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Abstract—Unit commitment, one of the most critical tasks in
electric power system operations, faces new challenges as the
supply and demand uncertainty increases dramatically due to
the integration of variable generation resources such as wind
power and price responsive demand. To meet these challenges,
we propose a two-stage adaptive robust unit commitment model
for the security constrained unit commitment problem in the
presence of nodal net injection uncertainty. Compared to the
conventional stochastic programming approach, the proposed
model is more practical in that it only requires a deterministic
uncertainty set, rather than a hard-to-obtain probability distri-
bution on the uncertain data. The unit commitment solutions of
the proposed model are robust against all possible realizations
of the modeled uncertainty. We develop a practical solution
methodology based on a combination of Benders decomposition
type algorithm and the outer approximation technique. We
present an extensive numerical study on the real-world large scale
power system operated by the ISO New England. Computational
results demonstrate the economic and operational advantages of
our model over the traditional reserve adjustment approach.

I. INTRODUCTION

UNIT COMMITMENT (UC) is one of the most critical
decision processes performed by system operators in

deregulated electricity markets as well as in vertically inte-
grated utilities. The objective of the UC problem is to find
a unit commitment schedule that minimizes the commitment
and dispatch costs of meeting the forecasted system load,
taking into account various physical, inter-temporal constraints
for generating resources, transmission, and system reliability
requirements.

During the normal real-time operation, system operator
dispatches the committed generation resources to satisfy the
actual demand and reliability requirements. In the event that
the actual system condition significantly deviates from the
expected condition, system operator needs to take corrective
actions such as committing expensive fast-start generators,
voltage reduction, or load shedding in emergency situation
to maintain system security. The main causes of the unex-
pected events come from the uncertainties associated with the
load forecast error, changes of system interchange schedules,
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generator’s failure to follow dispatch signals, and unexpected
transmission and generation outages.

In recent years, higher penetration of variable generation
resources (such as wind power, solar power, and distributed
generators) and more price-responsive demand participation
have posed new challenges to the unit commitment process,
especially in the independent system operator (ISO) man-
aged electricity markets. It becomes important for the ISOs
to have an effective methodology that produces robust unit
commitment decisions and ensures the system reliability in
the presence of increasing real-time uncertainty.

Previous studies of uncertainty management in the UC
problem can be divided into two groups. The first group
commits and dispatches generating resources to meet a deter-
ministic forecasted load, and handles uncertainty by imposing
conservative reserve requirements. The second group relies on
stochastic optimization techniques. The first group, so-called
the reserve adjustment method, is widely used in today’s power
industry. Much of research along this vein, including [1]–[4],
has focused on analyzing the levels of reserve requirements
based on deterministic criteria, such as a loss of the largest
generator or system import change. Such an approach is
easy to implement in practice. However, committing extra
generation resources as reserves could be an economically
inefficient way to handle uncertainty, especially when the
reserve requirement is determined largely by some ad-hoc
rules, rather than a systematic analysis. Also, since the UC
decision only considers the expected operating condition, even
with enough reserve available, the power system may still
suffer capacity inadequacy when the real-time condition, such
as load, deviates significantly from the expected value (this is
both confirmed by ISO’s operational experience as well as the
numerical simulation shown later).

The stochastic optimization approach explicitly incorporates
a probability distribution of the uncertainty, and often relies on
presampling discrete scenarios of the uncertainty realizations
[5]–[9]. This approach has some practical limitations in the
application to large scale power systems. First, it may be
difficult to identify an accurate probability distribution of
the uncertainty. Second, stochastic UC solutions only provide
probabilistic guarantees to the system reliability. To obtain a
reasonably high guarantee requires large number of scenario
samples, which results in a problem that is computationally
intensive. To improve the robustness of stochastic UC solu-
tions, Ruiz et al. [10] proposed a hybrid approach combining
the reserve requirement and stochastic optimization methods.
A recent work [11] proposed an interesting framework that
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combines uncertainty quantification with stochastic optimiza-
tion. This framework could also be integrated with the robust
optimization formulation proposed below.

Robust optimization has recently gained substantial popular-
ity as a modeling framework for optimization under parameter
uncertainty, led by the work [12]–[18]. The approach is
attractive in several aspects. First, it only requires moderate
information of the underlying uncertainty, such as the mean
and the range of the uncertain data; and the framework is
flexible enough that the modeler can always incorporate more
probabilistic information such as covariance to the uncertainty
model, when such information is available. In particular, the
method of uncertainty quantification (UQ) originally proposed
in [11] can be integrated with the robust optimization UC
model, where the UQ module updates the uncertainty model as
more information is obtained in time. Second, the robust model
constructs an optimal solution that immunizes against all real-
izations of the uncertain data within a deterministic uncertainty
set. Such robustness is a desirable feature, especially when the
penalty associated with infeasible solutions is very high, as the
case in the power system operations. Hence, the concept of
robust optimization is consistent with the risk-averse fashion
in which the power systems are operated. Robust optimization
has been broadly applied in engineering and management
sciences, such as structural design, integrated circuit design,
statistics, inventory management, to name a few. See [19] and
references therein.

In this paper, we propose a two-stage adaptive robust
optimization model for the security constrained unit com-
mitment (SCUC) problem, where the first-stage UC decision
and the second-stage dispatch decision are robust against all
uncertain nodal net injection realizations. Furthermore, the
second-stage dispatch solution has full adaptability to the
uncertainty. The critical constrains such as network constraints,
ramp rate constraints and transmission security constraints are
incorporated into the proposed model as well. It is key to
design a proper uncertainty set to control the conservatism
of the robust solution. We use a special technique proposed
in [17], [18] for this purpose. We develop a practical so-
lution method, and extensively test the method on a real-
world power system. Papers [20], [21] proposed similar robust
optimization UC models. However, their proposals ignored
reserve constraints and did not study critical issues such as
the impact of robust solutions on system efficiency, operational
stability, and robustness of the UC solutions. Our research was
conducted independently of the work in [20], [21]. The main
contributions of our paper are summarized below.

1) We formulate a two-stage adaptive robust optimization
model for the SCUC problem. Given a pre-specified
nodal net injection uncertainty set, the two-stage adap-
tive robust UC model obtains an “immunized against un-
certainty” first-stage commitment decision and a second-
stage adaptive dispatch actions by minimizing the sum of
the unit commitment cost and the dispatch cost under the
worst-case realization of uncertain nodal net injection.
The nodal net injection uncertainty set models variable
resources such as non-dispatchable wind generation,
real-time demand variation, and interchange uncertainty.

The parameters in the uncertainty set provide control
over the conservatism of the robust solution.

