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The growing uncertainty associated with the increasing penetration of wind and solar power generation

has presented new challenges to the operation of large-scale electric power systems. Motivated by these

challenges, we present a multistage adaptive robust optimization model for the most critical daily operational

problem of power systems, namely the unit commitment (UC) problem, in the situation where nodal net

electricity loads are uncertain. The proposed multistage robust UC model takes into account the time

causality of the hourly unfolding of uncertainty in the power system operation process. To deal with large-

scale systems, we introduce the concept of simplified affine policy and develop a novel solution method.

Extensive computational experiments on the IEEE 118-bus test case and a real-world power system with

2718 buses demonstrate that the proposed algorithm is effective in handling large-scale power systems and

that the proposed multistage robust UC model outperforms the deterministic UC and existing two-stage

robust UC models in both operational costs and system reliability. To the best of our knowledge, this is

the first proposal and systematic study of multistage robust optimization in power system operations under

uncertainty.
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1. Introduction

Operating large-scale electric power systems is a challenging task that requires adequate deci-

sion tools and methodologies for hedging against uncertain factors such as wind and solar power

generation, water inflows for hydroplants, electricity demand, transmission line and generator con-

tingencies, and demand response (see e.g. Gómez-Expósito et al. (2008), Conejo et al. (2010), Xie

et al. (2011)). The unit commitment (UC) problem consists in finding an on/off schedule and

generation dispatch levels for generating units in each hour of the next day, in such a way that
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the total production costs are minimized while electricity demand is met and various physical con-

straints of generators and the transmission network are satisfied. This is the most critical daily

operational problem for large-scale power systems, and it is a difficult optimization problem due

to its large scale and discrete nature. It becomes more complicated when wind power and other

renewable generation resources are present in large quantities and create significant uncertainty

in their availability. How to deal with increasing uncertainty in power systems has been identified

by the electricity industry as an urgent challenge (see Hobbs et al. (2001), Keyhani et al. (2009),

Conejo et al. (2010), Xie et al. (2011)).

Stochastic programming is an important approach that has been applied to managing uncer-

tainties in the UC problem (see recent works, e.g., Ozturk et al. (2004), Wu et al. (2007), Wang

et al. (2008), Ruiz et al. (2009a), Ruiz et al. (2009b), Tuohy et al. (2009), Constantinescu et al.

(2011),Wang et al. (2012), Papavasiliou and Oren (2013)). However, stochastic programming mod-

els have some intrinsic difficulties dealing with large-scale power systems. For instance, they require

identifying appropriate probability distributions for uncertain parameters such as load and renew-

able energy generation, which are usually not easy to obtain, if at all possible; it is also challenging

to use scenario trees to model multidimensional stochastic processes, especially with temporal and

spatial correlations; and large scenario trees easily lead to computational issues.

Robust optimization is an alternative paradigm for optimization under uncertainty, which has

received wide attention and has been applied in several engineering disciplines (e.g. see Ben-Tal

et al. (2009a), Bertsimas et al. (2011)). Instead of using probability distributions for uncertain

parameters, robust optimization models assume that uncertain parameters are realized as elements

of a deterministic uncertainty set. Given an uncertainty set, the problem consists of finding a solu-

tion that is feasible for any realization of the uncertain parameters in this set and also minimizes

the worst-case cost. This approach is particularly convenient when accurate probability distribu-

tions are not easy to obtain. For uncertain parameters of high dimensionality, robust optimization

can be more scalable than stochastic programming. Furthermore, the conservativeness of robust

solutions can be controlled by the choice of uncertainty sets.

Several robust optimization formulations for the UC problem have been recently proposed. For

example, a robust formulation for the contingency constrained UC problem is proposed in Street

et al. (2011). Various robust UC models dealing with demand and renewable generation uncertainty

are studied in Jiang et al. (2012), Zhao and Zeng (2012), Bertsimas et al. (2013), and Wang

et al. (2013). More specifically, Jiang et al. (2012) present a robust UC formulation including

pumped storage hydro units under wind power output uncertainty. Zhao and Zeng (2012) present

a formulation with demand response under wind speed uncertainty. Bertsimas et al. (2013) present

a security constrained robust UC formulation with system reserve requirements under nodal net
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injection uncertainty, including extensive computational experiments on a real-world power system.

Wang et al. (2013) present a contingency constrained UC model under uncertain generator and

transmission line contingencies. Zhao and Guan (2013) present a hybrid approach that combines

stochastic and robust optimization by weighing expected cost and worst case cost.

An essential feature of all the above stochastic and robust UC models is that they are two-

stage models, where the first-stage decision is the on/off commitment decision made in the day-

ahead electricity market, while the second-stage decision is the real-time dispatch decision for the

entire scheduling horizon. The work in Zhao et al. (2013) presents a three-stage robust UC model,

which has UC decisions in the first stage and dispatch decisions in the second stage, and then has

uncertain demand response after dispatch decisions. This decision-making structure is converted

to a two-stage robust model. The crucial assumption of all the two-stage models is that the second-

stage decision is made with the full knowledge of uncertainty realization over the entire scheduling

horizon. However, in reality, power systems are operated sequentially, where generation dispatch at

each hour can only depend on the information of uncertainty realization up to that hour. In other

words, the non-anticipativity constraints on dispatch should be respected. All of the two-stage

stochastic and robust UC models ignore this critical aspect.

In this paper, we demonstrate the importance of considering non-anticipativity constraints in

power systems operation and present a multistage adaptive robust optimization model for the UC

problem, where the commitment decisions are selected here-and-now as done in the day-ahead

electricity market, and the dispatch decision for each hour of the next day is the wait-and-see

decision respecting non-anticipativity constraints for the sequential revelation of uncertainty. To

the best of our knowledge, this is the first proposal of a general multistage robust UC model in the

literature. We then address the computational challenge presented by the multistage robust UC

model. To make it computationally tractable for large-scale power systems, we consider approxi-

mation schemes with decision rules, in particular, we use affine policies for the dispatch decisions,

where generators’ dispatch levels are affine functions of uncertain load.

The affinely adjustable robust optimization approach has attracted considerable attention since

the seminal paper of Ben-Tal et al. (2004). Most of the existing works focus on studying multistage

convex optimization problems with relatively simple and well-structured constraints, such as multi-

period inventory problems studied in Bertsimas et al. (2010), Goh and Sim (2011), Hadjiyiannis

et al. (2011) or multistage stochastic linear programs in Kuhn et al. (2011). These models can be

transformed to deterministic counterparts through duality theory and solved by existing algorithms

for convex programs, see e.g. Ben-Tal et al. (2009b), Kuhn et al. (2011). Another direction of

research is to extend affine policies to more general decision rules, such as in Chen et al. (2008),

Chen and Zhang (2009), and Georghiou et al. (2013).
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To the best of our knowledge, the first application of affine policies for power system operations

was proposed by Warrington et al. (2012, 2013), who considered a stochastic optimization model

for the economic dispatch problem, where the UC binary decision is assumed to be fixed. They

have also included energy storage decisions and used quadratic cost functions. These works have

been recently extended to incorporate binary UC decisions (Warrington et al. 2014). Another

notable application of affine policies for power system operations was developed by Jabr (2013)

who applied affine policies to the dispatch of automatic generation control units under uncertain

renewable energy outputs with fixed UC decisions. Crucial differences of our approach with respect

to these references include the proposal of multistage robust UC models, the discussion on simplified

affine policies, the analysis of the relationship between the multistage and two-stage robust UC

models, the development of an efficient algorithm based on constraint generation to solve large-

scale instances, and extensive computational experiments to study the proposed algorithms and

several aspects of the proposed models. More details will be provided in the following discussions.

The proposed multistage robust UC model in this paper presents several challenges that make

existing methodologies not directly applicable. In particular, the multistage robust UC model is a

large-scale mixed-integer optimization problem involving a large number of complicated constraints.

Due to the mixed-integer decisions, convex optimization based modeling and solution methods

cannot be applied. Furthermore, due to its very large scale, applying even the basic affine policies

in the straightforward way is not computationally viable and the duality based approach leads to

reformulations with exceedingly large dimensions. To deal with these challenges, we propose new

solution concepts and methods. More specifically, instead of using more general decision rules, we

descend the complexity ladder and introduce simplified affine policies through properly aggregating

uncertain parameters in the dependency structure of the affine policy. The resulting multistage

UC formulation has a much reduced dimensionality. Even the multistage robust UC models with

simplified affine policies cannot be solved by the traditional duality based approach in large-scale

instances. Therefore, the proposed methods in Warrington et al. (2012, 2013, 2014), Jabr (2013)

can not be directly applied. We design a constraint generation based solution method and propose

several algorithmic improvements that significantly reduce computation time and make the large-

scale multistage robust UC model efficiently solvable.

We conduct a thorough computational study with extensive numerical experiments on the per-

formance of the proposed algorithm, the quality of simplified affine policies, their worst-case and

average-case performances, and comparison with existing deterministic and two-stage robust UC

models. The computational results show that the proposed algorithm can effectively solve the

multistage robust UC model within a time frame reasonable for the day-ahead operation of large-

scale power systems. The performance of the proposed multistage robust UC model demonstrates
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its ability to significantly reduce operational costs and at the same time improve system reliabil-

ity, as we show in computational experiments where we compare this approach with the existing

deterministic and two-stage robust UC models.

The contributions of the paper can be summarized as follows.

1. This paper presents for the first time, to the best of our knowledge, a multistage adaptive

robust optimization model for the UC problem under significant uncertainty in nodal net loads.

