

}
.

For similar reasons, the robust counterpart associated with Z`∞+`2 is more tractable in terms of
additional variables and constraints. In addition, according to Proposition 8, it yields a proba-
bilistic guarantee of

exp

(
−1

2
{ρ1 + ρ2}2

)
,

which is independent of the number of uncertain parameters L.
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Remark 4 Sets of the form Z`∞+`2 have been consider by Ben-Tal et al. [3, Chapter 2] in the
context of tractable reformulations of scalar chance constraints. Interestingly, sum sets emerge
naturally in this context when the mean of the uncertainty quantity z̃ is assumed to be bounded,
rather than equal to 0 [see 3, Theorem 2.4.4 and Examples 2.4.6, 2.4.7, 2.4.9, 2.4.11]. Alterna-
tively, uncertainty on the expected value of z̃ can be modeled by decomposing z̃ into z̃1 + z̃2,
where z̃1 and z̃2 are unknown parameters with mean 0. Intuitively, given z̃1, z̃ has mean z̃1 6= 0
and z̃2 represents deviation from the mean. From a practical standpoint, these two interpretations
lead to similar uncertainty sets.

4.4 Numerical computation using the maximum-volume inscribed sphere

For general uncertainty sets Z, an analytical expression for the robust complexity might be out-
of-reach. In this case, we propose a numerical strategy to compute valid a priori probabilistic
guarantees. Indeed, we show that the robust complexity of a set is equal to the radius of the
maximum-volume inscribed sphere centered at 0.

Observe that if Z ′ ⊆ Z then Z protects against at least as many adverse scenarios as Z ′,
so the probability of constraint violation with Z is lower than or equal to the probability of
constraint violation with Z ′. In short, ρ(Z) ≥ ρ(Z ′). This observation suggests a numerical
approach to lower bound ρ(Z): First, compute Z ′ such that Z ′ ⊆ Z and ρ(Z ′) is reasonably
known. Then, use the a priori probabilistic guarantee of Z ′ for Z. Intuitively, the closer Z ′ is to
Z, the tighter the approximation.

Actually, this procedure can produce the exact value of the robust complexity of Z when Z ′
is chosen as an `2-sphere centered at 0. Denote B(0, r) = {z : ‖z‖2 ≤ r}.

Proposition 9 For any fully-dimensional convex set Z ⊆ RL containing 0 in its interior, the
robust complexity of Z is the radius of the maximum inscribed sphere centered at 0 contained
within Z, i.e.,

ρ(Z) = max
r≥0

r s.t. B(0, r) ⊆ Z.

Proof Denote r? the objective value of the optimization problem on the left-hand side. Note that
r? > 0 since 0 lies in the interior of Z. By definition, B(0, r?) ⊆ Z so ρ(Z) ≥ ρ(B(0, r?) = r?,
where the last equality follows from Proposition 5. We consider a vector z?, ‖z?‖2 = r?, which
lies on the boundary of Z. Such a vector exists by optimality of r?. Then, z? defines a hyperplane
that is tangent to Z, hence proving that the linear optimization problem maxz∈Z z

>z? admits
z = z? as an optimal solution. As a result, by considering y = z?/r? we have ρ(Z) ≤ r?.

The optimization problem in Proposition 9 is a special case of the maximum inscribed ellipsoid
[44] or the maximum inscribed sphere problem [40]. Although we fix the center of the ellipsoid
to 0 and only allow for shape matrices of the form rIL, solving this optimization problem can
be challenging in general. For polyhedral uncertainty sets defined with k linear constraints,
Z = {z : Dz ≤ d}, however, it can be solved in closed-form:

ρ(Z) = max
r≥0

r s.t. r‖D>ei‖2 ≤ di,∀i = 1, . . . , k,

= min
i=1,...,k

di
‖D>ei‖2

.
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5 Numerical experiments

In this section, we illustrate how our results materialize on two concrete examples: facility loca-
tion and portfolio optimization. The first example illustrates the case where the constraints are
linear. In particular, some decision variables are binary and multiple constraints are subject to
uncertainty. In this context, a posteriori bound are significantly tighter due to discreteness of x,
hence especially valuable when considering the probability of multiple constraints being violated.
We also implement and compare uncertainty regions described as intersection and sums of norm
balls. The second example illustrates how our results generalize to a case where the constraint
is non-linear.