2) We develop a practical solution methodology to solve the
adaptive robust model. In particular, we design a two-
level decomposition approach. A Benders decomposition
type algorithm is employed to decompose the overall
problem into a master problem involving the first-stage
commitment decisions at the outer level and a bilinear
subproblem associated with the second-stage dispatch
actions at the inner level, which is solved by an outer
approximation approach [22], [23]. The proposed solu-
tion method applies to general polyhedral uncertainty
sets. We present a computational study that shows the
efficiency of the method.

3) We conduct extensive numerical experiments on the real-
world large scale power system operated by the ISO
New England. We study the performance of the adaptive
robust model and provide detailed comparison with
the current practice, the reserve adjustment approach.
Specifically, we analyze the merit of the adaptive robust
model from three aspects: economic efficiency, contri-
bution to real-time operation reliability, and robustness
to probability distributions of the uncertainty.

The paper is organized as follows. Section II describes
the deterministic SCUC formulation. Section III introduces
the two-stage adaptive robust SCUC formulation. Section
IV discusses the solution methodology. Section V presents
computational results, including a discussion on the proper
way to choose the level of conservatism in the robust model.
Section VI concludes with discussion.

II. THE DETERMINISTIC SCUC PROBLEM

The deterministic SCUC problem is extensively studied in
the power system literature (e.g. [24], [25]). Please see the
Appendix for a detailed model. Here we present a compact
matrix formulation.

min
x,y

cTx+ bTy

s.t. Fx ≤ f , (1)
Hy ≤ h, (2)
Ax+By ≤ g, (3)
Iuy = d̄, (4)
x binary.

The binary variable x is a vector of commitment related
decision including the on/off and start-up/shut-down status of
each generation unit for each time interval of the commitment
period, usually 24 hours in an ISO setting. The continuous
variable y is a vector of dispatch related decision including the
generation output, load consumption levels, resource reserve
levels, and power flows in the transmission network for each
time interval. By convention, generation, reserve, and flow take
positive sign, whereas load takes negative sign.

The objective function is to minimize the sum of commit-
ment cost cTx (including start-up, no-load, and shut-down
costs) and dispatch cost bTy over the planning horizon.
Constraint (1), involving only commitment variables, contains



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, MARCH 2011 3

minimum up and down, and start-up/shut-down constraints.
Constraint (2) includes dispatch related constraints such as
energy balance (equality can always be written as two opposite
inequalities), reserve requirement, reserve capacity, transmis-
sion limit, and ramping constraints. Constraint (3) couples
the commitment and dispatch decisions, including minimum
and maximum generation capacity constraints. Constraint (4)
emphasizes the fact that the uncertain nodal net injections
are fixed at expected values in the deterministic model (Iu

selects the components from y that correspond to uncertain
resources).

III. THE TWO-STAGE ADAPTIVE ROBUST SCUC
FORMULATION

In this section, we first discuss the uncertainty set, which is
a key building block of the robust model. Then, we introduce
the two-stage adaptive robust SCUC formulation and provide
a detailed explanation.

The first step to build a robust model is to construct an
uncertainty set. Unlike the stochastic optimization approach,
the uncertainty model in a robust optimization formulation
is not a probability distribution, but rather a deterministic
set. In this paper, the uncertain parameter is the nodal net
injection. We consider the following uncertainty set of nodal
net injection at each time period t in the planning horizon T ,

Dt(d̄
t
, d̂

t
,∆t) :=

{
dt ∈ RNd :

∑
i∈Nd

|dti − d̄ti|
d̂ti

≤ ∆t, (5)

dti ∈
[
d̄ti − d̂ti, d̄

t
i + d̂ti

]
,∀i ∈ Nd

}
,

where Nd is the set of nodes that have uncertain injections,
Nd is the number of such nodes, dt = (dti, i ∈ Nd) is
the vector of uncertain net injections at time t, d̄ti is the
nominal value of the net injection of node i at time t, d̂ti
is the deviation from the nominal net injection value of node
i at time t, the interval

[
d̄ti − d̂ti, d̄

t
i + d̂ti

]
is the range of

the uncertain dti, and the inequality in (5) controls the total
deviation of all injections from their nominal values at time
t. The parameter ∆t is the “budget of uncertainty”, taking
values between 0 and Nd. When ∆t = 0, the uncertainty
set Dt = {d̄t} is a singleton, corresponding to the nominal
deterministic case. As ∆t increases, the size of the uncertainty
set Dt enlarges. This means that larger total deviation from the
expected net injection is considered, so that the resulting robust
UC solutions are more conservative and the system is protected
against a higher degree of uncertainty. When ∆t = Nd, Dt

equals to the entire hypercube defined by the intervals for each
dti for i ∈ Nd.

Now we formulate the two-stage adaptive robust SCUC
model as follows,

min
x,y(·)

(
cTx+max

d∈D
bTy(d)

)
(6)

s.t. Fx ≤ f , x is binary,
Hy(d) ≤ h(d), ∀d ∈ D,

Ax+By(d) ≤ g, ∀d ∈ D,

Iuy(d) = d, ∀d ∈ D,

where d = (dt, t ∈ T ) and D =
∏

i∈T Dt. The objective
function has two parts, reflecting the two-stage nature of the
decision. The first part is the commitment cost. The second
part is the worst case second-stage dispatch cost.

From this formulation, we can see that the commitment
decision x takes into account all possible future net injection
represented in the uncertainty set. Such a UC solution remains
feasible, thus robust, for any realization of the uncertain net
injection. In comparison, the traditional UC solution only guar-
antees feasibility for a single nominal net injection, whereas
the stochastic optimization UC solution only considers a finite
set of preselected scenarios of the uncertain net injection.
Furthermore, in our formulation the optimal second-stage
decision y(d) is a function of the uncertain net injection d,
therefore, fully adaptive to any realization of the uncertainty.
Notice that y(·) is also a function of the first-stage decision x.
However, we write it as y(d) to emphasize the adaptability of
the second-stage decision to the uncertainty d. The functional
form of y(·) is determined implicitly by the optimization prob-
lem, as opposed to being presumed as in the case of affinely
adaptive policies (see [26] and discussion in the conclusion
part of this paper). The full adaptability properly models the
economic dispatch procedure in the real-time operation.

The above formulation can be recast in the following
equivalent form, which is suitable for developing numerical
algorithms.

min
x

(
cTx+max

d∈D
min

y∈Ω(x,d)
bTy

)
(7)

s.t. Fx ≤ f , x binary,

where Ω(x,d) = {y : Hy ≤ h,Ax+By ≤ g, Iuy = d} is
the set of feasible dispatch solutions for a fixed commitment
decision x and nodal net injection realization d. Notice that
the worst case dispatch cost has a max-min form, where
miny∈Ω(x,d) b

Ty determines the economic dispatch cost for
a fixed commitment x and net injection d, which is then
maximized over the uncertainty set D.