2. This paper discusses the solution concept of simplified affine policies in multistage robust

optimization and demonstrates its effectiveness in power system operations.

3. We propose new efficient solution algorithms for solving the multistage robust UC model with

affine policies. The proposed constraint generation based algorithms are also applicable to general

large-scale robust optimization problems with mixed-integer variables.

4. This paper provides an extensive computational study of the proposed multistage robust UC

model on medium and large-scale power systems. Comparison with existing deterministic and two-

stage robust UC models demonstrates the significant improvements of the proposed multistage UC

model in reducing operational cost, increasing system reliability, and managing system flexibility.

The remainder of the paper proceeds as follows. Section 2 presents the deterministic and two-

stage robust UC models and discusses their limitations. Section 3 proposes the multistage robust

UC model and introduces the concept of simplified affine policies. Section 4 presents a basic con-

straint generation framework for solving robust optimization problems. Section 5 discusses several

algorithmic improvements. Sections 6-10 present a multifaceted computational study of the per-

formance of the proposed approach. Section 11 concludes the paper.

2. Non-Causal UC models and Their Limitations

In this section, we discuss the deterministic UC and the recently developed two-stage robust UC

models. We call these non-causal UC models, because the decisions in these models depend on

future information of uncertainty and thus do not respect non-anticipativity constraints in the

physical process of committing and dispatching generators. We show important issues with non-

causality in UC formulations. It serves as the motivation for the development of the multistage

robust UC model.

2.1. Deterministic Unit Commitment

Consider the deterministic UC model below.

min
x,u,v,p

∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) +

∑
t∈T

∑
i∈Ng

Cip
t
i (1a)

s.t. xit, uit, vit ∈ {0,1} ∀ i∈Ng, t∈ T , (1b)
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xit−xi,t−1 = uit− vit ∀ i∈Ng, t∈ T (1c)
t+UTi−1∑
τ=t

xτi ≥UTiuti ∀ i∈Ng, t∈ {1,2, . . . , T −UTi + 1} (1d)

t+DTi−1∑
τ=t

(1−xτi )≥DTivti ∀ i∈Ng, t∈ {1,2, . . . , T −DTi + 1} (1e)

T∑
τ=t

(xτi −uti)≥ 0 ∀ i∈Ng, t∈ {T −UTi + 1, . . . , T} (1f)

T∑
τ=t

(1−xτi − vti)≥ 0 ∀ i∈Ng, t∈ {T −DTi + 1, . . . , T} (1g)

pmini xti ≤ pti ≤ pmaxi xti ∀ i∈Ng, t∈ T (1h)

−RDt
ix
t
i−SDt

iv
t
i ≤ pti− pt−1

i ≤RU t
i x

t−1
i +SU t

i u
t
i ∀ i∈Ng, t∈ T (1i)

− fmaxl ≤αTl (Bppt−Bddt)≤ fmaxl ∀ t∈ T , l ∈Nl (1j)∑
i∈Ng

pti =
∑
j∈Nd

dtj ∀ t∈ T , (1k)

where Ng,Nd,Nl,T denote the sets of generators, nodes with net load, transmission lines, and time

periods, respectively, and Ng,Nd,Nl, T are their cardinalities; xti, u
t
i, v

t
i and pti are the on/off, start-

up, and shut-down decisions, and the generation dispatch level of generator i at time t, respectively;

Gi, Si,Ci are the no-load cost, start-up cost, and variable cost of generator i; pmini and pmaxi are

the minimum and maximum generation levels of generator i; RDi and RUi are the ramp-down and

ramp-up rates of generator i, and SDi and SUi are the ramp rates when generator i turns on or

shuts down; Bp and Bd are the incidence matrices for generators and loads; αl and fmaxl are the

generation shift factor and flow limit for line l, respectively; dtj is the net load at node j and time t.

In this paper, nodal net load is defined as the nodal demand minus the total renewable generation

such as wind and solar power connected to the same node, which is an uncertain quantity due

to the uncertainty of wind and solar power generation. The objective (1a) consists of minimizing

the sum of commitment costs (including no-load and start-up costs) and dispatch costs (assumed

to be linear here but easy to be replaced with a piecewise linear function without changing the

linearity of the problem). (1c) are start-up and shut-down constraints. (1d)-(1g) are minimum

up and down time constraints. (1h) enforces minimum and maximum generation capacity limits

when generators are on, and no generation when they are off. (1i) enforces ramping up and down

limits. (1j) enforces transmission line limits. (1k) represents system level energy balance equation.

The model can easily be extended to include reserve decisions and related constraints, which are

omitted here for simplicity. The formulation of (1d)-(1g) follows Ostrowski et al. (2012).
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2.2. Two-stage Adaptive Robust Unit Commitment

To deal with uncertainties in nodal net electricity loads, the following two-stage adaptive robust

UC model has been proposed (e.g. see Jiang et al. (2012), Zhao and Zeng (2012), Bertsimas et al.

(2013), Wang et al. (2013)):

min
x∈X

{
F (x) + max

d∈D
min

p∈Ω(x,d)
c(p)

}
, (2)

where x denotes all the commitment related binary variables (xti, u
t
i, v

t
i in the deterministic UC

model (1)), d is the vector of net load at all nodes and all time periods, p is the vector of dispatch

variables, the set X is the feasible region of the commitment decisions defined by Eqs. (1b)-(1g),

and Ω(x,d) is the feasible region of the dispatch variables parameterized by the commitment

decisions and realized net load, as defined in Eqs. (1h)-(1k). D is the uncertainty set of net loads.

In this paper, we use the following budget uncertainty set:

Dt =

{
dt = (dt1, . . . , d

t
Nd

) :
∑
j∈Nd

|dtj − d
t

j|
d̂tj

≤ Γ
√
Nd, d

t
j ∈ [d

t

j −Γd̂tj, d
t

j + Γd̂tj] ∀ j ∈Nd

}
. (3)

Notice that dtj lies in an interval centered around the nominal value d
t

j within a deviation denoted

by Γd̂tj. The budget constraint with budget Γ
√
Nd controls the size of the uncertainty set, where Γ

represents the conservativeness of the model. For Γ = 0, Dt = {dt}, i.e., the uncertainty set contains

only the nominal net load vector and the two-stage robust UC model (2) becomes the deterministic

UC model (1). As Γ increases, more net load vectors are contained in the uncertainty set. We define

D=
∏
t∈T Dt as the uncertainty set for the net load trajectory d over the scheduling horizon.

As seen from the above two-stage robust UC model, the dispatch decision p is made with the

perfect knowledge of the realization of uncertain net loads d over the entire scheduling horizon.

In reality, system operators only have information about uncertainty that is realized up to the

operating time. The key questions are: What is the consequence of assuming the full knowledge of

uncertainty in the UC problem? How to deal with the sequential nature of the dispatch process?

2.3. Example that Illustrates the Limitations of Non-causal UC Models

We present a simple example to illustrate that the UC solution from the two-stage robust UC

model can lead to infeasibility in the real-time dispatch.

Example 1: The system has only 2 buses A and B and two periods T = 2. Each bus has a

conventional generator. The transmission line has a flow limit of 1 unit of power. The ramp rates

of both generators are also 1 unit of power, i.e., RA =RB = 1. The initial generation levels of the

two generators are at 12, i.e., p0
A = p0

B = 12.
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Figure 1 Simple two-bus system to illustrate the limitation of non-causal UC models.

The uncertainty sets of the nodal net loads (dtA, d
t
B) at t= 1,2 are given as follows:

D1 =
{

(d1
A, d

1
B) = (12,12)

}
,and D2 =

{
(d2
A, d

2
B) : d2

A ∈ [10,15], d2
B ∈ [10,15], d2

A + d2
B = 25

}
.

That is, the first period loads are deterministic with power level of 12 at each bus, and the net loads

in the second period are uncertain, but the total net load is known to be 25. Denote D=D1×D2.

Proposition 1. The two-stage robust UC model (2) is feasible for the system in Example 1.

Proof: Consider x2S = ((x1
A, x

1
B), (x2

A, x
2
B)) = ((1,1), (1,1)). To prove that x2S is feasible for

the two-stage robust UC model, we construct a feasible dispatch policy. In particular, for any

d= ((d1
A, d

1
B), (d2

A, d
2
B))∈D, consider the following policy:

p1
A(d) = 12 + (2/5)(d2

A− 12.5), p1
B(d) = 12− (2/5)(d2

A− 12.5), (4a)

p2
A(d) = 12.5 + (3/5)(d2

A− 12.5), p2
B(d) = 12.5− (3/5)(d2

A− 12.5). (4b)

From (4), we can see that for t = 1, p1
A(d) + p1

B(d) = 24 for all d ∈ D, so the energy balance is

respected. By the definition of the uncertainty sets, we have p1
A(d), p1

B(d) ∈ [11,13] for all d ∈
D, so the ramping constraints from the initial states (p0 = (12,12)) are respected. Furthermore,

p1
A(d)−d1

A = p1
A(d)−12∈ [−1,1] for all d∈D, so transmission constraints are respected. Similarly

for t= 2, we have p2
A(d)+p2

B(d) = 25 for all d∈D, so energy balance is satisfied. Since d2
A ∈ [10,15],

we can see that p2
A(d)−p1

A(d) = 0.5+(1/5)(d2
A−12.5)∈ [0,1] and p2

B(d)−p1
B(d) = 0.5− (1/5)(d2

A−
12.5) ∈ [0,1], hence ramping constraints are respected. Finally, p2

A(d)− d2
A = 5− (2/5)d2

A ∈ [−1,1],

so transmission constraints are respected. Therefore, p(d) given in (4) satisfies all constraints in

(2), thus x∗2S is feasible for the two-stage robust UC model. �

Notice that the dispatch policy identified above is non-causal, because the dispatch decision

at t= 1 depends on the uncertainty realization at t= 2. If this UC solution is implemented, the

real-time dispatch under this UC solution can be infeasible, as shown in the following result.

