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Abstract

Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and
non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these
problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting,
the cost-to-go functions are convex polyhedral, and decomposition algorithms, such as nested Benders’
decomposition and its stochastic variant - Stochastic Dual Dynamic Programming (SDDP) - that proceed by
iteratively approximating these functions by cuts or linear inequalities, have been established as effective
approaches. It is difficult to directly adapt these algorithms to MSIP due to the nonconvexity of integer
programming value functions. In this paper we propose an extension to SDDP – called stochastic dual
dynamic integer programming (SDDiP) – for solving MSIP problems with binary state variables. The crucial
component of the algorithm is a new class of cuts, termed Lagrangian cuts, derived from a Lagrangian
relaxation of a specific reformulation of the subproblems in each stage, where local copies of state variables
are introduced. We show that the Lagrangian cuts satisfy a tightness condition and provide a rigorous proof
of the finite convergence of SDDiP with probability one. We show that, under fairly reasonable assumptions,
an MSIP problem with general state variables can be approximated by one with binary state variables
to desired precision with only a modest increase in problem size. Thus our proposed SDDiP approach
is applicable to very general classes of MSIP problems. Extensive computational experiments on three
classes of real-world problems, namely electric generation expansion, financial portfolio management, and
network revenue management, show that the proposed methodology is very effective in solving large-scale,
multistage stochastic integer optimization problems.
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1 Introduction

This paper develops effective decomposition algorithms for a large class of multistage stochastic integer
programming problems. In this section, we first discuss the problem class of interest, discuss related prior
work, and provide a summary of our contributions.

1.1 Multistage Stochastic Programming

Multistage stochastic programming is a framework for sequential decision making under uncertainty where
the decision space is typically high dimensional and involves complicated constraints, and the uncertainty
is modeled by general stochastic processes. To describe a generic formulation for a multistage stochastic
program, let us start with a canonical deterministic optimization problem with T stages:

min
(x1,y1),...,(xT ,yT )

{
T∑
t=1

ft(xt, yt) : (xt−1, xt, yt) ∈ Xt, ∀ t = 1, . . . , T

}
.

In the above formulation we explicitly distinguish two sets of decision variables in each stage, namely, the
state variable, denoted by xt, which links successive stages, and the local or stage variable, denoted by yt,
which is only contained in the subproblem at stage t. This form is without loss of generality since any
multistage optimization problem can be formulated in this form by introducing additional constraints and
variables. Note that, for notational convenience, the above formulation includes variable x0 which is assumed
to be fixed. The function ft and the set Xt denote the objective and constraints associated with stage t. We
focus on the mixed-integer linear setting where the objective function ft is linear, and the constraint system
Xt is of the form

Btxt−1 +Atxt + Ctyt ≥ bt
along with integrality restrictions on a subset of the variables. The data required in stage t is ξt := (ft, Xt)
where, with some notational abuse, we have used ft and Xt to denote the data for the objective ft and
constraints in Xt. Let us denote the feasible region of the stage t problem by Ft(xt−1, ξt) which depends
on the decision in stage t− 1 and the information ξt available in stage t. Suppose now the data (ξ2, . . . , ξT )
is uncertain and evolves according to a known stochastic process. We use ξt to denote the random data
vector in stage t and ξt to denote a specific realization. Similarly, we use ξ[t,t′] denote the sequence of random
data vectors corresponding to stages t through t′ and ξ[t,t′] to denote a specific realization of this sequence
of random vectors. The decision dynamics is as follows: in stage t we first observe the data realization
ξt and then take an action (xt, yt) depending on the previous stage decision xt−1 (also known as state)
and the observed data ξt to optimize the expected future cost. A formulation for this multistage stochastic
programming (MSP) problem is:

min
(x1,y1)∈F1

{
f1(x1, y1) + Eξ[2,T ]|ξ[1,1]

[
min

(x2,y2)∈F2(x1,ξ2)

{
f2(x2, y2, ξ2) + · · ·

+ Eξ[T,T ]|ξ[1,T−1]

[
min

(xT ,yT )∈FT (xT−1,ξT )

{
fT (xT , yT , ξT )

}]}]}
,

where Eξ[t,T ]|ξ[1,t−1]
denotes the expectation operation in stage t with respect to the conditional distribution

of ξ[t,T ] given realization ξ[1,t−1] in stage t− 1. Depending on whether integer decisions are present, these
problems are referred to as multistage stochastic linear programming (MSLP) or multistage stochastic integer
programming (MSIP) problems.

Computational approaches for MSP are based on approximating the stochastic process (ξ2, . . . , ξT ) by a
process having finitely many realizations in the form of a scenario tree [see e.g., 71]. Such an approximation
may be constructed by Monte Carlo methods as in the sample average approximation (SAA) approach or
various other constructive methods [46; 74; 61; 43; 64; 39]. Let T be the scenario tree associated with the
underlying stochastic process. There are T levels corresponding to the T decision-making stages and the
set of nodes in stage t is denoted by St. The root node in stage 1 is labelled 1, i.e., S1 = {1}. Each node n
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in stage t > 1 has a unique parent node a(n) in stage t− 1. We denote the stage containing node n by t(n).
The set of children nodes of a node n is denoted by C(n). The set of nodes on the unique path from node
1 to node n, including node n, is denoted by P(n). A node n ∈ St represents a state of the world in stage t
and corresponds to the information sequence {ξm = (fm, Xm)}m∈P(n). The total probability associated with
node n is denoted as pn, which is the probability of realization of the t(n)-period data sequence {ξm}m∈P(n).
Each node in the final stage ST corresponds to a realization of the data for the full planning horizon, i.e., all T
periods, and is called a scenario. For m ∈ T \ {1} and n = a(m), qnm := pm/pn is the conditional probability
of transitioning from node n to node m. Since the decisions in a stage are taken after observing the data
realization we associate the decisions to the nodes of the tree. The resulting formulation, called the extensive
form, is

min
xn,yn

{∑
n∈T

pnfn(xn, yn) : (xa(n), xn, yn) ∈ Xn ∀ n ∈ T

}
. (1.1)

While the above formulation is a deterministic optimization problem, it has very large scale as the size
of the scenario tree grows exponentially with dimension of the uncertain parameters and the number of
stages. An alternative to the extensive form (1.1) is to formulate the MSP problem via the following dynamic
programming (DP) equations

min
x1,y1

f1(x1, y1) +
∑

m∈C(1)

q1mQm(x1) : (xa(1), x1, y1) ∈ X1

 (1.2)

where for each node n ∈ T \ {1}

Qn(xa(n)) = min
xn,yn

fn(xn, yn) +
∑

m∈C(n)

qnmQm(xn) : (xa(n), xn, yn) ∈ Xn

 . (1.3)

We will refer to Qn(·) as the optimal value function (of xa(n)) at node n and denote the function Qn(·) :=∑
m∈C(n) qnmQm(·) as the expected cost-to-go function at node n.

1.2 Prior Work

Multistage stochastic programming has found applications in a variety of sectors. In the energy sector, a
classical success story is hydrothermal generation scheduling in Brazil [62; 63] involving the month-to-month
planning of power generation of a system of hydro and thermal plants to meet energy demand in the face
of stochastic water inflows into the hydro-reservoirs [see also 21; 66; 78]. Numerous other applications
in energy have been proposed since. Examples include long term capacity planning of generation and
transmission systems [5; 8], day-ahead generation scheduling (unit commitment) [82; 73; 10; 20; 51], planning
and operation of renewable energy systems [44; 30; 60; 17], management of electricity storage systems [52; 53],
etc. In finance, MSP has been applied to portfolio optimization to maximize the expected return while
controlling the risk, as well as in asset-liability management [see e.g., 16; 47; 55; 25; 18; 35]. Beyond energy
and finance, multistage stochastic programming has found applications in manufacturing, services, and
natural resources [27; 80; 84; 24; 4; 3; 49; 54; 79; 36, etc.]. Motivated by its application potential, there has been
a great deal of research on multistage stochastic programming. Major progress has been made on theoretical
issues such as structure, complexity, and approximability, as well as on effective decomposition algorithms.
Much of the progress, however, has been restricted to the linear setting, i.e. MSLP.

In MSLP, the value function Qn(·) defined in (1.3) and therefore the cost-to-go functionQn(·) is piece-wise
linear and convex. This allows for these functions to be under approximated by linear cuts as in nested
Benders’ or L-shaped decomposition [14]. This algorithm approximates the convex cost-to-go functions by
adding Benders’ cuts, and converges in finite steps to an optimal solution. When the scenario tree is large,
however, it may be computationally impractical to solve the problem using nested Benders decomposition.
Often the underlying stochastic process and the constructed scenario tree is stage-wise independent, i.e.,
for any two nodes n and n′ in St the set of children nodes C(n) and C(n′) are defined by identical data and
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conditional probabilities. Then the value functions and expected cost-to-go functions depend only on the
stage rather than the nodes, i.e., we have Qn(·) ≡ Qt(·) for all n ∈ St. This allows for considerable reduction
in the number of DP equations (1.3). By exploiting stage-wise independence, a sampling-based nested
decomposition method – Stochastic Dual Dynamic Programming (SDDP) is proposed in [63]. This algorithm
iterates between forward and backward steps. In the forward step, a subset of scenarios is sampled from
the scenario tree and optimal solutions for each sample path are computed for each of them independently.
Then in the backward step, starting from the last stage, the algorithm adds supporting hyperplanes to the
approximate cost-to-go functions of the previous stage. These hyperplanes are Benders’ cuts evaluated at
the optimal solutions from the previous stage. After solving the problem at the first stage, a lower bound
on the policy value can be obtained. It is then compared against a statistical upper bound computed from
the forward step. Various proofs of almost sure convergence of SDDP under mild assumptions have been
proposed [see e.g., 23; 67; 76; 32]. The SDDP algorithm has also been embedded in the scenario tree framework
[68], and extended to risk averse multistage linear programming problems [76; 78].

Many multistage stochastic programming applications require integer variables for modeling complex
constraints. For example, in stochastic generation scheduling problems, complex constraints such as min-
imum up and down times, and start-up and shut-down costs are modeled using binary variables. While
enormous amount of work has been done in both theory and solution strategies for two-stage (T = 2)
stochastic integer programs, the progress on multistage stochastic integer programming is somewhat limited
[see e.g., 2; 70]. In MSIP, due to the presence of integer variables, the convexity and continuity of the future
cost-to-go functions are lost. A natural way to tackle such problem is to consider the extensive form of
the problem, and then relax the coupling constraints so that it can be decomposed into scenario-based or
component-based subproblems. Different decomposition algorithms involving dual decomposition such as
progressive hedging algorithm [69; 81; 31], scenario decomposition and Lagrangian relaxation [19; 58; 24],
and multistage cluster Lagrangian and primal decompositions [28; 15; 72; 85] have been successful in solving
various classes of MSIP problems. MSIP problems with binary state variables are studied in [6], and a
branch-and-fix coordination approach is proposed, which coordinates the selection of the branching nodes
and branches variables in the scenario subproblems such that will be jointly optimized. All of the above
approaches are based on the extensive form (1.1) of MSIP or explicitly deal with the entire scenario tree, and
do not scale well to large scenario trees.