It is useful to write out the dual of the dispatch problem
miny∈Ω(x,d) b

Ty. Denote its cost by S(x,d).

S(x,d) = max
φ,λ,η

λT (Ax− g)−φTh+ ηTd (8)

− λTB −φTH + ηT Iu = bT ,

φ ≥ 0,λ ≥ 0,η free

where φ, λ and η are the multipliers of the constraints (2),
(3) and (4), respectively.

Now, the second-stage problem maxd∈D miny∈Ω(x,d) b
Ty

is equivalent to a bilinear optimization problem given below

R(x) = max
d,φ,λ,η

λT (Ax− g)−φTh+ ηTd (9)

− λTB −φTH + ηT Iu = bT ,

φ ≥ 0,λ ≥ 0,η free,
d ∈ D,

where the constraints involving variable z := (λ,φ,η) define
a polyhedral set, denoted as E . Due to the bilinear structure
of the objective function, the optimal solution of problem (9)
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z∗ := (λ∗,φ∗,η∗) is an extreme point of the polyhedral E ,
and similarly the optimal solution d∗ is an extreme point of
D. Therefore, if we denote all the extreme points of E as
z1, . . . , zm, and all the extreme points of D as d1, . . . ,dk,
R(x) can be written equivalently as

R(x) = max
zi,∀i,dj ,∀j

λT
i (Ax− g)−φT

i h+ ηT
i dj , (10)

which shows that R(x) is the maximum of a finitely many
affine functions in x, hence R(x) is a convex piecewise linear
function in x. However, in general we have no knowledge
of the extreme points of E and D, and computing R(x) is
non-trivial. To see this, notice that the objective function of
(9) contains a non-concave bilinear term ηTd, and bilinear
programs are in general NP-hard to solve. Another way to see
this is from the formulation (7), where R(x) can be written
equivalently as,

R(x) = max
d∈D

min
y∈Ω(x,d)

bTy.

Notice that the objective value of the inner problem
miny∈Ω(x,d) b

Ty is a convex function in d. Therefore, eval-
uating R(x) needs to maximize a convex function, which is
generally NP-hard. Throughout the paper, we assume R(x) <
+∞ for all feasible x. This can be ensured by adding penalty
terms in the dispatch constraints. We omit the penalty terms
here for a clear presentation.

IV. SOLUTION METHOD TO SOLVE THE ADAPTIVE ROBUST
MODEL

As analyzed in the previous section, the adaptive robust
formulation (7) is a two-stage problem. The first-stage is to
find an optimal commitment decision x. The second-stage is
to find the worst-case dispatch cost under a fixed commitment
solution. Naturally, we will have a two-level algorithm. The
outer level employs a Benders decomposition (BD) type
cutting plane algorithm to obtain x using the information
(i.e. cuts) generated from the inner level, which approximately
solves the bilinear optimization problem (9).

A. The outer level: Benders decomposition algorithm

The Benders decomposition algorithm is described below.
Initialization: Let x0 be a feasible first-stage solution. Solve

R(x0) defined by (9) to get an initial solution (d1,φ1,λ1,η1).
Set the outer level lower bound LBD = −∞, upper bound
UBD = +∞ and the number of iteration k = 1. Choose an
outer level convergence tolerance level ϵ(> 0).

Iteration k ≥ 1:
Step 1: Solve BD master problem.
The master problem of BD is the following mixed
integer program (MIP):

min
x,α

cTx+ α (11)

s.t. α ≥ λT
l (Ax− g)−φT

l h+ ηT
l dl, ∀l ≤ k,

Fx ≤ f ,x binary.

Let (xk, αk) be the optimum. Set LBD = cTxk + αk.

Step 2: Solve BD subproblem R(xk).
We will discuss the methodology to solve R(xk) in the
next subsection. Let (dk+1,φk+1,λk+1,ηk+1) be the
optimal solution. Set UBD = cTxk +R(xk).
Step 3: Check the outer level convergence.
If UBD − LBD < ϵ, stop and return xk. Otherwise, let
k = k + 1, and go to step 1.

To speed up the convergence of the above BD algorithm, we
find it helpful to add dispatch constraints Ω(xk,dk) to the BD
master problem (11) at certain iteration k when UBD or LBD

has improved slowly.

B. The inner level: Solve R(x)

An outer approximation (OA) algorithm [22] [23] is used
to solve the bilinear program (9), where the bilinear term in
the objective is linearized around intermediate solution points
and linear approximations are added to the OA formulation.
Since the problem (9) is nonconcave, only a local optimum
is guaranteed by the OA algorithm. To verify the quality of
the solution, we test on different initial conditions and observe
fast convergence and consistent results. The OA algorithm is
described below.

Initialization: Fix the unit commitment decision xk passed
from the kth iteration of the outer level BD algorithm. Find
an initial net injection d1 ∈ D. Set the inner level lower
bound LOA = −∞, upper bound UOA = +∞ and number of
iteration j = 1. Choose an inner level convergence tolerance
level δ(> 0).

Iteration j ≥ 1:
Step 1: Solve OA subproblem S(xk,dj).
Solve S(xk,dj), the dual dispatch problem defined by
(8). Let (φj ,λj ,ηj) be the optimal solution. Set LOA =
S(xk,dj). Define Lj(dj ,ηj), the linearization of the
bilinear term ηTd at (dj ,ηj), as follows

Lj(dj ,ηj) = ηT
j dj + (η − ηj)

Tdj + (d− dj)
Tηj .

Step 2: Check the inner level convergence. If UOA −
LOA < δ, then stop and output the current solution.
Otherwise, set j = j + 1, go to Step 3 of the OA
algorithm.
Step 3: Solve OA master problem.
Solve the linearized version of R(xk), defined below:

U(dj ,ηj) = max
d,φ,λ,η,β

λT (Ax− g)−φTh+ β

β ≤ Li(di,ηi), ∀i = 1, . . . , j

− λTB −φTH + ηT Iu = bT ,

d ∈ D,

φ ≥ 0,λ ≥ 0,η free.

Since the uncertainty set D is assumed to be
polyhedral, U(dj ,ηj) is a linear program. Denote
(dj+1,φj+1,λj+1,ηj+1, βj+1) as the optimal solution.
Set the inner level upper bound as UOA = U(dj ,ηj).

Theorem 1. The dual solutions, (dj ,φj ,λj ,ηj , βj), of the
j-th inner level problem generate valid inequalities for the
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second-stage value function R(x), i.e.

R(x) ≥ λT
j (Ax− g)−φT

j h+ ηT
j dj , ∀x.