Proposition 2. Let x∗2S be the optimal UC solution of the two-stage robust UC model for Example

1. Under x∗2S, there does not exist any feasible dispatch policy that respects time causality, i.e.

where p1(·) does not depend on d2.
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Proof Notice that x∗2S = ((x1
A, x

1
B), (x2

A, x
2
B)) = ((1,1), (1,1)) is the optimal solution of the two-

stage robust UC for the system in Example 1, since keeping both generators online is the only

candidate solution to satisfy net load in this example.

Now consider the real-time sequential operation under this commitment decision x∗2S, where the

causal dispatch policy at t can only depend on the information available up to t. We want to show

that there does not exist any causal dispatch policy that can make the system feasible for all net

load vectors in the uncertainty set. For this, we need to show that there is no p1(d1) such that, for

all d2 ∈D2, there always exists a feasible p2(d1,d2) at t= 2.

Since d1 is fixed at (12,12), we write p1(d1) as p1 = (p1
A, p

1
B) for brevity. Notice that due to

the energy balance constraint, we must have p1
A + p1

B = 24, and due to the ramping capacity and

transmission limit constraints, we must have p1
A, p

1
B ∈ [11,13]. Suppose we choose p1

A ≤ 12. Then

take d2 = (15,10) from the uncertainty set D2. Due to ramping constraints, we must have p2
A ≤ 13.

However, it is impossible to satisfy energy balance at location A, because the transmission limit

is 1. Similarly, if we choose p1
A ≥ 12, the adversary can take d2 = (10,15) ∈D2, which leads to the

impossibility of satisfying net load at location B. This means that no matter what p1 we choose to

satisfy the constraints at t= 1, there always exists a d2 ∈D2 so that the constraints at t= 2 cannot

be satisfied. Hence the two-stage robust UC decision x∗2S can lead to infeasibility in the real-time

dispatch problem. �

This simple example demonstrates that when the transmission and generation ramping capability

is limited, the two-stage robust UC model can make an infeasible problem appear to be feasible.

When such a UC solution is implemented, the real-time operation can become infeasible. The

deterministic UC model, as a special case of the two-stage robust UC model with the uncertainty

set being a singleton, is more likely to suffer from the infeasibility problem. With high penetration

of renewable energy resources, power systems frequently experience fast swings in net loads, which

pushes the generators toward the regime of limited ramping capability, and thus is more prone to

the infeasibility issue if non-causal UC models are used.

3. Multistage Adaptive Robust UC and Simplified Affine Policy

In this section we first propose the multistage robust UC model and give a theoretical analysis

on the relationship between the two-stage and multistage robust UC models. Then, we introduce

affine dispatch policies and the concept of simplified affine policies.

3.1. Multistage Adaptive Robust UC Model

In the operation of power systems, the commitment decision x is made a day before the observations

of uncertain net loads, and then the dispatch decisions are sequentially optimized in real time with
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observations of realized uncertainty up to the operating hour. To faithfully model this process, the

dispatch decision pt at time t in the UC model should depend on the net load d[t] , (d1, ...,dt).

Based on this requirement, we formulate the following multistage adaptive robust UC model.

min
x,u,v,z,p(·)

∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) + max

d∈D

∑
t∈T

∑
i∈Ng

Ci p
t
i(d

[t])

 (5a)

s.t. Constraints (1b)-(1g) for (x,u,v)

pmini xti ≤ pti(d
[t])≤ pmaxi xti ∀d∈D, i∈Ng, t∈ T (5b)

−RDt
ix
t
i−SDt

iv
t
i ≤ pti(d

[t])− pt−1
i (d[t−1])≤RU t

i x
t−1
i +SU t

i u
t
i

∀d∈D, i∈Ng, t∈ T (5c)

− fmaxl ≤αTl (Bppt(d[t])−Bddt)≤ fmaxl ∀d∈D, t∈ T , l ∈Nl (5d)∑
i∈Ng

pti(d
[t]) =

∑
j∈Nd

dtj ∀d∈D, t∈ T . (5e)

The crucial feature of this formulation is the expression pti(d
[t]), which makes the generation out-

put of unit i at time t a function of net load uncertainty realized up to time t, thus respecting

non-anticipativity constraints. Constraints (5b)-(5e) enforce generation limits, ramping capacities,

transmission line capacities and energy balance, for any realization of d∈D.

The multistage decision making structure of (5) can be equivalently represented in the following

nested formulation:

min
(x,u,v)∈X

{
G>x+S>u+ max

d1∈D1
min

p1∈Ω1(x,d1,p0)

{
C>p1 + · · ·+ max

dT∈DT
min

pT∈ΩT (x,dT ,pT−1)
C>pT

}}
, (6)

where Ωt(x,d
t,pt−1) ,

{
pt : (1h)-(1k) are satisfied ∀ i ∈ Ng

}
. Notice that the feasible region

Ωt(x,d
t,pt−1) of the dispatch decision at stage t depends on previous stage t− 1’s dispatch level

pt−1 and stage t’s realized demand dt. Due to discrete decision variables and the large scale of the

formulation, numerical solution of the multistage robust UC model ((5) or (6)) presents a major

computational challenge. In the following, we first make further discussion on the relation between

the two-stage and multistage models, then propose approximate decision rules and tractable solu-

tion methods for solving the multistage robust UC model.

3.2. Further Discussion on Two-Stage and Multistage Robust UC Models

Propositions 1 and 2 demonstrate that there exist instances for which the two-stage robust UC

problem (2) is feasible, but the multistage robust UC model (5) is infeasible, which further implies

real-time dispatch based on the two-stage UC solution is infeasible. In this subsection, we show that

if the power system is not constrained by generators’ ramping rates, the two-stage and multistage
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robust UC models are in fact equivalent. This result suggests that the multistage robust UC model

is useful precisely when the system’s ramping capability is a limited resource, which is the case for

power systems with a high penetration of uncertain wind and solar power generation.

Theorem 1. Without ramping constraints (5c), the two-stage robust UC (2) and the multistage

robust UC (5) are equivalent.

Proof: To make references more explicit, we use (2S) and (M) to denote the two-stage (2) and

the multistage models (5) in this proof, respectively. The proof follows from the fact that, without

ramping constraints (5c), the dispatch problems using uncertainty sets (3) in both (2S) and (M)

are separable over time periods. In fact, we show that, without ramping constraints, (2S) and (M)

are both equivalent to problem (1P ), defined as follows:

(1P ) min
(x,u,v)∈X

{∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) +

∑
t∈T

max
dt∈Dt

min
pt∈ΩNR

t (x,dt)

∑
i∈Ng

Ci p
t
i

}
,

where X = {(x,u,v) : (1b)-(1g) are satisfied} and ΩNR
t (x,dt) is the feasible dispatch set at time t

without ramping constraints, i.e. ΩNR
t (x,dt), {pt : (1h), (1j), (1k) are satisfied}.

(i) First, we show that without ramping constraints, (2S) is equivalent to (1P ). In fact, without

ramping constraints, (2S) can be written as

min
(x,u,v)∈X

{∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) + max

d∈D
min

{p:pt∈ΩNR
t (x,dt)∀t∈T }

∑
t∈T

∑
i∈Ng

Ci p
t
i

}
,

and we have

max
d∈D

min
{p:pt∈ΩNR

t (x,dt)∀t∈T }

∑
t∈T

∑
i∈Ng

Ci p
t
i

= max
d∈D

∑
t∈T

min
pt∈ΩNR

t (x,dt)

∑
i∈Ng

Ci p
t
i

=
∑
t∈T

max
dt∈Dt

min
pt∈ΩNR

t (x,dt)

∑
i∈Ng

Ci p
t
i,

where the first equality comes from the fact that the dispatch set {p : pt ∈ ΩNR
t (x,dt) ∀t ∈ T } is

separable over time, and the second equality comes from the separability of the uncertainty set D

defined in (3) over time periods. Adding
∑

t∈T
∑

i∈Ng
(Gix

t
i +Siu

t
i) and applying min

(x,u,v)∈X
at both

sides of this equality yields the desired result.

(ii) Now we show that, without ramping constraints, (M) is equivalent to (1P ). Without ramping

constraints, Ωt(x,d
t,pt−1) = ΩNR

t (x,dt), so the nested multistage formulation (6) is equivalent to

(M̃NR) min
(x,u,v)∈X

{
G>x+S>u+ max

d1∈D1
min

p1∈ΩNR
1 (x,d1)

{
C>p1 + · · ·+ max

dT∈DT
min

pT∈ΩNR
T

(x,dT )
C>pT

}}
.
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Consider the max-min problem at t= T − 1 in (M̃NR). Since DT , ΩNR
T (x,dT ), and C>pT do not

depend on pT−1 and dT−1, we obtain

max
dT−1∈DT−1

min
pT−1∈ΩNR

T−1
(x,dT−1)

{
C>pT−1 + max

dT∈DT
min

pT∈ΩNR
T

(x,dT )
C>pT

}

= max
dT−1∈DT−1

{(
min

pT−1∈ΩNR
T−1

(x,dT−1)
C>pT−1

)
+

(
max
dT∈DT

min
pT∈ΩNR

T
(x,dT )

C>pT

)}

=

(
max

dT−1∈DT−1
min

pT−1∈ΩNR
T−1

(x,dT−1)
C>pT−1

)
+

(
max
dT∈DT

min
pT∈ΩNR

T
(x,dT )

C>pT

)
,

and this argument can be carried out backward until t= 1 to obtain

max
d1∈D1

min
p1∈ΩNR

1 (x,d1)

{
C>p1 + · · ·+ max

dT∈DT
min

pT∈ΩNR
T

(x,dT )
C>pT

}
=
∑
t∈T

max
dt∈Dt

min
pt∈ΩNR

t (x,dt)
C>pt.