Existing attempts at extending the nested decomposition and SDDP approaches for the dynamic pro-
gramming formulation (1.2)-(1.3) for MSIP and other nonconvex problem are based on convex relaxations of
the cost-to-go functions. For example, relaxing the integrality constraints so that the problem becomes an
MSLP problem [57; 29; 50]; combining stochastic dynamic programming and SDDP methods to retain the
convexity [33; 40]. Another way of dealing with non-convexity is to approximate the cost-to-go functions
directly. For instance, approximating the bilinear relationship between variables using McCormick envelops
is studied in [21]. This approach is further improved by optimizing the Lagrangian multipliers, which results
in tighter cuts [83]. More recently, the concept of locally valid cuts is introduced and integrated in the SDDP
framework [1]. Note that all the above methods produce solutions to different forms of relaxations rather
than the original problem. In [65], authors propose a new extension of SDDP, which, rather than cutting
planes, uses step functions to approximate the value function.

1.3 Contributions

As noted above, the nonconvexity of integer programming value functions makes it impossible to directly
adapt nested decomposition algorithms such as Benders’ decomposition and its stochastic variant, SDDP, to
MSIP. In this paper, we propose a stochastic dual dynamic integer programming algorithm for solving MSIP
with binary state variables. The key contributions are summarized below.

1. We propose a stochastic nested decomposition (SND) algorithm and its practical realization, namely
the Stochastic Dual Dynamic integer Programming (SDDiP) algorithm when stochasticity satisfies
stage-wise independence, to solve general MSIP problems with binary state variables. We define a
precise notion of valid, tight, and finite cuts, and provide a rigorous proof of the finite convergence with
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probability one of the SND, therefore SDDiP, to an optimal policy if the cuts satisfy these three conditions
and sampling is done with replacement. The proposed algorithms provide a general framework of
solving MSIP problems to optimality and redirects the question to constructing valid and tight cuts for
nonconvex expected cost-to-go functions at each node.

2. We propose a new class of cutting planes, called Lagrangian cuts, by considering a reformulation of
the nodal subproblems and solving its Lagrangian dual problem. In such a reformulation, we make
local copies of the state variables, and the corresponding constraints are relaxed in the Lagrangian dual.
We prove that these cuts satisfy our proposed notion of valid and tight cuts by showing strong duality
holds for the Lagrangian dual. A simplified version of a Lagrangian cut strengthens the usual Benders’
cut. While strengthened Benders’ cuts are not necessarily tight, our computational experience indicates
that they provide significant benefits.

3. Extensive numerical tests are presented to demonstrate the effectiveness of the SDDiP algorithm. In
particular, we apply SDDiP with different combination of cutting planes to three classes of large-
scale MSIP problems that have practical importance: a power generation capacity planning problem, a
multistage portfolio optimization problem, and an airline revenue management problem. A particularly
notable feature is that we transform non-binary state variables in these problems, either integer or
continuous, to binary state variables. The promising results demonstrate the applicability of SDDiP for
solving MSIP with general (i.e. not necessarily binary) state variables.

This paper is organized as follows. In Section 2, we describe the class of MSIP problem we consider in
this work and propose a key reformulation. In Section 3, we present the SND and SDDiP algorithms and
prove their finite convergence with probability one with valid, tight, and finite cuts. Section 4 contains the
development of Lagrangian cuts as well as the proof of its validity and tightness. Numerical experiments
together with discussions are included in Section 6. Finally, we provide some concluding remarks in Section
7.

2 MSIP with Binary State Variables

We consider multistage stochastic mixed integer linear programming problems, i.e., we make the following
assumptions regarding the MSIP (1.1)

(A1) The objective function fn(xn, yn) in each node n is a linear function in xn and yn, and the constraint set
Xn is a nonempty compact mixed integer polyhedral set.

The results in this paper can be easily extended to settings with nonlinear objective functions and constraint
sets under mild regularity conditions. However, to make the main idea clear, we focus on the linear case.

A key requirement of our developments is that the state variables xn in (1.1) are binary. The local variables
yn, however, can be general mixed integer. Recall that, in the presence of integer local variables, the value
functions and expected cost-to-go functions are nonconvex with respect to the state variables. Existing nested
decomposition algorithms use piece-wise convex polyhedral representations of these functions. In general,
it is impossible to construct such convex polyhedral representations of the nonconvex value functions that
are tight at the evaluated state variable values. On the other hand, any function of binary variables can be
represented as a convex polyhedral function. We exploit this fact to develop exact nested decomposition
algorithms for MSIP with binary state variables. Moreover, as discussed in Section 5, any MSIP with mixed
integer state variables can be approximated to desired precision with an MSIP with binary state variables
without increasing the problem size by too much. Thus the proposed SDDiP can be used to approximately
solve very large class of MSIP problems. This is substantiated by our computational results.

Definition 1. We say that an MSIP of the form (1.1) has complete continuous recourse if, for any value of the
state variables and the local integer variables, there exist values for the continuous local variables such that
the resulting solution is feasible. That is, suppose yn = (un, vn) where un ∈ Z`1+ and vn ∈ R`2+ , then given any
(x̂a(n), x̂n, ûn), there exists v̂n ∈ R`2+ such that (x̂a(n), x̂n, (ûn, v̂n)) ∈ Xn for all n ∈ T .
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In addition to (A1) we also make the following assumption

(A2) Problem (1.1) has complete continuous recourse.

The above assumption can always be achieved by adding nonnegative auxiliary continuous variables and
penalizing them in the objective function.

Next, we introduce a simple, but key reformulation of (1.1) based on making local copies of the state
variables. That is, we introduce an auxiliary variable zn for each node n and equate it to the parent node’s
state xa(n). The resulting formulation, which we consider for the remainder of this paper, is

min
xn,yn,zn

∑
n∈T

pnfn(xn, yn)

s.t. (zn, xn, yn) ∈ Xn ∀ n ∈ T (2.1a)
zn = xa(n) ∀ n ∈ T (2.1b)

zn ∈ [0, 1]d ∀ n ∈ T (2.1c)

xn ∈ {0, 1}d ∀ n ∈ T . (2.1d)

This reformulation turns out to be crucial for the development of a class of valid and tight inequalities to
approximate the cost-to-go functions. Detailed study of (2.1), especially a certain strong duality property,
will be given in Section 4.3. The important role of the redundant constraint (2.1c) will become clear there.
However, except in Section 4.3, we will fold constraint (2.1c) into Xn to save space.

Now we can write down the DP equations for the optimal value function of the multistage problem (2.1)
at node n ∈ T as follows:

(P1) : min
x1,y1,z1

f1(x1, y1) +
∑

m∈C(1)

q1mQm(x1) (2.2)

s.t. (z1, x1, y1) ∈ X1

z1 = xa(1)

x1 ∈ {0, 1}d.

where for each node n ∈ T \ {1},

(Pn) : Qn(xa(n)) := min
xn,yn,zn

fn(xn, yn) +
∑

m∈C(n)

qnmQm(xn) (2.3)

s.t. (zn, xn, yn) ∈ Xn

zn = xa(n)

xn ∈ {0, 1}d.

3 Stochastic Nested Decomposition and SDDiP

In this section, we present a Stochastic Nested Decomposition (SND) algorithm and its special case, SDDiP,
when the stochasticity satisfies stage-wise independence, for solving the MSIP (2.1) with binary state variables.
The proposed SND and SDDiP algorithms solve the DP recursion (2.3) by sampling the scenario tree and
iteratively strengthening a convex piece-wise polyhedral lower approximation of the expected cost-to-go
function Qn(·) at each node n ∈ T . The key to the convergence of the SND, and therefore SDDiP, lies in
a certain notion of tightness of the lower approximation of the value functions achieved by valid linear
inequalities, which we will precisely define. In the following, we will first outline the SND algorithm, and
then introduce the sufficient cut conditions, and prove the finite convergence with probability one of the
SND algorithm to a global optimal solution of problem (2.1) under these conditions. Then, we will introduce
the SDDiP algorithm, which provides a practical solution for solving MSIP with enormous scenario trees.
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3.1 The SND Algorithm

The proposed SND algorithm is given in Algorithm 1. Details can be outlined as follows. In each iteration i,
the SND algorithm consists of a sampling step, a forward step, and a backward step.

In the sampling step, a subset of scenarios, i.e., a set of paths from root to a subset of leaf nodes, is sampled
from the tree. In particular, we consider the following sampling procedure: out of all the N nodes in the
last stage of the scenario tree, M nodes, denoted as {nij1 , . . . , n

i
jM
}, are sampled based on the distribution

{pn : n ∈ ST }. Let Pi(njk) denote the scenario path from root to the leaf node nijk . The set {ωik := Pi(njk)}k
contains all the corresponding scenario paths for all k = 1, . . . ,M . The sampling can be done with or without
replacement, and there is no significant practical difference between them as M is usually much smaller than
N .

In iteration i, the forward step proceeds stage-wise from t = 1 to T by solving a DP equation with an
approximate expected cost-to-go function at each sampled node n ∈ ωik. In particular, at node n with the
parent node’s state xia(n), the DP recursion (2.3) is approximated by the following forward problem

(P in(xia(n), ψ
i
n)) : Qi

n
(xia(n), ψ

i
n) := min

xn,yn,zn
fn(xn, yn) + ψin(xn) (3.1a)

s.t. (zn, xn, yn) ∈ Xn (3.1b)

zn = xia(n) (3.1c)

xn ∈ {0, 1}d, (3.1d)

where ψin(·) is defined as:

ψin(xn) := min
{
θn : θn ≥ Ln, (3.2a)

θn ≥
∑

m∈C(n)

qnm(v`m + (π`m)>xn), ∀` = 1, . . . , i− 1
}
. (3.2b)

In other words, the forward problem in iteration i is characterized by xia(n), which is obtained from
solving its parent node a(n)’s forward problem, as well as by ψin(·) defined by (3.2a)–(3.2b), which provides
a piecewise-linear convex lower-approximation of the expected cost-to-go functionQn(xn). Here, we assume
there is a lower bound Ln in (3.2a) to avoid unboundedness of the forward problem. An optimal solution of
the state variable in (P in(xia(n), ψ

i
n)), denoted as xin, is passed on to the forward problems (P im(xin, ψ

i
m)) of its

children nodes m ∈ C(n). In other words, the forward step updates the state variable solution xin for each
n ∈ T .