Proof: The dual solutions zi = (λi,φi,ηi) generated
by the OA subproblem S(xk,di) are extreme points of the
dual polytope E , because S(xk,di) is a linear optimization
problem over E . Therefore, using (10), we have

R(x) ≥ max
d∈D

λT
i (Ax− g)−φT

i h+ ηT
i d

≥ λT
i (Ax− g)−φT

i h+ ηT
i di,

which shows that the Benders cuts added to the BD master
problem are valid cuts, i.e., they support the epigraph of R(x).

The overall algorithmic framework is summarized in Fig. 1.
In our implementation, we include all contingency transmis-
sion constraints in the BD subproblem.

BD Master Problem

OA Subproblem

OA Master 

Problem

SFT

BD Subproblem

Outer Approximation

SFT

Fig. 1. Flow chart of the proposed two-level algorithm. SFT stands
for sequential feasibility test, where security constraints, such as N − 1
constraints, are tested at current solutions and violated constraints are added
sequentially.

V. COMPUTATIONAL EXPERIMENTS

In this section, we present a computational study to evaluate
the performance of the adaptive robust (AdaptRob) approach
and the reserve adjustment (ResAdj) approach. We test on the
power system operated by the ISO New England Inc. (ISO-
NE). We have the following data and uncertainty model.

The system and market data: The system has 312 generating
units, 174 loads, and 2816 nodes. We select four representative
transmission constraints that interconnect four major load
zones in the ISO-NE’s system. The market data is taken
from a normal winter day of the ISO-NE’s day-ahead energy
market. In particular, we have 24-hour data of generators’ offer
curves, reserve offers, expected nodal load, system reserve
requirement (10-min spinning reserve, 10-min non-spinning
reserve, and 30-min reserve), and various network parameters.
The average total generation capacity per hour is 31,400 MW
and the average forecasted load per hour is 14,136 MW.

The uncertainty model: We use the budgeted uncertainty set
defined in (5), in which d̄tj is the nominal load given in the
data. We set the range of load variation to be d̂tj = 0.1d̄tj
for each load j at time t. The budget of uncertainty ∆t takes
values in the entire range of 0 to Nd. We will discuss the

proper way to choose ∆t within this range that results in
the best performance of the robust solution in the following
subsection.

For the ResAdj approach, we solve the deterministic UC
problems presented in Section II at the expected load level
with adjusted reserve requirement. In particular, we model the
reserve adjustment as follows,

qj,t = q0j,t +
∆t

Nd

Nd∑
i=1

d̂ti,

where qj,t is the system reserve requirement of type j at time
t, composed of the basic reserve level q0j,t and an adjustment
part proportional to the total variation of load. Here, the
uncertainty budget ∆t also controls the level of conservatism
of the ResAdj solution.

The computational experiments proceed as follows.
1) Obtain UC solutions: Solve the ResAdj and AdaptRob

UC models respectively for different uncertainty bud-
gets: ∆t ∈ [0, Nd].

2) Dispatch simulation: For each UC solution, solve the
dispatch problem repeatedly for two sets of 1000 ran-
domly generated loads.

One set of randomly sampled load follows a uniform
distribution in the interval [d̄tj − d̂tj , d̄

t
j + d̂tj ] for each load

j at time t. The other set follows a normal distribution with
mean d̄tj and standard deviation d̂tj/1.44, which results in an
85 percentile of load falling between [d̄tj − d̂tj , d̄

t
j + d̂tj ] (the

load is truncated for nonnegative values). Notice that samples
from both sets may fall outside of the budgeted uncertainty
set, especially when the budget ∆t is close to 0.

To mimic the high cost of dispatching fast-start units or
load shedding in the real-time operation, we introduce slack
variable z to energy balance, reserve requirement, and trans-
mission constraints in the dispatch simulation. If the real-time
dispatch incurs any energy deficiency, reserve shortage, or
transmission violation, at least one component of z will be
positive. The dispatch cost is the sum of production cost and
penalty cost, i.e. bTy + κTz, where κ is set to $5000/MWh
for each component.

The proposed two-level algorithm for the two-stage adaptive
robust model is implemented in GAMS. The mixed integer
program and linear program in the algorithm are solved with
CPLEX 12.1.0 on a PC laptop with an Intel Core(TM) 2Duo
2.50GHz CPU and 3GB memory. We set the convergence
tolerance for the outer level BD algorithm to be ϵ = 10−4,
and the convergence tolerance for the inner level algorithm to
be δ = 10−3. The MIP gap for the BD master problem is set
to 10−5. The average computation time to solve the robust UC
problem is 6.14 hours. The average computation time for the
reserve adjustment approach is 1.65 hours. The computational
results presented in the following subsections use the above
tolerance levels and MIP gap. If we relax the BD convergence
tolerance ϵ to 10−3 and set the MIP gap of the BD master
problem to be 10−3, the average computation time to solve
the robust UC problem significantly decreases to 1.46 hours
with an average of 0.17% increase in terms of the worst-case
total cost.
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We compare the performance of the adaptive robust ap-
proach and the reserve adjustment approach in three aspects:
(1) The average dispatch and total costs, (2) the volatility of
these costs, and (3) the sensitivity of the these costs to different
probability distributions of the uncertain load. The average
cost indicates the economic efficiency of the UC decision;
the volatility of these costs indicates the reliability of the
real-time dispatch operation under the UC decision; the third
aspect indicates how robust the UC decision is against load
probability distributions.

The main conclusion is that (a) by properly adjusting the
budget level of the uncertainty set, the adaptive robust solution
has lower average dispatch and total costs, indicating better
economic efficiency of the robust approach; (b) the adaptive
robust solution significantly reduces the volatility of the total
costs, as well as the penalty cost in the dispatch operation;
(c) the adaptive robust solution is significantly more robust to
different probability distributions of load.

We want to remark that point (a) is quite contrary to
the general impression that robust optimization is always
conservative. In fact, by choosing a proper uncertainty level
using probability laws, the robust solution achieves better
economic efficiency than the conventional approach. We will
present detailed discussion below. The computational results
for normally and uniformly distributed loads are similar in
illustrating (a) and (b). To be compact, we only present the
results for normally distributed loads. For (c), we compare the
results of the two distributions.

A. Cost efficiency and the choice of the budget level

Table I reports the average dispatch costs and total costs of
AdptRob and ResAdj solutions for normally distributed load
when the uncertainty budget ∆t varies from 0 to Nd. We can
see that the AdptRob has lower average dispatch costs for all
values of ∆t. The average total costs of the two approaches
are more comparable.

To quantify the comparison, we define the cost saving as
(ResAdj cost − AdptRob cost)/(ResAdj cost). For the nor-
mally distributed load, the AdptRob approach always has
lower average dispatch cost than the ResAdj approach, and
can save up to 2.7% or $472k (at ∆ = 0.1Nd), which is a
significant saving for a daily operation. The total cost saving of
the AdptRob approach ranges from −0.84% (at ∆ = 0.4Nd)
to 1.19% (at ∆ = 0.1Nd). Since the AdptRob approach
protects the system against the worst-case load realization, in
general it commits more generating resources than the reserve
adjustment approach, which considers uncertainty by adjusting
the system reserve levels and does not identify the specific
worst-case scenario.