5.1 Case when the constraint is linear: Facility location problem

Given a set of n potential facilities and m customers, the facility location problem consists in
constructing facilities i = 1, . . . , n at cost ci in order to satisfy demand at minimal cost, i.e., solve

min
x∈{0,1}n,X∈Rn×m+

n∑
i=1

cixi +

m∑
j=1

n∑
i=1

CijXij s.t.

n∑
i=1

Xij = 1,∀j = 1, . . . ,m,

m∑
j=1

djXij ≤ uixi,∀i = 1, . . . , n.

In this formulation, Xij corresponds to the fraction of the demand of customer j produced in
and shipped from facility i, at a marginal cost Cij , ui is the production capacity of facility i and
dj the demand of customer j. The first set of constraints ensures that all demand is satisfied,
while the second set of constraints corresponds to production capacity constraints. The latter
are linear constraints of the form “a>x ≤ b”(

−ui
d

)>(
xi
Xei

)
≤ 0,∀i = 1, . . . , n, (6)

which we want to protect against uncertainty in the demand vector d. Values for the nominal
problem are taken from the p1 instance of Holmberg et al. [28] with n = 10 facilities and m = 50
customers. As in Baron et al. [1], we assume that the true demand can deviate within ε0 of its
nominal value (we take ε0 = 20%), namely for each customer j = 1, . . . ,m,

d̃j = (1 + ε0z̃j)d̄j ,

where z̃ satisfies Assumption 1. For simulation purposes, we will consider three particular dis-
tributions for z̃:

– Uniform, where each z̃j is uniformly distributed on [−1, 1].
– Normal, where z̃j ’s are independently sampled from a standard distribution.
– Rademacher, where P(z̃j = ±1) = 1/2.

For each facility i, we replace the production capacity constraint by its robust counterpart[(
−ui
d̄

)
+

(
0>

ε0Diag(d̄)

)
z

]>(
xi
Xei

)
≤ 0,∀z ∈ Z,

which is of the form “[ā+ Pz]
>
x ≤ b”, and consider different uncertainty set. In the expression

above, Diag(d̄) denotes the m×m diagonal matrix whose diagonal entries are given by d̄.
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Fig. 4: Comparison of a priori and a posteriori bounds with empirical probability of constraint
violation as the budget of uncertainty Γ increases, for two production capacity constraints.

5.1.1 Box uncertainty set

We first consider a box uncertainty set

Zbox
Γ = {z ∈ Rm : ‖z‖∞ ≤ Γ} ,

as in Baron et al. [1]. According to Corollary 1, the uncertainty set Zbox
Γ a priori induces a

probabilistic guarantee of exp(−ρ(Zbox
Γ )2/2) with ρ(Zbox

Γ ) = Γ (Proposition 5). As for posteriori
bounds, given a robust solution (x,X), we have a probabilistic guarantee of

exp

(
−1

2

|Diag(d̄)>Xei − uixi|2

ε20‖Diag(d̄)>Xei‖22

)
.

Figure 4 compares these a priori and a posteriori bounds to the empirical probability of con-
straint violation for three different distributions, and two different constraints. The a posteriori
bound brings a material improvement over the a priori one and better approximates the empirical
probability as Γ increases. This should come as no surprise, since our bounds are consequences
of concentration inequalities which are tighter as we shift further away from the mean.

These bounds can be improved by imposing more assumptions on z̃. For instance, if we assume
that z̃j admits a bounded symmetric unimodal distribution (such as the uniform distribution),
then, as seen in Section 3.3, Zbox

Γ induces an a priori guarantee of exp(−3Γ 2/2) instead of
exp(−Γ 2/2), and the a posteriori guarantee is affected by a factor 3 as well. Figure 5 compares
the a priori and a posteriori guarantees with and without this assumption, for the two previous
constraints.