When all the forward problems on the sampled paths are solved in iteration i, the backward step starts
from the last stage T . The goal of the backward step is to update the lower approximation ψin for each sampled
node n ∈ ωik. In particular, in a last-stage sampled node n ∈ ST , a suitable relaxation of the forward problem
(P in(xia(n), ψ

i
n)), denoted as (Rin), is solved, which produces a linear inequality that lower approximates the

true value function Qn(xia(n)). Note that the last stage problem does not have a cost-to-go function, therefore
ψin ≡ 0 for all i. Going back one stage, at a sampled node n ∈ ST−1, all the linear inequalities generated
from n’s children nodes are aggregated in the form of (3.2b) and added to update its lower approximation
from ψin(·) to ψi+1

n (·). Then, a suitable relaxation of the updated problem (P in(xia(n), ψ
i+1
n )) is solved in the

backward step at node n. This generates a new linear inequality, which will be aggregated to its parent’s
node. The backward step continues in this way until it reaches back to the root node of the tree.

Since the linear cuts in (3.2a)-(3.2b) are under-approximations of the true expected cost-to-go function, the
optimal value of the forward problem (P i1) at node 1 provides a lower bound, LB, to the true optimal value of
(2.1). However, it is important to note that the upper bound, UB, obtained by SND is only a statistical upper
bound. Its validity is guaranteed with certain probability provided that M is not too small (e.g., M > 30).
However, no matter how large M is, it could still happen that this upper bound is smaller than the valid
lower bound evaluated in the backward step. As a result, one needs to be careful when using the stopping
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criterion UB − LB ≤ ε. Other stopping criteria are also used in the literature, e.g., stop the algorithm when
the lower bounds become stable and the statistical upper bound given by a large sample size is close to the
lower bound; or enforce a limit on the total number of iterations [78; 17].

Algorithm 1 :: Stochastic Nested Decomposition
1: Initialize: LB ← −∞, UB ← +∞, i← 1, and an initial lower approxima-

tion {ψ1
n(·)}n∈T

2: while some stopping criterion is not satisfied do
3: Sample M scenarios Ωi = {ωi1, . . . , ωiM}

4: /* Forward step */
5: for k = 1, . . . ,M do
6: for n ∈ ωik do
7: solve forward problem P in(xia(n), ψ

i
n)

8: collect solution (xin, y
i
n, z

i
n, θ

i
n = ψin(xin))

9: end for
10: uk ←

∑
n∈ωi

k
fn(xin, y

i
n)

11: end for

12: /* (Statistical) upper bound update */
13: µ̂← 1

M

∑M
k=1 u

k and σ̂2 ← 1
M−1

∑M
k=1(uk − µ̂)2

14: UB ← µ̂+ zα/2
σ̂√
M

15: /* Backward step */
16: for t = T − 1, . . . , 1 do
17: for n ∈ St do
18: if n ∈ ωik for some k then
19: for m ∈ C(n) do
20: solve a suitable relaxation (Rin) of the updated problem

P in(xia(n), ψ
i+1
n ) and collect cut coefficients (vim, π

i
m)

21: end for
22: add cut (3.2b) using the coefficients {(vim, πim)}m∈C(n) to ψin to get

ψi+1
n

23: else
24: ψi+1

n ← ψin
25: end if
26: end for
27: end for

28: /* Lower bound update */
29: solve P i1(x̄0, ψ

i+1
1 ) and set LB be the optimal value

30: i← i+ 1
31: end while

3.2 The SDDiP Algorithm

We now propose the SDDiP algorithm for the setting where the scenario tree satisfies stage-wise independence,
i.e., for any two nodes n and n′ in St the set of children nodes C(n) and C(n′) are defined by identical data
and conditional probabilities. In this case, the value functions and expected cost-to-go functions depend only
on the stage rather than the nodes, i.e., we have Qn(·) ≡ Qt(·) for all n ∈ St. As a result, only one problem is
maintained per stage, and cuts generated from different candidate solutions are added to the same problem.
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We consider the setting where the scenario tree is created by sampling a stage-wise independent stochastic
process. Let Nt be the number of realizations of uncertain parameters at stage t, each outcome has an equal
probability of 1/Nt. The total number of scenarios is N =

∏T
t=1Nt. For any 1 ≤ t ≤ T and i ≥ 1, let ψit(·) be

the approximate expected cost-to-go function in stage t at the beginning of iteration i (cf. (3.1)-(3.2)). For a
particular uncertain data realization ξkt (1 ≤ k ≤ Nt) in stage t, let (P it (x

ik
t−1, ψ

i
t, ξ

k
t )) be the corresponding

stage problem given state variable xikt−1 at the beginning of iteration i, and denote its optimal solution by
(xikt , y

ik
t , z

ik
t , θ

ik
t ). In the backward step, given a candidate solution xikt−1, let (Rikt ) be a suitable relaxation

of the updated problem (P it (x
ik
t−1, ψ

i+1
t , ξjt )) for some 1 ≤ j ≤ Nt, and (vijt , π

ij
t ) be the corresponding cut

coefficients collected from solving the relaxation problem. Since each outcome of the uncertain data process
has the same probability, the cut (3.2b) is obtained by taking the average of all generated cut coefficients, i.e.,

θt−1 ≥
1

Nt

Nt∑
j=1

(vijt + (πijt )>xt−1). (3.3)

The SDDiP algorithm is described in Algorithm 2, and its almost sure convergence immediately follows from
Theorem 1.

Algorithm 2 :: Stochastic Dual Dynamic Integer Programming
1: Initialize: LB ← −∞, UB ← +∞, i← 1, and an initial lower approxima-

tion {ψ1
t (·)}t=1,...,T

2: while some stopping criterion is not satisfied do
3: Sample M scenarios Ωi = {ξk1 , . . . , ξkT }k=1...,M

4: /* Forward step */
5: for k = 1, . . . ,M do
6: for t = 1, . . . , T do
7: solve forward problem P it (x

ik
t−1, ψ

i
t, ξ

k
t )

8: collect solution (xikt , y
ik
t , z

ik
t , θ

ik
t = ψit(x

ik
t ))

9: end for
10: uk ←

∑
t=1,...,T ft(x

ik
t , y

ik
t , ξ

k
t )

11: end for

12: /* (Statistical) upper bound update */
13: µ̂← 1

M

∑M
k=1 u

k and σ̂2 ← 1
M−1

∑M
k=1(uk − µ̂)2

14: UB ← µ̂+ zα/2
σ̂√
M

15: /* Backward step */
16: for t = T, . . . , 2 do
17: for k = 1, . . . ,M do
18: for j = 1, . . . , Nt do
19: solve a suitable relaxation (Rijt ) of the updated problem

P it (x
ik
t−1, ψ

i+1
n , ξjt ) and collect cut coefficients (vijt , π

ij
t )

20: end for
21: add cut (3.3) to ψit−1 to get ψi+1

t−1

22: end for
23: end for

24: /* Lower bound update */
25: solve P i1(x̄0, ψ

i+1
1 ) and set LB to the optimal value

26: i← i+ 1
27: end while

For the problem with right hand side uncertainty, simple stage-wise dependency, e.g., p-th order au-
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toregressive model, can be transformed into the independent case by adding additional decision variables
[78]. However this approach in general does not extend to the situation where uncertainty exists in the
objective coefficients or left hand side matrix of constraints because bilinear terms will be introduced but
cannot be handled by the standard SDDP method. In our setting, however, these bilinear terms are products
of two binary variables after reformulation using binary expansion or approximation, which can be easily
reformulated as linear constraints. This is another significant advantage of considering the 0-1 state space.

3.3 Sufficient Cut Conditions

The SND and SDDiP algorithms have different implementations according to how the relaxation problem
(Rin) is formed and how the cut coefficients are obtained in the backward step. However, regardless of
detailed mechanisms for relaxation and cut generation, the SND and SDDiP algorithms are valid as long as
the cuts satisfy the following three sufficient conditions, namely, they are valid, tight, and finite, as defined
below.

Definition 2. Let {(vin, πin)}n∈Ωi be the cut coefficients obtained from the backward step of the i-th iteration
of the SND or SDDiP algorithm. We say such a collection of cuts is

(i) valid, if for all n ∈ Ωi and all iteration i,

Qn(xa(n)) ≥ vin + (πin)>xa(n) ∀ xa(n) ∈ {0, 1}d, (3.4)

(ii) tight, if for all n ∈ Ωi and all iteration i,

Qi
n
(xia(n), ψ

i+1
n ) = vin + (πin)>xia(n), (3.5)

where Qi
n
(xia(n), ψ

i+1
n ) is defined in (3.1) and xia(n) is the solution of state variable xa(n) obtained from

the forward step in iteration i, and

(iii) finite, if in each iteration i of the SND and SDDiP algorithms, solving the relaxation problem (Rin) of
(P in(xia(n), ψ

i+1
n )) can only generate finitely many different cut coefficients (vin, π

i
n).

It is easy to see that valid cuts are needed. The tightness of the cuts means that the cut generated
from solving a relaxation of (P in(xia(n), ψ

i+1
n )) needs to exactly recover the objective value Qi

n
(xia(n), ψ

i+1
n ) of

(P in(xia(n), ψ
i+1
n )) at xia(n). The tightness property alludes to a certain strong duality of the cuts that we will

introduce in Section 4.3, and is crucial in ensuring the convergence of the SND and SDDiP algorithms. The
finiteness condition is important to guarantee finite convergence. In Section 4, we discuss various types of
relaxations and associated cuts that can be used in the proposed algorithms. Before this, let us first prove the
convergence of SND and SDDiP algorithms using the three proposed properties of cuts.

3.4 Convergence

In this section, we prove the convergence of the SND algorithm, the convergence result for SDDiP algorithm
naturally follows. In particular, we show that, with probability one, the approximate cost-to-go functions
constructed using valid, tight, and finite cuts define an optimal solution to MSIP with binary state variables
in a finite number of iterations. We have the following technical assumption.

(A3) In any node n ∈ T and iteration i in the SND algorithm, given the same parent solution xia(n) and the
same approximate cost-to-go function ψin, the nodal problem P in(xia(n), ψ

i
n) is always solved to the same

optimal solution xin.

This assumption is to avoid the situation, where the algorithm for solving the same nodal problem keeps
generating different optimal solutions (if they exist). Most deterministic MIP solvers, e.g. CPLEX and Gurobi,
satisfy (A3). Therefore, it is a practical assumption. However, we do not assume the nodal problem P in(·) has
a unique optimal solution.
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Theorem 1. Suppose the sampling procedure in the forward step is done with replacement, the cuts generated in the
backward step are valid, tight, and finite, and the algorithm for solving the nodal problems {P in(·)}n∈T satisfies (A3),
then with probability one, the forward step of the SND algorithm defines an optimal solution to the multistage stochastic
program (2.1) after a finite number of iterations.

