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Abstract—Motivated by the increasing complexity in
the control of distribution level electric power systems
especially in a smart grid environment, we propose fully
decentralized algorithms to solve alternating current
(AC) optimal power flow (OPF) problems. The key
feature of the proposed algorithms is a complete decen-
tralization of computation down to nodal level. In this
way, no central or sub-area controller is needed, and the
OPF problem is solved by individual nodes, which only
have local knowledge of the system. Preliminary results
show promising performance of the fully decentralized
algorithms.

I. Introduction
In this paper, we propose new decentralized and dis-

tributed algorithms to solve the optimal power flow prob-
lem in electric power systems. The OPF problem is one
of the most important decision problems in power system
operation, where generators output levels are decided in
order to minimize system-wide production cost subject
to power balance constraints, network flow constraints,
and other physical constraints. In the current practice,
the system operator as a central control entity gathers
extensive information about generators’ physical charac-
terization and cost structure, load forecast, and electric
network parameters, and solves the OPF problem in a
centralized manner.

However, the electric industry is experiencing funda-
mental changes. Especially in the recent decade, an in-
creasing number of renewable energy resources, distributed
generators, electric vehicle charging stations, storage de-
vices, and demand-response components are being inte-
grated into the power system. As this trend continues, the
number of control objects in a power system can become
very large, the nature of control objects will be significantly
more diverse, and the interaction between control objects
and the central controller can be much more complex and
dynamic. This brings new challenges to the traditional cen-
tralized control framework. Decentralized and distributed
algorithms for solving OPF problems present a desirable
alternative control scheme.

The key feature of our proposed distributed algorithms
is that the computation is fully localized to nodal level in
the power network, so is the coordination fully localized
to interaction between neighbor nodes. Thus, no central
or sub-area controller is needed. The OPF problem is

completely solved by individual nodes, which only have
local knowledge of the system. Therefore, we use the name
fully decentralized OPF algorithms.

Early work in the related areas considered parallelizing
certain computation such as matrix factorization in cen-
tralized power flow algorithms [1], [2], [3], [4]. Baldick et
al. [5], [6] proposed a regional decomposition approach,
where a large power system is decomposed into a few
overlapping subsystems and each subsystem’s problem is
solved in parallel. More recent work explored similar ideas
of regional decomposition to solve multi-area coordination
problem in an interconnected market environment ([7],
[8] and references therein). Both [5], [6] and [7] have
focused on transmission level bulk power systems such as
the ERCOT power system in the United States and the
continental European power systems, and concerned with
coordination issues between regional markets, where each
regional market can be a huge control area by itself and
needs a sub-control center to solve its own OPF problem.
Our work is different in that no sub-system controller nor
global information is needed.

Most recently, distributed OPF algorithms were pro-
posed in [9], where the non-convex OPF problem is first re-
laxed to semidefinite programming (SDP) problems using
convexification techniques proposed in [10], [11], [12], [13],
then the resulting SDP problems are decomposed in terms
of maximal cliques (i.e. completely connected subgraphs)
in a modified network using a sparsity technique first
proposed for parallel solution of general SDP problems
[14]. Their algorithms require all the nodes in a clique
to jointly solve a SDP subproblem, and share information
with adjacent cliques. Although maximal cliques of a graph
could be computed a priori, it requires centralized com-
putation and the knowledge of the entire power network.
Such computation and information gathering can be quite
burdensome for large-scale systems, especially when the
topology of the network may change frequently as observed
in today’s practice, due to unexpected loss of transmission
lines, maintenance, or network expansion. In comparison,
our proposed algorithms can automatically adapt to net-
work topological changes, and no a priori computation
or information gathering is needed. In addition, since the
decomposition in [9] is decided by the structure of the
network, the algorithm designer does not have full control
over the structure of the resulted subsystems. In contrast,
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our algorithms retain full flexibility to re-group nodes
into subsystems to form a hierarchy of coarser grained
decompositions.