Adding
∑

t∈T
∑

i∈Ng
(Gix

t
i +Siu

t
i) and applying min

(x,u,v)∈X
on both sides of this equality yields that

(M̃NR) is equivalent to (1P ), which completes the proof. �

3.3. Affine Multistage Robust UC

To computationally solve the proposed multistage robust UC model (5), we propose to consider

approximation schemes using linear decision rules. In particular, to make the problem tractable,

we restrict the dispatch decision pt(·) to have the form of an affine function as

pti(d
[t]) =wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j , (7)

where [1 : t] , {1, ..., t} and (wti ,Witjs) are the coefficients of the affine policy. It is important to

notice that the affine policy (7) automatically respects non-anticipativity constraints. Using this

affine dispatch policy, the multistage robust UC model has the following form

min
x,u,v,z,w,W

∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) + z (8a)

s.t. Constraints (1b)-(1g) for (x,u,v)∑
t∈T

∑
i∈Ng

Ci

(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
≤ z ∀d∈D (8b)

pmini xti ≤wti +
∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j ≤ pmaxi xti ∀d∈D, i∈Ng, t∈ T (8c)(

wti +
∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
−
(
wt−1
i +

∑
j∈Nd

∑
s∈[1:t−1]

Wi,t−1,jsd
s
j

)
≥−RDt

ix
t
i−SDt

iv
t
i

∀d∈D, i∈Ng, t∈ T (8d)(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
−
(
wt−1
i +

∑
j∈Nd

∑
s∈[1:t−1]

Wi,t−1,jsd
s
j

)
≤RU t

i x
t−1
i +SU t

i u
t
i
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∀d∈D, i∈Ng, t∈ T (8e)

− fmaxl ≤
∑
m

∑
i∈Ng

αlmB
p
mi

(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
−
∑
m

∑
j∈Nd

αlmB
d
mjd

t
j ≤ fmaxl

∀d∈D, t∈ T , l ∈Nl (8f)∑
i∈Ng

(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
=
∑
j∈Nd

dtj ∀d∈D, t∈ T . (8g)

We have created variable z to denote the worst-case dispatch cost in constraint (8b). Constraints

(8c)-(8g) correspond to (5b)-(5e), obtained by replacing pti(d
[t]) with the affine policy (7). Note

that constraints (8b)-(8g) are robust constraints that should hold for all d ∈ D. We call (8) the

affine multistage robust UC model.

3.4. Simplified Affine Policies

In the affine policy (7), the dispatch decision pti(d
[t]) of generator i at time t depends on the entire

history of realized net load in every node and every time period up to t. This full affine dependency

requires defining a large number of Witjs variables, which can quickly lead to scalability issues in

large-scale power systems.

To make the affine multistage robust UC model (8) a practical decision tool for the operation of

large-scale power systems, we introduce further restrictions on the affine policy form. In particular,

we consider affine policies with simplified structures by limiting the degrees of freedom in Witjs.

There are several ways to do this: We can restrict pt(·) to only depend on the most recently

revealed information at time t, rather than on the whole history; we can partition time periods

into peak-load, medium-load, and low-load periods and assume affine policies in each period have

the same form; we can also partition the transmission network into zones and make generators’

dispatch policies depend on the aggregated load in each zone. We use the following two very simple

policies to demonstrate the power of simplified affine policies:

pti(d
[t]) =wti +Wi

∑
j∈Nd

dtj ∀i∈Ng, t∈ T (9)

pti(d
[t]) =wti +Wit

∑
j∈Nd

dtj ∀i∈Ng, t∈ T . (10)

We call (9) the Wi-policy, where the coefficients Wi of the affine policy only depend on generators

but not on time, and the dispatch level of each generator at time t depends on the total load in

the system at time t. Eq. (10) is a finer policy, which we call the Wit-policy, where the coefficients

Wit of the affine policy can change over time. Surprisingly, it will be shown that these two very

simplified affine policies are already quite powerful and produce close-to-optimal performance for

the multistage robust UC model. We also want to remark that the static policy, i.e. pti(d
[t]) =wti ,
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is the simplest (and trivial) form of an affine policy, however, the corresponding static robust

UC model is very often infeasible, not to mention that it cannot satisfy energy balance equality

constraints over all uncertain loads. This shows that the simplified but not the simplest affine

policies work and the non-trivial affine dependence in the dispatch policy is very important.

4. Basic Algorithmic Framework

In this section, we discuss the basic algorithmic framework for solving the affine multistage robust

UC model (8). We first discuss the traditional approach using duality theory and point out its

limitation in solving large-scale robust optimization problems. Then, we introduce a constraint

generation framework as the basis for further algorithmic improvements developed in this paper.

4.1. Duality Based Approach

The robust constraints in (8b)-(8f) have the following structure:

c(W )>d≤ h(x,u,v,w, z) ∀d∈D (11)

where c(W ) and h(x,u,v,w, z) are linear functions of the associated decision variables. To simplify

notations, we write (11) as c>d ≤ h for all d ∈ D. This constraint can be reformulated by using

linear programming duality theory. In particular, (11) is equivalent to maxd∈D c
>d ≤ h. Since

the uncertainty set D is a convex compact set, the maximization problem always obtains finite

optimum, therefore, the maximization problem can be replaced by the dual minimization problem

without duality gap. Given the direction of the inequality in (11), the minimization operator of

the dual problem can be safely dropped. In this way, (11) is reformulated as a finite number

of linear constraints involving dual variables. This duality based approach is general and widely

used in reformulating robust constraints (e.g. see Ben-Tal et al. (2009a)). For our problem, the

deterministic counterpart of (11) with uncertainty set (3) is given below.

Proposition 3. The robust constraint c>d=
∑

t∈T
∑

j∈Nd
ctjd

t
j ≤ h ∀d ∈D, where D is given by

(3), is equivalent to the existence of a vector of dual variables π such that the following linear

constraints hold:

∑
t∈T

∑
j∈Nd

[
d
t

jπ
1
jt− d

t

jπ
2
jt + (Γd̂tj − d

t

j)π
3
jt + (Γd̂tj + d

t

j)π
4
jt

]
+
∑
t∈T

Γ
√
Ndπ

5
t ≤ h (12a)

π1
jt−π2

jt−π3
jt +π4

jt = ctj ∀ j ∈Nd, t∈ T (12b)

− d̂tjπ1
jt− d̂tjπ2

jt +π5
t = 0 ∀ j ∈Nd, t∈ T (12c)

π1
jt, π

2
jt, π

3
jt, π

4
jt, π

5
t ≥ 0 ∀ j ∈Nd, t∈ T . (12d)
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The proof is given in the Appendix. Each robust constraint in (8b)-(8f) can be replaced by a set

of equivalent deterministic constraints defined in (12a)-(12d) for the corresponding c and h. Notice

that we need to introduce dual variables π’s for each of these constraints. The size of the resulting

MIP reformulation grows quickly. For example, in the affine multistage robust UC (8), there are

1 + 2T (2Ng +Nl) robust constraints, 3NgT binary variables, and NgNdTL continuous variables

for the coefficients of the full affine policy. Each robust constraint can require up to (4Nd + 1)T

variables in vector π and (2Nd + 1)T new constraints. In total, the duality based reformulation

has O(T 2(Ng +Nl)Nd) constraints, O(NgT ) binary variables, and O(T 2Nd +TNgNdL) continuous

variables. Even with the Wi-policy and Wit-policy, the resulting MIP is usually too large to solve

for a moderate sized power system. We need a solution method that is more scalable.

4.2. Constraint Generation

Since the constraints in the affine multistage robust UC model have the form of (11), where the left-

hand side is a linear function in d and the uncertainty set D is a bounded polyhedron, each robust

constraint is equivalent to an enumeration of the finitely many extreme points of the uncertainty

set, in the following form:

c>d≤ h ∀d∈ ext(D), (13)

where ext(D) , {d∗1, ..., d∗N} is the set of extreme points of D (see Ben-Tal et al. (2009b)). This

applies to every robust inequality in the affine multistage robust UC model. Furthermore, the

energy balance equality constraints in the affine multistage robust UC model can be reformulated

using the full dimensionality property of the uncertainty sets.

Proposition 4. For a full dimensional uncertainty set D, the robust energy balance equation (8g)

of the Wi-policy and Wit-policy is equivalent to the following equalities

Wi-Policy:
∑
i∈Ng

wti = 0,
∑
i∈Ng

Wi = 1 ∀t∈ T (14)

Wit-Policy:
∑
i∈Ng

wti = 0,
∑
i∈Ng

Wit = 1 ∀t∈ T . (15)

The proof is given in the Appendix.