Proof. First, notice that each binary state variable xn in (2.1) can only take at most 2d different values and the
cutting planes used in the backward steps are finite (see Definition 2), it follows that there are finitely many
possible realizations (polyhedral models) for the approximate expected cost-to-go functions {ψin(·)}n∈T for
all i ≥ 1.

At the beginning of any iteration i ≥ 1, the current approximate expected cost-to-go functions {ψin(·)}n∈T
define a solution (xin, y

i
n) over the tree obtained by the forward step of iteration i, i.e.,

(xin, y
i
n) ∈ argmin

{
min
xn,yn

fn(xn, yn) + ψin(xn)

s.t. (xia(n), xn, yn) ∈ Xn ∀n ∈ T

}
. (3.6)

It is worth noting that during a particular iteration, the SND algorithm does not compute all of these solutions
but only those along the sampled paths (scenarios). We first prove the following claim, which gives a
sufficient condition under which the solution defined in (3.6) is optimal to the original problem.
Claim 1. If, at iteration i of the SND algorithm, ψin(xin) = Qn(xin) for all n ∈ T , then the forward solution
{xin, yin}n∈T is optimal to problem (2.1).

Proof of Claim 1: Since the cuts generated in backward steps are valid, {ψin(·)}n∈T is a lower approximation
to the true expected cost-to-go functions, i.e., ψin(xn) ≤ Qn(xn) for all xn ∈ {0, 1}d and n ∈ T . Therefore,
Qi
n
(xia(n), ψ

i
n) ≤ Qn(xia(n)) (cf. (2.3) and (3.1)). Furthermore, we have

Qi
n
(xia(n), ψ

i
n) = fn(xin, y

i
n) + ψin(xin) (3.7a)

= fn(xin, y
i
n) +Qn(xin) (3.7b)

≥ Qn(xia(n)), (3.7c)

where (3.7a) is true because xin by definition is an optimal solution of (P in(xia(n), ψ
i
n)), (3.7b) follows the

assumption ψin(xin) = Qn(xin), and (3.7c) holds because (xin, y
i
n) is feasible for the true DP recursion (2.3).

Therefore, (xin, y
i
n) is also optimal for the true DP recursion (2.3) for all n ∈ T , thus (xin, y

i
n) is optimal for

(2.1). This completes the proof of Claim 1. �

Suppose the solution defined by (3.6) at the beginning of iteration i is not optimal, then there must exist
some n ∈ T such that ψin(xin) < Qn(xin). Any iteration j ≥ i can be characterized as either one of the
following two types:

(a) {ψj+1
n (·)}n∈T 6= {ψjn(·)}n∈T , i.e., at least one ψjn(·) changes during the backward step;

(b) {ψj+1
n (·)}n∈T = {ψjn(·)}n∈T , i.e., all ψjn(·) remain the same after the backward step.

It is possible that consecutive iterations after i may belong to Type-a or Type-b iterations. Let us denote
Ika and Ikb as the k-th such set of consecutive Type-a and Type-b iterations, respectively. Let K = sup{i :
{xin, yin}n∈T is not optimal}, and let Ka and Kb respectively be the total number of sets of consecutive Type-a
and Type-b iterations, when the forward tree solution {xin, yin}n∈T is not optimal. Let us also denote |Ika | and
|Ikb | as the cardinality of the k-th set of consecutive Type-a and Type-b iterations, respectively. Since there are
only finitely many cuts that can be added, both Ka and each |Ika |must be finite. As will be shown below, each
Ikb occurrence before the SND algorithm converges is followed by a Type-a iteration. Therefore, Kb ≤ Ka,
hence Kb is also finite. We next show that each |Ikb | is finite with probability 1.
Claim 2. With probability 1, |Ikb | is finite for all 1 ≤ k ≤ Kb.

Proof of Claim 2: For any 1 ≤ k ≤ Kb, let jk be the iteration when Ikb starts, since {ψjk+1
n (·)}n∈T = {ψjkn (·)}n∈T

and by assumption (A3), we have {xjk+1
n , yjk+1

n }n∈T = {xjkn , yjkn }n∈T . Because the solution {xjkn , yjkn }n∈T
is not optimal, by Claim 1, there exists njk ∈ T such that ψjknjk

(xjknjk
) < Qnjk

(xjknjk
). Choose such an node
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njk so that t(njk) is the largest, hence for all m ∈ C(njk), ψjkm (xjkm) = Qm(xjkm). The sampling in the forward
step is done with replacement, thus each scenario is sampled independently. Since there are finitely many
scenarios, and each one is sampled with a positive probability, we know that with probability 1, after finitely
many number of iterations, a scenario that contains node njk will be sampled in an iteration, say j′k. In the
backward step of iteration j′k, the same state vector xj

′
k
njk

= xjknjk
will be evaluated at all children nodes of

njk , and a cut will be added to ψj
′
k
njk

(·). We want to show that ψj
′
k+1
njk

(xjknjk
) = Qnjk

(xjknjk
) after adding this cut.

Note that we have the following relations:

ψ
j′k+1
njk

(xjknjk
) ≥

∑
m∈C(njk

)

qnjk
m(vjkm + (πjkm )>xjknjk

) (3.8a)

=
∑

m∈C(njk
)

qnjk
mQ

jk
m

(xjknjk
, ψjkm ) (3.8b)

=
∑

m∈C(njk
)

qnjk
m(fm(xjkm , y

jk
m ) + ψjkm (xjkm)) (3.8c)

=
∑

m∈C(njk
)

qnjk
m(fm(xjkm , y

jk
m ) +Qjkm(xjkm)) (3.8d)

≥
∑

m∈C(njk
)

qnjk
mQ

jk
m(xjknjk

, ψ
j′k
m ) (3.8e)

= Qnjk
(xjknjk

). (3.8f)

The inequality in (3.8a) follows from the construction of ψj
′
k+1
njk

(xjknjk
) in (3.2). The equality in (3.8b) follows

from the fact that (vjkm , π
jk
m ) is a tight cut for the relaxation problem of (P jkm (xjknjk

, ψjk+1
m )) and uses the

definition of tight cuts given in (3.5). The equality in (3.8c) follows from the definition of Qjk
m

in (3.1). The
equality (3.8d) holds due to the fact for all m ∈ C(njk), ψjkm (xjkm) = Qm(xjkm). Then, (3.8e) follows because
(xjkm , y

jk
m ) is a feasible solution of the problem (P jkm (xjknjk

, ψjk+1
m )) with the parent state xjknjk

as defined in (2.3).
Lastly, (3.8f) is the definition of Qnjk

(xjknjk
).

Since ψj
′
k+1
njk

(xjknjk
) = Qnjk

(xjknjk
), a new Type-a occurrence starts from the j′k-th iteration. In other words,

when the SND algorithm has not converged, i.e. (xin, y
i
n)n∈T is not optimal, each consecutive Type-b

occurrence is followed by a Type-a iteration. This proves Kb ≤ Ka. Therefore, the number of iterations in Ikb
for 1 ≤ k ≤ Kb is finite with probability 1. �

It follows from Claim 2 that the condition in Claim 1 will hold after K =
∑Ka

k=1 |Ika |+
∑Kb

k=1 |Ikb | iterations.
We have the following relations.

1 ≥ Pr

(
Ka∑
k=1

|Ika |+
Kb∑
k=1

|Ikb | <∞

)
= Pr

(
Kb∑
k=1

|Ikb | <∞

)
= Pr

(
|Ikb | <∞,∀ 1 ≤ k ≤ Kb

)
= 1,

where the first equality follows from the finiteness of
∑Ka

k=1 |Ika | and the second is due to Kb <∞ for sure,
and the last follows from Claim 2. Hence Pr(K <∞) = 1. Therefore, the SND algorithm converges to an
optimal solution of problem (2.1) in a finite number of iterations with probability 1.

4 Cut families

In this section, we discuss various types of cuts that can be used within the proposed algorithms. We discuss
the well known Benders’ and integer optimality cuts, and introduce the Lagrangian cuts derived from a
Lagrangian relaxation corresponding to the reformulation (2.1), where local copies of state variables are
introduced, and an associated collection of strengthened Benders’ cuts.
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4.1 Benders’ Cut

A well known family of cuts is the Benders’ cut [11], where the relaxation (Rin) solved in the backward step
is the LP relaxation of problem (P in(xia(n), ψ

i+1
n )). Therefore, the cost coefficients (vin, π

i
n) are computed based

on the optimal value of the LP relaxation and a basic optimal dual solution. Specifically, the cut added to
node n in the backward step evaluated at a forward solution xin takes the following form

θn ≥
∑

m∈C(n)

qnmQ
LP
m (xin) +

∑
m∈Cn

qnm(πim)
>

(xn − xin), (4.1)

where QLPm (xin) is the optimal LP relaxation objective function value of problem (P im(xin, ψ
i+1
m )) and πim is

a basic optimal dual solution corresponding to constraints zm = xin. This is the cut family used in nested
decomposition algorithms for MSLP. For MSIP, Benders’ cut are valid and finite (when basic dual optimal
solutions are used) but not tight in the sense of (3.5) in general. Accordingly, for MSIP, the SND and SDDiP
algorithms are not guaranteed to produce an optimal solution using only Benders’ cuts.

4.2 Integer Optimality Cut

Another interesting collection of cutting planes is introduced by [48] and is designed for solving two-stage
stochastic programs with binary first-stage variables. It is generated by evaluating the subproblem at a
feasible first-stage solution and coincides with the true expected cost-to-go function at the proposed first-stage
solution. We present a natural extension of them to the SND and SDDiP algorithms for the multistage setting.

Let xin be a solution to the problem (P in(xia(n)ψ
i
n)) solved in iteration i at node n in the forward step. The

relaxations solved in the backward step are the original problems themselves. That is, let vi+1
m be the optimal

objective value of problem (Rim) = (P im(xin, ψ
i+1
m )) given xin for all m ∈ C(n). Then the integer optimality cut

added to (P in(xia(n), ψ
i
n)) in the backward step takes the following form

θn ≥ (v̄i+1
n − Ln)

∑
j

(xin,j − 1)xn,j +
∑
j

(xn,j − 1)xin,j

+ v̄i+1
n , (4.2)

where v̄i+1
n =

∑
m∈C(n) qnmv

i+1
m . It is easy to verify that integer optimality cuts are valid, tight and finite.

Thus the proposed algorithms with this cut family is an exact approach for solving MSIP with binary state
variables. However, these cuts are only tight at the proposed binary solution xin and could be very loose at
other solutions, and hence may not perform satisfactorily.