5.1.2 Budget and sum uncertainty set

In this section, we compare the budget and sum uncertainty sets, defined as

Zbudget
Γ = {z ∈ Rm : ‖z‖∞ ≤ 1, ‖z‖1 ≤ Γ} ,
Zsum
Γ = {z1 + z2 ∈ Rm : ‖z1‖∞ ≤ Γ1, ‖z2‖1 ≤ Γ2} ,

in terms of a priori and a posteriori guarantees, as discussed in Section 4.2.
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Fig. 5: Comparison of a priori and a posteriori bounds with and without the unimodal assumption
as the budget of uncertainty Γ increases, for two production capacity constraints.
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Fig. 6: Comparison of a priori and a posteriori bounds with empirical probability of constraint
violation for facility i = 4 as the budget of uncertainty Γ for the budget uncertainty set increases
(left) and as Γ2 increases for the sum uncertainty set (right), Γ1 being fixed to 0.2.

Figure 6 compares the different bounds obtained for these two uncertainty sets. Since the
sum uncertainty set is parametrized by two budgets of uncertainty, we show the bounds as Γ2

increases, Γ1 being fixed. To derive useful conclusions, probabilistic guarantees need to be put
in contrast with the conservatism of the corresponding solutions. Figure 7 represents the trade-
off between the probability of constraint violation and the worst-case cost of the solution for
the two uncertainty sets. For every protection level, the budget uncertainty set a priori leads
(left panel) to a less conservative solution than the sum uncertainty set, by c.10%. A posteriori
and empirically, this gap is generally confirmed yet weaker, in particular when Γ1 is close to
0. This conclusion is of course valid for this particular problem only and we do not claim any
generalization to other contexts. Yet, we believe that comparing uncertainty sets in terms of
the trade-off between conservatism and risk level is a useful tool to inspect seemingly similar
modeling choices.
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Fig. 7: Comparison of the trade-off worst case cost vs. a priori (left), a posteriori probabilistic
guarantee (middle) and empirical probability of constraint violation (with uniform distribution,
right) for the budget (in red) and sum (in blue) uncertainty sets and varying budget of uncer-
tainty. For the sum uncertainty sets, we connected the points corresponding to sets with the
same value of Γ1.

5.1.3 Extension to multiple constraints

For now, we only looked at the probability of one constraint being violated. To extend our
analysis to multiple constraints, a simple union bound technique, alternatively called Bonferroni
inequality [10], would bound the probability of at least one constraint being violated by the sum
of the individual constraint violation probabilities. In the presence of k linear constraints subject
to uncertainty for instance, we have

P
(
∃i ∈ {1, . . . , k} : x>ā(i) + x̄>P (i)z̃ > 0

)
≤

k∑
i=1

P
(
x>ā(i) + x̄>P (i)z̃ > 0

)
.

We apply this reasoning to the k = n = 10 production capacity constraints (6) for the budget

uncertainty set Zbudget
Γ . We compute a priori and a posteriori guarantees on Figure 8a, with and

without the assumption that z̃ is unimodal with respect to 0. For small values of Γ , these bounds,
and a priori bounds especially, are clueless for they are greater than 1. A posteriori bounds on the
other hand are prominently tighter. This is mainly due to the fact that many facilities are turned
off (xi = 0), in which case the corresponding constraints are no longer subject to uncertainty
and the a posteriori bounds equal 0, whereas the a priori bounds are stricly positive. We further
compare our bounds (capped at 1) with empirical probabilities (Figure 8b). These bounds are
noticeably weak for small values of Γ , because the Bonferroni approximation did not account for
correlations between the different constraints. Let us remark that the robust counterpart of the
capacity constraints (6) similarly computes the worst case for each constraint independently.