With the above observations, we can reformulate the multistage affine robust UC model (8) in

the following compact form:

min
y∈Y

f(y) (16a)

s.t. gk(y,d)≤ 0 ∀d∈ ext(D), ∀k ∈ {1, . . . ,K}, (16b)
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where y = (x,u,v,w,W , z) includes all decision variables in (8), the objective f(y) represents

(8a), and the set Y in (16a) is defined by (1b)-(1g) and (14)-(15). Constraints (16b) represent

(8b)-(8f), where gk(y,d) is a bilinear function in y and d, and K = 1 + 2T (2Ng +Nl) is the total

number of robust constraints in (16b).

This reformulation suggests a constraint generation framework. It starts with an initial set of

extreme points for each constraint, and at each iteration, finds the worst-case scenario d for each

constraint that achieves the highest constraint violation and adds it to the master problem, which

is defined as

(MP ) min
y∈Y

f(y)

s.t. gk(y,d)≤ 0 ∀d∈Dk, ∀k ∈ {1, ...,K},
(17)

where Dk ⊆ ext(D) is the list of extreme points that are identified from the constraint genera-

tion procedure for each constraint k in (16b). The constraint generation framework is outlined in

Algorithm 1.

Theorem 2. The constraint generation algorithm presented in Algorithm 1 for solving the affine

multistage robust UC problem (8) with uncertainty sets defined in (3) converges to the global opti-

mum or reports infeasibility in a finite number of steps.

Proof: The finite convergence follows from the fact that the uncertainty sets in (3) are bounded

polyhedrons with a finite number of extreme points. �

Algorithm 1 Constraint generation algorithm

1: Start with some initial Dk for all k ∈ {1, ...,K}

2: repeat

3: y′← optimal solution of the Master Problem (17).

4: for all k ∈ {1, ...,K} do

5: dk← argmaxd∈D gk(y′,d)

6: If gk(y′,dk)> 0 let Dk←Dk ∪{dk}

7: end for

8: until gk(y′,dk)≤ 0 for all k ∈ {1, ...,K}

9: output: y′ is an optimal solution to (16)

As will be shown in the computational experiments, the duality-based approach fails to solve

large-scale affine multistage robust UC problems. The constraint generation framework provides

a possibility to handle large-scale systems. It seems that the constraint generation framework

presented here has not been widely used in solving adaptive robust optimization problems.
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5. Algorithmic Improvements

The constraint generation Algorithm 1 by itself is still not efficient enough to handle large-scale

problems. However, it does provide a basis for further algorithmic improvements, which prove

to be critical in making the large-scale affine multistage robust UC model efficiently solvable. In

particular, we develop an efficient procedure for the separation problem, an effective initialization

for the master problem, a method to reduce the number of MIPs solved in the algorithm, and

formulations to fully exploit the special structure of the Wi-policy and Wit-policy.

5.1. Efficient Separation Procedure

The separation procedure in the constraint generation algorithm involves solving problem

max
d∈D

gk(y,d) (18)

for each robust constraint k in (8), in each iteration of the master problem. Thus, it is important to

solve it as fast as possible. We can exploit two special structures of (18). First, as discussed above,

gk(y,d) is a linear function in d for any fixed y. Second, the structure of the budgeted uncertainty

set (3) allows us to solve the separation problem (18) by a simple sorting procedure, as we show

below.

Proposition 5. Consider the separation problem maxd∈D c
>d, where the uncertainty set D is

defined in (3). An optimal solution for this problem is given by (dsj)
∗ = d

s

j + Γd̂sj(u
s
j)
∗ for each

period s∈ T , where (usj)
∗ is obtained by the following procedure: let {|csσ(j)|}j∈Nd

be a non-increasing

ordering of {|csj |}j∈Nd
, where σ(·) determines the indices of the non-decreasing order, and (usj)

∗ is

given as follows:

(usσ(j))
∗ =


sign(csσ(j)) if σ(j)≤ b

√
Ndc,

(
√
Nd−b

√
Ndc) · sign(csσ(j)) if σ(j) = b

√
Ndc+ 1,

0 if σ(j)> b
√
Ndc+ 1,

where sign(x) = 1 if x≥ 0, −1 otherwise.

The proof is provided in the Appendix.

5.2. Initialization with Specific Uncertainty Scenarios

The constraint generation approach consists of iteratively finding extreme points in the uncertainty

set for each robust constraint until they are all satisfied. If there are extreme points that we believe

to be strong candidates for being violated at some point in the constraint generation procedure, it

would be useful to add them in the beginning.
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Consider the vector dmax that achieves the maximum total net load in each time period, i.e.,

each component of dmax is defined as

dtmax ∈ argmaxd∈D
∑
j∈Nd

dtj ∀ t∈ T . (19)

This net load vector is clearly an important scenario in the uncertainty set for determining the

worst-case dispatch costs. Thus, to speed up the constraint generation algorithm, we add dmax to

Dk in the worst-case dispatch cost constraint (8b).

Similarly, we consider the minimum total net load dmin ∈D for (8b), which is defined as

dtmin ∈ argmind∈D
∑
j∈Nd

dtj ∀ t∈ T . (20)

We can also add dmin and dmax to Dk in the generation upper and lower bounds constraints (8c).

For robust ramping constraints (8d) and (8e), consider the following scenarios for each t:

dminmax(t) =
(
d1
min, ...,d

t−1
min,d

t
max, ...,d

T
max

)
, (21)

dmaxmin(t) =
(
d1
max, ...,d

t−1
max,d

t
min, ...,d

T
min

)
, (22)

which are the net loads with the largest up or down variations at period t. At initialization, we

add dmin, dmax, dminmax(t), dmaxmin(t) to Dk for every k representing the ramping constraints

(8d)-(8e) at time t.

5.3. Complete Characterization for the Wit-Policy

The initialization technique in Section 5.2 is applicable to any affine policy. However, it has a very

important consequence for the Wit-policy. Essentially, the robust constraints for generation limits

and ramping can be completely characterized by a few uncertainty scenarios identified above, when

using the Wit-policy. The computational benefit is huge.

Recall that the Wit-policy is described as pti(d) =wti +Wit

∑
j∈Nd

dtj. When using the Wit-policy

structure or any simpler policy such as the Wi-policy, generation output constraints (8c) and

ramping constraints (8d)-(8e) are exactly equivalent to only considering the respective d’s identified

in (19)-(22), as we show below.

Proposition 6. Under the Wit-policy or any simpler policy, the following statements hold:

(i) The robust constraints on generation limits (8c) are equivalent to the ones with the uncer-

tainty set D replaced by the finite set {dtmin,d
t
max}, where dmax and dmin are defined in (19) and

(20), respectively.
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(ii) The robust constraints on ramping limits (8d)-(8e) at time t are equivalent to the ones

with the uncertainty set D replaced by the finite set {dmin,dmax,dminmax(t),dmaxmin(t)}, where

dminmax(t) and dmaxmin(t) are defined in (21) and (22), respectively.

Proof: We show the proof for the ramping up constraints (8e). Proof for the ramping down

constraints (8d) is similar, and the proof for (8c) is given in the Appendix.

Under the Wit-policy, (8e) can be written as

max
d∈D

{
Wit

(∑
j∈Nd

dtj

)
−Wi,t−1

(∑
j∈Nd

dt−1
j

)}
≤wt−1

i −wti +RU t
i x

t−1
i +SU t

i u
t
i. (23)

Notice that the uncertainty setD defined in (3) is separable in time periods. Therefore, the left-hand

side of (23) is equivalent to the following problem

max
dt∈Dt

{
Wit

(∑
j∈Nd

dtj

)}
− min
dt−1∈Dt−1

{
Wi,t−1

(∑
j∈Nd

dt−1
j

)}
. (24)

Depending on the signs of the affine coefficients Wit and Wi,t−1, (24) is equivalent to one of the

four possible combinations:

Wit max
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 min

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
, (25a)

Wit max
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 max

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
, (25b)

Wit min
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 min

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
, (25c)

Wit min
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 max

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
, (25d)

where (25a)-(25d) correspond to the worst-case scenarios dmaxmin(t),dmax,dmin,dminmax(t), respec-

tively. The proof is analogous for the ramping down constraints (8d). �

This result implies that if we use the Wit-policy or any simpler policy such as the Wi-policy,

the generation output and ramping constraints can be pre-computed before starting the constraint

generation process. The only constraints left are the worst-case dispatch cost constraint (8b) and

the transmission constraints (8f). This saves a tremendous amount of time checking feasibility and

generating violated constraints. The overall convergence time of the constraint generation algorithm

is significantly reduced.

5.4. Generating Multiple Cuts to the Master Problem

The difficulty in solving the affine multistage robust UC lies in finding all the necessary uncertainty

scenarios d’s for each robust constraint. This can lead to the undesired situation of solving the
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master problem (17) many times, which itself is a MIP with a large number of constraints. To

strengthen the master problem, we propose a procedure that generates constraints by keeping all

the binary variables fixed in the master problem. This can be helpful in reducing the number of

MIP problems solved in the overall algorithm.

Algorithm 2 Generating multiple cuts for a fixed x′

1: input: x′, {Dk}Kk=1

2: repeat

3: y′ = (x′,u′,v′,w′,W ′, z′)← optimal solution of the master problem (17) with x=x′

4: for all k ∈ {1, ...,K} do

5: dk← argmaxd∈D gk(y′,d)

6: If gk(y′,dk)> 0 let Dk←Dk ∪{dk}

7: end for

8: until gk(y′,dk)≤ 0 for all k ∈ {1, ...,K}

9: output: {Dk}Kk=1

In particular, fix the commitment vector at the current solution (x,u,v) of the master problem,

then the multistage robust UC model becomes a linear program in the dispatch variables (w,W ).