4.3 Lagrangian Cut

We consider another class of cuts obtained by solving a Lagrangian dual of the nodal forward problems. The
relaxation solved in the backward step of iteration i in node n in this case is:

(Rin) : max
πn

{
Lin(πn) + π>n x

i
a(n)

}
(4.3)

where
Lin(πn) = min

xn,yn,zn,θn
fn(xn, yn) + θn − π>n zn

s.t. (zn, xn, yn) ∈ Xn

xn ∈ {0, 1}d
zn ∈ [0, 1]d

θn ≥ Ln
θn ≥

∑
m∈C(n)

qnm(v`m + (π`m)>xn) ∀` = 1, . . . , i.

(4.4)
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We will denote the feasible region defined by the first four constraint systems of Lin(πn) as X ′n and that
defined by all five constraint systems as X ′′n .

Given any {xin}n∈Ωi with xin ∈ {0, 1}d, a collection of cuts given by the coefficients {(vin, πin)}n∈Ωi is
generated in the backward step of iteration i, where πin is an optimal solution to the Lagrangian dual problem
(Rin) and vin = Lin(πin) for all n ∈ Ωi. We call this collection of cuts the Lagrangian cuts.

Theorem 2. Given any {xin}n∈Ωi with xin ∈ {0, 1}d, let πin be an optimal solution to the Lagrangian dual problem
(Rin) in (4.3) and vin = Lin(πin). Then, the collection of Lagrangian cuts {(vin, πin)}n∈Ωi is valid and tight in the sense
of (3.4)-(3.5).

Proof. First, we prove that the Lagrangian cuts generated in iteration i of the SND or SDDiP algorithm are
tight at the forward solution {xin}n∈Ωi . The tightness of the Lagrangian cuts is essentially implied by a strong
duality between the Lagrangian relaxation defined by (4.3)-(4.4) and the forward problem (P in(xia(n), ψ

i
n))

defined in (3.1). Then, we prove by induction that they are also valid cuts.

Take any node n ∈ Ωi. Let πin be an optimal dual solution of (4.3). Then, we have the following equalities:

Lin(πin) + (πin)>xia(n) = min
{
fn(xn, yn) + θn − (πin)>(zn − xia(n)) : (zn, xn, yn, θn) ∈ X ′′n

}
= min

{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ conv(X ′′n), zn = xia(n)

}
, (4.5)

where (4.5) follows from Theorem 6.2 in [56]. Let (ẑn, x̂n, ŷn, θ̂n) ∈ conv(X ′′n) be an optimal solution of (4.5).
Then there exists {(ẑkn, x̂kn, ŷkn, θ̂kn)}k∈K ∈ X ′′n such that (ẑn, x̂n, ŷn, θ̂n) =

∑
k∈K λk · (ẑkn, x̂kn, ŷkn, θ̂kn), where K

is a finite set, λk ≥ 0 for all k ∈ K, and
∑
k∈K λk = 1. Since xia(n) ∈ {0, 1}

d and ẑkn ∈ [0, 1]d for all k, we have

that
∑
k∈K λkẑ

k
n = ẑn = xia(n), which implies that ẑkn = xia(n) for all k. Thus (ẑn, x̂n, ŷn, θ̂n) ∈ conv(X ′′n∧{zn =

xia(n)}) and

Lin(πin) + (πin)>xia(n) = min
{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ conv(X ′′n ∧ {zn = xia(n)})

}
= min

{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ X ′′n , zn = xia(n)

}
= fn(xin, y

i
n) + θin = Qi

n
(xia(n), ψ

i
n),

where the second equality follows since fn(xn, yn) is linear. This proves the tightness of the Lagrangian cuts
according to (3.5).

Next, we show by induction that the Lagrangian cuts are valid. For the base case, we consider any
sampled node n ∈ Ωi and in the last stage ST . Note that ψin ≡ 0 in this last stage problem. Relaxing the
constraint zn = xa(n) in the definition (2.3) of Qn(xa(n)) using the optimal multiplier πin of (4.3), we have for
any xa(n) ∈ {0, 1}d,

Qn(xa(n)) ≥ min{fn(xn, yn)− (πin)>(zn − xa(n)) : (zn, xn, yn) ∈ X ′n}
= min{fn(xn, yn)− (πin)>zn : (zn, xn, yn) ∈ X ′n}+ (πin)>xa(n)

= Lin(πin) + (πin)>xa(n).

Thus the Lagrangian cut is valid at any sampled n ∈ ST . For the induction step, consider a sampled node
n ∈ St with t ≤ T − 1, and assume that the Lagrangian cuts defined by {(vim, πim)}m∈C(n) are valid. Note that

Qn(xa(n)) = min
{
fn(xn, yn) + θn : (zn, xn, yn) ∈ Xn, zn = xa(n), θn ≥

∑
m∈C(n)

qnmQm(xn)
}
. (4.6)

Since the cuts defined by {(πim, vim)}m∈C(n) are valid, i.e. Qm(xn) ≥ vim + (πim)>xn for any xn ∈ {0, 1}d, X ′′n
with these cuts is a relaxation of the feasible region of (4.6). Therefore, we have

Qn(xa(n)) ≥ min
{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ X ′′n , zn = xa(n)

}
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≥ min
{
fn(xn, yn) + θn − (πin)>zn : (zn, xn, yn, θn) ∈ X ′′n

}
+ (πin)>xa(n)

= Lin(πin) + (πin)>xa(n),

where the second inequality is by relaxing the constraint zn = xa(n). Thus the Lagrangian cut defined by
(πin, v

i
n) is valid. This completes the proof of the theorem.

If we restrict the set of dual optimal solutions πin of (Rin) to be basic, then the set of Lagrangian cuts is
also finite. Accordingly, the SND and SDDiP algorithms with this cut family are guaranteed to produced an
optimal solution to MSIP with binary state variables in a finite number of iterations with probability one.

4.4 Strengthened Benders’ Cut

The Lagrangian problem is an unconstrained optimization problem, thus for any fixed πn, solving (4.4) to
optimality yields a valid cut. Therefore, one can strengthen Benders’ cut by solving a nodal mixed integer
program. More concretely, we solve (4.4) at all m ∈ C(n) with πm equal to a basic optimal LP dual solution
πim corresponding to the constraints zm = xin. Upon solving all these nodal subproblems, we can construct a
valid cut which is parallel to the regular Benders’ cut,

θn ≥
∑

m∈C(n)

qnmLm(πim) +
∑
m∈Cn

qnm(πim)
>
xn. (4.7)

Indeed, we have Lm(πim) ≥ QLPm (xin)− (πim)>xin, thus (4.7) is at least as tight as Benders’ cuts (4.1). For this
reason, we call these cuts strengthened Benders’ cuts. The strengthened Benders’ cuts are valid and finite but
are not guaranteed to be tight according to (3.5). Nonetheless these cuts afford significant computational
benefits as demonstrated in Section 6.

Even though Lagrangian cuts are tight, whereas strengthened Benders’ cuts are not in general, the latter
are not necessarily dominated by the previous one, as shown in the following example.

Example 1. Consider the following two-stage program with only 1 scenario,

min
x
{x1 + x2 +Q(x1, x2) : x1, x2 ∈ {0, 1}}

where Q(x1, x2) = min {4y : y ≥ 2.6− 0.25x1 − 0.5x2, y ≤ 4, y ∈ Z+}. It is easy to compute that Q(0, 0) = 12.
The Benders’ cut described in (4.1) is θ ≥ 10− x1 − 2x2; the strengthened Benders’ cut described in (4.7) is
θ ≥ 11− x1 − 2x2; and the Lagrangian cut is θ ≥ 12− 4x2. We see that the Lagrangian cut supports function
Q(x1, x2) at (0, 0), while the other two do not. Also, it is clear that the strengthened Benders’ cut strictly
improves the Benders’ cut, and the strengthened Benders’ cut and the Lagrangian cut do not dominate each
other. �

5 Dealing with General Mixed Integer State Variables

The development of SDDiP so far has been predicated by the assumption of binary state variables. Recall
that, as discussed in Section 2, it is impossible to construct a convex polyhedral representation of a nonconvex
value function using linear cuts that are tight at the evaluated state variable values unless they are binary.
Thus, to apply the SDDiP approach to MSIP with general mixed integer state variables, we propose to
approximate the state variables with their binary approximations. Under the assumptions of a bounded
feasible region (assumption A1) and complete continuous recourse (assumption A2), such a binarization
approach is justified by the following theorem.

Theorem 3. For an MSIP with general mixed integer state variables satisfying assumptions (A1) and (A2) we can
construct an approximating MSIP that has binary state variables such that any optimal solution to the approximating
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MSIP is an ε-optimal solution to the original MSIP, and the number, k, of the binary state variables per node in the
approximating MSIP satisfies

k ≤ d(blog2(M/ε)c+ 1)

where d is the number of the state variables per node in the original MSIP and M is a positive constant depending on
problem data.

Proof. See Appendix.

Note that in many important applications the state variable dimension d is low, thus the above result indicates
the resulting binary approximation is not too large since it scales only linearly with the d, and logarithmically
with respect to the inverse of the precision required. Moreover, for applications where the state variables are
general integer, we can set ε = 1.

A common criticism of binary reformulation of general integer variables is based on the classical paper
[59]. In this work, the authors show that for mixed integer linear programs, binarizing all general integer
variables is detrimental to the performance of MIP solvers on these problems. We contend that the conclusions
from this work are not applicable to our setting. First, if we view an MSIP in its extensive form as a mixed
integer linear program, then we binarize only a tiny fraction of the variables rather than all general integer
variables as in [59]. In particular, for an MSIP with T stages, stage-wise independence, N nodes per stage,
d state variables per stage, and n local variables per stage, the total number of variables in the extensive
form is (1 + NT−1)n + (T − 1)d of which at most (T − 1)d state variables are binarized. Thus the fraction
of binarized variables quickly approaches zero as the number of stages or the nodes per stage increase. On
the other hand, if we view an MSIP as an optimization problem over the state variables only (by projecting
out the local variables) as is done in the dynamic programming formulation, then the problem involves
a nonlinear and nonconvex objective and again the conclusions of [59] for mixed integer linear programs
are not applicable. In fact, recently a number of authors have demonstrated that binary approximations of
continuous or general integer variables can be very effective for solving some classes of nonconvex nonlinear
optimization problems (cf. [13; 37; 38]). The computational effectiveness of SDDiP on MSIP with general
state variables after the proposed binary appoximation is demonstrated in the next section.