5.2 Case when the constraint is concave in the uncertain parameter: Mean-variance portfolio

We now consider the mean-variance portfolio problem from Example 3. As in Marandi et al.
[32], we use monthly average value weighted return of n = 30 industries from 1956 till 20151 to
estimate µ and Σ. Namely, we compute their respective maximum likelihood estimators µ̄ and

1 Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html under “In-
dustry Portfolios”
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Fig. 8: Comparison of a priori and a posteriori bounds on the joint probability of at least one
constraint being violated, with the empirical constraint violation probability, as the budget of
uncertainty Γ increases.

Σ̄, and construct the uncertainty set (Rn × Sn+) ∩ U , with

U :=

(µ,Σ) :
µi = µ̄i + ε0µ̄izi, ∀i = 1, . . . , n,
Σij = Σ̄ij + ε0Σ̄ijZij , ∀i, j = 1, . . . , n,
‖vec(z,Z)‖ ≤ Γ

 .

In our numerical experiments, we fix λ = 2 and ε0 = 5%, vary the budget of uncertainty Γ
and consider the `2, and `∞ norms to bound the magnitude of vec(z,Z). Note that U is of the
desired form with P := ε0Diag(vec(µ̄, Σ̄)). As in the linear case, we sample vec(z̃, Z̃) from three
distributions: Uniform within [−1, 1], Rademacher and Standard distribution.

The robust constraint is of the form

f(a,x) ≤ 0,∀a ∈ U with a = (µ,Σ),

and f(a,x) = −t− µ>x+ λx>Σx,

and the equivalent reformulation (Proposition 2) holds with

v = (−x,W ), f?(v,x) = t, and Z = {(z,Z) : ‖vec(z,Z)‖ ≤ Γ} .

In terms of probabilistic guarantees, the a priori bound (Corollary 2) is identical to the linear
case:

P
(
t < −µ̃>x+ λx>Σ̃x

)
≤ exp

(
−ρ(Z)2

2

)
= exp

(
−Γ

2

2

)
,

since ρ(Z) = Γ for the `2 and `∞ norm balls. As for the a posteriori bound, Theorem 2 yields

P
(
t < −µ̃>x+ λx>Σ̃x

)
≤ exp

(
− (t+ µ̄>x− 〈Σ̄,W 〉)2

2‖P>vec(−x,W )‖22

)
.

We compare these bounds with the empirical probability of constraint violation in Figure 9.
The chosen uncertainty sets, namely the `2 and `∞ balls, illustrate the two extreme sides of the
spectrum: For the `2 ball (left panel), a priori and a posteriori bounds match, while for the `∞
ball (right panel), a posteriori bounds are materially tighter than a priori ones.
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Fig. 9: Comparison of a priori bounds, a posteriori bounds and empirical probabilities of con-
straint violation for the mean-variance portfolio example (Example 3) as Γ increases.

6 Concluding remarks

In this work, we developed a principled methodology for deriving strong a priori and a posteri-
ori probabilistic guarantees for solutions of robust optimization problems. Our analysis applies
broadly to any convex compact uncertainty set and to any constraint affected by uncertainty in
a concave manner, and combines theoretical appeal with practical relevance.

Constraints where the uncertainty appears in a convex way are notably harder to account for
in robust optimization and call for tractable safe approximations [6, 36], a topic which constitutes
an exciting area for future research. In line with the present paper, probabilistic guarantees for
such safe approximations would be particularly beneficial in practice. This question intimately
relates to approximations of chance constrained conic or matrix inequalities [3, Chapter 10],
which has received revived interest recently under the lens of distributionally robust optimization
[15, 16, 45].
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A Preliminary results from probability theory

In this section, we recall some useful definitions and results from probability theory regarding sub-Gaussian
variables. We refer to Rigollet and Hütter [34] and Wainwright [38] for a comprehensive treatment.

Definition 3 [Definition 1.2 in 34] A random variable x̃ ∈ R is said to be sub-Gaussian with variance proxy σ2,
denoted x̃ ∼ subG

(
σ2
)
, if E[x̃] = 0 and for all s ∈ R,

E
[
esx̃
]
≤ e

s2σ2

2 .
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Naturally, centered Gaussian random variables are also sub-Gaussian. Of particular interest for the RO literature,
bounded random variables are a special case of sub-Gaussian random variables, a consequence of Hoeffding’s
inequality.

Lemma 1 [Lemma 1.8 in 34] Let x̃ be a random variable such that E[x̃] = 0 and x̃ ∈ [a, b] almost surely. Then,

x̃ ∼ subG
(

(b−a)2

4

)
.

Note that the definition of sub-Gaussian random variables is essentially a Gaussian bound on the moment gen-
erating function of x̃ and is very similar to Property P2 in Ben-Tal et al. [3], Section 2.4. Examples from Table
2.3. in Ben-Tal et al. [3] for which µ± = 0 satisfy Definition 3. This definition can be extended to non-centered
random variables as well [see 38, Definition 2.2] and account for examples with µ± 6= 0.

Bound on the moment generating function leads to bound on the tail of the distribution.

Proposition 10 [Lemma 1.3 in 34] If x̃ ∼ subG
(
σ2
)
, for all t > 0,

P (x̃ > t) ≤ e−
t2

2σ2 ,

P (x̃ < −t) ≤ e−
t2

2σ2 .

Actually, all these tail bounds can be used as equivalent definitions of sub-Gaussian random variables [38, Theorem
2.6].

Finally, relevant for our analysis is the fact that linear combinations of independent sub-Gaussian random
variables are themselves sub-Gaussian.

Proposition 11 Let x̃i, i = 1, . . . , n, be n independent random variables and θ ∈ Rn.

(a) If x̃i ∼ subG
(
σ2
)
, then

∑
i θix̃i ∼ subG

(
‖θ‖22σ2

)
.

(b) If E[x̃i] = 0 and |x̃i| ≤ 1 almost surely, then
∑
i θix̃i ∼ subG

(
‖θ‖22

)
.

Proof (a) The first part of the theorem follows from the definition of sub-Gaussian random variables and a
Chernoff bound as proved in [34, Theorem 1.6]. (b) For the second part, Lemma 1 states that x̃i ∼ subG (1).
Applying Theorem 1(a) yields

∑
i θix̃i ∼ subG

(
‖θ‖22

)
. ut

B Polynomial probabilistic guarantees

In this section, we provide polynomial probabilistic guarantees under a less restrictive set of assumptions:

Assumption 2 We assume that the coordinates of the uncertain parameter z̃ ∈ RL are L random variables with
zero mean and covariance matrix bounded by some semi-definite positive matrix Σ � 0, i.e., E[z̃z̃>] � Σ.

We consider the case where the constraint is linear, f(a,x) = a>x− b, and treat sequentially the a posteriori
and a priori bounds. We first derive a posteriori guarantees that depend on the robust solution x.

Theorem 3 Under Assumption 2, for any x ∈ X satisfying

ā>x+ δ?(P>x|Z) ≤ b,

we have

P
(
ā>x+ z̃>P>x > b

)
≤
‖Σ1/2P>x‖22
(b− ā>x)2

≤
‖Σ1/2P>x‖22
δ?(P>x|Z)2

.

Proof We follow the same proof as for Theorem 1. Instead of a Chernoff bound, we apply a Chebyshev’s inequality

P
(
z̃>P>x > t

)
≤

Var(z̃>P>x)

t2
≤
‖Σ1/2P>x‖22

t2
,

with t = b− ā>x ≥ δ?(P>x|Z).

Denote λmax(Σ) the maximum eigenvalue value of Σ. Then, for any vector y, ‖Σ1/2y‖22 ≤ λmax(Σ)‖y‖22, and
we can derive a priori probabilistic guarantees.
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Proposition 12 Under Assumption 2, for any x ∈ X satisfying

ā>x+ δ?(P>x|Z) ≤ b,

we have

P
(
ā>x+ z̃>P>x > b

)
≤ λmax(Σ) ρ(Z)−2.

We omit the proof for concision. Notice that the a priori bound is again driven by the robust complexity of the
uncertainty set, ρ(Z), yet in a polynomial way. The proof techniques can be straightforwardly adapted to the
general case where f(a,x) is a concave function of a.