Apply constraint generation to the resulting LP, starting from a small set of uncertainty scenarios

d’s until all the violated scenarios are identified for each robust constraint. This procedure is

presented in Algorithm 2.

Further, this technique can also be applied at the initialization phase of the overall constraint

generation method. In particular, we can solve a static robust UC, which we define as a simpli-

fication of (8a)-(8g) by forcing W = 0 and replacing robust energy balance constraints (8g) by

enforcing it only for maximum total net load in the uncertainty set. This problem is very fast to

solve and provides a very good starting point for x.

5.5. Algorithm Summary

The overall constraint generation algorithm with the above proposed algorithmic improvements

is summarized in Algorithm 3. The initialization consists of finding d’s described in Sections 5.2

and 5.3, and solving the static robust UC described in Section 5.4. Then the algorithm solves the

master problem, and updates in each iteration the lists {Dk}Kk=1 using each commitment solution

found as described in Section 5.4.

For simplicity, in our description of this algorithm we ignore the case where the master problem

(17) reports infeasibility at some point. If such event ever occurs, the algorithm stops and reports

infeasibility of the affine multistage robust UC problem under the affine policy used. Also, notice
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Algorithm 3 Constraint generation with algorithmic improvements

1: Dk←∅ ∀k= 1,2, . . . ,K

2: Add d from (19) to the Dk representing (8b)

3: Add d’s from (19)-(20) to all Dk’s representing (8c)

4: Add respective d’s from (19)-(22) to all Dk’s representing (8d)-(8e)

5: x′← optimal solution of static robust UC

6: repeat

7: Update {Dk}Kk=1 using Algorithm 2 for x′

8: y′ = (x′,u′,v′,w′,W ′, z′)← optimal solution of (17)

9: for all k ∈ {1, ...,K} do

10: dk← argmaxd∈D gk(y′,d)

11: If gk(y′,dk)> 0 let Dk←Dk ∪{dk}

12: end for

13: until gk(y′,dk)≤ 0 for all k ∈ {1, ...,K}

14: output: y′ = (x′,u′,v′,w′,W ′, z′) is an optimal solution for (16)

that checking for violated robust constraints can be parallelized, because it consists of solving

K separate problems with the procedure described in Section 5.1. We would also like to remark

that the constraint generation framework with the proposed algorithmic improvements are not

restricted to solving the robust UC problem, but can be applied to solve general multistage robust

optimization problems with affine policies.

6. Overview of Computational Experiments

We conduct extensive computational experiments on the IEEE 118-bus and the 2718-bus Polish

systems (c.f. Zimmerman et al. (2011)). The major aspects of the system data sets are summarized

in Table 1. In all cases, the UC problems involve a planning horizon of T = 24 hours with an hourly

interval. Uncertain net loads are located at every node with electricity demand. The uncertainty

sets are given by (3), where we choose d̂tj = 0.1d
t

j with various budget levels Γ. All the experiments

have been implemented using Python 2.7 in a PC laptop with an Intel Core i5 at 2.4 GHz and

4GB memory with CPLEX 12.5 as MIP and LP solver.

Before we delve into detailed experiments we give an outline of the main contents of the following

four sections. Section 7 demonstrates the computational effectiveness of the proposed algorithm in

solving affine multistage robust UC problems in large-scale power systems. Section 8 shows that the

simplified affine policies as an approximation to the fully-adaptive policy achieve close-to-optimal

performance. Section 9 studies the impact of the UC solutions on the real-time dispatch operation

from a worst-case perspective. In particular, it compares the worst-case performance of the real-

time dispatch problem based on the UC solutions obtained from the two-stage robust UC model
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Table 1 Summary of System Data

Buses 118 2718
Units 54 289
Loads 99 2011
Lines 186 100

Total generation capacity (MW) 7106 28880
Min total nominal net load (MW) 3327 10851
Max total nominal net load (MW) 4931 18075

against those obtained from the affine multistage robust UC model. Section 10 studies the average

performance of the affine multistage robust UC model in a rolling horizon simulation framework,

and compares it with the deterministic and two-stage robust UC models.

7. Computational Performance of Proposed Algorithm

In this section, we demonstrate the effectiveness of the proposed solution methods for solving the

affine multistage robust UC model in (8) with the Wit-policy structure. We show the efficiency

enhancement achieved by individual algorithmic improvement techniques as well as the ultimate

improvement achieved by their combinations, and compare them with the two traditional solu-

tion methods, namely the duality based approach (DBA) introduced in Section 4.1 and the basic

constraint generation (CG) algorithm discussed in Section 4.2.

More specifically, we show the performance of the proposed algorithmic improvements in the

following order. (a) The algorithm based on basic CG and Algorithm 2, which generates Multiple

Cuts in each iteration for a fixed commitment solution. We denote this procedure as “CG + MC”.

See details in Section 5.4. (b) The algorithm based on basic CG and the method that exploits

the Problem Structure of the Wit-policy (see Section 5.3). We denote this procedure as “CG +

PS”. (c) The combination of (a) and (b), denoted as “CG + MC + PS”. (d) The combination of

(a)(b)(c) along with the generation of an Initial Scenario of specific d for the worst-case dispatch

cost constraint (see Section 5.2). This is the final solution algorithm summarized in Section 5.5.

We denote it as “CG + MC + PS + IS”.

All of the above four algorithms are implemented to solve the multistage robust UC model (8)

with the Wit-policy on the 118-bus system. Table 2 shows the solution time (in seconds) of all these

methods on the 118-bus system with different values of budget Γ for the uncertainty sets in (3).

The stopping criterion of 0.1% optimality gap is used for solving each MIP problem. A time limit

of 15,000 seconds is imposed on each algorithm. “M” and “T” in Table 2 stand for out-of-memory

and out-of-time limits, respectively.

Notice that, the duality based approach, DBA, and the basic CG are not effective in solving the

simple Wit-policy for the 118-bus system — either running out of memory or time limits. Applying
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Table 2 Solution time (in seconds) of various algorithms for solving affine multistage robust UC under the

Wit-policy structure for the 118-bus system.

Method Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 2 Γ = 4
DBA M M M M M
CG T T T T T

CG + MC 6,807 8,475 5,639 3,488 6,965
CG + PS 563 80 961 1,011 1,227

CF + MC + PS 175 67 77 78 218
CG + MC + PS + IS 66 64 47 63 178

the techniques of fixing the UC solution to find d’s (CG + MC) or exploiting the policy structure

(CG + PS) lead to substantial improvement in solution times, especially when the special structure

of the Wit-policy is exploited (CG + PS). When the two techniques are combined (i.e., CG +

MC + PS), the solution times are reduced to within 218 seconds (less than 4 minutes) for all

sizes of tested uncertainty sets, and even faster for problems with small uncertainty sets (around

1 minute). Running time is further reduced by initializing the algorithm with one more valid d for

the worst-case dispatch cost constraint (CG + MC + PS + IS).

The CG + MC + PS + IS algorithm, identified as the most effective algorithm among the six

tested methods, is applied to the 2718-bus Polish system. Table 3 presents the solution times of this

algorithm for solving the multistage robust UC model with the Wit-policy structure, for different

values of Γ. An optimality gap of 0.1% is used as the stopping condition for all MIP problems in

the 118-bus system, and a 1% optimality gap is used for the 2718-bus system. In Table 3, (inf)

indicates that the algorithm detects the problem being infeasible, which is caused by the large size

of the uncertainty sets.

Table 3 Solution time using “CG + MC + PS + IS” algorithm for both systems studied under the Wit-policy.

System Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 2 Γ = 4
118 bus 66s 64s 47s 63s 178s
2718 bus 3.6h 3.2h 2.3h 2.0h 0.4h (inf)

From Table 3 we can see that the proposed algorithm can effectively solve the real-world instance

of the 2718-bus system within a time framework reasonable for the day-ahead operation. Consid-

ering the complexity of the multistage robust UC model and the simple computation resources (a

regular personal computer) that our experiments rely on, these computational experiments show

that the affine multistage robust UC model and the proposed algorithms are very promising for

practical applications in large-scale power system operations.
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8. Optimality Gap for Simplified Affine Policies

The affine multistage robust UC model proposed in (8) is an approximation scheme to the fully

adaptive multistage robust UC model (5). The UC solution and the affine dispatch policy thus

obtained are feasible, but may not be optimal for the fully adaptive model. In this section, we study

the approximation quality of the simplified affine policies. As will be shown, affine policies with

very simple structures of the Wi-policy and Wit-policy perform surprisingly well as approximate

solutions to the fully adaptive problem. This is a particularly encouraging result for the large-scale

2718-bus system.

8.1. Bounding the Approximation Quality of Affine Policies

The two-stage adaptive robust UC formulation (2) is a relaxation of the fully adaptive multistage

robust UC model (5) by ignoring the non-anticipativity constraints on dispatch decisions. Thus,

the optimal objective value of the two-stage robust UC problem, denoted as v∗2S, provides a lower

bound to the optimal objective value of the fully adaptive multistage robust UC, denoted as v∗MS.

However, obtaining a globally optimal solution of the two-stage robust UC problem for large-scale

power systems is still computationally challenging (e.g. see Bertsimas et al. (2013)). To reduce

computation time, we employ the heuristics developed in Lorca and Sun (2014), which generates

a lower bound to v∗2S, denoted as v2S. Furthermore, since the affine policy is an approximation to

the fully adaptive policy, its optimal objective value, denoted as v∗AFF , provides an upper bound to

the optimal objective value of the fully adaptive multistage robust UC. Because the MIP solver is

terminated within a certain accuracy (e.g. with a 0.1% MIP gap), the solution at termination gives a

further upper bound to v∗AFF , denoted as vAFF . In summary, we have the following relations between

objective values of different solutions: v2S ≤ v∗2S ≤ v∗MS ≤ v∗AFF ≤ vAFF . Then, the optimality gap

between v∗AFF and v∗MS, i.e., (v∗AFF − v∗MS)/v∗MS, can be bounded as

0≤ v∗AFF − v∗MS

v∗MS

≤ vAFF − v2S

v2S

,Guaranteed Optimality Gap.