6 Computational Experiments

In this section, we present computational experiments to evaluate the SDDiP Algorithm 2 on a power
generation expansion planning problem, a financial portfolio optimization problem, and an airline revenue
management problem. Algorithm 2 is implemented in C++ with CPLEX 12.6.0 to solve the MIP and LP
subproblems. The Lagrangian dual problem is solved to optimality using a basic subgradient algorithm [see
e.g., 12, Sec. 6.3] with an optimality tolerance of 10−4. All other relative MIP tolerance is set to 10−4 except
when specified. All computations are conducted on a Linux (Fedora 22) desktop with four 2.4GHz processors
and 8GB RAM.

6.1 Long-term Generation Expansion Planning

In a power generation expansion planning (GEP) problem, one seeks to determine a long-term construction
and generation plan for different types of generators, taking into account the uncertainties in future demand
and natural gas prices. Suppose there are n types of expansion technologies available. Let xt be a vector
representing numbers of different types of generators to be built in stage t, and yt be a vector of the amount of
electricity produced by each type of generator per hour in stage t. A deterministic formulation is as follows.

min

T∑
t=1

(a>t xt + b>t yt) (investment cost + generation cost)
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s.t. ∀ t = 1, . . . , T

t∑
s=1

xs ≥ Atyt (generation capacity)

t∑
s=1

xs ≤ ū (limitation on total number of generators)

1>yt = dt (demand satisfaction)
xt ∈ Zn+, yt ∈ Rn+.

In the above formulation, at and bt are investment and generation cost at stage t, respectively. Matrix
At contains maximum rating and maximum capacity information of generators, ū is a pre-determined
construction limits on each type of generators due to resource and regulatory constraints, and dt is the
electricity demand at stage t.

Scenario generation Among all data, {bt}t=1,...,T and {dt}t=1,...,T are subject to uncertainty. All data
(except demand and natural gas price) used in this numerical study can be found in [45], where demand and
natural gas price are modeled as two correlated geometric Brownian motions. We simplify the stochastic
processes of electricity demand and natural gas price as follows. We assume that both processes are stage-wise
independent. At each stage, electricity demand follows a uniform distribution, and natural gas price follows
a truncated normal distribution with known first and second moments. In addition, these two processes are
considered as independent to each other. There are six types of generators available for capacity expansion,
namely Coal, Combined Cycle (CC), Combined Turbine (CT), Nuclear, Wind, and Integrated Gasification
Combined Cycle (IGCC). Among these six types of generators, both CC and CT power generators are fueled
by natural gas.

In the implementation, we create a new set of general integer variables st, representing the cumulative
numbers of different types of generators built until stage t. After binary expansion, there are 48 binary state
variables per stage. The local variables are xt and yt, containing 6 general integer variables and 7 continuous
variables, respectively.

Performance Comparison We first consider an instance of the GEP problem with 10 decision stages. At
each stage, three realizations of the uncertainty parameters are drawn, thus in total there are 39 = 19683
scenarios with equal probability. We construct the extensive formulation on the scenario tree and use CPLEX
to solve the problem as one large MIP. This formulation contains nearly 620,000 binary variables and 207,000
continuous variables. CPLEX returns an incumbent solution with an objective function value 7056.7, and the
best bound 6551.6, i.e., a 7.16% gap remains after two hours.

We solve the same instance using SDDiP algorithm with seven different combinations of cutting planes
and compare their performance. Each of the combinations includes at least one collection of tight cuts. The
stopping criterion used in this numerical test is to terminate the algorithm once lower bounds obtained in the
backward steps become stable, and the computation time limit is set to be 5 hours. After the lower bounds
become stable, we evaluate the objective function value for 1500 forward paths independently, and construct
a 95% confidence interval. The right endpoint of this interval is reported as the statistical upper bound of the
optimal value. The seven combinations of cuts are specified below:

(1) Integer optimality cut (I);

(2) Lagrangian cut (L);

(3) Benders’ cut + Integer optimality cut (B + I);

(4) Benders’ cut + Lagrangian cut (B + L);

(5) Strengthened Benders’ cut + Integer optimality cut (SB + I);

(6) Strengthened Benders’ cut + Lagrangian cut (SB + L);

(7) Strengthened Benders’ cut + Integer optimality cut + Lagrangian cut (SB + I + L).
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In Table 1, we compare the performance of the SDDiP algorithm with integer optimality cuts (I) and
Lagrangian cuts (L). The first column indicates the type of cuts; Column 2 represents the number of forward
path sampled in the forward step; Column 3 contains the best lower bound computed by the algorithm when
stopping criterion (or computation time limit) is reached; Column 4 shows the average number of iterations
used; Column 5 contains a 95%-confidence statistical upper bound on the optimal value; Column 6 shows
the gap between the statistical upper bound and the best lower bound in Column 2; and the last two columns
contain the average total computation time and time used per iteration for each experiment setting.

Table 1: Performance of SDDiP algorithm with a single class of cutting planes

cuts # FW best LB # iter stat. UB gap time (sec.) time/iter.

I

1 4261.1 4041 8999.1 52.65% 18000 4.5
2 4184.5 2849 9005.5 53.53% 18000 6.3
3 4116.2 2426 10829.9 61.99% 18000 7.4
5 3970.4 1908 9730.0 59.19% 18000 9.4

10 3719.8 1384 9868.5 62.31% 18000 13.0
20 3427.8 969 10011.1 65.76% 18000 18.6
50 3055.8 603 10002.9 69.45% 18000 29.9

L

1 6701.1 110 6762.4 0.91% 1810 16.5
2 6701.1 57 6781.9 1.19% 1021 18.0
3 6701.0 45 6769.5 1.01% 1595 35.5
5 6701.1 36 6851.8 2.20% 741 20.6

10 6701.3 34 6796.6 1.40% 1223 36.0
20 6701.2 28 6803.3 1.50% 1274 45.5
50 6701.1 30 6801.6 1.48% 2092 69.7

From Table 1 we can see that, if only integer optimality cuts are used in the backward step, the lower
bound improves very slowly. As a result, it takes a long time for the algorithm to stop. In fact, none of the
experiments converges within 5 hours of computation time and large gaps are observed between the lower
and upper bounds on the optimal values. In comparison, if only Lagrangian cuts are used, the algorithm
converges much faster. The lower bounds obtained are also significantly higher than those attained only with
integer optimality cuts. In addition, for the Lagrangian cuts, the gap between the statistical upper bound
and the deterministic lower bound is very small in all experiments with different choices of the number
of forward sample paths. The reason behind these results should be clear from the construction of integer
optimality cuts. Namely, they are much looser than Lagrangian cuts everywhere else except at the candidate
solution being evaluated.

Table 2 presents similar computational results but in addition to using a single class of tight cuts (i.e. I or
L), we further adopt either Benders’ cuts or strengthened Benders’ cuts (i.e. B or SB). We have the following
comparisons.

1. (B+I) v.s. I: It is observed that adding Benders’ cuts together with integer optimality cuts (B+I) leads
to a significant improvement of the algorithm performance, comparing to the performance of only
integer optimality cuts (I) in Table 1. Not only all experiments converge within 5 hours, the quality of
the solutions is also very satisfactory, i.e., the gap between the statistical upper bound and deterministic
lower bound is small (≤ 2%) in most cases.

2. (B+I) v.s. (SB+I) and (B+L): Another significant improvement on the algorithm performance can
be observed by comparing (B + I) and (SB + I) of Table 2, where we substitute Benders’ cuts with
strengthened Benders’ cuts. We can still attain small gaps, i.e., good estimations on the optimal value.
Moreover, the number of iterations, the total time, and the average computation time all significantly
decrease due to the tighter strengthened Benders’ cuts. Comparing (B + I) with (B + L) suggests that
replacing integer optimality cuts with Lagrangian cuts also results in a major improvement in both the
total number of iterations and computation time.
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3. (SB+I) v.s. (SB+L) and (SB+I+L): No significant improvement is observed between (SB + I) and (SB + L).
This is because the optimal Lagrangian dual multipliers do not deviate much from the LP dual optimal
in these instances. Therefore, strengthened Benders’ cuts and Lagrangian cuts are “similar” in this
sense. Finally, adding integer optimality cuts in addition to the strengthened Benders’ and Lagrangian
cuts (SB + I + L) does not significantly affect algorithm performance, because integer optimality cuts
do not contribute much in approximating the expected cost-to-go functions except at the candidate
solutions.

Table 2: Performance of SDDiP algorithm with multiple classes of cutting planes

cuts # FW best LB # iter stat. UB gap time (sec.) time/iter.
($MM) ($MM) (sec.) (sec.)

B + I

1 6701.1 399 6874.7 2.53% 3905 9.8
2 6701.1 263 6757.1 0.83% 3524 13.4
3 6701.0 204 6755.8 0.81% 3594 17.6
5 6701.1 173 6799.5 1.44% 4457 25.8

10 6701.1 146 6752.9 0.77% 5579 38.1
20 6701.1 137 6874.3 2.52% 8167 59.8
50 6701.1 135 6840.1 2.03% 14719 109.0

B + L

1 6701.1 70 6772.7 1.06% 467 7.1
2 6701.1 56 6753.9 0.78% 632 14.8
3 6701.1 38 6831.0 1.90% 546 15.7
5 6701.2 34 6807.0 1.56% 752 20.8

10 6701.0 24 6818.6 1.72% 737 32.7
20 6700.9 23 6838.3 2.01% 952 39.1
50 6701.1 21 6843.5 2.08% 1230 60.5

SB + I

1 6700.3 178 6808.1 1.58% 461 2.6
2 6701.0 114 6825.9 1.82% 643 5.7
3 6701.1 95 6800.6 1.46% 618 6.5
5 6701.1 35 6768.4 0.99% 624 9.5

10 6701.1 31 6763.0 0.91% 760 14.9
20 6701.1 25 6803.9 1.51% 814 20.7
50 6701.1 27 6860.6 2.32% 1239 32.4

SB + L

1 6701.0 61 6808.5 1.58% 401 6.6
2 6701.0 40 6788.5 1.29% 457 11.6
3 6701.0 33 6766.3 0.97% 496 14.9
5 6701.1 29 6827.9 1.86% 621 21.8

10 6701.0 22 6768.9 1.00% 611 28.1
20 6701.1 20 6761.2 0.89% 767 37.7
50 6701.1 20 6783.9 1.22% 1083 53.3

SB + I + L

1 6701.0 57 6800.5 1.46% 437 7.6
2 6701.0 42 6763.5 0.92% 582 14.0
3 6701.0 30 6817.1 1.70% 404 13.8
5 6701.1 27 6783.4 1.21% 527 19.3

10 6701.0 21 6835.1 1.96% 580 28.1
20 6701.1 21 6796.8 1.41% 772 36.7
50 6701.1 20 6813.3 1.65% 960 47.2

As we increase the number of sample paths evaluated in the forward step, the total computation time as
well as the time used per iteration increase in general. The more scenarios are selected in the forward step, the
more subproblems need to be solved, and it is often the case that more candidate solutions will be generated
and evaluated in the backward step. A significant advantage of using only 1 sample path in the forward step
was reported in [78]. Similar results can be observed in our experiments. Though for some instances (e.g., B +
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I), a slightly bigger number (e.g., 3) of forward paths results in better performance of SDDiP algorithm. In
general, the best choice of forward sample size remains small (1, 2, or 3). Moreover, in the experiments where
Lagrangian cuts are used, the time used per iteration is usually longer. Since generating integer optimality
cuts only requires solving the subproblem as an integer program, whereas one needs to solve a Lagrangian
dual problem to get a Lagrangian cut, and the basic subgradient method usually takes more time.