Our work is also different from previous proposals
in terms of the algorithmic framework. [5] and [6] form
and decompose an augmented Lagrangian using auxil-
iary problem principle proposed in [15]. [7] and related
work decouple the first-order KKT optimality conditions
of the original large-scale problem into KKT conditions
of sub-area systems. The recent work [9] uses a simple
Lagrangian-relaxation algorithm. We form a completely
separable augmented Lagrangian and apply the alternating
direction method of multipliers (ADMM), which has re-
cently gained considerable popularity due to its simplicity
and comparable or better performance compared to vari-
ous state-of-the-art algorithms for distributed optimization
and statistical learning problems [16].

The paper is organized as follows. In Section II, we
introduce mathematical formulations of AC OPF prob-
lems. Then, we outline the basic framework of ADMM. In
Section III, we present fully decentralized algorithms for
AC OPF. Section IV presents preliminary computational
results for both radial and meshed networks and some
discussions. Section V concludes the paper and points out
future research directions.

II. Background
In this section, we first review the AC optimal power

flow formulation. Then, we outline the basic framework of
alternating direction method of multipliers.

Let N denote the set of nodes in a power network.
Let PGi , QGi be the real and reactive powers produced by
generator at node i, and PDi , QDi be the real and reactive
powers consumed by load at node i. The complex voltage
at node i can be represented by its real and imaginary
parts as ei, fi. Let δ(i) be the set of nodes connected to i,
and gij and bij denote the conductance and susceptance
of the branch connecting nodes i, j. Define gii and bii as
the self-conductance and the self-susceptance at node i,
respectively.

The rectangular formulation of the AC OPF is given
as below:

min
PG,QG,e,f

∑
i∈N

fi(PGi ) (1)

PGi − PDi =
∑
j∈N

[
ei(gijej − bijfj) + fi(gijfj + bijej)

]
, ∀i,

(2)
QGi −QDi =

∑
j∈N

[fi(gijej − bijfj)− ei(gijfj + bijej)] , ∀i,

(3)
P i ≤ PGi ≤ P̄i, ∀i (4)
Q
i
≤ QGi ≤ Q̄i, ∀i (5)

V 2
i ≤ e2

i + f2
i ≤ V̄ 2

i , ∀i (6)

where fi(PGi ) is the variable production cost of generator
i, assuming to be a convex quadratic function. Eq. (2) and
(3) are power flow equations for real and reactive power,

respectively. Constraints (4)-(6) specify bounds on the
output ranges of generators, and voltage levels at nodes.
If node i does not have a generator, we set the lower and
upper bounds of PGi and QGi to be zero.

AC OPF can also be formulated in the polar form
using voltage magnitude and angles [17]. We propose
decentralized algorithms for both. In the interest of space,
we only present the rectangular formulation. Numerical
results for both formulations are shown in Section IV.

In the following, we briefly outline the ADMM algo-
rithm. See [16] for a comprehensive discussion. ADMM
inherents the decomposability of dual ascent type algo-
rithms and the good convergence properties of the method
of multipliers. It intends to solve the following problem

min
x,y

f(x) + g(y)

s.t. Ax+By = c.

Introducing dual variable λ and a positive penalty param-
eter ρ, the augmented Lagrangian is formed as

Lρ(x, y, λ) =f(x) + g(y) + λT (Ax+By − c)
+ ρ

2‖Ax+By − c‖22.

ADMM consists of the following iterations:

xk+1 := arg min
x
Lρ(x, yk, λk),

yk+1 := arg min
y
Lρ(xk+1, y, λk),

λk+1 := λk + ρ(Axk+1 +Byk+1 − c),

where the first two steps minimize over primal variables
x, y, and the third step updates the dual variable λ with
step size ρ > 0.

III. Fully decentralized OPF algorithm
In this section, we propose a fully decentralized algo-

rithm for AC OPF problem.

Fig. 1. A set of voltage variables ei
j (f i

j) are introduced at each node.
Local variables controlled by node i are encircled by the dashed line.

The difficulty in developing a decentralized algorithm
lies in power flow equations (2) and (3), which induce
couplings between nodal voltages. In order to decompose
computation down to individual nodes, we need to be able
to separate nodal variables and let each node solve its
own problem and coordinate through local interactions.
To accomplish this, at each node i, we introduce a set of
slack variables eij , f ij for each neighbor node j to represent



the real and imaginary voltages of j “observed” at node i.
Figure 1 illustrates this construction.

The reformulation using this idea is presented below.

(P1) min
∑
i∈N

fi(PGi ) (7)

s.t. PGi − PDi = (e2
i + f2

i )gii+ (8)∑
j∈δ(i)

[
ei(gijeij − bijf ij) + fi(gijf ij + bije

i
j)
]
, ∀i

QGi −QDi = −(e2
i + f2

i )bii+ (9)∑
j∈δ(i)

[
fi(gijeij − bijf ij)− ei(gijf ij + bije

i
j)
]
, ∀i

P i ≤ PGi ≤ P̄i, ∀i, (10)
Q
i
≤ QGi ≤ Q̄i, ∀i, (11)

V 2
i ≤ e2

i + f2
i ≤ V̄ 2

i , ∀i, (12)
ej = eij , ∀i,∀j ∈ δ(i), (13)
fj = f ij , ∀i,∀j ∈ δ(i). (14)

Notice that the “observed” voltages eij , f ij should be equal
to the true values ej , fj , respectively, thus we have con-
straints (13) and (14).

Now we can arrange variables at each node i into
two groups, namely xi := (PGi , QGi , ei, fi) ∈ R4 and
yi := (eij , f ij ,∀j ∈ δ(i)) ∈ R2|δ(i)|. Constraints (8)-(12)
define a feasible region Ωi for (xi, yi) of each node i. We
introduce an indicator function 1Ωi(xi, yi), which equals
to 1 if (xi, yi) ∈ Ωi, and +∞ otherwise. Thus, the above
formulation (P1) can be written as

(P2) min
x,y

∑
i∈N

[fi(xi) + 1Ωi
(xi, yi)] ,

s.t. ej = eij , ∀i,∀j ∈ δ(i), (15)
fj = f ji , ∀i,∀j ∈ δ(i). (16)

Dualizing constraints (15) and (16), we can form the
augmented Lagrangian as

L(x, y, λ, µ) =
∑
i∈N

[fi(xi) + 1Ωi
(xi, yi)] +∑

i∈N

∑
j∈δ(i)

[
λij(ej − eij) + µij(fj − f ij)

]
+

ρ

2
∑
i∈N

∑
j∈δ(i)

[
(ej − eij)2 + (fj − f ij)2] .

Now we can see that, using ADMM algorithm to
alternate between primal variables x and y and update
dual variables λ and µ, the augmented Lagrangian can
be completely decomposed to subproblems at each node.
Therefore, we have a fully decentralized OPF algorithm.
The detail is presented below.

At the k-th iteration:

1) Fix (eji )k, (f
j
i )k and the multipliers (λji )k, (µji )k

for all i, j. We have the following system-wide

problem:

min
PG,QG,e,f

L(PG, QG, e, f, yk, λk, µk),

which can be completely decentralized to nodes.
Each node i solves the following problem:

min
PG

i
,QG

i
,ei,fi

fi(PGi )+∑
j∈δ(i)

[
(λji )

k
(
ei − (eji )

k
)

+ (µji )
k
(
fi − (f ji )k

)]
+

∑
j∈δ(i)

ρ

2

[(
ei − (eji )

k
)2

+
(
fi − (f ji )k

)2
]

s.t. PGi − PDi = (e2
i + f2

i )gii+∑
j∈δ(i)

[
ei
(
gij(eij)k − bij(f ij)k

)
+ fi

(
gij(f ij)k + bij(eij)k

)]
,

QGi −QDi = −(e2
i + f2

i )bii+∑
j∈δ(i)

[
fi
(
gij(eij)k − bij(f ij)k

)
− ei

(
gij(f ij)k + bij(eij)k

)]
,

P i ≤ PGi ≤ P̄i, Qi ≤ Q
G
i ≤ Q̄i, V

2
i ≤ e2

i + f2
i ≤ V̄ 2

i .

Notice that this nodal problem is a quadratic opti-
mization problem in only 4 variables. Even though
it is non-convex due to the power flow constraints,
it still can be solved very fast. To solve this
problem, each node i needs its own estimation of
its neighbor nodes voltages ((eij)k, (f ij)k), as well
as its neighbor nodes’ estimation of i’s voltages
((eji )k, (f

j
i )k) and local multipliers ((λji )k, (µ

j
i )k)

for all j ∈ δ(i). The first set of voltage infor-
mation is available at node i, while the second
set of voltage information and the Lagrangian
multipliers require a local message passing be-
tween node i and its neighbors j ∈ δ(i). De-
note the solution of this problem as (xi)k+1 =
((PGi )k+1, (QGi )k+1, (ei)k+1, (fi)k+1). Upon solv-
ing this problem, node i shares this solution
(xi)k+1 with its neighbors.

2) Fix xk+1 and (λk, µk). We have the following
system-wide problem:

min
y
L
(
xk+1, y, λk, µk

)
,

which can be fully decomposed to subproblems at
each node i as

min
ei

j
,fi

j
,∀j∈δ(i)

∑
j∈δ(i)

[
(λij)k

(
αj − eij

)
+ (µij)k

(
βj − f ij

)]
+
∑
j∈δ(i)

ρ

2

[(
αj − eij

)2 +
(
βj − f ij

)2]
s.t. (PGi )k+1 − PDi = (α2

i + β2
i )gii+∑

j∈δ(i)

[
αi
(
gije

i
j − bijf ij

)
+ βi

(
gijf

i
j + bije

i
j

)]
,

(QGi )k+1 −QDi = −(α2
i + β2

i )bii+∑
j∈δ(i)

[
βi
(
gije

i
j − bijf ij

)
− αi

(
gijf

i
j + bije

i
j

)]
,



where αi := (ei)k+1, βi := (fi)k+1 and αj :=
(ej)k+1, βj := (fj)k+1 for all j ∈ δ(i). No-
tice that this is a convex quadratic optimiza-
tion problem in 2|δ(i)| variables, which can be
solved very efficiently. To solve this problem,
node i needs its neighbor nodes’ updated voltages
((ej)k+1, (fj)k+1) and multipliers ((λij)k, (µij)k).
The information about ((ej)k+1, (fj)k+1) can be
shared through a local message passing between
node i and its neighbors, while the multipliers
information can be processed and stored at i.

3) Update multipliers (λij , µij) at each node i,

(λij)k+1 = (λij)k + ρ
(
(ej)k+1 − (eij)k+1) , ∀j ∈ δ(i),

(µij)k+1 = (µij)k + ρ
(
(fj)k+1 − (f ij)k+1) , ∀j ∈ δ(i).

In each iteration of the above decentralized algorithm,
each node solves two optimization problems, shares infor-
mation with its neighbors, and updates multipliers. We can
explicitly write out the local communication in each step
of the decentralized algorithm:

1) Each node i receives voltage estimates
((eji )k, (f

j
i )k) and multipliers ((λji )k, (µ

j
i )k)

from its neighbors j ∈ δ(i), solves the first
optimization problem, and passes the result
((PGi )k+1, (QGi )k+1, (ei)k+1, (fi)k+1) to its
neighbors.

2) Each node i uses its own updated information
((PGi )k+1, (QGi )k+1, (ei)k+1, (fi)k+1), multipliers
((λij)k, (µij)k), and neighbors updated voltages
((ei)k+1, (fi)k+1) to solve the second optimization
problem and pass solution ((eij)k+1, (f ij)k+1) to its
neighbors.

3) Each node i updates its multipliers using its
neigbors true voltages ((ej)k+1, (fj)k+1) and its
own estimate ((eij)k+1, (f ij)k+1).

IV. Computational Results and Discussions

In this section, we present preliminary testing results
on a radial network and discuss the performance of the
proposed algorithms for both rectangular and polar for-
mulations. Then, we show additional results for two small
meshed networks and have further discussions on algo-
rithm’s performance for meshed networks.

The proposed algorithms are prototyped in MATLAB
7.10, where the convex quadratic subproblems are solved
by the MATLAB solver quadprog. The non-convex sub-
problems are solved by the MATLAB nonlinear solver
fmincon. We acknowledge that the non-convex problems
could be solved by more powerful solvers such as IPOPT
[18]. However, fmincon seems to be sufficient for the sub-
problems have a simple structure and small size. All tests
were performed on a 64-bit Windows 7 ThinkPad W520
with Intel i7-2720QM 2.2 GHz CPU and 8GB RAM.

The structure of the radial network is illustrated in
Figure 2.

The decentralized algorithms are terminated if the ob-
jective value obtained has relative error less than 10−2 with

Fig. 2. The radial network consists of a generator node 0 and load
nodes 1, 2, . . . , N .

respect to the global optimum, which is pre-computed by a
global OPF solver [19]. We observe that the decentralized
algorithms converge to the global optimum upon termi-
nation with infeasibility residual less than 10−3 when the
algorithms are started from a point close to the optimum.
We emphasize that since the problem is non-convex and
only local optimization techniques are employed, it may
happen that both the subproblems and the entire problem
only find local optimum. To the authors’ best knowledge,
there is no general convergence proof for ADMM type
algorithms applied to nonconvex problems. To enhance
convergence, one could argue that, since the OPF problems
are usually solved repeatedly every few minutes, earlier
solutions could be used as warm start for later re-solving.
However, the actual performance of such a warm-start
strategy needs to be evaluated numerically, which is an
interesting future research direction.

TABLE I. Computational Results

Rectangular AC OPF Polar AC OPF
N iter TS(s) TP (s) iter TS(s) TP (s)
5 33 7.66 1.28 54 13.45 2.24

10 44 15.26 1.39 95 42.09 3.83
20 63 37.71 1.80 157 125.91 6.00
30 85 76.89 2.48 225 252.50 8.15
40 102 121.87 2.97 290 443.95 10.82
50 128 198.40 3.89 367 807.34 15.83

Table I shows the computational results for the radial
network shown in Figure 2 with the number of load nodes
N up to 50. For each algorithm, an accumulated CPU
time (TS) of the serial implementation and the number
of iterations (iter) are recorded. From this, we can have
a rough estimation of the CPU time in a parallel imple-
mentation (TP ) where TP ≈ TS/(N + 1). We can see that,
for AC OPF, the algorithm using rectangular form has a
faster convergence than the one using polar form. This may
be explained by the fact that the rectangular AC OPF
algorithm has a convex quadratic subproblem, whereas
subproblems in the polar AC OPF algorithm are non-
convex problems involving trigonometric functions. We
also observe that the computation times (TP ) in parallel
implementation of both algorithms grow linearly with
respect the size of the network (see Figure 3). This shows a
clear advantage of the fully decentralized algorithms: Even
though the entire network can become very large and com-
plex, as long as the local structure of the network remains
relatively simple with sparse connections between neighbor
nodes, the fully decentralized OPF algorithm will have a
scalable computation and communication complexity.



Fig. 3. Plots of computation time (TP ) vs. problem size.

The decomposition only depends on the local connec-
tivity of the network and is independent of the global
network structure. Therefore, the resulting distributed
algorithms should in principle be applicable to both radial
and meshed networks. We have also conducted prelimi-
nary tests on small meshed networks from MATPOWER’s
library [20] (a 4-bus system with 2 generators and 4
branches connecting 4 buses in a cycle, and a 6-bus system
with 3 generators and 11 branches). For both meshed
networks, we observed global convergence under the same
termination criterion for the radial network. In particular,
for the 4-bus system the distributed algorithm in rectan-
gular form converges Ts = 3.87 sec and 31 iterations; For
the 6-bus system, the algorithm converges in TS = 5.67
sec and 32 iterations. However, we did observe that the
convergence is more sensitive to the initial starting point
of the algorithm, which indicates that the meshed network
may be much more difficult to solve than the radial case.

V. Conclusions

We proposed fully decentralized algorithms for solving
the important problem of optimal power flow, where each
node in the power network solves simple optimization
problems using only local information. Such algorithms
can be a desirable alternative to the current centralized
control framework, especially when the size and complexity
of power systems increase significantly.

We conducted preliminary computational experiments
on radial networks. Test results demonstrated good conver-
gence performance of the proposed algorithms for radial
networks, i.e. the global optimum is obtained and linear
growth computation complexity is observed. We have also
shown convergence results for 4-bus and 6-bus meshed
network. For future research, we will conduct extensive
experiments on larger meshed networks and will study
issues related to warm start and convergence acceleration.
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