We call the upper bound to the Optimality Gap the guaranteed optimality gap of the affine multi-

stage robust UC model.

8.2. Computational Results for Guaranteed Optimality Gap

Tables 4 and 5 present the guaranteed optimality gaps of two simple affine policy structures for

the 118-bus and the 2718-bus systems with different values of the uncertainty budget Γ.

From these results, we offer the following observations.
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Table 4 Guaranteed opt. gap under different policy structures, for the 118-bus system.

Policy Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 4
Wi 0.04% 0.02% 0.04% 0.08% 0.10% 0.67%
Wit 0.04% 0.02% 0.03% 0.07% 0.07% 0.35%

Table 5 Guaranteed opt. gap under different policy structures, for the 2718-bus system.

Policy Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2
Wi 0.09% 0.22% 0.42% 0.55% 1.05%
Wit 0.07% 0.11% 0.25% 0.35% 0.53%

1. For each test system, the Wit-policy achieves a better guaranteed optimality gap than the Wi

policy, especially for large uncertainty sets. For example, for the 2718-bus system with Γ = 2, the

guaranteed optimality gap is improved from 1.05% of the Wi-policy to 0.53% by the Wit-policy. Also

note that for smaller uncertainty sets, the coarser affine policy has a more comparable performance

to the finer policy.

2. The simple Wit-policy achieves surprisingly good performance in both test cases. The guaran-

teed optimality gap is at most 0.53% for all sizes of uncertainty sets in both test systems. Due to its

strong performance and computational tractability, we will use the Wit-policy in all the following

experiments.

9. Worst-Case Performance Analysis

As discussed in Section 2.3, the proposed multistage robust UC formulation is motivated by a

critical issue of the two-stage robust UC model, namely that the latter ignores non-anticipativity

constraints in the dispatch process for the sequential revelation of uncertain net loads, and thus

may cause infeasibility in real-time operations. Indeed, Propositions 1 and 2 in Section 2.3 give a

simple example of a two-bus system to show that this is possible. This section will further study

this issue on the 118-bus and the 2718-bus systems. In particular, we want to estimate “how much”

infeasibility can be caused in the real-time dispatch under the commitment solutions of the two-

stage robust UC model. For this purpose, the two-stage model is solved for different sizes of the

uncertainty set, then the obtained UC solutions are input to the affine multistage robust model

(8). That is, the UC decision in (8) is fixed at the two-stage UC solution, and the remaining

affine multistage robust dispatch problem is solved. The dispatch model is properly augmented

with penalty variables in the energy balance and transmission constraints, so that the degree of

infeasibility can be quantified by the amount of penalty costs incurred. In this way, we can compare

the worst case operational costs (including penalty costs) of the real-time dispatch under the two-

stage robust UC solutions against those obtained under the affine multistage robust UC solutions.

It is important to carry out this type of worst-case performance study of the real-time dispatch
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under different UC solutions, because power system operations require extremely high reliability.

Infeasibility in real-time operation has to be mitigated by starting expensive fast-start units or

shedding load, both of which bear significant economic consequences.

Tables 6 and 7 present the results. “Total Cost” is the worst-case dispatch cost plus penalty

cost of the affine multistage robust dispatch model under a specific UC solution. “Penalty” is the

total penalty cost associated with constraint violations in the dispatch model, where $5000/MW

is used as the unit penalty cost. “Rel Diff” is the relative difference between the total costs of the

multistage and those of the two-stage UC solutions. From the tables, we can make the following

observations:

1. The multistage UC solutions do not cause any infeasibility in real-time operation for Γ≤ 3,

whereas the two-stage UC solutions cause infeasibility thus incurs quite significant penalties in

real-time dispatch in both the 118-bus and the 2718-bus systems.

2. The penalty costs and the total costs of the two-stage UC solutions increase as the size of the

uncertainty set grows. For the 118-bus system, the two-stage model has 62.87% more total cost

than the multistage model at Γ = 3, and the penalty cost is over $1.2M. For the 2718-bus system,

the two-stage UC model incurs 25.70% more total cost than the multistage model at Γ = 3, and

the absolute amount of penalty cost exceeds $2.7M. These are very high costs for daily real-time

dispatch.

These results further demonstrate the importance of non-anticipative constraints and the multi-

stage robust UC model in the day-ahead power system operations.

Table 6 Worst case cost (US$) of multistage robust dispatch under the two-stage and multistage UC solutions

for the 118-bus case. Multistage models use the Wit-policy.

Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 3
Affine multistage UC solutions

Total Cost 1,696,304 1,725,470 1,755,398 1,784,543 1,845,218
Penalty 0 0 0 0 0

Two-stage UC solutions
Total Cost 1,696,456 1,749,766 1,797,503 1,897,212 3,005,290

Penalty 0 52,501 55,268 196,101 1,229,300
Rel Diff 0.01% 1.41% 2.40% 6.31% 62.87%

10. Average Performance of UC Models in Real-Time Dispatch

In the previous section, we have conducted a worst-case analysis to compare the two-stage and

multistage robust UC models. In this section, we study the average performance of different UC

solutions and their impact on the real-time dispatch. We develop a rolling-horizon simulation

platform to mimic the real time operation of the power system, where information about uncertain
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Table 7 Worst case cost (US$) of multistage robust dispatch under the two-stage and multistage UC solutions

for the 2718-bus case. Multistage models use the Wit-policy.

Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 3
Affine multistage UC solutions

Total Cost 9,445,069 9,596,788 9,746,685 9,905,527 10,234,459
Penalty 0 0 0 0 0

Two-stage UC solutions
Total Cost 9,505,651 9,745,889 10,183,433 10,975,403 12,864,719

Penalty 96,313 224,952 591,661 1,165,324 2,703,522
Rel Diff 0.64% 1.55% 4.49% 10.80% 25.70%

net load is revealed sequentially as time moves forward. On this platform, we conduct Monte-Carlo

simulations of different economic dispatch (ED) models that are suitable for the associated UC

solution concepts. In particular, we propose a new robust ED model that exploits the affine policy

obtained from the multistage robust UC model. For the two-stage robust UC and the deterministic

UC models, we use the multi-period (“look-ahead”) ED model, which is the state-of-the-art dispatch

model used in the current practice.

10.1. Efficient Robust Dispatch Model Exploiting Affine Policy

The proposed robust ED model is motivated by the following considerations. First, solving the

affine multistage robust UC model not only produces a UC solution, but also provides an affine

policy that could be exploited in the following ED process. Second, any ED model needs to be

solved fast within a few minutes in real-time operation.

With these considerations, we propose a new robust dispatch model in (26), which we call the

policy-enforcement robust ED model. At each time t, the dispatch decision pt is the first-stage

decision, which satisfies all the dispatch constraints Ωt(x,d
t,pt−1) in the current period and will

be implemented “right now” at time t. Furthermore, the policy-enforcement robust ED model also

considers the next period’s dispatch decision pt+1 and assumes that it takes the form of the affine

policy with coefficients (wt+1
i ,W t+1

i ) of time t+ 1 obtained from the day-ahead affine multistage

robust UC model.

min
pt

∑
i∈Ng

Cip
t
i (26a)

s.t. pt ∈Ωt(x,d
t,pt−1) (26b)

wt+1
i +W t+1

i dt+1− pti ≤RUixti +SUiu
t+1
i ∀dt+1 ∈Dt+1 (26c)

wt+1
i +W t+1

i dt+1− pti ≥−RDix
t+1
i −SDiv

t+1
i ∀dt+1 ∈Dt+1. (26d)

Here, Ωt(x,d
t,pt−1) includes all the dispatch related constraints in the deterministic UC model

(1) at time t, with the observed values of the current period’s net load vector dt and the previous
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period’s dispatch level pt−1. Constraints (26c) and (26d) enforce ramping limits between pt and

pt+1 for any realization of the vector of net loads in the uncertainty set at time t+ 1. In this way,

the proposed dispatch model coordinates the ramping capabilities in the two consecutive periods

and hedges against unfavorable net load realizations in future periods.

It is important to note that we can also consider a multi-period model where affine policies

obtained from the multistage robust UC model for all future periods t + 1, t + 2, . . . are used.

However, this multi-period model is exactly equivalent to the above two-period model, because

the affine policies obtained from the robust UC model already satisfy all the dispatch constraints

in each future period as well as the ramping constraints coupling every two consecutive periods.

Also notice that the above robust ED model has almost the same complexity as a deterministic

single-period ED, which can be solved very fast in real time.

For the deterministic and the two-stage robust UC solutions, there is no affine policy readily

available to exploit. Instead, we use the deterministic multi-period look-ahead ED model for their

dispatch simulation, where the net loads in the future periods use forecast values (i.e., the nominal

value d
t

j’s), and the ED model is obtained from the deterministic UC model (1) by fixing the

commitment decision.