For both average dispatch and total costs, we observe that
the robust solution performs best when the budget level ∆t is
relatively small, e.g. around 0.1Nd. This phenomenon can be
actually explained by the probability law, namely the central
limit theorem. When a large number Nd of random loads
(independent as we assume) are aggregated, the volatility of
the total load scales according to

√
Nd. Therefore, a proper

level of uncertainty budget in the uncertainty set (5) should
be chosen as ∆t ∼ O(

√
Nd). Table II shows the results for

TABLE I
THE AVERAGE DISPATCH COSTS AND TOTAL COSTS OF THE ADPTROB

AND RESADJ FOR NORMALLY DISTRIBUTED LOAD FOR
∆t/Nd = 0, 0.1, . . . , 1 AND d̂tj = 0.1d̄tj .

AdptRob ResAdj
budget dispatch cost total cost dispatch cost total cost
∆t/Nd (M$) (M$) (M$) (M$)

0.0 19.3530 20.8503 19.3530 20.8503
0.1 16.9852 18.7290 17.4581 18.9547
0.2 17.0513 18.8265 17.2391 18.7400
0.3 17.0949 18.8773 17.2563 18.7595
0.4 17.1448 18.9425 17.2570 18.7843
0.5 17.1583 18.9569 17.2893 18.8250
0.6 17.1705 18.9723 17.3030 18.8506
0.7 17.1719 18.9896 17.3537 18.9062
0.8 17.1715 18.9892 17.3899 18.9472
0.9 17.1655 18.9898 17.3990 18.9669
1.0 17.1652 18.9894 17.4524 19.0660

TABLE II
THE AVERAGE DISPATCH COSTS AND TOTAL COSTS OF THE ADPTROB

AND RESADJ FOR NORMALLY DISTRIBUTED LOAD
∆t/

√
Nd = 0.5, 1, . . . , 3 AND d̂tj = 0.1d̄tj ..

AdptRob ResAdj
budget dispatch cost total cost dispatch cost total cost

∆t/
√
Nd (M$) (M$) (M$) (M$)

0.5 16.9195 18.6050 18.1855 19.6837
1.0 16.9650 18.6688 17.4907 18.9942
1.5 16.9815 18.7365 17.3027 18.8006
2.0 17.0297 18.7937 17.7403 19.2415
2.5 17.0586 18.8366 17.6567 19.1618
3.0 17.0745 18.8526 18.0804 19.5889

∆t in 0.5
√
Nd to 3

√
Nd, equivalently ∆t equals 0.038Nd

to 0.227Nd, for Nd = 174 in our system. We can see that,
in this range of the uncertainty budget, the AdptRob has an
even higher saving: the average dispatch cost saving from
1.86% or $321.2k (at ∆ = 1.5

√
Nd) to 6.96% or $1.27

Million (at ∆ = 0.5
√
Nd), and the average total cost saving

from 0.34% or $64.1k (at ∆ = 1.5
√
Nd) to 5.48% or $1.08

Million (at ∆ = 0.5
√
Nd). This demonstrates that we can

choose a proper uncertainty level by using the probability
law as a guideline as opposed to always hedging against the
most extreme scenarios. The robust UC solution with a proper
uncertainty level obtains favorable economic performance and
reduces the overall conservativeness of the robust model.

B. Reliability of dispatch operation

The adaptive robust approach greatly reduces the volatility
of the real-time dispatch costs. Table III shows the standard
deviation (std) of the dispatch costs of the two approaches, and
their ratios (ResAdj/AdptRob) for normally distributed load.
We can see that the std for the reserve adjustment approach
is almost an order of magnitude higher than that for the
adaptive robust approach (8.15-14.48 times). The significant
reduction in the std of the dispatch cost is closely related to the
significant reduction in the penalty cost. Table IV shows the
penalty costs of the two approaches. Recall that the dispatch
cost is the sum of the production cost and penalty cost. The
penalty cost occurs whenever there is a violation in the energy
balance, reserve requirement, or transmission constraints. The
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system operator has to take expensive emergency actions such
as dispatching fast-start units or load-shedding to maintain
system reliability. All these add volatility to the dispatch costs.

As we observe, all three types of constraint violations
(enery, reserve, and transmission) may occur for ResAdj solu-
tions, indicating the potential ineffectiveness of a deterministic
approach that only considers nominal load and system level
reserves. In contrast, the AdptRob approach commits resources
by taking consideration of all load realizations in the uncer-
tainty model. Furthermore, the robust solutions remain feasible
even when the load realization is outside of the uncertainty set
(as the case for normally distributed load).

In conclusion, the low volatility of the dispatch cost and the
zero penalty cost of the adaptive robust approach demonstrates
its operational effectiveness in reducing costly emergency
actions and improving system reliability.

C. Robustness against load distributions

In practice, it is not easy to accurately identify the probabil-
ity distribution of the load uncertainty for each node, especially
in a large-scale power system. Thus, it is important for a UC
solution to have stable economic and operational performance
over different distributions of the uncertain load. The simu-
lation results show that the adaptive robust approach exhibits
this desirable property. In comparison, the performance of the

TABLE III
STANDARD DEVIATION OF THE DISPATCH COSTS OF THE TWO

APPROACHES AND THEIR RATIO FOR NORMALLY DISTRIBUTED LOAD.

AdptRob ResAdj ResAdj
budget std dispatch std dispatch /
∆t/Nd cost (k$) cost (k$) AdptRob

0.0 1,769.5107 1,769.5107 1
0.1 47.4900 687.5098 14.48
0.2 46.3647 687.5098 8.62
0.3 45.4248 377.7901 8.32
0.4 44.2397 366.7359 8.29
0.5 44.1075 377.1875 8.55
0.6 43.9936 370.8673 8.43
0.7 43.9263 377.0631 8.58
0.8 43.9338 370.7203 8.44
0.9 43.9023 357.9338 8.15
1.0 43.9431 361.0376 8.22

TABLE IV
PENALTY COSTS OF ADPTROB AND RESADJ APPROACHES FOR

NORMALLY DISTRIBUTED LOAD.

AdptRob ResAdj
budget penalty penalty percent of
∆t/Nd cost (k$) cost (k$) disp. cost

0.0 2377.62 2,377.6237 12.29%
0.1 0 497.8243 2.85%
0.2 0 272.4362 1.58%
0.3 0 268.0298 1.55%
0.4 0 252.3463 1.46%
0.5 0 267.6559 1.55%
0.6 0 259.7954 1.50%
0.7 0 267.6559 1.54%
0.8 0 259.7954 1.49%
0.9 0 241.6133 1.39%
1.0 0 247.4119 1.42%

reserve adjustment approach is significantly affected by the
underlying probability distribution.

As shown in Fig. 2, the average dispatch costs of the
AdptRob approach are almost the same for loads with normal
and uniform distributions. The absolute difference between
the two curves is between $6.32k and $15.80k for the entire
range of ∆t = 0.1Nd, . . . , 0.9Nd. The relative difference is
between 0.037% to 0.092% (defined as (normal cost-uniform
cost)/normal cost).

The ResAdj approach has a rather different picture, as
shown in Fig. 3. The average dispatch costs are significantly
affected by the load probability distribution. The absolute
difference of the two curves varies between $174.42k and
$382.26k. The relative difference is between 1.0% to 2.2%.
In both measures, the difference is more than 20 times larger
than that of the AdptRob approach.
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Fig. 2. The average dispatch costs of the AdptRob approach for normally
and uniformly distributed load.
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Fig. 3. The average dispatch costs of the ResAdj approach for normally and
uniformly distributed load.

We also study the effect of the load distribution on the
standard deviation of dispatch costs. Table V shows the std of
dispatch costs for loads with uniform distribution and the rela-
tive difference between the uniform distribution and the normal
distribution (defined as (normal std - uniform std)/normal std,
c.f. Table III for normal std). As shown in the table, the relative
change of the std is around 18.8% for the AdptRob approach,
and is around 59.6% for the ResAdj approach, which is more
than three times higher. It is also interesting to note that the
AdptRob approach significantly reduces the relative change
of the std comparing to the deterministic approach (∆ = 0)
from 64.70% to around 18.8%. On the other hand, the ResAdj
approach is much less effective in this respect (from 64.70%
to around 59.6%).
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TABLE V
STANDARD DEVIATION OF DISPATCH COSTS FOR UNIFORMLY

DISTRIBUTED LOAD AND THE RELATIVE DIFFERENCE WITH THOSE OF THE
NORMALLY DISTRIBUTED LOAD.

AdptRob ResAdj
budget std. disp. Relat. std. disp. relat.
∆t/Nd cost (k$) diff cost (k$) diff

0.0 624.5939 64.70% 624.5939 64.70%
0.1 38.5824 18.76% 227.7822 66.87%
0.2 37.6948 18.70% 153.5149 61.61%
0.3 36.8956 18.78% 157.0428 58.43%
0.4 36.2507 18.06% 150.7548 58.89%
0.5 35.7960 18.84% 156.9203 58.40%
0.6 35.6687 18.92% 154.4555 58.35%
0.7 35.6179 18.91% 156.8091 58.41%
0.8 35.6067 18.95% 154.3305 58.37%
0.9 35.5761 18.97% 148.2292 58.59%
1.0 35.6092 18.97% 151.8466 57.94%

D. Cases for higher level of uncertainty

We also test the performance of the robust adaptive UC
model at a higher level of uncertainty, namely d̂tj = 0.2d̄tj .
The comparison with the corresponding results of the reserve
adjustment approach reveals further advantages of the robust
approach in cost saving and volatility reduction, as well as the
limitation of the reserve approach in dealing with high level
of demand variation.

Table VI shows the average dispatch and total costs of the
two approaches. Firstly, we can see that the AdptRob model
has relatively stable dispatch and total costs across the entire
range of budget levels (around $17-19 Million for dispatch cost
and $19-23 Million for total costs), while the ResAdj model
incurs significantly higher costs at budget levels ∆ ≥ 0.8Nd

(dispatch and total costs rise up to $57 Million and $61
Million, respectively). These extremely high costs are mainly
due to the fact that, at high reserve levels, the ResAdj UC
solutions start to have significant balance and transmission
violations. This indicates a limit on the demand uncertainty
levels that a system operator can safely deal with by relying
on the ResAdj approach. Secondly, in the range where the
ResAdj approach has reasonable costs, Table VI shows that the
AdptRob model has a dispatch cost saving of 12.3% or $2.44
Million and total cost saving of 9.8% or $2.10 Million (at
∆ = 0.1Nd), which is a much higher saving than the previous
results (6.96% or $1.27 Million for dispatch costs and 5.48%
or $1.08 Million for total costs at the lower uncertainty level
d̂tj = 0.1d̄tj , see Subsection V-A).

Table VII shows the std of dispatch costs of the two
approaches. Again, we can see that the ResAdj approach has
extremely high std on dispatch costs at high reserve adjustment
levels ∆ ≥ 0.8Nd due to high levels of violations. Even in
the range of ∆ = 0.1 ∼ 0.7Nd, the ResAdj approach have
from 7.35 times to 18.20 times higher std on dispatch costs
than the AdptRob approach. Comparing to the previous results
of 8.14 ∼ 14.48 times higher std (see Table III), this demon-
strates that the AdptRob approach has significant reduction
in cost volatility at higher level of demand uncertainty. Table
VIII lists the penalty costs of the two approaches, where the
penalty costs of the AdptRob approach are on average less

TABLE VI
THE AVERAGE DISPATCH COSTS AND TOTAL COSTS OF THE ADPTROB

AND RESADJ FOR NORMALLY DISTRIBUTED LOAD FOR
∆t/Nd = 0, 0.1, . . . , 1 AND d̂tj = 0.2d̄tj .

AdptRob ResAdj
budget dispatch cost total cost dispatch cost total cost
∆t/Nd (M$) (M$) (M$) (M$)

0.0 33.5377 35.0589 33.5377 35.0589
0.1 17.4093 19.2498 19.8504 21.3521
0.2 17.6524 19.5839 18.6280 20.1553
0.3 17.8603 19.9179 18.5842 20.1357
0.4 17.9390 20.2108 18.6651 20.2224
0.5 18.4717 21.2104 18.5935 20.2164
0.6 18.3158 20.9412 18.4244 20.1446
0.7 19.2184 22.2851 18.8700 20.8222
0.8 19.7684 23.1764 24.5734 26.7734
0.9 18.5987 21.2892 39.3593 42.4111
1.0 18.5811 21.2944 57.3552 61.6723

than 0.06% of the dispatch costs, while the numbers are about
two orders of magnitude higher for the ResAdj approach (from
5.14% to 13.98% for ∆ ≤ 0.7Nd, and as high as 61.74% for
∆ ≥ 0.8Nd).

We also study the robustness of the AdptRob approach at the
higher level of uncertainty. To be compact, we omit the plots
and tables, but summarize the key statistics. In particular, the

TABLE VII
STANDARD DEVIATION OF THE DISPATCH COSTS OF THE TWO

APPROACHES AND THEIR RATIO FOR NORMALLY DISTRIBUTED LOAD AND
d̂tj = 0.2d̄tj .

AdptRob ResAdj ResAdj
budget std dispatch std dispatch /
∆t/Nd cost (k$) cost (k$) AdptRob

0.0 6,839.5245 6,839.5245 1.00
0.1 132.3089 2,407.9004 18.20
0.2 187.0653 1,374.5625 7.35
0.3 132.9050 1,275.8496 9.60
0.4 130.8215 1,267.6123 9.69
0.5 132.6666 1,193.7796 9.00
0.6 131.8476 1,020.5538 7.74
0.7 135.5654 1,732.0398 12.78
0.8 138.6719 7,276.9223 52.48
0.9 131.9013 13,480.0202 102.20
1.0 132.1308 18,240.1585 138.05

TABLE VIII
PENALTY COSTS OF ADPTROB AND RESADJ APPROACHES FOR

NORMALLY DISTRIBUTED LOAD AND d̂tj = 0.2d̄tj .

AdptRob ResAdj
budget penalty percent of penalty percent of
∆t/Nd cost (k$) disp. cost cost (k$) disp. cost

0.0 16,438.9480 49.02% 16,438.9480 49.02%
0.1 9.4449 0.054% 2,775.2887 13.98%
0.2 20.7858 0.118% 1,535.3607 8.24%
0.3 10.1540 0.057% 1,447.1310 7.79%
0.4 8.9565 0.050% 1,442.5843 7.73%
0.5 8.9565 0.048% 1,302.5751 7.01%
0.6 8.9565 0.049% 947.9048 5.14%
0.7 8.9565 0.047% 1,158.2852 6.14%
0.8 8.9565 0.045% 6,162.2991 25.07%
0.9 8.9565 0.048% 19,302.3638 49.04%
1.0 8.9565 0.048% 35,412.5130 61.74%
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AdptRob approach exhibits similar robustness to underlying
distributions: the absolute difference of dispatch costs under
normal and uniform distributions is between $23.70k and
$98.92k for the entire range of ∆t = 0.1Nd, . . . , 1.0Nd, or
between 0.14% and 0.55% in terms of relative difference. The
ResAdj approach is much more sensitive to the distribution:
the absolute difference is between $456.91k and $8,435.23k,
and the relative difference is between 2.48% and 23.08%.
Similarly, the std of dispatch costs of the AdptRob approach is
more robust: the absolute difference under two distributions is
between $60.34k and $65.01k, or relative difference between
43.5% and 47.7% for the AdptRob approach, and the absolute
difference is between $385.5k and $4,913.2k, or relative dif-
ference between 21.78% and 47.53% for the ResAdj approach.

VI. CONCLUSION AND DISCUSSION

The adaptive robust model and its solution technique pre-
sented in this paper provide a novel and practical approach to
handle uncertainties in the unit commitment process. Such a
framework naturally fits into the daily reliability unit commit-
ment process in an ISO environment. We develop a practical
solution method with the real-world large scale power system
operation in mind. We conduct extensive tests on the large
scale system operated by the ISO New England, and compare
our model with the current reserve adjustment approach. We
find that by properly setting the level of conservatism in
the uncertainty model, the adaptive robust model exhibits
sizable savings on both average dispatch and total costs, and
significantly reduces the volatility of the dispatch cost, thus,
improves the real-time reliability of the power system opera-
tion. The robust model also shows resilient performance under
different probability distributions of load. The advantages of
the adaptive robust model are further illustrated by numerical
tests on the same large scale system with higher level of net
injection uncertainty (20% deviation range from the nominal
net injection levels).

Some discussions are in order. The stochastic factors that
influence the unit commitment problem are associated with
both supply (e.g. wind power, etc.) and demand (e.g. demand
forecast errors and price responsive demand). To address these
various uncertainty elements, the proposed two-stage adaptive
robust framework models the uncertainty at the individual
nodal level. Therefore, the impact of resource level uncertainty
on the transmission system can be evaluated. Moreover, the
proposed model can be readily extended to include uncertain-
ties related to inter-tie exchanges, system-wide and zonal level
load, and interface limit de-rating.

In our model, we assume that the commitment cost function
and the dispatch cost function are both linear, which is a
common assumption in the UC literature. In more realistic
settings, the production cost can be modeled as a quadratic
function, the start-up cost can be described by an exponential
function, both of which can be approximated by piecewise
linear functions and readily incorporated in our model.

Our paper focuses on polyhedral uncertainty sets. However,
the model can be extended to include general convex uncer-
tainty sets, such as ellipsoidal uncertainty sets. The framework
of the proposed solution methodology, especially the outer

approximation technique to solve the second-stage problem,
can be generalized to handle nonlinear convex constraints.

In the current practice, the SFT runs iteratively with the unit
commitment procedure by gradually adding violated transmis-
sion security constraints to the economic dispatch problem.
Alternatively, as we implemented in our numerical test, we
can impose a set of critical transmission security constraints
in the second-stage problem without running the SFT. These
critical transmission security constraints are more likely to be
violated than other constraints based on the expert knowledge
and historical data, and they are usually a small subset of
the total transmission constraints. Therefore, this alternative
approach can reduce the computation time for solving the
second-stage problem.

Many interesting directions are now open for future re-
search. For example, it would be interesting to study re-
commitment that is adaptive to load forecast. We can easily
adjust the parameters such as d̂tj in the uncertainty set and
re-run our model for future re-commitment when a better
estimation of uncertainty is available. This could be very
useful when the system has high percentage of price responsive
demand and variable supply. We already show that the robust
solution significantly reduces the volatility of the dispatch cost.
It would be interesting to study the extent that the volatility in
the energy price is reduced. It would also be very interesting to
model explicit correlation between different uncertain loads,
such as spatial correlation between adjacent wind farms, or
temporal correlation between consumption levels. Such corre-
lation can be captured by modeling covariance matrices in the
uncertainty set. Developing other robust models with different
decision rules (such as affinely adjustable dispatch decision
[26]) is another on-going project.

VII. APPENDIX

For the unit commitment decision making, the system oper-
ator usually has access to a wide range of detailed data listed
below, including economic data of generator’s production costs
or supply curve in a market setting, physical characteristics
of each generator, expected load forecast, system reserve
requirement, network parameters and transmission line ratings.

• Ng, Nd, Nb, Nl, T : The number of generators, loads,
nodes, transmission lines, and time periods (in hours).

• Ng,Nd,Nb,Nl, T : The corresponding sets of generators,
loads, nodes, transmission lines, and time periods (in
hours).

• St
i , G

t
i, F

t
i : Start-up, shut-down, no-load costs of genera-

tor i at time t.
• Ct

i (·): Variable cost of generator i at time t as a function
of production levels.

• pmax
i , pmin

i : Maximum and minimum production levels of
generator i (usually called Ecomax and Ecomin, respec-
tively).

• RU t
i , RDt

i : Ramp-up, ramp-down rates of generator i at
time t.

• MinUpi,MinDowni: Minimum-up and minimum-down
times of generator i.

• fmax
l : Flow limit on transmission line l in base case.
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• fmax
l,i : Flow limit on transmission line l in contingency i

(i.e. line i is dropped).
• Bp,Bd: Network incidence matrices for generators and

load.
• al: Network shift factor vector for line l for the base case.
• al,i: Network shift factor vector for line l in contingency

i.
• d̄tj : Expected demand at node j, time t.
• Nr: The set of system reserve requirements Nr =

{TMSR, T10, T30}.
• A: The set of reserve products A =

{TMSR, TMNSR, TMOR}.
• Ak: The set of reserve products needed to satisfy reserve

requirement k ∈ Nr: ATMSR = {TMSR}, AT10 =
{TMSR,TMNSR}, AT30 = {TMSR,TMNSR,TMOR}.

• q̄ti,k: Reserve capacity of generator i, requirement k ∈
Nr, time t.

• q̄ti,k: System reserve requirement of k ∈ Nr, time t.

The system operator in the current practice commits extra gen-
eration resource to provide reserves in the day-ahead schedul-
ing. The reserve capacity will be available to the system oper-
ator in the real-time operation to prepare for unexpected loss
of generators or other system disruptions. According to how
fast the reserve capacity can respond to the emergency, there
are three important types of reserves: ten-minute spinning
reserve (TMSR), ten-minute nonspinning reserve (TMNSR),
and thirty-minute operating reserve (TMOR). Other types of
reserves exist, such as regulation service (automatic generation
control) which responds to frequency changes in the system
second by second, and supplement reserve.

The decision variables of the unit commitment problem are:

• xt
i ∈ {0, 1}: If generator i is on at time t, xt

i = 1;
otherwise xt

i = 0.
• ut

i ∈ {0, 1}: If generator i is turned on at time t, ut
i = 1;

otherwise ut
i = 0.

• vti ∈ {0, 1}: If generator i is turned down at time t,
vti = 1; otherwise vti = 0.

• pti ∈ [0,∞): Production of generator i at time t.
• qti,a ∈ [0,∞): Reserve of generator i, type a ∈ A, time

t.

A standard deterministic UC model is formulated below [24],
[25].

min
x,u,v,p,q

T∑
t=1

Ng∑
i=1

xt
iF

t
i + ut

iS
t
i + vtiG

t
i + Ct

i (p
t
i) (12)

s.t. xt−1
i − xt

i + ut
i ≥ 0, ∀i ∈ Ng, t ∈ T , (13)

xt
i − xt−1

i + vti ≥ 0, ∀i ∈ Ng, t ∈ T , (14)

xt
i − xt−1

i ≤ xτ
i , (15)

∀τ ∈ [t+ 1,min{t+ MinUpi − 1, T}], t ∈ [2, T ],

xt−1
i − xt

i ≤ 1− xτ
i , (16)

∀τ ∈ [t+ 1,min{t+ MinDwi − 1, T}], t ∈ [2, T ],
Ng∑
i=1

pti =

Nd∑
j=1

d̄tj , ∀t ∈ T , (17)

−RDt
i ≤ pti − pt−1

i ≤ RU t
i, ∀i ∈ Ng, t ∈ T ,

(18)

− fmax
l ≤ a′

l(Bpp
t −Bdd

t) ≤ fmax
l , (19)

∀t ∈ T , l ∈ Nl,

− fmax
l,i ≤ a′

l,i(Bpp
t −Bdd

t) ≤ fmax
l,i , (20)

∀t ∈ T, l ∈ CTi, i ∈ Nl,

pmin
i ≤ pti +

∑
a∈A

qti,a ≤ pmax
i , ∀i ∈ Ng, t ∈ T ,

(21)∑
i∈Ng,a∈Ak

qti,a ≥ q̄tk, ∀t ∈ T , k ∈ Nr, (22)

∑
a∈Ak

qti,a ≤ q̄ti,k, ∀i ∈ Ng, t ∈ T , k ∈ Nr. (23)

Eq. (13) and (14) are logic constraints between on and off
status and the turn-on and turn-off actions. In particular, a
generator i is turned on at time t ut

i = 1 if and only if
xt−1
i = 0, xt

i = 1. Similarly, a generator i is turned off at
time t if and only if xt−1

i = 1, xt
i = 0. Eq. (15) and (16)

are constraints of minimum up and minimum down times
for each generator, i.e. if a generator is turned on at time
t, then it must remain on at least for the next (MinUpi − 1)
periods, and similar for the shutdown constraint. There are
multiple ways to model these constraints. The specific form
that we use here follow the formulation proposed in [27]. The
convex hull of the binary variable x defined by Eq. (15)-(16)
is explicitly characterized in [28]. Furthermore, the convex
hull of the binary variables (x,u) defined by Eq. (13)-(14)
and Eq. (15)-(16) is characterized in [29]. In the software
implementation of our robust unit commitment model, we use
the strong formulation proposed in [29].

Eq. (17) is the energy balance equation that matches the
system level supply and load at each time period. Eq. (18) is
the ramp rate constraint, i.e. the speed at which a generator
can increase or decrease its production level is bounded in
a range. Notice that the ramping constraint is a complicating
constraint that couples many consecutive time periods.

Eq. (19) is the transmission flow constraint for the base
case, where all transmission lines are functioning. Eq. (20)
is the transmission line constraint for the i-th contingency
where transmission line i is tripped. In this situation, the
network topology is changed, so are the shift factor al,i and
flow limits fmax

l,i . Eq. (19) and (20) are the DC approximation
of the nonlinear AC power flow equations. Incorporating the
nonlinear AC flow equations into the unit commitment prob-
lem would result in a nonlinear mixed-integer optimization
problem, which is significantly more difficult to solve than
a linear mixed-integer problem. In the literature, it has been
standard to use the DC model in the unit commitment problem.
It remains a challenging problem to incorporate AC power
flow model into the economic dispatch problem where the
commitment variables are fixed.

Eq. (21) is the constraint that the sum of the production
output and the reserve should be within the upper and lower
bounds for each generator. Eq. (22) describes the requirement
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on how much reserve the system should have reserve category
k ∈ Nr at time t. Eq. (23) says generator i can provide at most
q̄i,k,t for reserve requirement k at time t. Since reserve also
takes up the generation capacity,

The variable production cost, or the supply curve in a
market setting, Ct

i (p
t
i) is an increasing convex piece-wise

linear function of the production output pti.
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