To summarize, cut combinations (B + L), (SB + I), (SB + L), and (SB + I + L), appear to be good choices to
be integrated into the SDDiP framework. In the case where the Lagrangian dual problem is difficult to solve,
strengthened Benders’ cuts and integer optimality cuts yield a better performance.

Scalability To further test the scalability of the algorithm, we generate several large-scale instances with
planning horizons ranging from 5 to 9, and each period contains 30 to 50 realizations of the uncertain param-
eters, which are sampled independently from their distributions.The extensive scenario tree formulation (2.1)
for these instances contains as many as 11 trillion binary variables, so it is impossible to expect any solver can
solve such a problem as a single MIP. However, the SDDiP algorithm is able to estimate the optimal values of
these instances with very high accuracy, as shown in Table 3.

Table 3: Performance of SDDiP algorithm on some large instances

T # branch cuts best LB # iter stat. UB gap time time/iter
($MM) ($MM) (hr.) (sec.)

5 50

B + I 2246.4 92 2260.7 0.63% 0.96 37.6
SB + I 2246.4 34 2278.2 1.39% 0.09 9.4
B + L 2246.4 34 2279.6 1.45% 0.19 20.3

SB + L 2246.4 21 2276.4 1.32% 0.14 23.4
SB + I + L 2246.4 25 2279.4 1.45% 0.11 15.4

6 50

B + I 2818.8 237 2840.6 0.77% 2.24 34.0
SB + I 2818.9 74 2855.8 1.29% 0.60 29.0
B + L 2818.9 63 2848.5 1.04% 0.96 54.7

SB + L 2818.9 56 2849.2 1.06% 0.70 45.2
SB + I + L 2818.9 50 2820.7 0.06% 1.03 73.9

7 50

B + I 3564.5 239 3614.8 1.39% 8.10 122.0
SB + I 3564.4 111 3588.9 0.68% 1.08 34.9
B + L 3564.5 100 3569.1 0.13% 2.48 89.2

SB + L 3564.5 66 3576.9 0.35% 2.37 129.0
SB + I + L 3564.5 69 3577.6 0.37% 1.95 101.6

8 30

B + I 4159.4 340 4254.2 2.23% 7.78 82.4
SB + I 4159.4 152 4207.5 1.14% 1.53 36.3
B + L 4159.6 147 4227.7 1.61% 4.00 97.9

SB + L 4159.6 87 4218.9 1.41% 2.55 105.4
SB + I + L 4159.6 103 4278.0 2.77% 2.72 94.9

9 30

B + I 5058.0 520 5081.5 0.46% 19.85 137.4
SB + I 5058.6 230 5102.0 0.85% 2.57 40.2
B + L 5058.7 218 5108.6 0.98% 8.01 132.3

SB + L 5058.7 120 5145.3 1.68% 2.96 88.8
SB + I + L 5058.9 119 5079.4 0.40% 4.39 132.8

In Table 3, Column 1 indicates the planning horizon of the corresponding instance, Column 2 shows
the number of branches of each node in the scenario tree, and Column 3 indicates the cut combinations
used in the backward step. In these instances, we do not enforce computation time limit, the algorithm
stops when the lower bounds become stable. In all experiments, we achieve good estimates on the optimal
value (small gaps between upper and lower bounds) within a reasonable computation time. Notice that
the reduction in the number of iterations and computation time from cut combination (B + I) to (SB + I) or
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(B + L) is significant. Moreover, the time per iteration is also significantly reduced even though SB and L
require solving additional integer subproblems. This is perhaps because the later iterations, where more cuts
are accumulated, take longer time, and using SB and L reduces the iteration count. The difficulty and time
requirement for solving Lagrangian dual problems can be observed by comparing cut combination (SB + I +
L) with (SB + I). Although the number of iterations decreases after adding Lagrangian cuts (which implies that
these cuts provide better approximation than integer optimality cuts), both the total computation time and
time used per iteration increase considerably. We finally point out that in all our experiments, the combination
of strengthened Benders’ cuts and integer optimality cuts (SB + I) outperforms other combinations in terms
of total computation time.

These computational results demonstrate that the SDDiP algorithm with the proposed cuts successfully
estimates the optimal value of large-scale generation capacity expansion problems with high accuracy and
reasonable computation time.

6.2 Multi-period Portfolio Optimization

In this section, we test SDDiP algorithm on a multi-period portfolio optimization problem [see e.g., 25], where
the uncertain parameters are the returns of different assets in each period. In this problem, the objective is
to maximize the expected return over a fixed length of time periods, by adjusting the holding position of
each type of asset. Each completed transaction will incur a certain amount of fee, referred as transaction
cost, which is assumed to be a proportional cost to the total value of assets involved in the corresponding
transaction. At any time period, the total number of assets possessed is restricted to be less than some
prescribed threshold.

In particular, we consider n types of stocks and a risk-free asset (the (n + 1)-th asset) over a T -period
investment horizon. Let xt be a vector denoting the values of assets at period t, and zt be a binary vector,
representing whether the account holder owns each asset at period t. The account holder decides how much
of each stock to buy (bt) or sell (st) at period t, with return information r0, . . . , rt−1 which have been realized.
We assume that the initial risk-free asset value is x̄0 and all others are 0. A deterministic model is as follows:

max r>T xT

s.t. ∀t = 1, . . . , T,

xti = rt−1,ixt−1,i + bt,i − st,i ∀i = 1, . . . , n, (transaction flow balance)

xt,n+1 = rfxt−1,n+1 − (1 + αb)
>bt + (1− αs)>st, (self-financing)

xt ≤Mzt, sti ≤ rt−1,ixt−1,i, ∀i = 1, . . . , n, (variable relationships)

1>zt ≤ K, (number of assets possessed)

x0 = [0, . . . , 0, x̄0]>,

zt ∈ {0, 1}n, 0 ≤ bt, st ≤ u, 0 ≤ xt ≤ v,

where αb and αs are the transaction cost coefficients for buy and sell, respectively, and u, v are implied bounds
on variables. For the stochastic model, the uncertainty is in the return vector r.

Scenario Generation We test the problem on all the stocks from the S&P 100 index. The optimization
problem has an investment horizon of 5 to 12 periods, each of which is a two-week (10 business days)
span. The scenarios of returns for each stock are generated using historical returns data without assuming
specific distributions. In particular, we collect 500 bi-weekly returns over the past 2 years for each stock, and
regard these 500 overlapping returns as the universe of all possible return realizations for each investment
period. Then we sample (with replacement) a subset of realizations at each period independently to form
a recombining scenario tree. To preserve the correlation between different stocks, the sampled scenario
contains a return vector in which all components correspond to the same time span. In the scenario tree, the
number of branches ranges from 10 to 20.

Note that in this problem, xt are continuous state variables. We will resort to the binary approximation
discussed in Section 2. We assume that at the beginning the account holder has 100 units of cash and none of
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Table 4: Performance of SDDiP algorithm on portfolio optimization

T # branch # scen # FW Best UB Stat. LB gap time (sec)

4

10 1000

1 108.1 105.7 0.66% 185
2 108.1 106.4 1.33% 210
5 108.1 106.3 1.41% 313

10 108.1 106.1 1.00% 456

15 3375

1 106.9 105.1 1.10% 309
2 106.9 104.4 1.42% 356
5 106.9 104.6 1.07% 518

10 106.9 104.3 0.36% 884

20 8000

1 108.1 106.2 1.05% 418
2 108.1 106.1 1.63% 423
5 108.1 105.0 1.25% 630

10 108.1 106.1 1.49% 1027

5

10 10000
1 116.1 112.9 1.49% 343
2 116.1 112.0 1.79% 414
5 116.1 112.8 1.30% 580

15 50625
1 109.6 106.9 1.65% 567
2 109.6 106.6 0.98% 686
5 109.6 106.3 2.07% 933

20 160000
1 109.0 106.9 1.45% 425
2 109.0 106.1 1.49% 715
5 109.0 106.3 1.54% 1156

6 20 3.2× 106
1 112.2 109.1 1.14% 704
2 112.2 109.8 1.58% 1091
5 112.2 108.2 2.08% 1573

7 20 6.4× 107
1 116.5 112.8 1.71% 938
2 116.5 112.8 1.24% 1201
5 116.5 112.8 1.64% 2008

8 15 1.7× 108 1 120.57 119.29 1.08% 1182
10 10 109 1 125.21 122.43 2.27% 1032
12 10 1011 1 129.79 126.83 2.33% 1299

the stocks. The continuous state variables are approximated using the binary expansion with approximation
accuracy ε = 10−2. Each stage subproblem contains approximately 1500 binary state variables. The local
variables are zt, bt, and st, each has a dimension of 100.

Algorithm Performance Table 4 summarizes the performance of SDDiP algorithm on the test instances.
Since this is a maximization problem, the negation of the lower bound reported by SDDiP algorithm is a valid
upper bound on the true optimal value (Column 5). The algorithm also produces a statistical lower bound
on the expected return (Column 6), obtained by evaluating 500 sample paths independently after the upper
bounds become stable. Column 1 shows the time horizon of the test instances; Columns 2 and 3 contain
information of the scenario tree, i.e., number of branches of each node and total number of scenarios; Column
4 indicates how many forward samples paths are used in the forward step; Columns 7 and 8 report the gaps
between the lower and upper bounds on the optimal values, and the total computation time, respectively.

The stopping criterion remains the same, i.e., the algorithm stops when the deterministic upper bounds
become stable. Among all test instances, the algorithm reaches the stopping criterion within 10 iterations, and
gaps between the upper bound and the statistical lower bound are all small. We solve the extensive scenario
tree formulation for the first two instances T = 4, #branch = 10 and 15 as two examples to demonstrate the
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accuracy of attained upper bounds. The first instance has an optimal value of 108.02 and the second is 106.8.
The gap between the lower and upper bounds mostly come from the evaluation of lower bounds, and can be
made smaller by evaluating more forward paths. Similar to the generation capacity expansion example, we
observe that it is more efficient to use a small number of sample paths in the forward iteration. Note that we
generate a different scenario tree for each instance (T , #branch), thus the optimal values are not necessary
monotone.

6.3 Airline Revenue Management

In the airline industry, revenue management usually refers to dynamic pricing and controlling seat sales
based on the passenger demand forecast in a flight network. In this section, we focus on the latter approach.
The objective is to maximize the revenue generated from ticket sales. We consider a multistage stochastic
model which is similar to the one in [54]. A deterministic formulation of such a problem is given as follows.

max

T∑
t=1

[
(f bt )>bt − (f ct )>ct)

]
s.t. ∀t = 1, . . . , T,

Bt = Bt−1 + bt, Ct = Ct−1 + ct

Ct = bΓtBt + 0.5c
A(Bt − Ct) ≤ R, bt ≤ dt
B0 = B̄0, C0 = C̄0

Bt, Ct, bt, ct ∈ Zm+ .

In the above formulation, T is the number of booking intervals. The numbers of fulfilled bookings (resp.
cancellations) of period t and cumulative fulfilled bookings (resp. cancellations) up to period t are denoted
by bt (resp. ct) and Bt (resp. Ct). Each of these quantities is an m-dimensional vector, whose components
correspond to particular origin-destination itineraries and fare classes. f bt and f ct are the booking price and
refund for cancellation at period t, respectively. The matrix Γt is a diagonal matrix, whose elements are the
cancellation rate of each type of tickets. Passenger demand is denoted by dt, which is subject to uncertainty.
The seat capacity on each leg is denoted by R, and A is a 0-1 matrix that indicates whether a booking request
for a particular itinerary and fare class fills up one unit of capacity of each leg.

Scenario Generation The underlying flight network contains a single hub and three destinations. There
are in total 6 legs and 12 itineraries. Ticket prices and refund are fixed over booking intervals. Cancellation
rates for different fare classes are also given as constants. All data can be found in [54]. As proposed in the
literature [see e.g., 26; 22], the booking process is modeled by a non-homogeneous Poisson process. The
total number of cumulative booking request G over the entire booking horizon for a particular itinerary and
fare class is assumed to follow a Gamma distribution G ∼ Γ(k, θ), and the corresponding arrival pattern
β follows a Beta distribution β ∼ Beta(a, b). The arrival pattern determines an allocation of total booking
requests among booking intervals. The cumulative booking requests up to time t ∈ [0, T ] can be represented
by D(t) = G · Fβ(t, a, b), where Fβ(t, a, b) is the cumulative density function of the Beta distribution. We
generate the scenario tree as follows. First, we generateN0 realizations for the cumulative booking request for
each itinerary and class fare combination, and allocate them according to the corresponding arrival patterns
into each booking interval. Then, for each booking interval, Nb samples are drawn independently out of the
N0 realizations, where Nb is the number of branches of each node in the scenario tree. In this way, we obtain
a recombining scenario tree which preserves stage-wise independece. It has T stages, each of which contains
Nb nodes, hence there are NT−1

b scenarios in total.

In this problem, the state variables are Bt and Ct, and local variables are bt and ct. After binary expansion,
the stage problem contains about 3000 binary state variables, and the local variables are general integers with
dimension 144.
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Algorithm Performance We divide the booking horizon of 182 days into different numbers of booking
intervals (stages), from 6 to 14 (not necessarily evenly divided), and generate scenario trees separately for
each of them. The scenario tree information is contained in the first three columns of Table 5. We test SDDiP
algorithm on these 5 instances. During the experiment, we notice that the stage subproblem is more difficult
to solve than in the previous two examples, hence we relax the relative MIP tolerance from the default (10−4)
to 0.05. In addition, we enforce limits on both the number of total iterations (120) and computation time (5
hours).

Table 5: Performance of SDDiP algorithm on network revenue management

T # branch # scen # iter Best UB Stat. LB gap time (sec)

6 10 105 120 214357 204071 5.04% 10983
8 10 107 120 214855 201099 6.84% 12095
10 10 109 120 215039 199896 7.58% 14674
12 10 1011 120 210110 196237 7.07% 15413
14 10 1013 120 210012 196280 7.00% 15241

Table 5 summarizes the results for these 5 instances. All of them terminate because of reaching the limit
on number of iterations. We observe relatively larger but acceptable gaps between the lower and upper
bounds on the optimal values. These relatively larger gap could be a consequence of early termination due to
the difficulty of solving the stage problems, or possibly because the 5% relative MIP error accumulated over
the stages. We would also like to note that, due to the very large scale of the underlying multistage stochastic
programs, the extensive form problems can not be solved by existing solvers. Therefore, the SDDiP algorithm
with proposed cuts provides a viable and systematic way to tackle these extremely challenging problems in
network revenue management.

7 Concluding Remarks

We consider a large class of multistage stochastic integer programs in which the variables that carry informa-
tion from one stage to the next are purely binary. By exploiting the binary nature of the state variables, we
propose a stochastic nested decomposition algorithm and a stochastic dual dynamic integer programming
algorithm. We remark that the binary feature of the state variables and making a local copy of state variables
are the key elements to the success of the approach. It allows us to construct supporting hyperplanes to the
expected cost-to-go functions, which is crucial for the correctness of the method. Extensive computational
experiments on three classes of real-world problems, namely electric generation expansion, financial port-
folio management, and network revenue management, show that the proposed methodology may lead to
significant improvement on solving large-scale, multistage stochastic optimization problems in real-world
applications.

There are several interesting directions worth investigating for future research. Improvements to the
integer optimality cut for two-stage stochastic integer programs are recently proposed in [7], and this may
be considered for extension to the multistage setting. In addition, it would also be interesting to see the
computation time improvement if the Lagrangian dual problem is solved by a more advanced methods, such
as bundle method [41] or column generation [9]. Since we have observed that the stage problem is sometimes
not very easy to solve, to further improve performance, one needs to explore the problem substructure and
tailor the algorithm according to specific problems. Effective cut management strategies could be explored to
keep the problem sizes small, especially in later iterations. Finally, extension of the proposed approach to the
risk averse setting would be valuable. Most previous work in risk averse multistage stochastic programming
is restricted to the linear or convex settings [75; 77; 66; 78; 17], it is intriguing to study how the nonlinearity of
risk in the presence of integer variables affect the problem structure.
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Appendix

Proof of Theorem 3. Consider an MSIP with d := d1 + d2 mixed-integer state variables per node:

min
xn,yn

∑
n∈T

pnfn(xn, yn)

s.t. (xa(n), xn, yn) ∈ Xn ∀ n ∈ T
xn ∈ Zd1+ × Rd2+ ∀ n ∈ T .

(7.1)

Since the state variables are bounded by (A1), we can assume that xn ∈ [0, U ]d for some positive integer U
for all n ∈ T .

We approximate (7.1) as follows. For an integer state variable x ∈ {0, . . . , U}, we substitute by its binary
expansion: x =

∑κ
i=1 2i−1λi where λi ∈ {0, 1} and κ = blog2 Uc+1. For a continuous state variable x ∈ [0, U ],

we approximate it by binary approximation to a precision of ε ∈ (0, 1), i.e. x =
∑κ
i=1 2i−1ελi where λi ∈ {0, 1}

and κ = blog2(U/ε)c+1 [see e.g., 34]. Note that |x−
∑κ
i=1 2i−1ελi| ≤ ε. The total number k of binary variables

introduced to approximate the d state variables thus satisfies k ≤ d(blog2(U/ε)c + 1). We then have the
following approximating MSIP with binary variables λn ∈ {0, 1}k

min
λn,yn

∑
n∈T

pnfn(Aλn, yn)

s.t. (Aλa(n), Aλn, yn) ∈ Xn ∀ n ∈ T
λn ∈ {0, 1}k ∀ n ∈ T ,

(7.2)

where the d× k matrix A encodes the coefficients of the binary expansion.

Recall that the local variables are mixed integer, i.e. yn = (un, vn) with un ∈ Z`1+ and vn ∈ R`2+ . Given
x := {xn ∈ Zd1 × Rd2}n∈T , let

φ(x) := min
u,v

{∑
n∈T

fn(xn, (un, vn)) : (xa(n), xn, (un, vn)) ∈ Xn, ∀n ∈ T

}
=
∑
n∈T

min
un,vn

{
fn(xn, (un, vn)) : (xa(n), xn, (un, vn)) ∈ Xn

}
=
∑
n∈T

min
un∈Un

{
ψn(xa(n), xn, un)

}
,

where
ψn(xa(n), xn, un) = min

vn∈R
`2
+

{
fn(xn, (un, vn)) : (xa(n), xn, (un, vn)) ∈ Xn

}
,

and Un is the finite set of integer values the local variable un can take. By the compactness assumption (A1)
and the complete continuous recourse assumption (A2), the function ψn is the value function of a linear
program that is feasible and bounded for all values of (xa(n), xn, un). By Hoffman’s lemma [42], there exists
a constant Cn(un) which is dependent on the data defining (fn, Xn) and un, such that ψn(xa(n), xn, un) is
Lipschitz continuous with respect to (xa(n), xn) with this constant. It follows that φ(x) is Lipschitz continuous
with respect to x with constant C =

∑
n∈T maxun∈Un

Cn(un), i.e.,

|φ(x)− φ(x′)| ≤ C‖x− x′‖ ∀ x, x′.

Let (λ̃, ỹ) be an optimal solution to problem (7.2) and v2 be its optimal value. Define x̃n = Aλ̃n for all
n ∈ T , then (x̃, ỹ) is a feasible solution to (7.1) and has the objective value of v2. From the definition of φ
we have that v2 = φ(x̃). Now let (x̂, ŷ) be an optimal solution of (7.1) and v1 be its optimal value. Note that
v1 = φ(x̂). Let us construct a solution (λ̂, ŷ′) such that

‖x̂−Aλ̂‖ ≤ ε, and ŷ′n = argminyn

{
f(Aλ̂a(n), Aλ̂n, yn) : (Aλ̂a(n), Aλ̂n, yn) ∈ Xn

}
.
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Then (λ̂, ŷ′) is clearly a feasible solution to (7.2) and has the objective value φ(Aλ̂). Thus we have the
following inequalities

φ(x̂) ≤ φ(x̃) ≤ φ(Aλ̂).

Thus
0 ≤ φ(x̃)− φ(x̂) ≤ |φ(Aλ̂)− φ(x̂)| ≤ C‖Aλ̂− x̂‖ ≤ Cε.

By choosing ε = ε/C andM = UC we have that (x̃, ỹ) is a ε-optimal solution of (7.1) and k ≤ d(blog2(M/ε)c+
1) as desired.
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