10.2. Rolling-Horizon Simulation Platform for Real-Time Dispatch

We develop a rolling horizon platform to simulate the real-time dispatch process. In particular,

for each UC solution, we select an ED model according to the discussion in Section 10.1. At each

time period t in the simulation, the selected ED model is solved with the observation of uncertain

net load up to time t, and the dispatch solution of time period t is implemented. Then the time

horizon rolls forward and the same procedure is repeated. This simulation process is different from

the existing ones in the literature such as in Bertsimas et al. (2013), Jiang et al. (2012), Zhao and

Zeng (2012), where net loads over the entire scheduling horizon are revealed all at once to the

dispatch model and non-anticipativity constraints are ignored.

We consider a 24-hour horizon with an hourly step size in the simulation process. At each time

t, the robust ED model in Eq. (26) considers two periods t and t+ 1, i.e., a one period look-ahead,

whereas the deterministic look-ahead ED model considers 4 periods, i.e. a three periods look-

ahead. The look-ahead horizon shrinks in the last three periods. Each round of the rolling-horizon

simulation contains T = 24 consecutive runs of the ED model through the entire horizon. For each

UC solution and the corresponding ED model, we carry out 1000 such rounds of simulations. A

normal distribution is used for net load sampling, where net load at time period t and node j has

an expected value of d
t

j (nominal net load) and a standard deviation of 0.1× dtj. The same net

load trajectories are used in all evaluations of different UC solutions to generate a fair comparison.
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Penalty variables are incorporated to deal with over and under production in the energy balance

equations as well as with transmission line capacity violations, all of which have a unit penalty

cost of $5000/MWh. Due to space restriction, we only show the results for the 2718-bus system.

10.3. Results for the 2718-bus system

Table 8 shows the simulation performance of the multistage robust UC solution with the Wit-policy

and the corresponding policy-enforcement robust ED model, and Table 9 shows the performance

of the two-stage robust UC solution with the deterministic look-ahead ED model, both for the

2718-bus system. We compare the average total costs over the 24-hour horizon (“Cost Avg”),

their standard deviation (“Cost Std”), the average penalty costs (“Penalty Avg”), and the aver-

age frequency of the penalty occurrence (“Penalty Freq Avg”). We also study the performance

of the deterministic UC model with adjusted reserve and the look-ahead ED with reserve in the

rolling-horizon simulation, which resembles the current operational practice. The reserve adjust-

ment follows the rule used in Bertsimas et al. (2013) with various reserve levels tested. Table 10

shows the results for the deterministic reserve approach.

Table 8 Performance of affine multistage robust UC with policy-enforcement robust ED for the 2718-bus system.

Γ 0.25 0.5 1 1.5 2 3
Cost Avg ($) 9,397,528 9,319,396 9,342,754 9,360,359 9,379,464 9,442,858
Cost Std ($) 113,725 15,970 12,828 12,509 12,363 12,092

Penalty Cost Avg ($) 93,552 3497 727 61 5 0
Penalty Freq Avg 10.00% 1.47% 0.40% 0.01% 0.00% 0.00%

Table 9 Performance of two-stage robust UC with look-ahead ED for the 2718-bus system.

Γ 0.25 0.5 1 1.5 2 3
Cost Avg ($) 9,398,109 9,456,599 9,408,732 9,383,569 9,407,290 9,362,379
Cost Std ($) 93,470 195,774 173,884 144,698 162,469 45,584

Penalty Cost Avg ($) 80,127 152,637 98,113 66,801 82,864 6,103
Penalty Freq Avg 9.93% 12.26% 7.80% 5.11% 5.57% 0.37%

Table 10 Performance of deterministic UC with reserve and look-ahead ED for the 2718-bus system.

Reserve 2.5% 5% 10% 15% 20% 30%
Cost Avg ($) 9,556,549 9,575,446 9,424,678 9,561,024 9,408,173 9,411,741
Cost Std ($) 261,464 288,777 121,122 196,354 92,268 69,050

Penalty Cost Avg ($) 254,627 271,672 119,127 248,658 83,938 51,907
Penalty Freq Avg 15.93% 13.37% 14.31% 18.16% 10.03% 7.22%
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From these three tables we can see that the multistage robust UC model achieves the best average

total cost at Γ = 0.5, which is a 0.46% reduction from the best average cost of the two-stage robust

UC model achieved at Γ = 3, and a 0.95% reduction from that of the deterministic UC with reserve

adjusted at 20%. Further comparing these three columns, we can see that the multistage robust UC

solution achieves a significant improvement on system reliability, with a cost standard deviation

reduced by 64.97% from the two-stage solution and 82.69% from the deterministic UC with reserve.

Moreover, the penalty cost of the multistage robust UC solution is reduced by 42.70% and 98.43%

from the two-stage robust and deterministic UC solutions, respectively. The penalty cost can be

reduced to zero by a larger value of Γ in the multistage model (e.g. for Γ ≥ 2), whereas both

the two-stage robust and deterministic UC do not achieve zero penalty for all tested budget and

reserve levels. These experiments on this 2718-bus large-scale power system demonstrate that the

multistage UC model together with the proposed robust ED approach dominates the performance

of the two-stage robust UC and the deterministic UC models in both average total cost and system

reliability.

11. Conclusion

This paper proposes and presents, for the first time, a systematic study of multistage adaptive

robust optimization models for the UC problem with the solution concept of simplified affine policy.

Such a model can deal with significant uncertainty in electricity demand and renewable generation

caused by a high level penetration of wind and solar resources. We also propose a constraint gen-

eration based solution framework with various algorithmic improvements, which achieves efficient

solution of affine multistage robust UC problems in large-scale power systems when the traditional

methods fail. We also propose a new robust ED model for real-time dispatch, which exploits the

solution of the affine multistage robust UC model and is quickly solvable every few minutes in

real-time operation. We conduct extensive computational experiments on medium and large-scale

power systems to thoroughly study the performance of the proposed models and algorithms and

to compare them with existing approaches. The results show that the proposed algorithms can

effectively solve the multistage robust UC model with simplified affine policies within a time frame

reasonable for the day-ahead operation of large-scale power systems. The computational results

demonstrate the effectiveness of the multistage robust UC model in significantly reducing opera-

tional costs and at the same time improving system reliability, compared to the existing two-stage

robust UC model and deterministic UC models with reserve. Built on this work, future research

can further explore uncertainty modeling techniques to capture temporal and spatial correlations of

renewable energy generation as well as other uncertainty sources such as generator and transmission

line contingencies.
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Appendix: Proofs for Sections 4 and 5

Proof of Proposition 3: c>d ≤ h ∀d ∈ D is equivalent to max
d∈D

c>d ≤ h. Now notice that Dt is

the projection over dt of

D̃t =

{
(dt,zt) :

∑
j∈Nd

ztj ≤ Γ
√
Nd, d̂

t
jz
t
j ≥ dtj − d

t

j, d̂
t
jz
t
j ≥ d

t

j − dtj, dtj ∈ [d
t

j −Γd̂tj, d
t

j + Γd̂tj] ∀ j ∈Nd

}
.

So by defining D̃ =
∏
t∈[1:T ] D̃t, we have max

d∈D
c>d= max

(d,z)∈D̃
c>d= min

π∈Π
e>π, where the last equality

follows from duality theory, since D is bounded, where π ∈Π is equivalent to (12b)-(12d) and e>π

is the left hand side of (12a). Now, min
π∈Π

e>π ≤ h is equivalent to the existence of π ∈Π such that

e>π≤ h and the result follows. �

Proof of Proposition 4: Take the Wit-policy. The energy balance equation (8g) can be written

as ∑
i∈Ng

wti +

(∑
i∈Ng

Wit− 1

)∑
j∈Nd

dtj = 0 ∀d∈D, ∀t∈ T .

Since the uncertainty set D is full dimensional, which is the case for the budgeted uncertainty set

of Eq.(3), the constraint that the above affine function of d is equal to zero for all d∈D can hold

if and only if all the coefficients of the affine function are zero, which gives (15). Similarly we can

show (14). �

Proof of Proposition 5: In the separation problem, consider the change of variables given by

dsj = d
s

j + Γd̂sju
s
j . The equivalent problem for u is

max
u

∑
s∈T

∑
j∈Nd

csju
s
j

s.t. usj ∈ [−1, 1] ∀ j ∈Nd, s∈ T∑
j∈Nd

|usj | ≤
√
Nd ∀s∈ T .

This problem is separable in s and the solution of each of the problems obtained is found by

ordering |csj | in j from largest to smallest, and successively assigning the highest possible values to

those |usj | with the largest respective values of |csj |, taking each of these usj with the same sign of

csj . �

Proof of Proposition 6: The proof follows from reformulating robust constraints (8c).

(i) Constraints (8c) under the Wit-policy can be written, for each i and t, as

pmini xti ≤wti +Wit

(∑
j∈Nd

dtj

)
≤ pmaxi xti ∀d∈D,
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which is equivalent to

wti + max
d∈D

Wit

(∑
j∈Nd

dtj

)
≤ pmaxi xti,

wti + min
d∈D

Wit

(∑
j∈Nd

dtj

)
≥ pmini xti.

Depending on the sign of Wit, the above two inequalities are equivalent to the following four

constraints,

pmini xti ≤wti +Witmax
d∈D

(∑
j∈Nd

dtj

)
≤ pmaxi xti,

pmini xti ≤wti +Witmin
d∈D

(∑
j∈Nd

dtj

)
≤ pmaxi xti.

In other words, in the robust constraints (8c) D can be replaced by a finite uncertainty set consisting

of {dmin,dmax}. This completes the proof for the first part. Also notice that the proof is independent

of the structure of D. Therefore, the conclusion of (i) is true for any convex uncertainty set.

(ii) The proof for (8d) is similar to the proof for (8e) given in the paper. �




